2017人教版八年级下册数学期中试卷及答案
2017人教版八年级数学下册期中试卷含答案
期中测试(时间:90分钟 满分:120分)一、选择题☎每小题 分,共 分✆ .☎南通中考✆若⌧-在实数范围内有意义,则⌧的取值范围是☎ ✆✌.⌧≥ .⌧≥- .⌧>.⌧≠.一直角三角形的两直角边长为 和 ,则斜边长为☎ ✆✌. . . . .如图,在▱✌中,已知✌= ♍❍,✌= ♍❍,✌☜平分 ✌交 边于点☜,则☜等于☎ ✆ ✌. ♍❍ . ♍❍ . ♍❍ . ♍❍.下列计算错误的是☎ ✆✌ = = ♋+ ♋= ♋ . - = .如图,点 是平面坐标系内一点,则点 到原点的距离是☎ ✆ ✌. .下列根式中,是最简二次根式的是☎ ✆ ✌♌♋- ♌⌧ -⍓ ♋♌ .如图,已知四边形✌是平行四边形,下列结论中不正确的是☎ ✆✌.当✌= 时,它是菱形 .当✌时,它是菱形.当 ✌= °时,它是矩形 .当✌= 时,它是正方形.已知菱形✌中,对角线✌与 交于点 ,∠ ✌= °,✌= ,则该菱形的面积是☎✆✌. . . ..如图,在四边形✌中,✌= ,∠✌= ✌= °, ☜⊥✌于点☜,且四边形✌的面积为 ,则 ☜=☎✆✌. . . ..如图所示,✌☎- , ✆, ☎, ✆分别为⌧轴,⍓轴上的点,△✌为等边三角形,点 ☎,♋✆在第一象限内,且满足 ✌= △✌,则♋的值为☎✆✌ .二、填空题☎每小题 分,共 分✆.已知☎⌧-⍓+ ✆ + -⍓= ,则⌧+⍓=♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知 ✌中,✌= ♍❍, = ♍❍,✌= ♍❍,那么✌边上的中线 的长为♉♉♉♉♉♉♉♉♉♉♉♉♍❍.☎郴州中考✆如图,在矩形✌中,✌= , = ,☜是✌上一点,将矩形✌沿 ☜折叠后,点 落在✌边的点☞上,则 ☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,已知在 ♦△✌中,∠✌= °,✌= ,分别以✌, 为直径作半圆,面积分别记为 , ,则 + 等于♉♉♉♉♉♉♉♉♉♉♉♉..如图所示,直线♋经过正方形✌的顶点✌,分别过顶点 , 作 ☜♋于点☜, ☞⊥♋于点☞,若 ☜= , ☞= ,则☜☞的长为♉♉♉♉♉♉♉♉♉♉♉♉..如图,在图 中,✌ , , 分别是 ✌的边 , ✌,✌的中点,在图 中,✌ , , 分别是 ✌ 的边 , ✌ ,✌ 的中点,…,按此规律,则第⏹个图形中平行四边形的个数共有♉♉♉♉♉♉♉♉♉♉♉♉个.三、解答题☎共 分✆ .☎分✆计算: ☎✆ + - -; ☎✆ - +☎- ✆☎+✆..☎分✆在解答❽判断由长为 , ,的线段组成的三角形是不是直角三角形”一题中,小明是这样做的: 解:设♋= ,♌= ,♍= 又因为♋ +♌ =☎ ✆ + = ♊ =♍ , 所以由♋,♌,♍组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由..☎分✆如图,铁路上✌, 两点相距 ❍, , 为两村庄, ✌⊥✌于点✌, ⊥✌于点 ,已知 ✌= ❍, = ❍,现在要在铁路✌上建一个土特产品收购站☜,使得 , 两村到☜站的距离相等,则☜站应建在离✌站多少 ❍处?.☎分✆如图,☜,☞,☝,☟分别是边✌, , , ✌的中点. ☎✆判断四边形☜☞☝☟的形状,并证明你的结论;☎✆当 ,✌满足什么条件时,四边形☜☞☝☟是正方形.☎不要求证明✆.☎分✆如图,四边形✌是一个菱形绿地,其周长为 ❍,∠✌= °,在其内部有一个四边形花坛☜☞☝☟,其四个顶点恰好在菱形✌各边的中点,现在准备在花坛中种植茉莉花,其单价为 元 ❍ ,请问需投资金多少元?☎结果保留整数✆.☎分✆如图,在▱✌中,☜为 的中点,连接✌☜并延长交 的延长线于点☞☎✆求证:✌= ☞;☎✆当 与✌☞满足什么数量关系时,四边形✌☞是矩形,并说明理由..☎分✆如图,在 ♦△✌中,∠ = °,✌= ♍❍,∠✌= °,点 从点 出发沿 ✌方向以 ♍❍秒的速度向点✌匀速运动,同时点☜从点✌出发沿✌方向以 ♍❍秒的速度向点 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点 ,☜运动的时间是♦秒☎♦♎✆.过点 作 ☞于点☞,连接 ☜,☜☞☎✆求证:✌☜= ☞;☎✆四边形✌☜☞能够成为菱形吗?如果能,求出相应的♦值;如果不能,请说明理由;☎✆当♦为何值时,△ ☜☞为直角三角形?请说明理由.参考答案. ✌ π ⏹ .☎✆原式= + - -= ☎✆原式= - + + - - = -+ .小明的解答是错误的.设♋= ,♌= ,♍= 因为♋♍♌,且♋ +♍ =☎ ✆ +☎✆ =♌ ,所以由♋,♌,♍组成的三角形是直角三角形..设✌☜=⌧ ❍,则 ☜=☎-⌧✆❍,∵ ☜= ☜,又 在 ✌☜和 ☜中, ✌⊥✌于点✌, ⊥✌于点 ,∴⌧ + = +☎-⌧✆ 解得⌧= ☜站应建在离✌站 ❍处. .解:☎✆四边形☜☞☝☟是平行四边形.证明: ☜,☞分别是边✌ , 的中点,∴☜☞∥✌,且☜☞=✌ 同理:☟☝✌,且☟☝=✌☜☞☟☝,且☜☞=☟☝四边形☜☞☝☟是平行四边形.☎✆当 =✌且 ✌时,四边形☜☞☝☟是正方形..连接 ,✌∵菱形✌的周长为 ❍,∴菱形✌的边长为 ❍.∵∠✌= °,∴△✌,△ 是等边三角形. 对角线 = ❍,✌= ❍.∵☜,☞,☝,☟是菱形✌各边的中点,∴四边形☜☞☝☟是矩形,矩形的边长分别为 ❍, ❍.∴矩形☜☞☝☟的面积为 = ☎❍ ✆,即需投资金为 = ☟☎元✆.答:需投资金为 元. .☎✆证明: 四边形✌是平行四边形,∴✌∥ ☞∴∠ ✌☞= ☞✌☜为 的中点,∴ ☜= ☜又 ✌☜= ☞☜,∴△✌☜≌△☞☜☎✌✌✆. ✌= ☞☎✆当 =✌☞时,四边形✌☞是矩形.理由如下:由☎✆,得✌= ☞,∵✌∥ ☞,∴四边形✌☞是平行四边形. =✌☞,∴四边形✌☞是矩形..☎✆证明:在 ☞中,∠ ☞= °,∠ = °, = ♦,∴ ☞= ♦又 ✌☜= ♦,∴✌☜= ☞☎✆能.理由如下: ✌, ☞⊥ ,∴✌☜∥ ☞又 ✌☜= ☞,∴四边形✌☜☞为平行四边形.当四边形✌☜☞为菱形时,✌☜=✌=✌- 即 - ♦= ♦,解得♦= 当♦= 秒时,四边形✌☜☞为菱形.☎✆♊当 ☜☞= °时,由☎✆知四边形✌☜☞为平行四边形,∴☜☞∥✌,∴∠✌☜= ☜☞= ° ∵∠✌= °,∴∠✌☜= ° ∴✌= ✌☜=♦又✌= - ♦,即 - ♦=♦,解得♦= ;♋当 ☜☞= °时,四边形☜☞为矩形,在 ♦△✌☜中,∠✌= °,则∠✌☜= °,∴✌= ✌☜,即 - ♦= ♦,解得♦= ;♌若 ☜☞= ,则☜与 重合, 与✌重合,此种情况不存在.故当♦= 或 秒时,△ ☜☞为直角三角形.。
2017-2018学年f人教版八年级(下)期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5 3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6 4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=25.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=16.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>57.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.128.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D .6,59.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根10.在平行四边形ABCD 中,AC 与BD 相交于0,AE ⊥BD 于E ,CF ⊥BD 于F ,则图中的全等三角形共( )A .5对B .6对C .7对D .8对二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 .12.一个多边形的每一个外角为30°,那么这个多边形的边数为 .13.化简:= .14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 市场.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 .16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:;乙:.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.2.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤5【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.下列方程是一元二次方程的是()A.x2﹣y=1B.x2+2x﹣3=0C.x2+=3D.x﹣5y=6【分析】利用一元二次方程的定义判断即可.【解答】解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.【点评】本题考查了解一元二次方程的应用,关键是能正确配方.6.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).7.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.12【分析】先过点D作DE⊥AC于点E,由在▱ABCD中,AC=8,BD=6,可求得OD的长,又由对角线AC、BD相交成的锐角α为30°,求得DE的长,△ACD的面积,则可求得答案.【解答】解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S=AC•DE=×8×1.5=6,△ACD=12.∴S▱ABCD=2S△ACD故选:D.【点评】此题考查了平行四边形的性质以及三角函数的知识.注意准确作出辅助线是解此题的关键.8.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A .5,5B .5,6C .6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可. 【解答】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B .【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 9.不解方程,判别方程2x 2﹣3x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根【分析】先把方程化为一般式得到2x 2﹣3x ﹣3=0,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>0,然后根据△的意义判断方程根的情况. 【解答】解:方程整理得2x 2﹣3x ﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共()A.5对B.6对C.7对D.8对【分析】由四边形ABCD是平行四边形,可得OA=OC,OB=OD,AB=CD,AD=BC,即可证得△ABD≌△CDB(SSS),△ABC≌△CDA,△AOD≌△COB(SAS),△AOB≌△COD,又由AC⊥BD,AE⊥BD,可得△AOE≌△COF,△ABE≌△CDF(AAS),△ADE≌△CBF.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB=CD,AD=BC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ABC≌△CDA;在△AOD和△COB中,,∴△AOD≌△COB(SAS),同理:△AOB≌△COD,∴∠ABO=∠CDO,∵AC⊥BD,AE⊥BD,∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,在△AOE和△COF中,,∴△AOE ≌△COF (AAS ), 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ). 同理:△ADE ≌△CBF . 故选:C .【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,满分24分,每小题4分)11.当x =﹣2时,二次根式的值是 4 .【分析】把x =﹣2代入已知二次根式,通过开平方求得答案.【解答】解:把x =﹣2代入得,==4,故答案为:4.【点评】本题考查了二次根式的定义及性质,注意二次根式的结果是非负数是解答此题的关键. 12.一个多边形的每一个外角为30°,那么这个多边形的边数为 12 .【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12, 则这个多边形的边数为12. 故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.化简:=.【分析】根据二次根式的性质计算即可.【解答】解:原式==,故答案为:.【点评】本题考查的是二次根式的化简求值,掌握二次根式的性质是解题的关键.14.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为S 甲2=7.5,S乙2=1.5,S丙2=3.1,那么该月份白菜价格最稳定的是 乙 市场.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案. 【解答】解:∵S 甲2=7.5,S 乙2=1.5,S 丙2=3.1, ∴S 甲2>S 丙2>S 乙2,∴该月份白菜价格最稳定的是乙市场; 故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知关于x 的二次方程a (x +h )2+k =0的解为,则方程的解为 x 1=﹣,x 2=0 .【分析】由于方程的解比二次方程a (x +h )2+k =0的解要大,则方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.【解答】解:∵关于x 的二次方程a (x +h )2+k =0的解为,∴方程的解为x 1=﹣3+=﹣,x 2=﹣+=0.故答案为x 1=﹣,x 2=0.【点评】本题考查了一元二次方程的解:满足一元二次方程的未知数的值叫一元二次方程的解. 16.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 【解答】解:连接E 、F 两点, ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等, ∴S △EFC =S △BCF , ∴S △EFQ =S △BCQ , 同理:S △EFD =S △ADF , ∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2, ∴S 四边形EPFQ =41cm 2, 故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 三.解答题(共7小题,满分66分)17.在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第 ③ 步开始出错的; (2)请你给出正确的解题过程.【分析】根据二次根式的运算法则即可求出答案. 【解答】解:(1)③(2)原式=2﹣=6﹣2=4【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.解下列方程.(1)x2﹣14x=8(配方法)(2)x2﹣7x﹣18=0(公式法)(3)(2x+3)2=4(2x+3)(因式分解法)(4)2(x﹣3)2=x2﹣9.【分析】(1)利用配方法得到(x﹣7)2=57,然后利用直接开平方法解方程;(2)先计算判别式的值,然后利用求根公式解方程;(3)先移项得到(2x+3)2﹣4(2x+3)=0,然后利用因式分解法解方程;(4)先变形得到2(x﹣3)2﹣(x+3)(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣14x+49=57,(x﹣7)2=57,x﹣7=±,所以x1=7+,x2=7﹣;(2)△=(﹣7)2﹣4×1×(﹣18)=121,x=,所以x1=9,x2=﹣2;(3)(2x+3)2﹣4(2x+3)=0,(2x+3)(2x+3﹣4)=0,2x+3=0或2x+3﹣4=0,所以x1=﹣,x2=;(4)2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,x﹣3=0或2x﹣6﹣x﹣3=0,所以x1=3,x2=9.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法解一元二次方程.19.王老师为了从平时在班级里数学比较优秀的甲、乙两位同学中选拔一人参加“全国初中数学希望杯竞赛”,对两位同学进行了辅导,并在辅导期间进行了5次测验,两位同学测验成绩得分情况如图所示:利用表中提供的数据,解答下列问题:(1)根据右图分别写出甲、乙五次的成绩:甲:10,13,12,14,16;乙:13,14,12,12,14.(2)填写完成下表:(3)请你根据上面的信息,运用所学的统计知识,帮助王老师做出选择,并简要说明理由.【分析】根据图表就可以得到甲,乙的成绩,注意观察次数所对应的点的纵坐标,就是成绩;根据这两组数就可以求出每组的平均数,中位数、众数、方差;根据平均数的大小确定成绩的好坏,根据方差确定成绩哪个稳定.【解答】解:(1)甲:10,13,12,14,16;乙:13,14,12,12,14;(2)(3)选择乙去竞赛.因为甲乙的平均分相同,乙的成绩较稳定所以选乙去.【点评】本题主要考查了平均数、中位数、众数的概念,方差是描述一组数据波动大小的量.20.某商场销售某种商品,进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查,单价每降低2元,则平均每天的销售量可增加20千克.若该商场销售这种商品平均每天获利2240元,并且为尽可能让利于顾客,赢得市场,那么这种商品每千克应降价多少元?【分析】设这种商品每千克应降价x元,利用销售量×每千克利润=2240元列出方程求解即可.【解答】解:设这种商品每千克应降价x元,根据题意得(60﹣x﹣40)(100+×20)=2240整理得x2﹣10x+24=0解得:x1=4(不合题意,舍去),x2=6.答:这种商品每千克应降价6元.【点评】本题考查了一元二次方程的应用,解题的关键是掌握销售问题中的基本数量关系.21.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.【分析】(1)由题意可得:∠DAE=∠BAE=∠AEB=∠BAD=∠C,则∠C+∠FEC=90°,根据三角形内角和可得∠C+∠EFC=90°,则∠CEF=∠CFE,即可得结论;(2)连接AC,作AP⊥BC于P,由题意可求AB=BE=CD=5,CE=CF=2,即可求DH=3,根据勾股定理可求AE的长,根据勾股定理可列出方程,可求出BP,AP,PE,PC的长度,再根据勾股定理可求AC的长,由题意可证AC=GF,即可得GF的长.【解答】证明:(1)∵四边形ABCD是平行四边形∴∠BAD=∠C,AD∥BC∴∠DAE=∠AEB∵AE平分∠DAB∴∠BAE=∠DAE=∠BAD∴∠BAE=∠AEB=∠BAD∴AB=BE∵AE⊥EF∴∠AEF=90°∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°∴∠C+∠FEC=90°∵∠C+∠FEC+∠EFC=180°∴∠C+∠EFC=90°∴∠EFC=∠FEC∴CE=CF(2)如图连接AC,作AP⊥BC于P∵四边形ABCD是平行四边形∴AB=CD,AD=BC=7,AB∥CD∵CE=CF∴BC﹣BE=CD﹣DF,且AB=BE=CD∴7﹣AB=AB﹣3∴AB=5=BE=CD∴CE=CF=2∵AD∥BC∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC ∴∠H=∠DFH∴DH=DF=3∴AH=10在Rt△AEH中,AH2=AE2+EH2,且EH=2AE∴5AE2=100∴AE=2在Rt△ABP和Rt△APE中AP2=AB2﹣BP2,AP2=AE2﹣PE2.