半导体基础 3.半导体的器件工艺

合集下载

半导体制造工艺范文

半导体制造工艺范文

半导体制造工艺范文1.晶圆制备:晶圆是制造半导体器件的基础。

可通过切割单晶硅棒或者熔融硅制备。

制备好的晶圆表面需要经过化学机械抛光,使其表面光滑。

2.掩膜制备:掩膜是指将特定模式转移到晶圆表面的层。

通过光刻技术,在掩膜层上照射紫外线光束,使其形成特定模式。

常用掩膜材料有光刻胶。

3.刻蚀:刻蚀是通过化学或物理的方式去除掩膜层以外的材料,形成所需的结构。

常用的刻蚀方法有湿刻蚀和干刻蚀。

湿刻蚀使用化学溶液去除非掩膜区域的材料,干刻蚀则使用离子轰击或者等离子体气体去除材料。

4.离子注入:离子注入是指向掺杂原子加速并注入到晶圆内部,改变其电学性质。

通过掩膜层上开口处的掺杂窗口进行注入,常用的离子有硼、磷等。

5.扩散:扩散是将注入到晶圆内的掺杂原子在高温下扩散扩展,形成特定的杂质浓度分布。

扩散可以使半导体材料的电学性能得到改善。

通常在氮气或者氢气气氛中进行。

6.金属沉积:金属沉积是将金属材料沉积在晶圆表面,用于电极、导线等器件的制作。

通过化学气相沉积或者物理气相沉积等方法进行。

7.封装:封装是将制造好的芯片装配到封装材料中,制作成可使用的半导体器件。

常用的封装方法有芯片焊接在载体上并用封装材料覆盖,然后进行焊接。

此外,半导体制造工艺还包括成品测试和质量控制等环节。

成品测试是指对制造好的半导体器件进行功能性、电学性能等方面的测试,以验证其质量和性能是否达到要求。

质量控制是指在制造过程中对各个步骤进行监控和调整,以确保最终的产品达到规定的质量标准。

总结而言,半导体制造工艺是一个复杂严谨的过程,需要精确的控制和高精度的设备支持。

只有通过严格的工艺流程和质量控制,才能制备出性能稳定可靠的半导体器件。

这些器件广泛应用于电子、通信、计算机等领域,对现代社会的发展具有重要作用。

《半导体器件与工艺》课件

《半导体器件与工艺》课件

晶圆制备
切割
将大块单晶硅切割成小片,得到晶圆。
研磨
对晶圆表面进行研磨,以降低表面粗糙度。
抛光
通过化学和机械作用对晶圆表面进行抛光,使其 表面更加光滑。
薄膜沉积
物理气相沉积
通过物理方法将材料气化并沉积在晶圆表面,如真空 蒸发镀膜。
化学气相沉积
通过化学反应将材料沉积在晶圆表面,如金属有机化 学气相沉积。
有巨大的应用潜力。
制程技术进步
纳米尺度加工
随着制程技术的不断进步,半导体器件的特征尺寸不断缩小,目前已进入纳米尺度。纳米 尺度加工技术面临着诸多挑战,如表面效应、量子效应和隧穿效应等,需要不断探索新的 加工方法和材料体系。
异质集成技术
通过将不同材料、结构和工艺集成在同一芯片上,可以实现高性能、多功能和低成本的半 导体器件。异质集成技术需要解决材料之间的界面问题、应力问题和工艺兼容性问题等。
可靠性试验
对芯片进行各种环境条件下的可靠性试验,如温度循环、湿度、振动等。
失效分析
对失效的芯片进行失效分析,找出失效原因,以提高芯片的可靠性。
05 半导体工艺发展趋势与挑 战
新型材料的应用
01
硅基材料
作为传统的半导体材料,硅基材料在集成电路制造中仍占据主导地位。
随着技术的不断发展,硅基材料的纯度、结晶度和性能不断提升,为半
柔性电子技术
柔性电子技术是将电子器件制作在柔性基材上的技术,具有可弯曲、可折叠、可穿戴等优 点。柔性电子技术在智能终端、可穿戴设备、医疗健康等领域具有广泛的应用前景。
可靠性及成品率问题
可靠性问题
随着半导体器件的特征尺寸不断缩小,可靠 性问题日益突出。需要加强可靠性研究,建 立完善的可靠性评价体系,提高半导体器件 的长期稳定性。

半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程半导体是一种电子材料,具有可变电阻和电子传导性的特性,是现代电子器件的基础。

半导体的制造流程分为两个主要阶段:前端工艺(制造芯片)和后端工艺(封装)。

前端工艺负责在硅片上制造原始的电子元件,而后端工艺则将芯片封装为最终的电子器件。

下面是半导体制造流程及封装的主要工艺流程:前端工艺(制造芯片):1.晶片设计:半导体芯片的设计人员根据特定应用的需求,在计算机辅助设计(CAD)软件中进行晶片设计,包括电路结构、布局和路线规划。

