直线与圆锥曲线的位置关系详解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆锥曲线的位置关系
●知识梳理
本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式.
●点击双基
1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有
A.1条
B.2条
C.3条
D.4条
解析:数形结合法,同时注意点在曲线上的情况.
答案:B
2.已知双曲线C :x 2-4
2y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有
A.1条
B.2条
C.3条
D.4条
解析:数形结合法,与渐近线平行、相切.
答案:D
3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是
A.(-∞,0)
B.(1,+∞)
C.(-∞,0)∪(1,+∞)
D.(-∞,-1)∪(1,+∞)
解析:数形结合法,与渐近线斜率比较.
答案:C
4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________.
解析:由题意知抛物线焦点F (1,0).设过焦点F (1,0)的直线为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2).
代入抛物线方程消去y 得k 2x 2-2(k 2+2)x +k 2=0.
∵k 2≠0,∴x 1+x 2=2
2)2(2k k +,x 1x 2=1. ∵|AB |=2212))(1(x x k -+ =]4))[(1(212212x x x x k -++ =]4)2(4)[1(42
22
-++k k k =8,
∴k 2=1.
∴△OAB 的重心的横坐标为x =
3
021x x ++=2. 答案:2 5.已知(4,2)是直线l 被椭圆362x +9
2y =1所截得的线段的中点,则l 的方程是____________.
解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2),
将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率k =2121x x y y --=-)
(42121y y x x ++=
-2
42
21
21y y x x +⋅+ =-2
44⨯=-21. 由点斜式可得l 的方程为x +2y -8=0.
答案:x +2y -8=0
●典例剖析
【例1】 已知直线l :y =tan α(x +22)交椭圆x 2+9y 2=9于A 、B 两点,若α为l 的倾斜角,且|AB |的长不小于短轴的长,求α的取值范围.
剖析:确定某一变量的取值范围,应设法建立关于这一变量的不等式,题设中已经明确给定弦长≥2b ,最后可归结为计算弦长求解不等式的问题.
解:将l 方程与椭圆方程联立,消去y ,得(1+9tan 2α)x 2+362tan 2α·x +72tan 2α-9=0,
∴|AB |=α2tan 1+|x 2-x 1| =α2tan 1+·)
tan 91(2α+Δ =α
α22tan 916tan 6++. 由|AB |≥2,得tan 2α≤
31, ∴-33≤tan α≤3
3. ∴α的取值范围是[0,6π)∪[6
π5,π). 评述:对于弦长公式一定要能熟练掌握、灵活运用.本题由于l 的方程由tan α给出,所以可以认定α≠2π,否则涉及弦长计算时,还应讨论α=2
π时的情况. 【例2】 已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.
(1)求证:OA ⊥OB ;
(2)当△OAB 的面积等于10时,求k 的值.
剖析:证明OA ⊥OB 可有两种思路(如下图):
(1)证k OA ·k OB =-1;
(2)取AB 中点M ,证|OM |=2
1|AB |. 求k 的值,关键是利用面积建立关于k 的方程,求△AOB 的面积也有两种思路:
(1)利用S △OAB =2
1|AB |·h (h 为O 到AB 的距离); (2)设A (x 1,y 1)、B (x 2,y 2),直线和x 轴交点为N ,利用S △OAB =
21|AB |·|y 1-y 2|. 请同学们各选一种思路给出解法.
解方程组时,是消去x 还是消去y ,这要根据解题的思路去确定.当然,这里消去x 是最简捷的.
(1)证明:如下图,由方程组
y 2=-x , y =k (x +1)
ky 2+y -k =0.
设A (x 1,y 1)、B (x 2,y 2),由韦达定理y 1·y 2=-1.
∵A 、B 在抛物线y 2=-x 上,
∴y 12=-x 1,y 22=-x 2,y 12·y 22=x 1x 2.
消去x 后,整理得
∵k OA ·k OB =11x y ·22x y =2121x x y y =2
11y y =-1, ∴OA ⊥OB .
(2)解:设直线与x 轴交于N ,又显然k ≠0,
∴令y =0,则x =-1,即N (-1,0).
∵S △OAB =S △OAN +S △OBN =
21|ON ||y 1|+2
1|ON ||y 2| =2
1|ON |·|y 1-y 2|, ∴S △OAB =21·1·212214)(y y y y -+ =21
4)1(2+k
. ∵S △OAB =10, ∴10=21
412+k
.解得k =±61. 评述:本题考查了两直线垂直的充要条件、三角形的面积公式、函数与方程的思想,以及分析问题、解决问题的能力.
【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.
剖析:设B 、C 两点关于直线y =kx +3对称,易得直线BC :x =-ky +m ,由B 、C 两点关于直线y =kx +3对称可得m 与k 的关系式,
而直线BC 与抛物线有两交点,
∴Δ>0,即可求得k 的范围.
解:设B 、C 关于直线y =kx +3对称,直线BC 方程为x =-ky +m ,代入y 2=4x ,得y 2+4ky -4m =0,
设B (x 1,y 1)、C (x 2,y 2),BC 中点M (x 0,y 0),