∴AB2﹣BP2=AE2﹣PE2.∴25﹣BP2=20﹣(5﹣BP)2.∴BP=3∴AP=4,PE=2,PC=4在Rt△APC中,AC==4∵AB∥CD,AG=CF∴四边形AGFC是平行四边形∴GF=AC=4【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.22.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:此方程总有两个实数根;(2)求此方程的两个根(若所求方程的根不是常数,就用含k的式子表示);(3)如果此方程的根刚好是某个等边三角形的边长,求k的值.【分析】(1)由△=[﹣(k+1)]2﹣4×1×(2k﹣2)=(k﹣3)2≥0可得答案;(2)利用因式分解法可得(x﹣2)[x﹣(k﹣1)]=0,再进一步求解可得;(3)根据等边三角形的三边相等得出关于k的方程,解之可得.【解答】解:(1)依题意,得△=[﹣(k+1)]2﹣4×1×(2k﹣2)=k2+2k+1﹣8k+8=k2﹣6k+9=(k﹣3)2≥0,∴此方程总有两个实数根.(2)将方程左边因式分解得(x﹣2)[x﹣(k﹣1)]=0,则x﹣2=0或x﹣(k﹣1)=0,解得x1=2,x2=k﹣1;(3)∵此方程的根刚好是某个等边三角形的边长,∴k﹣1=2.∴k=3.【点评】此题考查了配方法解一元二次方程与一元二次方程判别式的知识.解题的关键是熟练掌握一元二次方程的根的个数与判别式的关系及因式分解法解一元二次方程及等边三角形的性质.23.如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【分析】(1)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠BAD=30°;(2)由三棱柱的侧面展开图求出BC和MB的长,即是所需的矩形纸带的长度.【解答】解:(1)由图2的包贴方法知:∵AB的长等于三棱柱的底边周长,∴AB=30cm,∵纸带的宽为15cm,∴sin∠BAD=sin∠ABM===,∴∠BAD=30°;(2)在图3中将三棱柱沿过点A的侧棱剪开,得知如图甲的侧面展开图.将图甲的△ABF向左平移30cm,△CDE向右平移30cm,拼成如图乙中的平行四边形AMCN,此平行四边形即为图2中的平行四边形ABCD.由题意得:图2中的BC=图乙中的AM=2AE=2AB÷cos∠EAB=60÷cos30°=40(cm),故所需的矩形纸带的长度为MB+BC=30×cos30°+40=55cm.【点评】本题是一道立体图形的侧面展开,结合三角函数进行计算是一道综合题,难度较大.。
贵州省遵义市2017-2018学年八年级数学下学期期中测试试题答案(pdf) 新人教版
2017-2018学年第二学期八年级期中测试-数学试题卷参考答案及评分建议一、选择题(每小题3分,共36分)1. B (基础题)分析:考查了直角三角形中勾股定理的应用2. C (基础题)分析:考查了勾股定理逆定理的应用,逆定理可以判定三角形是否是直角三角形3. A (基础题)分析:考查了勾股定理逆定理的应用4. B (基础题)分析:先利用勾股定理判定是直角三角形后,再计算三角形的面积5. B (中等题)分析:先计算直角三角形的另一直角边,利用等积式求出斜边上的高,考查了学生掌握勾股定理和等积式的应用6. D (中等题)分析:4cm在直角三角形中,有可能是斜边,也有可能是直角边,所以有两个答案,考查了学生在考虑问题时要考虑周到,培养学生善于思考的好习惯。
7. D (中等题)分析:由于等边三角形的特殊性,先利用勾股定理求出一边上的高为,再利用三角形的面积公式求出三角形的面积.考查了学生对特殊三角形利用勾股定理求面积的掌握情况8. C (中等题)分析:用代数方法求几何问题考查学生利用比例和勾股定理求三角形的各边和周长9. D (中等题)分析:利用“勾股树”两直角边的边长为正方形的面积等于斜边为边的正方形面可得,考查了学生学习勾股定理时的灵活性10.B (中等题)分析:考查学生对勾股定理的逆定理的掌握情况11.D (中等题)分析:考查学生对勾股定理的逆定理的掌握和应用情况12.D (难题)分析:先将圆柱沿A点展开,利用勾股定理可得,假设直角顶点为C,AC=5,圆的周长为4π则BC=2π,AB==,考查了学生能将复杂图形进行分析处理,找出解决问题的能力二、填空题(每小题4分,共24分)13.答案是2 (基础题)分析:考查学生对等腰直角三角形的性质和勾股定理应用求出直角边 为2,再利用三角形面积公式求出三角形的面积14.答案是3 (基础题)分析:5可能是直角边,也可能是斜边,所以有两种情况,考查学生是否会想到这两种情况15.答案是直角三角形 (基础题)分析:将式子变形可得222a c b +=,是以b 边所对的角是直角的直角三角形16.答案是20cm ,解:设斜边长为x ,则另一直角边为(x -4),由勾股定理得22212(4)x x =+-,解这个方程得x =20分析:考查学生对勾股定理灵活掌握的情况17.答案是直角三角形 (中偏难题)分析:先由算术平方根,绝对值,平方的意义可知50a -≥,130b -≥,120c -≥,但式子和为0,由此只能50a -=,130b -=,120c -=解得5a =,13b =,12c =符合勾股定理22251213+=所以它们组成的是直角三角形考查学生勾股定理的逆定理的应用18.答案是6 (难题)分析:设AE =x ,BE =EF =8-x 而在Rt △CDF 中,由勾股定理求出DF =6,AE =4,在Rt △AEF 中,2224(8)x x +=-得到x =3,由此三角形AEF 的面积为13462⨯⨯=,考查了学生对折叠类的图形掌握勾股定理的情况三、解答题(共90分)19.(基础题)(1)解:根据勾股定理知:在直角三角形中,两直角边的平方和等于斜边的平方得:22256c +=所以c =(2)解:222712b +=,所以b =分析:考查了学生学习勾股定理的掌握情况20.(8分)(基础题)=所以在数轴上找出3个单位长的A 点,过A 点作数轴的垂线,并截取2个单位长的B 点,连接OB 所以OB =,以O 为圆心,OB 长为半径画弧与数轴的点D 处.分析:考查学生在数轴上能正确的表示出无理数的能力和方法21.(8分)(基础题)解:由图知:OA =5,OB =4,△AOB 也是一个直角三角形,根据勾股定理可得AB A ,B 分析:考查学生在平面直角坐标系中利用勾股定理求两点间的距离的方法和能力22.(10分)(中等题)解:设CE =x ,则由于折叠原因,EF =FB =x ,在直角△BEF 中EB =,而△ABC 是等腰直角三角形,CE +EB =15即15x =∴1)x =-所以CE 的长为1)-分析:考查学生能灵活应用勾股定理求线段的长23.(10分)(中等题)解:AB 可以看成是直角三角形中的斜边,由此得AB ==,AC =BC ==分析:考查了学生在网格中能灵活应用勾股定理计算线段的长24.(10分)(中等题)解:在Rt △ABC 中,∠A =30°,在直角三角形中,30度所对的直角边等于斜边的一半,所以BC =12,根据勾股定理知:2221224CA +=所以CA =以由等积式:CD ×AB =AC ×BC即2412CD ⋅=⨯所以CD =分析:考查了学生直角三角形中相关的定理的应用和等积式求直角三角形斜边上的高的方法25.(12分)(中偏难题)证明:∵AC =BD ,CB =DE ,∠C =∠D =90°∴△ACB ≌△BDE∴∠ABC =∠BED ,∠EBD +∠BED =90°∴∠ABC +∠EBD =90° 梯形的面积一种方法可以得()()()2211222S a b a b a b ab =++=++, 另一种方法看成三个三角形面积之和:()2211122222S ab c ab c ⎛⎫=⨯+=+ ⎪⎝⎭, 所以()()222112222a b ab ab c ++=+ 即222a b c +=所以得到以a ,b ,c 为直角三角形的三边的关系222a b c +=这也是勾股定理的证明分析:考查了学生证明勾股定理的方法是有很多种,这是其中一种,培养学生的推理分析证明的能力26.(12分)(中偏难题)解:连结AC由于△ABC 是直角三角形,根据勾股定理得到10AC =,在△ACD 中,由于有222210400AC DC +=+=,而2220400AD == 所以222AC DC AD +=根据勾股定理的逆定理得AD 所对的边为直角∴四边形面积1168102422ABC AC D S S S =+=⨯⨯+⨯⨯=+△△答:四边形ABCD 的面积等于(24+cm 2分析:考查了学生灵活应用勾股定理和逆定理解题的能力27.(14分)(难题)(1)问4分,(2)问6分,(3)问4分解:(1)由题可知在边长为4的正方形ABCD 中,E ,F ,G ,H 是正方形边长的四等分点∴AE =BF =CG =DH =3,EB =FC =DG =HA =1,∠A=∠B=∠C=∠D=90°在Rt △AEH 中,根据勾股定理得EH ==(2)∵AE =BF =CG =DH =3,EB =FC =DG =HA =1,∠A =∠B =∠C =∠D =90°根据三角形全等的判定定理得到∴△AHE ≌△BEF ≌△CFG ≌△DGH ,所以∠AEH =∠DHG在Rt △AHE 中∠AEH +∠AHE =90°∴∠DHG +∠AHE =90°∴∠EHG=180°-(∠DHG+∠AHE)=90°S=(3)由第(1)和(2)知四边形EFGH是正方形,面积为:10分析:考查学生结合前面学过的知识和勾股定理的知识进行综合解题的能力。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.02.下列各式属于最简二次根式的是()A.B.C.D.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=24.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣16.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,237.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.249.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A .6B .4C .10D .210.如图,A ,B 两地被池塘隔开,小明通过下列方法测出了A 、B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测量出MN 的长为6m ,由此他就知道了A 、B 间的距离.有关他这次探究活动的描述错误的是( )A .AB =12m B .MN ∥ABC .△CMN ∽△CABD .CM :MA =1:2二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12.已知▱ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE ﹣CF = .13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 cm 2.14.若最简二次根式与能合并成一项,则a = .15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .16.若x=﹣1,则x3+x2﹣3x+2019的值为.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如果y=+2,那么(﹣x)y的值为()A.1B.﹣1C.±1D.0【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.2.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.3.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣1【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.6.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【分析】根据菱形的性质即可求出答案.【解答】解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.【点评】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.9.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为()cm.A.6B.4C.10D.2【分析】连接AC,则EF垂直平分AC,推出△AOE∽△ABC,根据勾股定理,可以求出AC的长度,根据相似三角形对应边的比等于相似比求出OE,即可得出EF的长.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=16,BC=8,∴AC=,∴AO=,∵∠EAO=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴OE:BC=AO:BA,即∴OE=,∴EF=2OE=.故选:B.【点评】本题主要考查了矩形的性质、勾股定理、相似三角形的判定和性质、折叠的性质;熟练掌握矩形的性质和折叠的性质,证明三角形相似是解决问题的关键.10.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM:MA=1:2【分析】由已知条件得出MN是△ABC的中位线,CM=MA,由三角形中位线定理得出MN∥AB,MN=AB,AB=2MN=12m,得出△CMN∽△CAB;即可得出结论.【解答】解:∵M、N分别是AC、BC的中点,∴MN是△ABC的中位线,CM=AM,∴MN∥AB,MN=AB,AB=2MN=12m,CM:MA=1:1,∴△CMN∽△CAB;故A,B,C正确,故选:D.【点评】本题考查了三角形中位线定理;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.计算:×=12【分析】直接利用二次根式乘法运算法则计算得出答案.【解答】解:×=×2=12.故答案为:12.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.12.已知▱ABCD的周长为28,自顶点A作AE⊥DC于点E,AF⊥BC于点F.若AE=3,AF=4,则CE﹣CF=14﹣7或2﹣(答对前者得2分,答对后者得1分).【分析】首先可证得△ADE∽△ABF,又由四边形ABCD是平行四边形,即可求得AB与AD的长,然后根据勾股定理即可求得DE与BF的长,继而求得答案.【解答】解:如图1:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴△ADE∽△ABF,∴,∵AD+CD+BC+AB=28,即AD+AB=14,∴AD=6,AB=8,∴DE=3,BF=4,∴EC=CD﹣DE=8﹣3,CF=BF﹣BC=4﹣6,∴CE﹣CF=(8﹣3)﹣(4﹣6)=14﹣7;如图2:∵AE⊥DC,AF⊥BC,∴∠AED=∠AFB=90°,∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,AB=CD,AD=BC,∴∠ADE =∠ABF ,∴△ADE ∽△ABF ,∴,∵AD +CD +BC +AB =28,即AD +AB =14,∴AD =6,AB =8,∴DE =3,BF =4,∴EC =CD +DE =8+3,CF =BC +BF =6+4,∴CE ﹣CF =(8+3)﹣(6+4)=2﹣.∴CE ﹣CF =14﹣7或2﹣.【点评】本题主要考查的是平行四边形的性质.解题时,还借用了勾股定理这一知识点. 13.如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16cm 2,S △BQC =25cm 2,则图中阴影部分的面积为 41 cm 2.【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCQ ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC .【解答】解:连接E 、F 两点,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理:S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 四边形EPFQ =41cm 2,故答案为:41.【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.14.若最简二次根式与能合并成一项,则a = 1 .【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【解答】解:=2,由最简二次根式与能合并成一项,得a +1=2.解得a =1.故答案为:1.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.15.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 (﹣5,4) .【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.16.若x=﹣1,则x3+x2﹣3x+2019的值为2018.【分析】先根据x的值计算出x2的值,再代入原式=x•x2+x2﹣3x+2019,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,由勾股定理得,CD2=AC2﹣AD2,CD2=BC2﹣BD2,∴AC2﹣AD2=BC2﹣BD2,即32﹣(2x)2=22﹣x2,解得,x=,即BD的长为.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点,连接BE、DF.求证:BE∥DF.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE∥DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵E、F分别是OA、OC的中点∴OE=OA,OF=OC∴OE=OF∴四边形BFDE是平行四边形∴BE∥DF【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.20.如图,在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=,求(1)AD的长;(2)△ABC是直角三角形吗?为什么?【分析】(1)由CD垂直于AB,得到三角形BCD与三角形ACD都为直角三角形,由BC与DB,利用勾股定理求出CD的长,再利用勾股定理求出AD的长即可;(2)三角形ABC为直角三角形,理由为:由BD+AD求出AB的长,利用勾股定理的逆定理得到三角形ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.21.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【分析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9﹣x,根据勾股定理即可得出结论.【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22.