2.掩膜制作:根据芯片设计,使用光刻技术将电路结构图转化为光刻掩膜。

掩膜通过特殊化学处理制作成玻璃或石英板。

3.芯片切割:将晶圆切割成单个的芯片,通常使用钻孔机或锯片切割。

4.清洗和化学机械抛光(CMP):芯片表面进行化学清洗,以去除表面杂质和污染物。

然后使用CMP技术平整芯片表面,以消除切割痕迹。

5.纳米技术:在芯片表面制造纳米结构,如纳米线或纳米点。

6.沉积:通过化学气相沉积或物理气相沉积,将不同材料层沉积在芯片表面,如金属、绝缘体或半导体层。

7.重复沉积和刻蚀:通过多次沉积和刻蚀的循环,制造多层电路元件。

8.清洗和干燥:在制造过程的各个阶段,对芯片进行清洗和干燥处理,以去除残留的化学物质。

9.磊晶:通过化学气相沉积,制造晶圆上的单晶层,通常为外延层。

10.接触制作:通过光刻和金属沉积技术,在芯片表面创建电阻或连接电路。

11.温度处理:在高温下对芯片进行退火和焙烧,以改善电子器件的性能。

12.筛选和测试:对芯片进行电学和物理测试,以确认是否符合规格。

后端工艺(封装):1.芯片粘接:将芯片粘接在支架上,通常使用导电粘合剂。

2.导线焊接:使用焊锡或焊金线将芯片上的引脚和触点连接到封装支架上的焊盘。

3.封装材料:将芯片用封装材料进行保护和隔离。

常见的封装材料有塑料、陶瓷和金属。

4.引脚连接:在封装中添加引脚,以便在电子设备中连接芯片。

5.印刷和测量:在封装上印刷标识和芯片参数,然后测量并确认封装后的器件性能。

集成电路制造中的半导体器件工艺

集成电路制造中的半导体器件工艺

集成电路制造中的半导体器件工艺绪论随着信息技术的飞速发展,集成电路制造技术已成为现代电子工业的核心领域。

集成电路是现代电子产品的基础,在计算机、通讯、军事和工业等领域都有着广泛的应用。

而半导体器件工艺是集成电路制造技术的基石,其质量和效率直接决定了集成电路的性能和成本。

本文将从半导体制造的基本流程、光刻工艺、薄膜工艺、化学机械抛光、多晶硅工艺和后台工艺六个方面详细介绍集成电路制造中的半导体器件工艺。

一、半导体制造的基本流程半导体芯片制造的基本流程包括晶圆制备、芯片制造和包装封装。

具体流程如下:晶圆制备:晶圆是半导体器件制造的基础,它是由高纯度单晶硅材料制成的圆片。

晶圆制备的主要过程包括矽晶体生长、切片、抛光和清洗等。

芯片制造:芯片制造主要包括传输电子装置和逻辑控制逻辑电路结构的摆放和电路组成等操作。

包装封装:芯片制造完成后,晶体管芯片需要被封装起来的保护电路,使其不会受到外界环境的影响。

光刻工艺是半导体工艺中的核心部分之一。

光刻工艺的主要作用是将图形预设于硅晶圆表面,并通过光刻胶定位的方式将图形转移到晶圆表面中,从而得到所需的电子器件结构。

光刻工艺的主要流程包括图形生成、光刻胶涂布、曝光、显影和清洗等步骤。

三、薄膜工艺薄膜工艺是半导体制造中的另一个重要工艺。

它主要通过化学气相沉积、物理气相沉积和溅射等方式将不同性质的材料覆盖在晶圆表面,形成多层结构,从而获得所需的电子器件。

四、化学机械抛光化学机械抛光是半导体工艺中的核心工艺之一。

其主要作用是尽可能平坦和光滑化硅晶圆表面,并去除由前工艺所形成的残余物和不均匀的层。

化学机械抛光的基本原理是使用旋转的硅晶圆,在氧化硅或氮化硅磨料的帮助下,进行机械和化学反应,从而达到平坦化的效果。

五、多晶硅工艺多晶硅工艺是半导体工艺中的一个重要工艺,主要是通过化学气相沉积厚度约8至12个纳米的多晶硅层。

该工艺可以用于形成电极、连接线、栅极和像素等不同的应用。

多晶硅工艺的优点是不需要特殊的工艺装备,因此较为简单。

半导体基础知识PPT培训课件

半导体基础知识PPT培训课件
半导体基础知识ppt培 训课件
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。

八大半导体工艺顺序剖析

八大半导体工艺顺序剖析

八大半导体工艺顺序剖析八大半导体工艺顺序剖析在现代科技领域中,半导体材料和器件扮演着重要的角色。

作为电子设备的基础和核心组件,半导体工艺是半导体制造过程中不可或缺的环节。

有关八大半导体工艺顺序的剖析将会有助于我们深入了解半导体制造的工作流程。

本文将从简单到复杂,逐步介绍这八大工艺的相关内容。

1. 排版工艺(Photolithography)排版工艺是半导体制造过程中的首要步骤。

它使用光刻技术,将设计好的电路图案转移到硅晶圆上。

排版工艺需要使用光刻胶、掩膜和曝光设备等工具,通过逐层叠加和显影的过程,将电路图案转移到硅晶圆上。

2. 清洗工艺(Cleaning)清洗工艺在排版工艺之后进行,用于去除光刻胶和其他污染物。

清洗工艺可以采用化学溶液或高纯度的溶剂,保证硅晶圆表面的干净和纯净。

3. 高分辨率电子束刻蚀(High-Resolution Electron BeamLithography)高分辨率电子束刻蚀是一种先进的制造技术。

它使用电子束在硅晶圆表面进行刻蚀,以高精度和高分辨率地制作微小的电路图案。

4. 电子束曝光系统(Electron Beam Exposure Systems)电子束曝光系统是用于制造高分辨率电子束刻蚀的设备。

它具有高能量电子束发射器和复杂的控制系统,能够精确控制电子束的位置和强度,实现微米级别的精细曝光。

5. 高能量离子注入(High-Energy Ion Implantation)高能量离子注入是半导体器件制造中的一项重要工艺。

通过将高能量离子注入到硅晶圆表面,可以改变硅晶圆的电学性质,实现电路中的控制和测量。

6. 薄膜制备与沉积(Film Deposition)薄膜制备与沉积是制造半导体器件的关键工艺之一。

这个工艺将薄膜材料沉积在硅晶圆表面,包括化学气相沉积、物理气相沉积和溅射等方法。

这些薄膜能够提供电介质、导电材料或阻挡层等功能。

7. 设备和工艺完善(Equipment and Process Optimization)设备和工艺完善的步骤是优化半导体制造工艺的关键。

半导体制造工艺基础

半导体制造工艺基础

半导体制造工艺基础半导体制造工艺是半导体领域中非常重要的一门技术,它涵盖了从单晶硅片的生长到器件加工的全过程。

在半导体制造的过程中,我们需要通过一系列的工艺来将简单的材料转化为高性能和高可靠性的芯片。

首先,在半导体制造的第一步中,我们需要生长单晶硅片。

单晶硅是半导体芯片的基础材料,其具有高度的纯净度和良好的晶体结构。

传统的方法是通过Czochralski方法,在熔融的硅中插入引线,缓慢地旋转晶体生长炉,使熔液中的硅原子以晶体的形式沉积在引线上。

这样便得到了大尺寸、高纯度的单晶硅。

接下来,我们需要将单晶硅片切割成适合制作芯片的大小。

边缘修饰是其中的一个重要步骤,因为芯片的边缘需要保持清晰和平整,以便后续工艺能够进行。

然后,我们需要对单晶硅片进行表面处理。

这主要包括去除表面氧化层和掺杂。

表面氧化层的去除可以通过化学机械抛光(CMP)或酸性清洗来实现。

而掺杂则是为了改变硅片的导电性能,常用的方法是离子注入或扩散。

接着,我们需要在硅片上沉积一层硅氧化物或者多层金属膜作为绝缘层或导线。

沉积的方法有热氧化、化学气相沉积(CVD)和物理气相沉积(PVD)等。

根据不同的用途,还可以进行选择性沉积和局部沉积。

最后,我们需要对硅片进行模式形成和刻蚀,即将芯片上的线路和器件图形化。

这个过程通常使用光刻技术,通过暴光和显影的方法来形成光刻胶图案并传递到硅片上。

然后,通过湿法或干法腐蚀的方法,将不需要的材料去除,得到最终的芯片结构。

当然,这只是半导体制造工艺的基础步骤,实际的制造过程还涉及到很多其他的细节和技术,如清洗、检测和封装等。

而且,随着技术的不断发展和进步,半导体制造工艺也在不断地演化与改善,以满足新一代芯片的需求。

在半导体制造工艺的进一步发展中,有一些关键的技术和工艺流程逐渐成为了行业的标准。

以下是一些主要的工艺步骤和相关技术的介绍:1. 晶片清洗:在制造过程的各个阶段,晶片会与空气和设备表面接触,因此会附着一些杂质和污染物。

电气基础(半导体元器件)3

电气基础(半导体元器件)3
2、电子在基区的扩散和复合过程: 由于基区很薄,其多数载流子空穴浓度 很低,所以从发射极扩散过来的电子只有很 少一部分和基区空穴复合,剩下的绝大部分 都能扩散到集电结边缘。 3、集电区收集从发射区扩散过来的电子过 程: 由于集电结反向偏置,可将从发射区 扩散到基区并到达集电区边缘的电子拉入 集电区,从而形成较大的集电极电流IC。
半导体器件