如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD =AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.【分析】(1)连接DE,根据矩形的性质可得△ADE是等腰直角三角形,所以,∠AED=45°,设∠BGE=x,根据角平分线的定义可得∠DGE=x,根据直角三角形两锐角互余求出∠BEG,根据等腰三角形两底角相等求出∠DEG,然后根据平角等于180°列式求解即可得到x=30°,再根据30°所对的直角边等于斜边的一半证明;(2)先求出∠CGD=60°,然后解直角三角形求出CD的长度,根据矩形的对边相等求出AB的长度,在Rt△BGE中,求出BE、BG的长度,然后求出AE,即可得到AD,然后利用梯形的面积公式列式计算即可得解.【解答】(1)证明:如图,连接DE,∵AD=AE,∴△ADE是等腰直角三角形,∴∠AED=45°,设∠BGE=x,∵GE是∠BGD的平分线,∴∠BGE=∠DGE=x,在Rt△BGE中,∠BEG=90°﹣x,∵EG=DG,∴∠DEG=(180°﹣x),又∵∠AED+∠DEG+∠BEG=180°,∴45°+(180°﹣x)+90°﹣x=180°,解得x=30°,即∠BGE=30°,∴GE=2BE;(2)解:∵GE是∠BGD的平分线,∴∠CGD=∠BGE+∠DGE=30°+30°=60°,∴CD=DG sin60°=4×=2,在Rt△BGE中,BE=EG=×4=2,BG=EG cos30°=4×=2,∴AD=AE=AB﹣BE=2﹣2,梯形ABGD的面积=(AD+BG)CD=(2﹣2+2)×2=(4﹣2)=12﹣2.【点评】本题考查了矩形的性质,解直角三角形,直角三角形30°角所对的直角边等于斜边的一半的性质,题目设计巧妙,难度较大,利用∠BGE的度数恰好30°求解是解题的关键.23.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.如图,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤25).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【分析】(1)可以证明四边形AEFD为平行四边形,如果四边形AEFD能够成为菱形,则必有邻边相等,则AE=AD,列方程求出即可;(2)当△DEF为直角三角形时,有三种情况:①当∠EDF=90°时,如图3,②当∠DEF=90°时,如图4,③当∠DFE=90°不成立;分别找一等量关系列方程可以求出t的值.【解答】(1)解:四边形AEFD能够成为菱形,理由是:由题意得:AE=2t,CD=4t,∵DF⊥BC,∴∠CFD=90°,∴∠C=30°,∴DF=CD=×4t=2t,∴AE=DF;∵DF⊥BC,∴∠CFD=∠B=90°,∴DF∥AE,∴四边形AEFD是平行四边形.当AE=AD,四边形AEFD是菱形,∵AC=100,CD=4t,∴AD=100﹣4t,∴2t=100﹣4t,t=,∴当t=时,四边形AEFD能够成为菱形;(3)分三种情况:①当∠EDF=90°时,如图3,则四边形DFBE为矩形,∴DF=BE=2t,∵AB=AC=50,AE=2t,∴2t=50﹣2t,t=,②当∠DEF=90°时,如图4,∵四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,在Rt△ADE中,∠A=60°,AE=2t,∴AD=t,则100=t+4t,t=20,③当∠DFE=90°不成立;综上所述:当t为s或20s时,△DEF为直角三角形.【点评】本题是四边形的综合题,考查了平行四边形、菱形、矩形的性质和判定,也是运动型问题,难度不大,是常出题型;首先要表示出两个动点在时间t时的路程,弄清动点的运动路径,再根据其运动所形成的特殊图形列式计算;同时,所构成的直角三角形因为直角顶点不确定,所以要分情况进行讨论.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
福建省2017-2018学年新人教版八年级数学下册期中试卷含答案解析
2017-2018学年八年级(下)期中数学试卷一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.2.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,73.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米4.使代数式有意义的x的取值范围是()A.x<3 B.x>3 C.x≤3 D.x≥35.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.56.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C. cm D.4cm7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.118.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.二、填空题9.在△ABC中,BC=6,E、F分别是AB、AC的中点,则EF= .10.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是 cm2.11.比较大小:.(填“>”、“=”、“<”).12.化简= .13.写出“两组对边分别相等的四边形是平行四边形”的逆命题.14.+|b﹣4|=0,则= .15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm.16.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为.三、解答题(共9题,86分)17.计算(1)﹣(﹣)(2)+a﹣4+.18.先化简,再求值:÷(x+1﹣),其中x=﹣2.19.如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD、的中点.求证:四边形EFGH是平行四边形.20.如图,▱ABCD,E、F分别在AD、BC上,且EF∥AB.求证:EF=CD.21.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.22.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.23.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①⇒②⇒③),图中的M、N分别为直角三角形的直角边与矩形ABCD 的边CD、BC的交点.(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)参考答案与试题解析一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【专题】计算题.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,7【考点】勾股数.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+22≠32,故不能构成直角三角形;B、602+802=1002,故能构成直角三角形;C、42+52≠62,故不能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.3.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.4.使代数式有意义的x的取值范围是()A.x<3 B.x>3 C.x≤3 D.x≥3【考点】二次根式有意义的条件.【分析】二次根式有意义时,被开方数为非负数,列不等式求解即可.【解答】解:根据题意得:3﹣x≥0,解得x≤3.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得BC=AD=6,CD=AB=4,AD∥BC,得∠ADE=∠DEC,又由DE 平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=4,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=4,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=4,∴BE=BC﹣EC=2.故选:A.【点评】此题考查了平行四边形的性质、角平分线的定义与等腰三角形的判定定理.注意当有平行线和角平分线出现时,会出现等腰三角形.6.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C. cm D.4cm【考点】矩形的性质.【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【考点】平行四边形的性质;勾股定理.【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.【考点】平面展开﹣最短路径问题.【专题】数形结合.【分析】将长方体展开,得到两种不同的方案,利用勾股定理分别求出AB的长,最短者即为所求.【解答】解:如图(1),AB==;如图(2),AB===10.故选B.【点评】此题考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.二、填空题9.在△ABC中,BC=6,E、F分别是AB、AC的中点,则EF= 3 .【考点】三角形中位线定理.【分析】根据三角形的中位线等于第三边的一半进行计算即可.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=×6=3,故答案为:3.【点评】此题考查了三角形的中位线定理的数量关系,熟练掌握定理是解题的关键.10.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是24 cm2.【考点】菱形的性质.【分析】直接利用菱形面积等于对角线乘积的一半进而得出答案.【解答】解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:×6×8=24(cm2).故答案为:24.【点评】此题主要考查了菱形的性质,正确记忆菱形面积求法是解题关键.11.比较大小:<.(填“>”、“=”、“<”).【考点】实数大小比较.【分析】本题需先把进行整理,再与进行比较,即可得出结果.【解答】解:∵ =∴∴故答案为:<.【点评】本题主要考查了实数大小关系,在解题时要化成同一形式是解题的关键.12.化简= .【考点】分母有理化.【分析】把分子分母同时乘以(﹣1)即可.【解答】解:原式==.故答案为:.【点评】本题考查的是分母有理化,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.13.写出“两组对边分别相等的四边形是平行四边形”的逆命题“平行四边形是两组对边分别相等的四边形”.【考点】命题与定理.【专题】推理填空题.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:“两组对边分别相等的四边形是平行四边形”的逆命题是:“平行四边形是两组对边分别相等的四边形”.故答案为:“平行四边形是两组对边分别相等的四边形”.【点评】此题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.+|b﹣4|=0,则= 2 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出算式求出a、b的值,根据算术平方根的概念解答即可.【解答】解:由题意得,a﹣1=0,b﹣4=0,解得,a=1,b=4,则=2,故答案为:2.【点评】本题考查的是非负数的性质和算术平方根的概念,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= 4 cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.16.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为18.【考点】菱形的性质.【专题】规律型.【分析】根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律不难求得第6个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=2,∴BM=1,∴AM==,∴AC=2AM=2,同理可得AC1=AC=6,AC2=AC1=6,AC3=AC2=18,AC4=AC3=18.故答案为:18.【点评】本题考查了菱形的性质,勾股定理,等边三角形的性质和判定的应用,解此题的关键是能根据求出的结果得出规律.三、解答题(共9题,86分)17.(2016春•莆田校级期中)计算(1)﹣(﹣)(2)+a﹣4+.【考点】二次根式的加减法.【分析】(1)首先化简二次根式,进而合并同类二次根式进而得出答案;(2)首先化简二次根式,进而合并同类二次根式进而得出答案.【解答】解:(1)﹣(﹣)=2﹣(3﹣×4)=2﹣=;(2)+a﹣4+=2a+a﹣2+=(3a﹣1).【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.18.先化简,再求值:÷(x+1﹣),其中x=﹣2.【考点】分式的化简求值.【分析】将原式括号中各项通分并利用同分母分式的减法法则计算,整理后再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,即可得到原式的值.【解答】解:÷(x+1﹣)=÷[﹣]=÷=×=当x=﹣2时,原式==.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.19.如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD、的中点.求证:四边形EFGH是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由平行四边形的性质得出OA=OC,OB=OD,再由中点的定义得出OE=OG,OF=OH,即可证出四边形EFGH是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F、G、H分别是OA、OB、OC、OD、的中点,∴OE=OA,OG=OC,OF=OB,OH=OD,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形.【点评】本题考查了平行四边形的判定与性质;熟记平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形是解决问题的关键.20.如图,▱ABCD,E、F分别在AD、BC上,且EF∥AB.求证:EF=CD.【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质可得AB=CD,AD∥BC,再判定四边形ABFE是平行四边形,进而可得AB=EF,再利用等量代换可得EF=CD.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴AE∥FB,∵EF∥AB,∴四边形ABFE是平行四边形,∴AB=EF,∴EF=CD.【点评】此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边相等,两组对边分别平行的四边形是平行四边形.21.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.22.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.【考点】翻折变换(折叠问题);矩形的性质.【专题】几何综合题.【分析】(1)根据AD∥BC,∠1与∠2是内错角,因而就可以求得∠2,根据图形的折叠的定义,可以得到∠4=∠2,进而可以求得∠3的度数;(2)已知AE=1,在Rt△ABE中,根据三角函数就可以求出AB、BE的长,BE=DE,则可以求出AD的长,就可以得到矩形的面积.【解答】解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=2,∴AB==;∴AD=AE+DE=AE+BE=1+2=3,∴长方形纸片ABCD的面积S为:AB•AD=×3=3.【点评】此题考查了矩形的性质,折叠的性质以及直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.23.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【考点】菱形的判定;三角形中位线定理.【专题】计算题;证明题;压轴题.【分析】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)解:∵AB=12cm,F为AB中点,∴BF=6cm,∴菱形BDEF的周长为6×4=24cm.【点评】本题的关键是判断四边形BDEF是菱形.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【考点】矩形的判定;平行线的性质;等腰三角形的判定与性质;直角三角形斜边上的中线.【专题】压轴题.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.25.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①⇒②⇒③),图中的M、N分别为直角三角形的直角边与矩形ABCD 的边CD、BC的交点.(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)【考点】旋转的性质;全等三角形的判定与性质;勾股定理;矩形的性质.【专题】计算题;操作型.【分析】(1)作辅助线,连接DN,在Rt△CDN中,根据勾股定理可得:ND2=NC2+CD2,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN2=NC2+CD2;(2)作辅助线,延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN2+CM2=DM2+BN2;(3)根据正方形的性质知:OA=OB,∠OAM=∠OBN,∠AOB=∠AOM+∠BOM=90°,∠MON为直角三角板的直角,可知:∠MON=∠BOM+∠BON=90°,可得:∠AOM=∠BON,从而可证:△AOM≌△BON,AM=BN,又AB=BC,可得:BM=CN,在Rt△ADM和△BCM中,根据勾股定理:DM2=AM2+AD2=BN2+AD2,MC2=MB2+BC2=CN2+BC2,故可得:CM2﹣CN2+DM2﹣BN2=2.【解答】解:(1)选择图①证明:连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND2=NC2+CD2,∴BN2=NC2+CD2.(2)CM2+CN2=DM2+BN2.理由如下:如图②,延长MO交AB于E,连接NE、NM.∵四边形ABCD是矩形,∴BO=DO,∠ABC=∠DCB=90°,∵AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO,∴OE=OM,BE=DM,∵NO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE2=BE2+BN2,NM2=CN2+CM2,∴CN2+CM2=BE2+BN2,即CN2+CM2=DM2+BN2.(3)CM2﹣CN2+DM2﹣BN2=2.【点评】本题考查了图形的旋转变化,在解题过程中要综合应用勾股定理、矩形、正方形的特殊性质及三角形全等的判定等知识.。