晶体管的种类很多,按照频率分,有高频管、低频管;按照功 率分,有小、中、大功率管;按用途不同分为放大管和开关管;按 照半导体材料分,有硅管、锗管等等。晶体管的符号如图所示:
硅管热稳定性好,多数为NPN型;锗管受温度 影响大,多数为PNP管。
半导体器件
• 2、三极管的电流放大作 IC 用
PN结的“正偏导通,反偏阻断”称为其单向 导电性质,这正是PN结构成半导体器件的基础。
半导体器件
• 3.2半导体二极管
1. 二极管的结构和类型
一个PN结加上相应的电极引线并用管壳封装起来,就构成了 半导体二极管,简称二极管,接在P型半导体一侧的引出线称为阳 极;接在N型半导体一侧的引出线称为阴极。 半导体二极管按其结构不同可分为点接触型和面接触型两类。 点接触型二极管 PN 结面积很小,因而结电容小,适用于高频 几百兆赫兹下工作,但不能通过很大的电流。主要应用于小电流的 整流和高频时的检波、混频及脉冲数字电路中的开关元件等。 面接触型二极管PN结面积大,因而能通过较大的电流,但其结 电容也小,只适用于较低频率下的整流电路中。
(3)饱和区:发射结正向偏置,集电结正向偏置
iB>0,uBE>0,uCE≤uBE
iC iB
半导体器件
• 4、三极管的主要参数
1、电流放大倍数β :iC= β iB 2、极间反向电流iCBO、iCEO:iCEO=(1+ β )iCBO 3、极限参数 (1)集电极最大允许电流 ICM:下降到额定值的2/3时所允 许的最大集电极电流。 (2)反向击穿电压U(BR)CEO:基极开路时,集电极、发射极间 的最大允许电压:基极开路时、集电极与发射极之间的最大允许 电压。为保证晶体管安全工作,一般应取:

半导体八大工艺顺序

半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序是指半导体器件制造过程中的八个主要工艺步骤。

这些工艺步骤的顺序严格按照一定的流程进行,确保半导体器件的质量和性能。

下面将逐一介绍这八大工艺顺序。

第一步是晶圆清洁工艺。

在半导体器件制造过程中,晶圆是最基本的材料。

晶圆清洁工艺旨在去除晶圆表面的杂质和污染物,确保后续工艺步骤的顺利进行。

第二步是光刻工艺。

光刻工艺是将图形模式转移到晶圆表面的关键步骤。

通过光刻工艺,可以在晶圆表面形成所需的图形结构,为后续工艺步骤提供准确的参考。

第三步是沉积工艺。

沉积工艺是将材料沉积到晶圆表面的过程,包括化学气相沉积、物理气相沉积和溅射等技术。

通过沉积工艺,可以在晶圆表面形成所需的材料结构。

第四步是刻蚀工艺。

刻蚀工艺是将多余的材料从晶圆表面去除的过程,以形成所需的图形结构。

刻蚀工艺通常使用化学刻蚀或物理刻蚀的方式进行。

第五步是离子注入工艺。

离子注入工艺是向晶圆表面注入掺杂物质的过程,以改变晶体的电学性质。

通过离子注入工艺,可以实现半导体器件的掺杂和调控。

第六步是热处理工艺。

热处理工艺是将晶圆置于高温环境中进行退火、烘烤或氧化等处理的过程。

通过热处理工艺,可以改善晶体的结晶质量和电学性能。

第七步是清洗工艺。

清洗工艺是在制造过程中对晶圆进行清洗和去除残留污染物的过程,以确保半导体器件的质量和可靠性。

第八步是封装测试工艺。

封装测试工艺是将完成的半导体器件封装成最终产品,并进行性能测试和质量检验的过程。

通过封装测试工艺,可以确保半导体器件符合规格要求,并具有稳定可靠的性能。

总的来说,半导体八大工艺顺序是半导体器件制造过程中的关键步骤,每个工艺步骤都至关重要,任何一环节的不慎都可能影响整个制造过程的质量和性能。

通过严格按照八大工艺顺序进行制造,可以确保半导体器件具有优良的性能和可靠性,从而满足现代电子产品对半导体器件的高要求。

半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺第一章半導體基礎知識通常物質根據其導電性能不同可分成三類。

第一類爲導體,它可以很好的傳導電流,如:金屬類,銅、銀、鋁、金等;電解液類:NaCl水溶液,血液,普通水等以及其他一些物體。

第二類爲絕緣體,電流不能通過,如橡膠、玻璃、陶瓷、木板等。

第三類爲半導體,其導電能力介於導體和絕緣體之間,如四族元素Ge鍺、Si矽等,三、五族元素的化合物GaAs砷化鎵等,二、六族元素的化合物氧化物、硫化物等。

物體的導電能力可以用電阻率來表示。

電阻率定義爲長1釐米、截面積爲1平方釐米的物質的電阻值,單位爲歐姆*釐米。

電阻率越小說明該物質的導電性能越好。

通常導體的電阻率在10-4歐姆*釐米以下,絕緣體的電阻率在109歐姆*釐米以上。

半導體的性質既不象一般的導體,也不同于普通的絕緣體,同時也不僅僅由於它的導電能力介於導體和絕緣體之間,而是由於半導體具有以下的特殊性質:(1) 溫度的變化能顯著的改變半導體的導電能力。

當溫度升高時,電阻率會降低。

比如Si在200℃時電阻率比室溫時的電阻率低幾千倍。

可以利用半導體的這個特性製成自動控制用的熱敏元件(如熱敏電阻等),但是由於半導體的這一特性,容易引起熱不穩定性,在製作半導體器件時需要考慮器件自身産生的熱量,需要考慮器件使用環境的溫度等,考慮如何散熱,否則將導致器件失效、報廢。

(2) 半導體在受到外界光照的作用是導電能力大大提高。

如硫化鎘受到光照後導電能力可提高幾十到幾百倍,利用這一特點,可製成光敏三極管、光敏電阻等。

(3) 在純淨的半導體中加入微量(千萬分之一)的其他元素(這個過程我們稱爲摻雜),可使他的導電能力提高百萬倍。

這是半導體的最初的特徵。

例如在原子密度爲5*1022/cm3的矽中摻進大約5X1015/cm3磷原子,比例爲10-7(即千萬分之一),矽的導電能力提高了幾十萬倍。

物質是由原子構成的,而原子是由原子核和圍繞它運動的電子組成的。

電子很輕、很小,帶負電,在一定的軌道上運轉;原子核帶正電,電荷量與電子的總電荷量相同,兩者相互吸引。

半导体制造工艺基础精讲 书

半导体制造工艺基础精讲 书

半导体制造工艺基础精讲书一、引言半导体制造工艺是指将半导体材料加工成电子器件的过程。

半导体器件广泛应用于电子产品中,如计算机、手机、电视等,并且在科技发展中起着重要的作用。

本文将对半导体制造工艺的基础知识进行精讲,帮助读者了解该领域的基础概念和流程。

二、半导体材料半导体材料是指在温度较高时具有较好导电性,而在较低温度下具有较好绝缘性的材料。

常见的半导体材料有硅(Si)和砷化镓(GaAs)等。

硅是最常用的半导体材料,因其丰富的资源和成熟的制造工艺,被广泛应用于各种半导体器件中。

三、半导体工艺流程半导体制造工艺包括多个步骤,以下为典型的半导体工艺流程:1. 晶圆制备:晶圆是指平整且纯净的半导体片,常用硅晶圆。

制备晶圆的过程包括多个步骤,如去除杂质、生长单晶、切割晶圆等。

2. 清洗和清理:将晶圆进行清洗和清理,以去除表面的污染物和氧化层。

3. 沉积:通过物理或化学方法,在晶圆表面沉积一层薄膜,用于制造电子器件的结构或保护层。

常见的沉积方法有化学气相沉积(CVD)和物理气相沉积(PVD)等。

4. 光刻:利用光刻胶和光刻机,将图形投影到晶圆上,形成所需的器件结构。

光刻是制造工艺中非常重要的一步,决定了器件的尺寸和形状。

5. 蚀刻:使用化学物质将晶圆上未被光刻胶保护的部分溶解掉,形成所需的器件结构。

6. 掺杂:通过掺入其他物质改变材料的导电性能。

常见的掺杂方法有离子注入和扩散等。

7. 导电层制备:制备导电层,如金属线或导电膜,用于连接器件的不同部分。

8. 封装测试:将芯片封装成最终的半导体器件,并进行测试和质量检验。

四、半导体制造工艺控制半导体制造工艺的控制对于保证器件性能和质量至关重要。

以下是一些常见的工艺控制方法:1. 温度控制:在制造过程中,需要严格控制温度,以确保材料的稳定性和一致性。

2. 气氛控制:在某些工艺步骤中,需要控制反应环境中的气氛成分和浓度,以保证反应的准确性和稳定性。

3. 时间控制:不同的工艺步骤需要控制不同的时间参数,以确保工艺的完成度和一致性。

八个基本半导体工艺

八个基本半导体工艺

八个基本半导体工艺随着科技的不断进步,半导体技术在各个领域得到了广泛的应用。

半导体工艺是半导体器件制造过程中的关键环节,也是半导体产业发展的基础。

本文将介绍八个基本的半导体工艺,分别是氧化、扩散、沉积、光刻、蚀刻、离子注入、热处理和封装。

一、氧化工艺氧化工艺是指在半导体晶片表面形成氧化层的过程。

氧化层可以增强晶片的绝缘性能,并且可以作为蚀刻掩膜、电介质、层间绝缘等多种用途。

常见的氧化工艺有湿法氧化和干法氧化两种。

湿法氧化是在高温高湿的环境中,通过将晶片浸泡在氧化液中使其表面氧化。

干法氧化则是利用高温下的氧化气体与晶片表面反应来形成氧化层。

二、扩散工艺扩散工艺是指将掺杂物质(如硼、磷等)通过高温处理,使其在晶片中扩散,从而改变晶片的导电性能。

扩散工艺可以用于形成PN结、调整电阻、形成源、漏极等。

扩散工艺的关键是控制扩散温度、时间和掺杂浓度,以确保所需的电性能。