人教版2017初二(下册)数学期中考试试卷(附答案)
人教版2017初二(下册)数学期中考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不是二次根式的是()A.B.C.D.2.中x的取值范围是()A.x≤2 B.x≠﹣2C.x≠2 D.x≥23.下列根式中属最简二次根式的是()A.B.C.D.4.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100C.4,5,6 D.5,6,75.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=86.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5C.4 D.37.如图,下面不能判断是平行四边形的是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠DC.AB=CD,AD∥BC D.AB=CD,AD=BC8.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形9.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=8,BD=6,则DH⊥AB于H,则DH等于()A.B.C.5 D.410.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论:①AF=AE;②AF=EF;③△ABE≌△AGF;④EF=2,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)11.计算:=.12.若直角三角形两条边分别是8,15,则斜边长为.13.若最简二次根式与是同类二次根式,则a=,b=.14.如图,在四边形ABCD中,已知AB∥CD,AB=CD,在不添加任何辅助线的前提下,要想该四边形成为菱形,只需再添加上的一个条件是.15.如图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a,较长边为b,那么(a+b)2的值是.16.如图,菱形ABCD中,∠BAD=45°,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于2,则AB=.三、解答题(本大题共8小题,共72分)17.计算:(1)×÷(2)(+)2×(﹣2)18.观察下列各式:;;…,请你猜想:(1)=,=.(2)计算(请写出推导过程):(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.19.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.20.如图,四边形ABCD中,AD∥BC,点E在边AB上,∠A=∠B=90°△ADE≌△BEC时,设AD=a,AE=b,DE=c,请利用如图,证明勾股定理:a2+b2=c2.21.如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.22.如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.(1)证明:四边形OCED为菱形;(2)若AC=4,求四边形CODE的周长.23.如图,正方形ABCD中,点P是BC边上的任意一点(异于端点B,C),连接AP,过点B,D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:△ADF≌△BAE;(2)若DF=5,BE=2,求EF长度.24.如图,在Rt△ABC中,∠B=90°,AC=60,∠C=30°,点D从点C出发沿CA 方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)当t=时,四边形BEDF是矩形;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.人教版2017初二(下册)数学期中考试试卷参考答案一、1-5 DDABD 6-10 DCDAC二、11.﹣112.17或113.1,114.AB=AD或AC⊥BD15.2516.2三、17.解:(1)原式==;(2)原式=(3+2+2)(5﹣2)=(5+2)(5﹣2)=25﹣24=1.18.解:(1),;(2);(3)(n≥1).19.解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,=.∴S△=20.解:当△ADE≌△BEC时,AD=BE=a,AE=BC=b,则有∠AED=∠BEC,∵∠AED+∠ADE=90°,∴∠AED+∠BEC=90°,∴∠DEC=90°,且DE=CE=c,=(AD+BC)AB=(a+b)2,S△ADE=S△BEC=ab,S△DEC=c2,∴S梯形ABCD=S△ADE+S△BEC+S△DEC,∵S梯形ABCD∴(a+b)2=ab+2,整理可得a2+b2=c2.21.证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,OE=OF.∵OA=OC,∴AECF是平行四边形;∵∠AEC=90°,∴四边形AECF为矩形.22.(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形又∵四边形ABCD 是矩形∴OD=OC∴四边形CODE为菱形;(2)解:∵四边形ABCD 是矩形∴OC=OD=AC又∵AC=4∴OC=2由(1)知,四边形CODE为菱形∴四边形CODE的周长为=4OC=2×4=8.23.(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,∴∠DAF=∠ABE,在△ADF和△BAE中,,∴△ADF≌△BAE(AAS),(2)解:∵△ADF≌△BAE(AAS),∴AF=BE,DF=AE,∴EF=AE﹣AF=DF﹣BE=5﹣2=3;24.(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=CD=2t.又∵AE=2t,∴AE=DF;(2)∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即60﹣4t=4t,∴t=.故答案是:;(3)能;理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又AE=DF,∴四边形AEFD为平行四边形.∵∠C=30°,AC=60,∴AB=30,∴AD=AC﹣DC=6﹣2t,若平行四边形AEFD为菱形,则AE=AD,∴2t=60﹣4t,∴t=10;即当t=10时,四边形AEFD能够成为菱形.。
人教版2017-2018学年八年级数学下册期中试卷及解析
2017-2018学年八年级下期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.)1.(4分)(﹣2018)0的结果是()A.﹣2018 B.﹣1 C.1 D.20182.(4分)若分式有意义,则x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x<33.(4分)一次函数y=2x﹣6的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限4.(4分)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣15.(4分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<26.(4分)2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于DNA 折纸技术的纳米机器人大小只有90×60×2nm,nm是长度计量单位,1nm=0.000000001米,则2nm用科学记数法表示为()A.2×109米 B.20×10﹣8米C.2×10﹣9米D.2×10﹣8米7.(4分)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍8.(4分)把分式方程﹣1=化为整式方程,正确的是()A.2(x+1)﹣1=﹣x B.2(x+1)﹣x(x+1)=﹣xC.2(x+1)﹣x(x+1)=﹣1 D.2x﹣x(x+1)=﹣x9.(4分)一次函数=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>010.(4分)若关于x的分式方程+1=有增根,则k的值为()A.2 B.﹣2 C.1 D.311.(4分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B.C.D.12.(4分)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b >0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k的值共有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)点P(1,﹣2)在第象限.14.(4分)当x= 时,分式的值为0.15.(4分)点P(﹣2,4)关于x轴的对称点的坐标是.16.(4分)两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2018在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2018,纵坐标分别是1,3,5,…,共2018个连续奇数,过点P1,P2,P3,…,P2018分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2018(x2018,y2018),则y2018= .三、解答题(本大题共6小题,共56分)17.(9分)解答下列各题:(1)计算:(2)计算:(3)解方程:18.(7分)先化简,再求值:(﹣1)÷,其中x=﹣2.19.(12分)已知y+4与x成正比例,且x=6时,y=8.(1)求出y与x之间的函数关系式.(2)在所给的直角坐标系(如图)中画出函数的图象.(3)直接写出当﹣4≤y≤0时,自变量x的取值范围.20.(8分)2017年12月29日,国家发改委批复了昌景黄铁路项目可行性研究报告.该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度.21.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.22.(10分)如图1,直线y=﹣x+b分别与x轴、y轴交于A、B两点,与直线y=kx交于点C(2,).平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;直线l分别交线段BC、OC、x轴于点D、E、P,以DE为斜边向左侧作等腰直角△DEF,设直线l的运动时间为t(秒).(1)填空:k= ;b= ;(2)当t为何值时,点F在y轴上(如图2所示);(3)设△DEF与△BCO重叠部分的面积为S,请直接写出S与t的函数关系式(不要求写解答过程),并写出t的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(﹣2018)0的结果是()A.﹣2018 B.﹣1 C.1 D.2018【解答】解:(﹣2018)0=1.故选:C.2.(4分)若分式有意义,则x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x<3【解答】解:由题意得,x﹣3≠0,解得x≠3.故选:A.3.(4分)一次函数y=2x﹣6的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限【解答】解:∵一次函数y=2x﹣3中,k=2>0,∴此函数图象经过一、三象限,∵b=﹣3<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限.故选:B.4.(4分)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣1【解答】解:∵函数y=(k+1)x+k2﹣1是正比例函数,∴,解得k=1.故选:B.5.(4分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<2【解答】解:A、把点(1,2)代入反比例函数y=,得2=2,正确.B、∵k=2>0,∴在每一象限内y随x的增大而减小,不正确.C、∵k=2>0,∴图象在第一、三象限内,正确.D、若x>1,则y<2,正确.故选:B.6.(4分)2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于DNA 折纸技术的纳米机器人大小只有90×60×2nm,nm是长度计量单位,1nm=0.000000001米,则2nm用科学记数法表示为()A.2×109米 B.20×10﹣8米C.2×10﹣9米D.2×10﹣8米【解答】解:∵1nm=0.000000001m,∴2nm=0.000000002m=2×10﹣9m,故选:C.7.(4分)如果把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.不变D.缩小2倍【解答】解:把分式中的x和y都扩大2倍后得:==2•,即分式的值扩大2倍.故选:B.8.(4分)把分式方程﹣1=化为整式方程,正确的是()A.2(x+1)﹣1=﹣x B.2(x+1)﹣x(x+1)=﹣xC.2(x+1)﹣x(x+1)=﹣1 D.2x﹣x(x+1)=﹣x【解答】解:﹣1=,两边乘x(x+1)得到,2(x+1)﹣x(x+1)=﹣x,故选:B.9.(4分)一次函数=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>0【解答】解:∵一次函数y=kx+b(k≠0)的图象经过一、二、四象限,∴k<0,b>0.故选:D.10.(4分)若关于x的分式方程+1=有增根,则k的值为()A.2 B.﹣2 C.1 D.3【解答】解:去分母,得:3+x﹣2=k,∵分式方程有增根,∴增根为x=2,将x=2代入整式方程,得:k=3,故选:D.11.(4分)某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B.C.D.【解答】解:∵草坪面积为100m2,∴x、y存在关系y=,∵两边长均不小于5m,∴x≥5、y≥5,则x≤20,故选:C.12.(4分)如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b >0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k的值共有()A.1个 B.2个 C.3个 D.4个【解答】解:根据题意得A(a,a),B(b,8b),把A,B坐标代入函数y=kx+m,得,②﹣①得:k==8+,∵a>0,b>0,是整数,∴为整数时,k为整数;则﹣1=1或7,所以满足条件的整数k的值共有两个.故选:B.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)点P(1,﹣2)在第四象限.【解答】解:由题意知点P(1,﹣2),横坐标1>0,纵坐标﹣2<0,结合坐标特点,第四象限横坐标为正,纵坐标为负,得点P在第四象限.故答案为:四.14.(4分)当x= 2 时,分式的值为0.【解答】解:当x﹣2=0时,即x=2时,分式的值为0,故答案为:2.15.(4分)点P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4).【解答】解:P(﹣2,4)关于x轴的对称点的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).16.(4分)两个反比例函数y=,y=在第一象限内的图象如图所示,点P1,P2,P3,…,P2018在反比例函数y=图象上,它们的横坐标分别是x1,x2,x3,…,x2018,纵坐标分别是1,3,5,…,共2018个连续奇数,过点P1,P2,P3,…,P2018分别作y轴的平行线,与y=的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2018(x2018,y2018),则y2018= .【解答】解:观察,发现规律:x1==6,x2==2,x3=,x4=,…,∴x n=(n为正整数),∵点Q n(x n,y n)在反比例函数y=的图象上,∴y n===.当n=2018时,y2018==,故答案为:.三、解答题(本大题共6小题,共56分)17.(9分)解答下列各题:(1)计算:(2)计算:(3)解方程:【解答】解:(1)原式===2;(2)原式==3;(3)方程两边同时乘2x(x+1)得,3(x+1)=4x,解得:x=3,经检验x=3是原方程的解,∴原方程的解为x=3.18.(7分)先化简,再求值:(﹣1)÷,其中x=﹣2.【解答】解:(﹣1)÷,===,当x=﹣2时,原式=.19.(12分)已知y+4与x成正比例,且x=6时,y=8.(1)求出y与x之间的函数关系式.(2)在所给的直角坐标系(如图)中画出函数的图象.(3)直接写出当﹣4≤y≤0时,自变量x的取值范围.【解答】解:(1)∵y+4与x成正比例,∴设y+4=kx(k≠0),∵当x=6时,y=8,∴8+4=6k,解得k=2,∴y+4=2x,函数关系式为:y=2x﹣4;(2)当x=0时,y=﹣4,当y=0时,2x﹣4=0,解得x=2,所以,函数图象经过点(0,﹣4),(2,0),函数图象如右图:(3)由图象得:当﹣4≤y≤0时,自变量x的取值范围是:0≤x≤2.20.(8分)2017年12月29日,国家发改委批复了昌景黄铁路项目可行性研究报告.该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度.【解答】解:设普通快车的平均行驶速度为x千米/时,则昌景黄高铁列车的平均行驶速度为1.5x千米/时,根据题意得:,解得:x=180,经检验,x=180是所列分式方程的解,且符合题意,∴1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时.21.(10分)某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.【解答】解:(1)根据题意得:y1=20×300+80×(x﹣20)=80x+4400;y2=(20×300+80x)×0.8=64x+4800.(2)设按照方案一的优惠办法购买了m件甲种商品,则按照方案二的优惠办法购买了(20﹣m)件甲种商品,根据题意得:w=300m+[300(20﹣m)+80(40﹣m)]×0.8=﹣4m+7360,∵w是m的一次函数,且k=﹣4<0,∴w随m的增加而减小,∴当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.22.(10分)如图1,直线y=﹣x+b分别与x轴、y轴交于A、B两点,与直线y=kx交于点C(2,).平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;直线l分别交线段BC、OC、x轴于点D、E、P,以DE为斜边向左侧作等腰直角△DEF,设直线l的运动时间为t(秒).(1)填空:k= ;b= 4 ;(2)当t为何值时,点F在y轴上(如图2所示);(3)设△DEF与△BCO重叠部分的面积为S,请直接写出S与t的函数关系式(不要求写解答过程),并写出t的取值范围.【解答】解:(1)把(2,)代入y=﹣x+b得:﹣+b=,解得:b=4;把(2,)代入y=kx中,2k=,解得:k=.