三、沉积工艺沉积工艺是将材料沉积在半导体晶片表面的过程。

常见的沉积工艺有化学气相沉积(CVD)和物理气相沉积(PVD)两种。

CVD是利用化学反应在晶片表面沉积薄膜,可以实现高纯度、均匀性好的沉积。

而PVD则是通过蒸发、溅射等物理过程,在晶片表面形成薄膜。

四、光刻工艺光刻工艺是将光敏胶涂覆在晶片表面,然后通过光刻曝光、显影等步骤,将光敏胶图案转移到晶片上的过程。

光刻工艺是制造半导体器件的核心工艺之一,可以实现微米级甚至纳米级的图案制作。

五、蚀刻工艺蚀刻工艺是通过化学反应或物理过程将晶片表面的材料去除的过程。

蚀刻工艺可以用于制作电路的开关、互连线等。

常见的蚀刻方法有湿法蚀刻和干法蚀刻两种。

湿法蚀刻是利用化学溶液对晶片表面进行腐蚀,而干法蚀刻则是通过等离子体或离子束对晶片表面进行刻蚀。

六、离子注入工艺离子注入工艺是将掺杂离子注入晶片中的过程。

离子注入可以改变晶片的导电性能和材料特性,常用于形成源漏极、调整电阻等。

离子注入工艺需要控制注入能量、剂量和深度,以确保所需的掺杂效果。

半导体行业必备知识

半导体行业必备知识

半导体行业必备知识标题: 半导体行业必备知识:从基础概念到未来发展引言:半导体行业是现代科技和电子行业的核心,对我们的生活产生了深远的影响。

为了更好地理解和掌握半导体行业,本文将从基础概念开始,逐步深入探讨相关主题。

我们将介绍半导体的定义、材料和工艺,以及半导体芯片的制造和应用。

此外,我们还将讨论半导体行业的未来发展趋势和挑战,以及对环境和社会的影响。

第一部分:半导体基础知识1. 半导体的定义和特性- 解释什么是半导体,以及半导体材料的特性。

- 讨论半导体材料的能带结构和导电性质。

2. 半导体材料- 介绍常见的半导体材料,如硅(Si)和砷化镓(GaAs)。

- 分析不同材料的特点、优缺点和在半导体行业中的应用。

3. 半导体器件和工艺- 介绍半导体器件的基础结构,如二极管和晶体管。

- 解释常用的半导体工艺,如光刻和离子注入,以及它们对半导体器件性能的影响。

第二部分:半导体芯片制造和应用1. 半导体芯片制造工艺- 详细描述半导体芯片的制造过程,包括晶圆加工、沉积、刻蚀和清洗等步骤。

- 分析不同制造工艺对芯片性能和产量的影响。

2. 半导体芯片应用领域- 探讨半导体芯片在各个领域的应用,如通信、计算机、医疗和能源。

- 强调半导体芯片在现代科技和电子领域的关键作用。

第三部分:半导体行业的未来发展1. 新兴半导体技术- 介绍新兴的半导体技术,如碳纳米管和量子点。

- 分析这些技术在提高芯片性能和创新应用方面的潜力。

2. 挑战和趋势- 讨论半导体行业面临的挑战,如技术复杂性和成本压力。

- 分析行业的发展趋势,如人工智能和物联网对半导体需求的增长。

第四部分:半导体行业的环境和社会影响1. 可持续发展- 探讨半导体行业在可持续发展方面的挑战和努力。

- 分析行业在能耗、废弃物管理和碳减排方面的可持续性措施。

2. 社会责任- 强调半导体行业在社会责任方面的作用,如创造就业机会和支持教育项目。

- 讨论行业在社会和经济发展中的贡献和责任。

半导体的工艺流程

半导体的工艺流程

半导体的工艺流程半导体制造工艺流程是将半导体材料转化为具有特定电子性质和功能的器件的过程。

下面简要介绍了一般的半导体工艺流程。

1. 半导体材料准备:半导体晶圆是制造半导体器件的基础。

晶圆材料通常是硅,通过特定的方式提纯和加工,使其达到制造要求。

准备完整的晶圆对后续工艺的质量控制至关重要。

2. 清洗与清理:在进行任何工艺步骤之前,晶圆需要进行清洁和清理。

这通常包括去除表面杂质和氧化物,以确保后续工艺步骤的准确性和可靠性。

3. 脱氧和去除表面杂质:通过在高温下暴露晶圆于氢气或其他还原性气体中,去除表面氧化物和其他杂质。

这可以恢复表面的平整度和纯净度。

4. 氧化和沉积:通过将晶圆置于一定气氛中,使其表面生成一层氧化物或沉积层。

这可以改变晶圆的电性质、结构和表面特性。

5. 光刻:在晶圆表面涂布光刻胶,并使用掩膜进行照射,然后用化学溶液洗去未暴露在光下的光刻胶。

这样可以在晶圆表面形成特定的图案。

6. 电离注入:通过对晶圆表面进行高能离子注入,改变材料的电子结构和导电性。

这在芯片制造中常用于形成pn结构、掺杂等。

7. 高温热处理:在特定温度下,对晶圆进行高温烘烤或退火。

这可以帮助晶圆恢复或调整其电、热和结构性质,并改善半导体器件的性能。

8. 金属沉积与蚀刻:通过将金属层或合金层沉积在晶圆表面,并使用化学或物理方法将多余的金属蚀去,形成电极或线路。

9. 栅极和阳极处理:在半导体器件中,栅极和阳极起着重要作用。

通常需要对其进行沉积、清洗和蚀刻处理,以确保制造出的设备具有良好的电功能和导电特性。

10. 超精细加工和测量:在最后一步中,对晶圆进行超精细加工和测量。

这包括微细加工、测量电性能和器件参数的各种技术。

以上是一般半导体制造的主要工艺流程,其中每个步骤都有多个变种和具体的操作细节,以满足不同器件和应用的需求。

这些工艺步骤的严格控制和精确执行对于确保半导体器件的性能和可靠性至关重要。

半导体的制备工艺

半导体的制备工艺

半导体的制备工艺半导体是一种材料,具有介于导体和绝缘体之间的电导特性。

制备半导体材料是制造集成电路和其他电子器件的基础。

本文将介绍半导体的制备工艺,包括晶体生长、晶圆制备、掺杂和薄膜沉积等过程。

1. 晶体生长半导体晶体的生长是制备半导体材料的首要步骤。

通常采用的方法有固相生长、液相生长和气相生长。

固相生长是将纯净的半导体材料与掺杂剂共同加热,使其在晶体中沉积。

液相生长则是在熔融的溶液中使晶体生长。

而气相生长则是通过气相反应使晶体在基底上生长。

这些方法可以根据不同的材料和要求选择合适的工艺。

2. 晶圆制备晶圆是半导体制备的基础材料,通常使用硅(Si)作为晶圆材料。

晶圆制备的过程包括切割、抛光和清洗等步骤。

首先,将生长好的晶体进行切割,得到薄片状的晶圆。

然后,通过机械和化学方法对晶圆进行抛光,以获得平整的表面。

最后,对晶圆进行清洗,去除表面的杂质和污染物。

3. 掺杂掺杂是为了改变半导体材料的导电性能,通常将杂质原子引入晶体中。

掺杂分为两种类型:n型和p型。

n型半导体是通过掺入少量的五价元素(如磷)来增加自由电子的浓度。

而p型半导体是通过掺入少量的三价元素(如硼)来增加空穴的浓度。

掺杂可以通过不同的方法实现,如扩散、离子注入和分子束外延等。

4. 薄膜沉积薄膜沉积是制备半导体器件的关键步骤之一。

薄膜可以用于制备晶体管、电容器、电阻器等。

常见的薄膜沉积方法有物理气相沉积(PVD)和化学气相沉积(CVD)。

PVD是通过蒸发或溅射的方式将材料沉积到晶圆上。

而CVD则是通过化学反应将气体中的材料沉积到晶圆上。

这些方法可以根据材料和要求选择合适的工艺。

总结起来,半导体的制备工艺涉及晶体生长、晶圆制备、掺杂和薄膜沉积等步骤。

这些步骤都需要严格控制各个参数,以确保半导体材料的质量和性能。

通过不断的研究和发展,半导体工艺的精确性和效率不断提高,为电子器件的制造提供了可靠的基础。

半导体器件重要知识点总结

半导体器件重要知识点总结

半导体器件重要知识点总结一、半导体基础知识1. 半导体的概念及特性:半导体是指导电性介于导体和绝缘体之间的一类材料。

由于半导体材料的导电性能受温度、光照等外部条件的影响比较大,它可以在不同的条件下表现出不同的导电特性。

半导体材料常见的有硅、锗等。

2. P型半导体和N型半导体:P型半导体是指在半导体材料中掺入了3价元素,如硼、铝等,使其成为带正电荷的空穴主导的半导体材料。

N型半导体是指在半导体材料中掺入了5价元素,如磷、砷等,使其成为自由电子主导的半导体材料。

3. 掺杂:半导体器件在制造过程中一般都要进行掺杂,以改变其导电性能。

掺杂分为N型掺杂和P型掺杂,通过掺杂可以使半导体材料的导电性能得到调控,从而获得所需要的电子特性。

4. pn结:pn结是指将P型半导体和N型半导体直接连接而成的结构,它是构成各类半导体器件的基础之一。

pn结具有整流、发光、光电转换等特性,在各类器件中得到了广泛的应用。

二、半导体器件的基本知识1. 二极管(Diode):二极管是一种基本的半导体器件,它采用pn结的结构,在正向偏置时可以导通,而在反向偏置时则将电流阻断。