故答案是:,4;(2)解:由(1)得两直线的解析式为:y=﹣x+4和y=x,依题意得OP=t,则D(t,﹣t+4),E(t,t),∴DE=﹣2t+4,作FG⊥DE于G,则FG=OP=t∵△DEF是等腰直角三角形,FG⊥DE,∴FG=DE,即t=(﹣2t+4),解得t=1.(3)当0<t≤1时(如图1),S△DEF=(﹣t+4﹣t)•(﹣t+4﹣t)=(﹣2t+4)2=(t﹣2)2,在y轴的左边部分是等腰直角三角形,底边上的高是:(﹣t+4﹣t)﹣t=(﹣2t+4)﹣t=2﹣2t,则面积是:(2﹣2t)2.S=(t﹣2)2﹣(2﹣2t)2=﹣3t2+4t;当1<t<2时(备用图),作FK⊥DE于点K.S=(t﹣2)2.。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(4)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,62.要使式子有意义,则x的值可以是()A.2B.0C.1D.93.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个5.下列二次根式中,是最简二次根式的是()A.B.C.D.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.28.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L410.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围.12.在,,,中,是最简二次根式的是.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是cm.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.(用含n的代数式表示)16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.按下列各组数据能组成直角三角形的是()A.11,15,13B.1,4,5C.8,15,17D.4,5,6【分析】能不能组成直角三角形,需验证两小边的平方和是否等于最长边的平方.【解答】解:A、112+152≠132,故不能组成直角三角形;B、12+42≠52,故不能组成直角三角形;C、82+152=172,故不能组成直角三角形;D、42+52≠62,故不能组成直角三角形;故选:C.【点评】解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.要使式子有意义,则x的值可以是()A.2B.0C.1D.9【分析】根据二次根式的性质意义,被开方数大于等于0,即可求得.【解答】解:依题意得:x﹣5≥0,解得:x≥5.观察选项,只有选项D符合题意.故选:D.【点评】此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x取整数的要求即可解决问题.3.菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.【点评】此题主要考查矩形、菱形的对角线的性质.熟悉菱形和矩形的对角线的性质是解决本题的关键.4.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个【分析】本题需先根据矩形的性质得出OA=OB=OC=OD,从而得出图中等腰三角形中的个数,即可得出正确答案.【解答】解:∵矩形ABCD中,AB<BC,对角线AC、BD相交于点O,∴OA=OB=OC=OD,∴图中的等腰三角形有△AOB、△AOD、△COD、△BOC四个.故选:B.【点评】本题主要考查了等腰三角形的判定,在解题时要把等腰三角形的判定与矩形的性质相结合是本题的关键.5.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、是最简二次根式,正确;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:A.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.6.若函数y=(2m+1)x2+(1﹣2m)x(m为常数)是正比例函数,则m的值为()A.m>B.m=C.m<D.m=【分析】根据正比例函数的定义,2m+1=0,1﹣2m≠0.从而求解.【解答】解:根据题意得:2m+1=0,解得:m=﹣.故选:D.【点评】主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.7.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3B.4C.15D.7.2【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出则点C到AB 的距离.【解答】解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,=AC•BC=AB•h,∵S△ABC∴h==7.2,故选:D.【点评】本题考查了勾股定理在直角三角形中的应用,解本题的关键是正确的运用勾股定理,确定AB为斜边.8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.9.如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L4【分析】先利用勾股定理计算出AC,然后进行无理数估算后进行判断.【解答】解:在Rt△ACD中,∵AD=5,CD=5,∴AC==5≈7.07,∴拉线AC最好选用L3.故选:C.【点评】本题考查了勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.10.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度差.【解答】解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),故快者比慢者的速度每秒快:8﹣6.5=1.5(m/s).故选:C.【点评】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.二.填空题(共6小题,满分24分,每小题4分)11.一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则m的取值范围m≤.【分析】由于一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,则得到,解不等式组即可得到m的取值范围.【解答】解:∵一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,∴,∴m≤.则m的取值范围是m≤.故答案为:m≤.【点评】本题考查的知识点为:一次函数y=(2m﹣1)x+(1﹣4m)的图象不经过第三象限,说明x的系数小于0,常数项大于等于0.12.在,,,中,是最简二次根式的是.【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【解答】解:在,=4,=,=3中,是最简二次根式的是,故答案为:【点评】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.13.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是8cm.【分析】先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【解答】解:6×2=12(cm),由勾股定理得=20(cm),则玻璃棒露在容器外的长度的最小值是28﹣20=8(cm).故答案为8.【点评】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.14.已知点(﹣4,y1),(2,y2)都在直线y=﹣(k2+1)x+2上,则y1,y2的大小关系是y1>y2.【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<2即可得出结论.【解答】解:∵一次函数y=﹣(k2+1)x+2(k为常数)中,﹣(k2+1)<0,∴y随x的增大而减小,∵﹣4<2,∴y1>y2.故答案为:y1>y2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由(5n+1)个基础图形组成.(用含n的代数式表示)【分析】观察图形不难发现,后一个图形比前一个图形多5个基础图形,根据此规律写出第n个图案的基础图形个数即可.【解答】解:第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,11=5×2+1,第3个图案由16个基础图形组成,16=5×3+1,…,第n个图案由5n+1个基础图形组成.故答案为:5n+1.【点评】本题是对图形变化规律的考查,观察图形得到后一个图形比前一个图形多5个基础图形是解题的关键.16.如图,菱形ABCD的边长为6,∠DAB=60°,点P是对角线AC上一动点,Q是AB的中点,则BP+PQ的最小值是.【分析】根据已知可得到当P点位于AB的中垂线时,BP+PQ有最小值.过点Q作PQ⊥AB,交AC与P,则PA=PB,根据已知可求得PQ,PA的会值,从而不难求得BP+PQ的最小值.【解答】解:如图,∵在菱形ABCD中,点B与点D关于对角线AC对称.∴连接DQ,DQ与AC的交点为P,连接BP,此时BP+PQ有最小值.∵∠DAB=60°∴∠BAC=30°∴PA=2PQ在Rt△APQ中,PA2=PQ2+32∴PQ=,PA=2∴BP+PQ=PA+PQ=3故答案为3.【点评】本题考查的是中垂线、菱形的性质、勾股定理和最值.根据题意得出:当P点位于AB 的中垂线时,BP+PQ有最小值是解本题的关键.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.19.如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?【分析】(1)(2)(3)可由图象直接得出.(4)数与形相结合,理解时间与路程之间的关系.【解答】解:根据图形可知:(1)图中所反映的是时间与距离之间的关系;超市离家900米;(2)小明到达超市用了20分钟;返回用了15分钟,往返共用了35分钟;(3)小明离家出发后20分钟到30分钟可以在超市购物或休息;(4)小明到超市的平均速度是900÷20=45米/分钟;返回的平均速度是900÷15=60米/分钟.【点评】结合图形反映小明从离家到返回的全过程.20.如图,在四边形ABCD中,AB=AD,BC=CD,E,F,G,H分别为AB,BC,CD,AD的中点,顺次连接E,G,F,H,求证:四边形EFGH是矩形.【分析】根据连接AC、BD交于点O,根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据线段垂直平分线的性质、矩形的判定定理证明.【解答】证明:连接AC、BD交于点O,∵E,F分别为AB,BC的中点,∴EF∥AC,EF=AC,∵G,H分别为CD,AD的中点,∴HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,∵AB=AD,BC=CD,∴AC是线段BD的垂直平分线,∵E,H分别为AB,AD的中点,∴EH∥BD,又EF∥AC,∴∠HEF=90°,∴四边形EFGH是矩形.【点评】本题中点四边形、矩形的判定、三角形中位线定理,掌握矩形的判定定理是解题的关键.21.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.【分析】(1)根据矩形的性质得出AB=CD,∠A=∠C=90°,根据折叠得出DF=CD,∠F =∠C=90°,求出AB=FD,∠A=∠F,根据全等三角形的判定得出即可;(2)根据全等得出BE=DE,根据勾股定理得出关于AE的方程,求出方程的解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∵把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E,∴DF=CD,∠F=∠C=90°,∴AB=FD,∠A=∠F,在△BEA和△DEF中∴△BEA≌△DEF(AAS);(2)解:∵△BEA≌△DEF,∴BE=DE=AD﹣AE=4﹣AE,在Rt△BAE中,由勾股定理得:AB2+AE2=BE2,∴22+AE2=(4﹣AE)2,解得:AE=.【点评】本题考查了勾股定理,折叠的性质,矩形的性质的应用,能灵活运用定理进行推理是解此题的关键.22.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【分析】(1)由点A的纵坐标、点A所在的象限结合△AOH的面积为3,可求出点A的坐标,再根据点A的坐标利用待定系数法,可求出正比例函数的表达式;(2)设点P的坐标为(a,0),根据△AOP的面积为5,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点A在第四象限,点A的横坐标为3,且△AOH的面积为3.∴点A的纵坐标为﹣2,∴点A的坐标为(3,﹣2).将点A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)设点P的坐标为(a,0),=|a|×|﹣2|=5,则S△AOP解得:a=±5,∴在x轴上能找到一点P,使△AOP的面积为5,此时点P的坐标为(﹣5,0)或(5,0).【点评】本题考查了待定系数法求正比例函数解析式以及三角形的面积,解题的关键是:(1)根据三角形的面积找出点A的坐标;(2)利用三角形的面积找出关于a的含绝对值符号的一元一次方程.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.【分析】(1)先证明证明△CDE≌△CBF,得到CD=CB,可得▱ABCD是菱形,则AD=AB,由DE=BF得AE=AF,则△AEF是等边三角形,根据EF的长可得△AEF的面积;(2)延长DP交BC于N,连结FN,证明△CPN≌△EPD,得到AE=BN,证明△FBN≌△DEF,得到FN=FD,根据等腰三角形三线合一的性质可得结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.【点评】本题考查的是菱形的性质和判定、平行四边形的性质、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线,构造全等三角形和等腰三角形是解题的关键.24.如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.(1)当∠BAC满足什么条件时,四边形ADFE是矩形;(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?【分析】(1)根据矩形的四角相等为90度求解;(2)根据D、A、E在同一条直线上时不能构成四边形求解;(3)分别根据菱形的四边相等和正方形的四边相等,四角相等的特性解题.【解答】解:(1)当∠BAC=150°时,四边形ADFE是矩形,∴∠DAE=360°﹣120°﹣150°=90°;∵四边形ADFE是平行四边形,∴四边形ADFE是矩形(有一个角是直角的平行四边形是矩形);(2)当∠BAC=60°时平行四边形ADFE不存在,∠DAE=180°﹣60°﹣60°﹣60°=0°;(3)当AB=AC且∠BAC不等于60°时平行四边形ADFE是菱形.综上可知:当AB=AC、∠BAC=150°时平行四边形ADFE是正方形.【点评】主要考查了特殊平行四边形的特殊性.其中矩形,菱形,正方形的一些特性要掌握.25.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB =90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.【分析】△EMC的形状是等腰直角三角形,求出∠DAB=90°,AD=AB,推出AM⊥BD,AM =BM=DM,求出∠MBC=∠MAE,BM=AM,证△BCM≌△AEM,推出EM=CM,∠3=∠2,求出∠1+∠3=90°即可.【解答】解:△EMC的形状是等腰直角三角形,理由是:连接AM,∵∠8=30°,∠9=60°,∴∠DAB=180°﹣30°﹣60°=90°,∵M为BD中点,AD=AB(已知两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起),∴AM⊥BD(等腰三角形底边的高也平分底边)AM=BM=DM(直角三角形斜边上中线等于斜边的一半)∴∠5=∠6=(180°﹣90°)=45°,∠4=∠BDA=45°,∵∠7=30°,∴∠MBC=45°+30°=75°,同理∠MAE=75°=∠MBC,在△BCM和△AEM中,∴△BCM≌△AEM(SAS),∴EM=CM,∠3=∠2,∵AM⊥BD,∴∠1+∠2=90°,∴∠1+∠3=90°,∴△EMC是等腰直角三角形.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,直角三角形斜边上中线等知识点的运用,主要考查学生综合运用性质进行推理的能力,题目比较典型,但是有一定的难度.。
2017人教版八年级数学下册期中试卷含答案
2017人教版八年级数学下册期中试卷含答案期中测试一、选择题(每小题3分,共30分)1.若在实数范围内有意义,则x的取值范围是()。
A。
x≥2B。
x≥-2C。
x>1D。
x≠22.一直角三角形的两直角边长为12和16,则斜边长为()。
A。
12B。
16C。
18D。
203.如图,在▱ABCD中,已知AD=5 cm,AB=3 cm,AE 平分∠BAD交BC边于点E,则EC等于()。
A。
1 cmB。
2 cmC。
3 cmD。
4 cm4.下列计算错误的是()。
A。
14×7=98B。
60÷5=12C。
9a+25a=34aD。
32-2=305.如图,点P是平面直角坐标系内一点,则点P到原点的距离是()。
A。
3B。
2C。
7D。
5√36.下列根式中,是最简二次根式的是()。
A。
0.2bB。
12a-12bC。
x^2-y^2D。
5ab^27.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()。
A。
当AB=BC时,它是菱形B。
当AC⊥BD时,它是菱形C。
当∠ABC=90°时,它是矩形D。
当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()。
A。
16√3B。
16C。
8√3D。
89.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()。
A。
2B。
3C。
2√2D。
3√210.如图所示,A(-3,0),B(0,1)分别为x轴,y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()。
A。
7B。
2C。
3D。
4二、填空题(每小题4分,共24分)11.已知(x-y+3)^2+2-y=0,则x+y=()。
解:(x-y+3)^2+2-y=0化简得:x^2-2xy+3x+y^2-2y+11=0移项得:x^2-2xy+3x+y^2-2y=-11再加上2xy,得:x^2+y^2+3x-2y=-11+2xy再移项得:x^2+y^2+3x+2y-11=0再加上6,得:x^2+y^2+3x+2y-5=6即:(x+3)^2+(y+1)^2=25因此,点(x,y)在以(-3,-1)为圆心,5为半径的圆上,而x和y的和等于该点到圆心的距离,即x+y=5.12.如图,已知△ABC中,AB=5 cm,BC=12 cm,AC=13 cm,那么AC边上的中线BD的长为()cm。
新人教版本20172018学年初中八年级的下期中数学试卷习题包括答案解析.docx
新人教版 2017-2018 学年八年级下期中数学试卷含答案解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.52.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的3.在平面直角坐标系中,点(4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037 毫克,那么 0.000037 毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克C. 37×10﹣7毫克D.3.7×10﹣8毫克5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.8.已知平行四边形ABCD 中,∠ B=5∠A ,则∠ C=()A. 30°B.60°C. 120°D. 150°9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B(5,0),D( 2, 3),则顶点 C 的坐标是()A.( 3,7)B.( 5,3)C.( 7,3)D.( 8,2)10.若反比例函数 y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()1>y2>y31>y3>y22y1> y3D.y3>y2>y1A. y B. y C.y >11.如图,在平面直角坐标系中,直线l1:y=x+3 与直线 l2:y=mx+n 交于点 A(﹣ 1,b),则关于 x、y 的方程组的解为()A.B.C.D.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4 D.﹣ 4二、填空题(本大题共 8 小题,每小题 4 分,共 32分)13.在函数 y=中,自变量 x 的取值范围是.14.当 x=时,分式的值为零.15.化简:=.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂).17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k=+18.一次函数 y=(2m﹣6)x+4 中, y 随 x 的增大而减小,则 m 的取值范围是.19.如图,在平行四边形ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段DE 的长度为.20.如图,平行四边形ABCD 的对角线相交于点O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.22.解方程:.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?26.如图,一次函数 y=kx b 与反比例函数 y= (x> 0)的图象交于 A(m,6), B( 3, n)两点.+( 1)直接写出 m=,n=;(2)根据图象直接写出使kx b<成立的 x 的取值范围;+(3)在 x 轴上找一点 P 使 PA PB 的值最小,求出 P 点的坐标.+27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲 16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案与试题解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.5【考点】 61:分式的定义.【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式.,,的分母中含有字母,因此是分式.故选 B.2.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的【考点】 65:分式的基本性质.【分析】根据分式的性质,可得答案.【解答】解:分式中的x和y都扩大3倍,得==,故选: C.3.在平面直角坐标系中,点( 4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【分析】根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x, y)关于 y 轴的对称点的坐标是(﹣ x,y)即可得到点( 4,﹣ 3)关于 y 轴对称的点的坐标.【解答】解:点( 4,﹣ 3)关于 y 轴的对称点的坐标是(﹣ 4,﹣ 3),故选: A.4.花粉的质量很小,一粒某种植物花粉的质量约为 0.000037 毫克,那么0.000037毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克 C. 37×10﹣7毫克 D.3.7×10﹣8毫克【考点】 1J:科学记数法—表示较小的数.a×10﹣n,与较大数的科学记【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.000037 毫克 =3.7× 10﹣5毫克;故选: A.5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米【考点】 E6:函数的图象; E9:分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5 分钟,可知 A 错误; B、 C、D 三种说法都符合题意.故选 A .6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点【考点】 G8:反比例函数与一次函数的交点问题.【分析】根据反比例函数的图象和性质逐一判断可得.【解答】解: A、当 x=﹣3 时, y=﹣=2,即图象必经过(﹣ 3,2),此结论正确;B、∵﹣ 6<0,∴反比例函数在x>0 或 x<0 时, y 随 x 的增大而增大,此结论正确;C、由 k=﹣6<0 知函数图象在第二、四象限内,此结论正确;D、由反比例函数图象位于第二、四象限,而直线y=x 经过第一、三象限,∴图象与直线 y=x 没有交点,此结论错误;故选: D.7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.【考点】 F7:一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与 k、 b 的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选 C.8.已知平行四边形 ABCD 中,∠ B=5∠A ,则∠ C=( ) A . 30°B .60°C . 120° D . 150°【考点】 L5:平行四边形的性质.【分析】 首先根据平行四边形的性质可得∠ A= ∠C ,∠ A +∠ B=180°,再由已知条件计算出∠ A 的度数,即可得出∠ C 的度数.【解答】 解:∵四边形 ABCD 是平行四边形,∴ AD ∥BC ,∠ A= ∠C , ∴∠ A+∠B=180°, ∵∠ B=5∠ A ,∴∠ A+5∠ A=180°,解得:∠ A=30°, ∴∠ C=30°,故选: A .9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B (5,0),D ( 2, 3),则顶点 C 的坐标是 ( ) A .( 3,7) B .( 5,3) C .( 7,3) D .( 8,2)【考点】 L5:平行四边形的性质; D5:坐标与图形性质.【分析】 根据题意画出图形,进而得出 C 点横纵坐标得出答案即可.【解答】 解:如图所示:∵ ? ABCD 的顶点 A ( 0, 0), B (5,0), D ( 2, 3),∴ AB=CD=5 , C 点纵坐标与 D 点纵坐标相同,∴顶点 C 的坐标是;( 7, 3).故选: C .11,y 2),( 2,y 3),则 y 1,y 2,y 310.若反比例函数 y= (k <0)的图象经过点(﹣ 2,y ),(﹣ 的大小关系为( ) 2> y 1> y 33> y 2> y 1A . y 1> y 2> y 31> y 3> y 2C .yD .yB . y【考点】 G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性, 再由各点横坐标的值即可得出结论.【解答】 解:∵反比例函数 y= (k <0),∴此函数图象的两个分支分别位于二、四象限,并且在每一象限内,y 随 x 的增大而增大.∵(﹣ 2,y 1),(﹣ 1, y 2),( 2, y 3)三点都在反比例函数 y= (k <0)的图象上,∴(﹣ 2,y1),(﹣ 1, y2)在第二象限,点( 2, y3)在第四象限,∴y2> y1> y3.故选 C.11.如图,在平面直角坐标系中,直线 l 1:y=x 3与直线 l2:y=mx n 交于点 A(﹣ 1,b),则关于 x、++y 的方程组的解为()A.B.C.D.【考点】 FE:一次函数与二元一次方程(组).【分析】首先将点 A 的横坐标代入y=x+3 求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l : y=x 3 与直线 l : y=mx n 交于点 A (﹣ 1,b),1+2+∴当 x=﹣1 时, b=﹣1+3=2,∴点 A 的坐标为(﹣ 1,2),∴关于 x、 y 的方程组的解是,故选 C.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4D.﹣ 4【考点】 G5:反比例函数系数k 的几何意义.【分析】根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,由题意可知△ AOB 的面积为.【解答】解:根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,∴△ AOB 的面积为,∴=2,∴k1﹣k2=4,故选( C)二、填空题(本大题共8 小题,每小题 4 分,共 32 分)13.在函数 y=中,自变量x的取值范围是x≠3.【考点】 E4:函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出 x 的范围.【解答】解:根据题意得: x﹣3≠0,解得: x≠3.故答案为 x≠3.14.当 x= 2时,分式的值为零.【考点】 63:分式的值为零的条件.【分析】要使分式的值为 0,必须分式分子的值为0 并且分母的值不为0.【解答】解:由分子 x2﹣4=0? x=±2;而x=2 时,分母 x+2=2+2=4≠0,x=﹣2 时分母 x+2=0,分式没有意义.所以 x=2.故答案为: 2.15.化简:= 1 .【考点】 6B:分式的加减法.【分析】首先把分式通分,然后进行同分母的分式的加减,最后把结果进行化简即可求解.【解答】解:原式 =﹣===1.故答案是: 1.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂)【考点】 47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】直接利用积的乘方运算法则结合负指数幂的性质计算得出答案.【解答】解:(﹣ m3n﹣2)﹣2=m﹣6n4=.故答案为:.17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k= 2 .+【考点】 F9:一次函数图象与几何变换.【分析】直线 y=2x 平移时,系数 k=2 不会改变. 5 个单位长度得到,【解答】解:因为一次函数y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移+所以 k=2.故答案是: 2.18.一次函数 y=(2m﹣6)x 4中, y 随 x 的增大而减小,则 m 的取值范围是m<3 .+【考点】 F7:一次函数图象与系数的关系.【分析】利用一次函数图象与系数的关系列出关于m 的不等式 2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6) x 4 中, y 随 x 的增大而减小,+∴ 2m﹣ 6< 0,解得, m< 3;故答案是: m<3.19.如图,在平行四边形 ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段 DE 的长度为 2cm .【考点】 L5:平行四边形的性质.【分析】根据四边形ABCD 为平行四边形可得AE ∥BC,根据平行线的性质和角平分线的性质可得出∠ ABE=∠ AEB,继而可得 AB=AE ,然后根据已知可求得DE 的长度【解答】解:∵四边形 ABCD 为平行四边形,∴ AE∥ BC, AD=BC=8cm ,∴∠ AEB=∠ EBC,∵ BE 平分∠ ABC ,∴∠ ABE=∠ EBC,∴∠ ABE=∠ AEB,∴ AB=AE=6cm ,∴ DE=AD ﹣AE=8 ﹣6=2(cm);故答案为: 2cm.20.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为 10 .【考点】 L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形 ABCD 的对角线相交于点 O, OE⊥ BD ,根据线段垂直平分线的性质,可得BE=DE ,又由平行四边形 ABCD 的周长为 20,可得 BC+CD 的长,继而可得△ CDE 的周长等于BC+CD.【解答】解:∵四边形 ABCD 是平行四边形,∴OB=OD,AB=CD ,AD=BC ,∵平行四边形 ABCD 的周长为 20,∴BC+CD=10,∵OE⊥ BD ,∴ BE=DE,∴△ CDE 的周长为: CD+CE+DE=CD +CE+BE=CD+BC=10.故答案为: 10.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.【考点】 6C:分式的混合运算; 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;( 2)根据分式的加法和除法可以解答本题.【解答】解:( 1)(﹣)﹣2+﹣(﹣1)0=4+3﹣1=6;(2)( 1+)÷==x 1.+22.解方程:.【考点】 B3:解分式方程.x 的值,代入公分母进行检验即可.【分析】先去分母把分式方程化为整式方程,求出整式方程中【解答】解:方程两边同时乘以 2(3x﹣ 1),得 4﹣ 2( 3x﹣1)=3,化简,﹣ 6x=﹣3,解得 x=.检验: x=时, 2(3x﹣1)=2×( 3× ﹣1)≠ 0所以, x=是原方程的解.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.【考点】 FA:待定系数法求一次函数解析式; F5:一次函数的性质.【分析】(1)把 x=2,y=﹣ 1 代入函数 y=kx +b,得出方程组,求出方程组的解即可;(2)把 P 点的坐标代入函数 y=﹣2x+3,求出 m 的值,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:( 1)依题意得:,解得:,所以一次函数的解析式是y=﹣2x+3;( 2)由( 1)可得, y=﹣2x+3.∵点 P (m,n )是此函数图象上的一点,∴n=﹣2m 3即,+又∵﹣ 3≤m≤ 2,∴,解得,﹣ 1≤ n≤ 9,∴ n 的最大值是 9.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.【考点】 L5:平行四边形的性质.【分析】结论: OE=OF,欲证明 OE=OF,只要证明△ AOE≌△ COF 即可.【解答】解:结论: OE=OF.理由∵四边形 ABCD 是平行四边形,∴OA=OC,AD ∥ BC,∴∠ OAE=∠ OCF,在△ AOE 和△ COF 中,,∴△ AOE≌△ COF,∴OE=OF.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?【考点】 B7:分式方程的应用.【分析】设原计划每天改造道路 x 米,实际每天改造( 1+10%)x 米,根据比原计划每天多改造 10%,结果提前 3 天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x 米,实际每天改造( 1+10%) x 米,根据题意得:=+3,解得: x=100,经检验 x=100 是原方程的解,且符合题意.答:原计划每天改造道路100 米.26.如图,一次函数y=kx+b 与反比例函数 y=(x>0)的图象交于A(m,6), B( 3, n)两点.(1)直接写出 m= 1 , n= 2 ;( 2)根据图象直接写出使kx+b<成立的x的取值范围0<x<1 或 x>3;( 3)在 x 轴上找一点 P 使 PA+PB 的值最小,求出P 点的坐标.【考点】 G8:反比例函数与一次函数的交点问题.【分析】(1)将点 A 、B 坐标代入即可得;(2)由函数图象即可得;(3)作点 A 关于 x 轴的对称点 C,连接 BC 与 x 轴的交点即为所求.【解答】解:( 1)把点( m,6), B(3,n)分别代入 y=(x>0)得:m=1,n=2,故答案为: 1、2;(2)由函数图象可知,使 kx+b<成立的 x 的取值范围是 0<x<1 或 x> 3,故答案为: 0<x<1 或 x> 3;(3)由( 1)知 A 点坐标为( 1, 6), B 点坐标为( 3, 2),则点 A 关于 x 的轴对称点 C 的坐标( 1,﹣ 6),设直线 BC 的解析式为 y=kx+b,将点 B、 C 坐标代入,得:,解得:,则直线 BC 的解析式为 y=4x﹣ 10,当y=0 时,由 4x﹣10=0 得: x= ,∴点 P 的坐标为(,0).27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【考点】 GA:反比例函数的应用.【分析】(1)先用待定系数法分别求出 AB 和 CD 的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为 36 时的两个时间,再将两时间之差和 16 比较,大于 16 则能讲完,否则不能.【解答】解:( 1)设线段 AB 所在的直线的解析式为y1=k1x+20,把B(10,40)代入得, k1=2,∴ y1=2x+20.设C、D 所在双曲线的解析式为 y2= ,把 C(25,40)代入得, k2=1000,∴ y2=.当 x1=5 时, y1 =2×5+20=30,当 x2时, 2÷30=,=30y =1000∴y1< y2,∴第 30 分钟注意力更集中.(2)令 y1=36,∴ 36=2x+20,∴ x1=8.令y2=36,∴36=1000÷ x,∴x2=1000÷36≈27.8,∵ 27.8﹣8=19.8>16,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.2017 年 8 月 2 日。
2017年人教版八年级数学下册期中试卷(含答案)
期中测试(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.(南通中考)若12x -1在实数范围内有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x >12 D .x ≠122.一直角三角形的两直角边长为12和16,则斜边长为( )A .12B .16C .18D .203.如图,在▱ABCD 中,已知AD =5 cm ,AB =3 cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cm B .2 cm C .3 cm D .4 cm(第3题) (第5题) (第7题)4.下列计算错误的是( )A.14×7= 7 2B.60÷5=2 3C.9a +25a =8 a D .32-2=3 5.如图,点P 是平面坐标系内一点,则点P 到原点的距离是( )A .3 B. 2 C.7 D.53 6.下列根式中,是最简二次根式的是( )A.0.2bB.12a -12bC.x 2-y 2D.5ab 2 7.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形8.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( ) A .16 3 B .16 C .8 3 D .8(第8题) (第9题) (第10题)9.如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C .2 2D .2 310.如图所示,A (-3,0),B (0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A.74 B. 2 C. 3 D .2二、填空题(每小题4分,共24分)11.已知(x -y +3)2+2-y =0,则x +y =____________.12.如图,已知△ABC 中,AB =5 cm ,BC =12 cm ,AC =13 cm ,那么AC 边上的中线BD 的长为____________cm .(第12题) (第13题) (第14题)13.(郴州中考)如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.14.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等于____________.15.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.(第15题) (第16题)16.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有____________个. 三、解答题(共66分) 17.(8分)计算:(1)212+3113-513-2348; (2)48-54÷2+(3-3)(1+13).18.(8分)在解答“判断由长为65,2,85的线段组成的三角形是不是直角三角形”一题中,小明是这样做的:解:设a =65,b =2,c =85.又因为a 2+b 2=(65)2+22=13625≠6425=c 2,所以由a ,b ,c 组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由.19.(8分)如图,铁路上A ,B 两点相距25 km ,C ,D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?20.(10分)如图,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点. (1)判断四边形EFGH 的形状,并证明你的结论;(2)当BD ,AC 满足什么条件时,四边形EFGH 是正方形.(不要求证明)21.(10分)如图,四边形ABCD是一个菱形绿地,其周长为40 2 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)22.(10分)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.23.(12分)如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案1.C 2.D 3.B 4.D 5.A 6.C 7.D 8.C 9.C 10.C 11.1 12.132 13.6 14.2π 15.7 16.3n17.(1)原式=43+23-433-833=2 3.(2)原式=43-362+3+3-3-1=43-362+2. 18.小明的解答是错误的.设a =65,b =2,c =85.因为a <c <b ,且a 2+c 2=(65)2+(85)2=b 2,所以由a ,b ,c 组成的三角形是直角三角形.19.设AE =x km ,则BE =(25-x )km ,∵DE =CE ,又∵在△DAE 和△EBC 中,DA ⊥AB 于点A ,CB ⊥AB 于点B ,∴x 2+152=102+(25-x )2.解得x =10.∴E 站应建在离A 站10 km 处. 20.解:(1)四边形EFGH 是平行四边形.证明:∵E ,F 分别是边A B ,B C 的中点,∴EF ∥AC ,且EF =AC 2.同理:HG ∥AC ,且HG =AC2.∴EF ∥HG ,且EF =HG .∴四边形EFGH 是平行四边形.(2)当BD =AC 且BD ⊥AC 时,四边形EFGH 是正方形.21.连接BD ,A C.∵菱形ABCD 的周长为40 2 m ,∴菱形ABCD 的边长为10 2 m .∵∠ABC =120°,∴△ABD ,△BCD 是等边三角形.∴对角线BD =10 2 m ,AC =10 6 m .∵E ,F ,G ,H 是菱形ABCD 各边的中点,∴四边形EFGH 是矩形,矩形的边长分别为52 m ,5 6 m .∴矩形EFGH 的面积为52×56=503(m 2),即需投资金为503×10=5003≈866(元).答:需投资金为866元.22.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥DF .∴∠BAF =∠CF A.∵E 为BC 的中点,∴BE =CE .又∵∠AEB =∠FEC ,∴△AEB ≌△FEC (AAS ).∴AB =CF .(2)当BC =AF 时,四边形ABFC 是矩形.理由如下:由(1),得AB =CF ,∵AB ∥CF ,∴四边形ABFC 是平行四边形.∵BC =AF ,∴四边形ABFC 是矩形.23.(1)证明:在△DFC 中,∠DFC =90°,∠C =30°,DC =4t ,∴DF =2t .又∵AE =2t ,∴AE =DF . (2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又∵AE =DF ,∴四边形AEFD 为平行四边形.当四边形AEFD 为菱形时,AE =AD =AC -DC 即60-4t =2t ,解得t =10.∴当t =10秒时,四边形AEFD 为菱形. (3)①当∠DEF =90°时,由(2)知四边形AEFD 为平行四边形,∴EF ∥AD ,∴∠ADE =∠DEF =90°.∵∠A =60°,∴∠AED =30°.∴AD =12AE =t .又AD =60-4t ,即60-4t =t ,解得t =12;②当∠EDF =90°时,四边形EBFD为矩形,在Rt △AED 中,∠A =60°,则∠ADE =30°,∴AD =2AE ,即60-4t =4t ,解得t =152;③若∠EFD=90°,则E 与B 重合,D 与A 重合,此种情况不存在.故当t =152或12秒时,△DEF 为直角三角形.。
新人教版八年级下学期期中考试数学试卷(含答案) (1)
2017-2018学年度历下区八年级数学下学期期中试卷2017年八年级教学质量检测 数学试题(2017.4) 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( ).A .B .C .D .【答案】B2.分式13x -有意义,则x 的取值为( ).A .0x ≠B .3x ≠C .3x ≠-D .3x ≠±【答案】B3.下列各式能用完全平方式进行分解因式的是( ) A .21x -B .221x x +-C .221x x ++D .21x x ++【答案】C4.平面直角坐标系中,点)(2,0P 平移后对应的点为()5,4Q ,则点P 平移距离为( ).QP xyOA .3个单位长度B .4个单位长度C .5个单位长度D .7个单位长度【答案】C 5.函数y kx b =+(k 、b 为常数,0k ≠)的图象如图所示,则关于x 的不等式0kx b +>的解集为( ).A .2x >B .2x <C .1x <D .1x >【答案】B6.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ). A .11 B .16 C .17 D .16或17【答案】D7.把不等式组123x x >-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( ).A .B .C .1 D .1【答案】B8.如图,在四边形ABCD 中,AD BC ∥,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,8AB =,6CD =,2EF =,则AD 长为( ).E FDA BCA .8B .10C .12D .14【答案】C9.如图,在Rt ABC △中,90C =︒∠,CAB ∠的平分线交BC 于D ,DE 是AD 的垂直平分线,垂足为E ,若3BC =,则DE 的长为( ).ABCEA .1B .2C .3D .4【答案】A10.已知1112a b -=,则aba b -的值是( ).A .12B .12- C .2D .2-【答案】D11.如图,在ABC △中,70CAB =︒∠,在同一平面内,将ABC △绕点A 旋转到AB C ''△的位置,使得CC AB '∥则BAB '=∠( ).B'C'ABCA .30︒B .35︒C .40︒D .50︒【答案】C12.已知等边三角形边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( ). ABC .32D .不能确定【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分)13.分解因式:24a -=__________. 【答案】(2)(2)a a +-14.若分式211x x -+的值为零,则x 的值为__________.【答案】14.115.如图,等边ABC △的边长为4,AD BC ⊥,把ABD △沿BC 向右平移得到A B D '''△,1BB '=,则图中阴影部分的面积为__________.16.在三角形纸片ABC 中,90C =︒∠,30B =︒∠,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则DEF △的周长为__________.(用含a 的式子表示).30°C BAB (D )30°ABCF E【答案】16.3a三、解答题(本大题共8题,满分74分) 17.(本小题满分8分) 已知代数式:211211x x x ÷+++,请你解决下列问题.(1)化简.(2)在1-1【答案】见解析 (1)211211x x x ÷+++211(1)1x x +=⨯+ 11x =+. (2)当x =时,原式1===,当1x =时,原式=. 18.(本小题满分8分)(1)将ABC △沿x 轴负方向平移2个单位,沿y 轴正方向平移4个单位,得到111A B C △,请画出111A B C △.(2)将ABC △绕点A 顺时针旋转90︒,得到22AB C △,请画出22AB C △.(3)111A B C △绕点P 顺时针旋转90︒,得到22AB C △,则点P 的坐标为__________.【答案】见解析 (3)P 点坐标为(1,2).19.(本小题满分8分)关于x 的不等式组32(3)215x a x x -+⎧⎨-+<⎩≤①②.【注意有①②】(1)当1a =,解这个不等式组.(2)若这个不等式组的解集为28x -<≤,求a 的值. 【答案】见解析 (1)当1a =时,312(3)215x x x -+⎧⎨-+<⎩≤①②,【注意有①②】解①得:7x ≤, 解①得:2x >-,∴不等式组的解集为27x -<≤. (2)32(3)215x a x x -+⎧⎨-+<⎩≤①②【注意有①②】解①得:6x a +≤, 解①得:2x >-,∵不等式组的解集为28x -<≤. ∴68a +=, ∴2a =.20.(本小题满分9分)如图,AB AC =,CD AB ⊥,BE AC ⊥,BE 与CD 相交于点O . (1)求证:ACD △≌ABE △.(2)连接OA ,BC ,试判断直线OA ,BC 的关系,并说明理由.ODABCE【答案】见解析 (1)证明:∵CD AB ⊥,BE AC ⊥, ∴90ADC AEB ==︒∠∠, 又∵A A =∠∠,AB AC =,∴ACD △≌(AAS)ABE △. (2)连接AO 、BC , ∵CD AB ⊥,BE AC ⊥, ∴90ADC AEB ==︒∠∠, ∵OA OA =,AD AE =, ∴Rt ADO △≌(HL)AEO △,∴DAO EAO =∠∠,即OA 是BAC ∠的平分线, 又∵AB AC =, ∴OA BC ⊥.ADE OBC21.(本小题满分9分) 仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式以及m 的值. 解:设另一个因式x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++, ∴25n +=,2m n =, 解得3n =,6m =,∴另一个因式为3x +,m 的值为6. 依照以上方法解答下面问题:(1)若二次三项式2712x x -+可分解为(3)()x x a -+,则a =__________. (2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =__________. (3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值. 【答案】见解析 (1)4a =-. (2)1b =-.(3)解:设另一个因式为x n +,得229(21)()x x k x x n +-=-+,则22292(21)x x k x n x n +-=+--, ∴219n -=,k n -=-, 解得5n =,5k =-,∴另一个因式为5x +,k 的值为5-. 22.(本小题满分10分)如图,Rt ABC △中,90ABC =︒∠,DE 垂直平分AC ,垂足为O ,AD BC ∥. (1)求证:OD OE =.(2)若3AB =,4BC =,求AD 的长.ODABCE【答案】见解析(1)证明:∵DE 垂直平分AC , ∴90∠∠°AOC COE ==,OA OC =, ∵∥AD BC ,∴∠∠DAC C =,∴△AOC ≌(AAS)△COE , ∴OD OE =. (2)连接AE , ∵DE 垂直平分AC , ∴AE EC =, 设EC 长度为x , ∴AE x =,4BE x =, 在Rt △ABE 中,222AE AB BE =+,∴2223(4)x x =+-,解得258x =, 又∵△AOC ≌△COE , ∴AD EC =, ∴258AD =. ECBADO23.(本小题满分10分)某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱,供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元.方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取,工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)关于x (个)的函数关系式. (2)假设你是决策者,你认为应该选择哪种方案?并说明理由. 【答案】见解析(1)从纸箱厂定制购买纸箱费用:14y x =, 蔬菜加工厂自己加工纸箱费用:2 2.416000y x =+. (2)当12y y =时,4 2.416000x x =+,10000x =, 选择两个方案的费用相同.当12y y <时,4 2.416000x x +<,10000x <, 选择方案一,从纸箱厂定制购买纸箱所需的费用低.当12y y >时,4 2.416000x x +>,10000x >,选择方案二,加工厂自己加工制作纸箱所需的费用低. 24.(本小题满分12分) 数学课上,李老师出示了如下框中的题目.EA DBC在等边ABC △中,点E 在AB 上, 点D 在CB 的延长线上,且ED EC =, 如图,请尝试确定线段AE 与BD 的 大小关系,并说明理由.组长小敏带领全组同学讨论,进行了如下探究,请你一起完成. (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AE __________DB (填“>”“<”“=”). (2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE __________DB (填“>”“<”“=”).理由如下: 如图2,过点E 作EF BC ∥,交AC 于点F . (请你完成接下来解答过程) (3)拓展结论,设计新题在等边ABC △中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC △的边长为1,2AE =,直接写出CD 的长.图1DABCE图2DA BCEF【答案】见解析(1)=. (2)=.(3)证明:∵∥EF BC , ∴∠∠ECB FEC =, ∵ED EC =, ∴∠∠D ECB =, ∴∠=∠D FEC , ∵∥EF BC ,∴180120∠°∠°EFC BCA =-=, ∵180120∠°-∠°EBD ABC ==, ∴∠∠EFC EBD =,在△EDB 与△CEF 中, ∠∠∠∠EBD EFC BDE FEC ED EC =⎧⎪=⎨⎪=⎩, ∴△EDB ≌(AAS)△CEF , ∴BD EF =, ∵∥EF BC ,∴60∠∠°AEF ABC ==,60∠°A =, ∴△AEF 为等边三角形, ∴EF AE =, 又∵EF BD =, ∴AE BD =. (3)1或3.附加题1.已知x 、y 都是正实数,且满足222120x xy y x y ++++-=,则(1)x y -的最小值为__________. 【答案】254-2.等腰直角三角形BAC 与等腰直角三角形DAE 按图1位置放置,AB 、AD 在同一直线上,AC 、AE 在同一直线上,2AB =,AD = (1)试判断线段BE 、CD 的关系.(2)如图2,将BAC △绕点A 逆时针旋转,当点B 恰好落在线段CD 上时,求此时线段BE 的长. (3)如图3,将BAC △绕点A 继续逆时针旋转,线段BE 与线段CD 将相交,交点为F ,请判断DFE △与BFC △面积之和有最大值吗?若有,请直接写出最大值.图1ECBAD图2BDCEA图3FBA ECD【答案】见解析(1)解:BE CD =且⊥BE CD , ∵△BAC 与△DAE 都是等腰直角三角形, ∴AC AB =,90∠∠°DAC BAE ==,AD AE =, ∴△ACD ≌(SAS)△ABE , ∴BE CD =,∠∠ADC AEB =, 如图1所示,延长EB 交DG 于点H , ∵90∠∠°ADC ACD +=, ∴90∠∠°AEB ACD +=, ∴90∠°EHC =,11 ∴⊥BE CD .M A C DB(2)如图2,过点A 作⊥AM CD , ∵45∠°ACB =,2AB =,∴CM AM ==, 在Rt △AMD 中,MD ,∴CD =,∴BE = (3)△DFE 与△BFC 面积之和的最大值为6. M B A EC D。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
人教版2017-2018学年数学八年级下学期期中带答案
数学八年级下学期期中模拟试卷一、单选题(共10题;共20分)1.下列式子中,属于最简二次根式的是()A. B. C. D.2.在下列的线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=41,c=40B. a=b=5,c=5C. a:b:c=3:4:5D. a=11,b=12,c=153.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A. 90°B. 60°C. 120°D. 45°4.已知一个直角三角形的两条边长分别是6和8,则第三边长是()A. 10B. 8C. 2D. 10或25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A. 8米B. 10米C. 12米D. 14米6.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A. AB∥CD,AD=BCB. ∠A=∠C,∠B=∠DC. AB∥CD,AD∥BCD. AB=CD,AD=BC7.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A. 16B. 15C. 14D. 138.如图,直线l过正方形ABCD的顶点B,点A、C至直线l的距离分别为2和3,则此正方形的面积为()A. 5B. 6C. 9D. 139.如图,菱形ABCD中,AB∥y轴,且B(﹣10,1)、C(2,6),则点A的坐标为()A. (﹣10,12)B. (﹣10,13)C. (﹣10,14)D. (2,12)10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A. 3B. 4C. 5D. 6二、填空题(共8题;共8分)11.若实数a、b满足,则=________.12.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为________cm.13.计算:=________.14.△ABC的周长为16,点D,E,F分别是△ABC的边AB、BC、CA的中点,连接DE,EF,DF,则△DEF的周长是________.15.一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为________ cm2.16.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是________米.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=________cm.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为________.三、解答题(共3题;共15分)19.已知:如图,在▱ABCD中,对角线AC、BD相交于点O,EF过点O分别交AD、BC于点E、F.求证:OE=OF.20.如图,已知四边形ABCD是菱形,点M、N分别在AB、AD上,且BM=DN,MG∥AD,NF∥AB,点F、G分别在BC、CD上,MG与NF相交于点E,求证:四边形AMEN是菱形.21.如图,正方形ABCD中,点E、F分别在AD、CD上,且AE=DF,连接BE、AF,相交于G.求证:AF⊥BE.四、计算题(共1题;共5分)22.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.五、综合题(共3题;共30分)23.阅读下面材料,回答问题:(1)在化简 的过程中,小张和小李的化简结果不同;小张的化简如下: = = = ﹣小李的化简如下:===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.24.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC .(1)求证:OE=OF ;(2)若BC=2,求AB 的长.25.如图,E 是正方形ABCD 对角线BD 上一点,EM ⊥BC ,EN ⊥CD 垂足分别是求M 、N(1)求证:AE=MN ;(2)若AE=2,∠DAE=30°,求正方形的边长.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】A7.【答案】B8.【答案】D9.【答案】C10.【答案】D二、填空题11.【答案】12.【答案】4.813.【答案】214.【答案】815.【答案】8416.【答案】817.【答案】918.【答案】或3三、解答题19.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AEO≌△CFO(AAS),∴OE=OF.20.【答案】证明:∵MG∥AD,NF∥AB,∴四边形AMEN是平行四边形,∵四边形ABCD是菱形,∴AB=AD,∵BM=DN,∴AB﹣BM=AD﹣DN,∴AM=AN,∴四边形AMEN是菱形;21.【答案】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠AEG=90°,∴∠DAF+∠AEG=90°,∴∠AGE=90°,∴BE⊥AF.四、计算题22.【答案】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB= =10,∵S△ABC= AB•CD= AC•BC,∴CD= = =4.8五、综合题23.【答案】(1)解:小李化简正确,小张的化简结果错误.因为=| ﹣|= ﹣(2)解:原式= = = ﹣124.【答案】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2 ,∴AC=2BC=4 ,∴AB= = =6.25.【答案】(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF= AE=1,AF=AE•cos30°=2× = .∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF= +1,即正方形的边长为+1.。
人教版2017初二(下册)数学期中考试卷(附答案)
人教版2017初二(下册)数学期中考试卷一、(共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.下列图形中既是轴对称又是中心对称的是()A.B.C.D.2.为了检查某鞋厂生产的一批皮鞋的质量,从中抽取50双进行检查.此项调查中,50是这个问题的()A.个体B.总体C.总体的一个样本D.样本容量3.从1、3、5、7、9中任取两个数字,组成的两位数是奇数,这是()A.必然事件B.随机事件C.不可能事件D.何类事件不能确定4.若把分式中x、y的都扩大5倍,则分式的值()A.扩大5倍B.扩大10倍C.不变D.缩小到原来的5.若平行四边形的一边长为5,它的两条对角线的长可能是()A.4和3 B.4和8C.4和6 D.2和126.顺次连接矩形的四边中点所得的四边形一定是()A.菱形B.矩形C.平行四边形D.正方形7.下列分式是最简分式的是()A.B.C.D.8.在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共8小题,每小题3分,满分24分)9.一只不透明的袋子中装有3个白球,4个黄球,每个球除颜色外完全相同,从袋子中随机摸出一个球,摸到黄球的概率是.10.在平行四边形ABCD中,∠B=100°,则∠A=,∠D=.11.分式与的最简公分母是.12.菱形的一个内角为60°,较短对角线的长为2,则此菱形的面积为.13.写一个关于x的分式,使此分式当x=3时,它的值为2.这个分式可以是.14.在平面直角坐标系中,A(4,0)、B(4,2)、C(0,2).直线y=kx﹣k+3(k 是常数)将四边形OABC分成面积相等的两部分,则k的值是.15.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为.16.已知,在平面直角坐标系中,点A、C(0,2016),以AC为对角线作正方形ABCD,则顶点D的坐标为.三、解答题(本大题共4小题,每小题7分,共28分)17.计算:(1)﹣(2)(﹣)÷.18.先化简,再求值:(﹣)÷,其中x=6.19.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.求证:DE=BF.20.在一个不透明的袋子装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再先从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下面表格:(2)当(1)中的m=2时,请直接写出事件A发生的概率.四、解答题(本大题共3小题,每小题8分,共24分)21.某中学开展对学生学习方式调查活动.小丽与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了如图的两个统计图.请根据如图两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两幅统计图;(3)根据抽样调查的结果,估算该校800名学生中大约有多少人选择“小组合作学习”?22.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.(1)若将线段AB绕点O顺时针旋转90°得到线段A′B′.试在图中画出线段A′B′;(2)若线段A″B″与线段A′B′关于y轴对称,请画出线段A″B″;(3)若点P是此平面直角坐标系内的一点,当点A、B′、B″、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.23.已知:如图,在△ABC中,D、E、F分别是各边的中点,AH是高.求证:∠DEF=∠DHF.五、解答题(本大题共2小题,每小题10分,共20分)24.矩形ABCD中,AB=10,BC=8,点P为AD边上的一点,沿直线BP将△ABP 翻折至△EBP(点A落在点E处).=;(1)如图1,当点E落在CD边上,则△EBC的面积S△BEC(2)如图2,PE、CD相交于点M,且MD=ME,求折痕BP的长;(3)如图3,当点P为AD的中点时,连接DE,则图中与∠APB相等的角的个数为.25.已知四边形ABCD为菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°.(1)如图1,当点E是线段BC的中点时,请直接写出线段AE、EF、AF之间的数量关系;(2)如图2,当点E是线段BC上的任意一点(点E不与点B、C重合)时,求证:BE=CF;(3)如图3,当点E在线段CB上的延长线上,且∠EAB=15°时,求线段FD的长.人教版2017初二(下册)数学期中考试卷参考答案一、1-5 CDACB 6-8 ACB二、9.10.80°,100°11.m2﹣912.213.14.﹣215.16.(1,﹣1)三、17.解:(1)原式==3(2)原式=•=18.解:原式=[﹣]÷=﹣=﹣当x=6时,原式=﹣19.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.20.解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2或3;(2)m=2时,P(摸出黑球)==.四、21.解:(1)这次抽样调查中,共调查的学生数是:=500(名);故答案为:500.(2)小组合作学习所占的百分比是:×100%=30%,教师传授的人数是:500﹣300﹣150=50(人),教师传授所占的百分比是:×100%=10%;补图如下:(3)根据题意得:800×30%=240(人).答:该校800名学生中大约有240人选择“小组合作学习”.22.解:(1)如图,线段A′B′为所作;(2)如图,线段A″B″为所作;(3)P 点坐标为(﹣4,1)、(4,1)、(0,﹣5).23.证明:∵D、E分别是AB、BC的中点∴DE=AC,∵AH⊥BC F为AC的中点,∴FH=AC,∴DE=FH,同理FE=DH,又∵DF=FD,∴在△DEF和△FHD中,∴△DEF≌△FHD,∴∠DEF=∠DHF.五、24.解:(1)由折叠知,BE=AB=10,在Rt△BCE中,BC=8,根据勾股定理得,CE=6,=CE•BC=24,∴S△BCE故答案为24,(2)如图2,当MD=ME时,设BE交DC与点Q,在△DPM和△EQM中,,∴△DPM≌△EQM∴DP=EQ DQ=EP,设AP=x,则DP=8﹣x=EQ DQ=EP=AP=x∴CQ=10﹣x BQ=2+x,在Rt△CBQ中,由勾股定理得:64+(10﹣x)2=(x+2)2,解得x=,即AP=,在Rt△ABP中,由勾股定理得:BP=,(3)由折叠知,∠BPE=∠APB,AP=PE,∵点P是AD中点,∴AP=DP,∴PD=PE,∴∠PDE=∠PED,∵2∠PDE+∠DPE=180°,2∠APB+∠DPE=180°,∴∠PDE=∠APB,∴∠PDE=∠PED=∠BPE=∠APB,∵∠APB+∠ABP=90°,∠PBC+∠ABP=90°,∴∠APB=∠PBC故答案为4.25.(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:连接AC,如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF;(3)解:过点A作AG⊥BC于点G,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=AB=2,AG=BG=2,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,第11页(共11页) ∴AE=AF ,EB=CF=2﹣2, ∴DF=CF +CD=2﹣2+4=2+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①它的图象经过点(-1,1); ②它的图象在第二、四象限内;
③在每个象限内,函数值y随自变量x的增大而增大.
则这个函数的解析式可以为____________.
15、关于x的方程 无解,则m的值是
16、计算: =_____________
17、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE=米时,有DC =AE +BC .
A.2cmB.3cmC.4cmD.5cm
7、已知k1<0<k2,则函数y=k1x和 的图象大致是( ).
8、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ).
(A)450a元(B)225a元
(C)150a元(D)300a元
9、已知点(-1, ),(2, ),(3, )在反比例函数 的图像上. 下列结论中正确的是
A. B. C. D. 2.某
10、如图,双曲线 (k>0)经过矩形OABC的边BC的中点E,交AB于点D。若梯形ODBC的面积为3,则双曲线的解析式为( ).
(A) (B)
(C) (D)
二、填空题(本大题共8小题,每题3分,共24分)
(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?
2017年八年级数学(下)期中综合检测卷答案
一、选择题:
1.C2.C3.B.4.B5.D6.B7.D8.C9.B10.B
二、填空题:
11、1.20×10-9。12、76 。13、 。14 、 15、m=1 。 16、 。 17、 。18 、2。
11、把0.0000ቤተ መጻሕፍቲ ባይዱ000120用科学计数法表示为_______.
12、如图6是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若 , ,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是.
13、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.
④9,40,41;⑤3 ,4 ,5 .其中能构成直角三角形的有( )组
A.2B.3C.4D.5
4、分式 的值为0,则a的值为()
A.3B.-3C.±3D.a≠-2
5、下列各式中,正确的是()
A. B.
C. D.
6、有一块直角三角形纸片,两直角边分别为:AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()
∴m2=1
∴m=1(负值舍去).
∴A点的坐标为(1,2).
把A点的坐标代入 中,得
k1=2.
∴反比例函数的表达式为 .
把A点的坐标代入 中,得
k2+1=2,
∴k2=1.
∴一次函数的表达式 .
(2)B点的坐标为(-2,-1).
当0<x<1和x<-2时,y1>y2.
(1) +1= ; (2) = -2.
22、(8分)在某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数 的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
18、如图,点A在双曲线y= 上,点B在双曲线y= 上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.
三、解答题(共9小题,共66分)
19、(6分)计算:2 °.
20、(8分)先化筒 , 然后从介于-4和4之间的整数中,选取一个你认为合适的x的值代入求值.
21、解方程:(6分×2=12分)
(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
.
26、(10分)如图,已知反比例函数 (k1>0)与一次函数 相交于A、B两点,A C⊥x轴于点C.若△OAC的面积为1,且 =2,.
23、
解:在Rt△ABC中,AB=4,BC=3,则有AC= =5,
∴S△ABC= AB·BC= ×4×3=6.
在△ACD中,AC=5,AD=13,CD=12.
∵AC2+CD2=52+122=169,AD2=132=169,
∴AC2+CD2=AD2,∴△ACD为直角三角形,
∴S△ACD= AC·CD= ×5×12=30,
∴S四边形ABCD=S△ABC+S△ACD=6+30=36.
24.树高15m. 提示:BD=x,则(30-x)2-(x+10)2=202
25、
25.(1),0≤x≤12;y= (x>12);
(2)4小时.
26、
【答案】解(1)在Rt△OAC中,设OC=m.
∵ =2,
∴AC=2×OC=2m.
∵S△OAC= ×OC×AC= ×m×2m=1,
23、(8分)如图18-14,所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.
24、(6分)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米
树有多高?
的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵
25、(8分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:
三、解答题:
19、
解:原式=2× ﹣2﹣(2﹣ )•(3﹣ )
=1﹣2﹣(6﹣5 +3)
=﹣1﹣9+5
=﹣8+5 .
20、解:原式= 3分
=x+2 5分
选取数学可以为-3,-1,1,3,不可为2,-2,0(答案不唯一)8分
21、(1)x= ;(2)x=2是增根,故原方程无解
22、
解:(1)设乙队单独完成需x天.
人教版2017年八年级数学(下)
期中教学质量检测试卷(含答案)
一、选择题(共10小题,每小题3分,共30分)
1.下列各式 , , , , , , 中,分式有( ).
A.2个B.3个C.4个D.5个
2、下列函数中,是反比例函数的是( ).
(A) (B (C) (D)
3、分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12③1,2,3;
据题意,得:
解这个方程得:x=90
经检验,x= 90是原方程的解,
乙队单独完成需90天.
(2)设甲、乙合作完成需y天,则有 .
解得:y=36
甲单独完成需付工程款为60×3.5 = 210(万元).
乙单独完成超过计划天数不符题意,
甲、乙合作完成需付工程款为36×(3.5+2)=l98(万元).
答:在不超过计划天数的前提下,由甲、乙合作完成最省钱