二极管在各类电子电路中具有整流、电压稳定、信号检测等重要作用。

2. 晶体管(Transistor):晶体管是一种由半导体材料制成的三电极器件,它采用多个pn结的结构,其主要功能是放大信号、开关电路和稳定电路等。

晶体管在各类电子器件中扮演着至关重要的作用,是现代电子技术的重要组成部分。

3. 集成电路(IC):集成电路是将大量的半导体器件集成在一块半导体芯片上的器件,它可以实现各种功能,如存储、计算、通信等。

集成电路在现代电子技术中已成为了各类电子产品不可或缺的一部分,是现代电子产品的核心之一。

4. MOS场效应管(MOSFET):MOSFET是一种基于金属-氧化物-半导体的结构的场效应晶体管,它在功率控制、开关电路、放大器等方面有着重要的应用。

MOSFET在各类电源、电动机控制等领域得到了广泛的应用。

半导体基本工艺流程

半导体基本工艺流程

半导体基本工艺流程1.半导体晶圆制备:首先选择晶圆材料,通常是单晶硅。

然后进行切割、研磨和抛光等工艺步骤,将晶圆制备成特定尺寸和平整度的薄片。

2.清洗:晶圆表面存在杂质和有机物等污染物,需要进行严格的清洗。

使用化学溶液和超纯水等进行湿法清洗,去除晶圆表面的污染物。

3.氧化:在清洗之后,需要在晶圆表面形成一层氧化层,常用的方法是在高温下利用湿氧或者氧化氮等氧化剂进行氧化。

氧化层的厚度和类型决定了晶体管的电性能。

4. 光刻:光刻是一种利用光敏感的照片resist来形成图案的技术。

首先,在氧化层上涂覆一层光刻胶,然后通过光学投影将图案映射到光刻胶上。

接下来,将光刻胶进行曝光和显影,使其形成所需的图案。

5.腐蚀:使用特定的腐蚀气体或液体,根据光刻胶所保护的区域选择性地去除晶圆表面的材料。

这种腐蚀过程被称为湿法腐蚀,可以用于形成晶体管的源和漏极等结构。

6.沉积:沉积是在晶圆表面沉积一层材料。

常用的方法包括化学气相沉积(CVD)和物理气相沉积(PVD)。

通过这个步骤,可以在需要的位置形成晶体管栅极和互连线等结构。

7.清洗和清除光刻胶:在完成沉积之后,需要对晶圆进行二次清洗,去除残留的污染物和光刻胶。

可以使用湿法清洗和气体化学清洗等方法。

8.热处理:晶圆中的沉积层需要通过高温热处理来改变其物理和化学性质。

在这个步骤中,晶圆通常处于特定的温度和气氛条件下。

9.陶瓷插片和封装:在基础晶圆上完成电子器件制造后,需要对其进行包装和封装,以便在使用中保护器件并提供电气连接。

这个步骤通常包括剪切、陶瓷插片、焊接和封装等工艺。

综上所述,半导体基本工艺流程包括晶圆制备、清洗、氧化、光刻、腐蚀、沉积、清洗和清除光刻胶、热处理以及陶瓷插片和封装等多个步骤。

每个步骤都需要高度精密和可重复的操作,以确保最终的器件质量和性能。

半导体制造工艺基础(3篇)

半导体制造工艺基础(3篇)

第1篇一、引言半导体制造工艺是半导体产业的核心技术,它是将半导体材料制备成各种电子器件的过程。

随着科技的飞速发展,半导体产业在电子信息、通信、计算机、国防等领域发挥着越来越重要的作用。

本文将从半导体制造工艺的基本概念、主要工艺步骤、常用设备等方面进行阐述。

二、半导体制造工艺的基本概念1. 半导体材料半导体材料是指导电性能介于导体和绝缘体之间的材料。

常用的半导体材料有硅、锗、砷化镓等。

其中,硅是半导体产业中最常用的材料。

2. 半导体器件半导体器件是指利用半导体材料的电学特性制成的各种电子元件,如二极管、晶体管、集成电路等。

3. 半导体制造工艺半导体制造工艺是指将半导体材料制备成各种电子器件的过程,包括材料制备、器件结构设计、器件制造、封装测试等环节。

三、半导体制造工艺的主要步骤1. 原料制备原料制备是半导体制造工艺的第一步,主要包括单晶生长、外延生长等。

(1)单晶生长:通过化学气相沉积(CVD)、物理气相沉积(PVD)等方法,将半导体材料制备成单晶硅。

(2)外延生长:在外延衬底上生长一层或多层半导体材料,形成具有特定结构和性能的薄膜。

2. 器件结构设计器件结构设计是根据器件的功能需求,确定器件的结构和参数。

主要包括器件类型、结构尺寸、掺杂浓度等。

3. 器件制造器件制造是半导体制造工艺的核心环节,主要包括光刻、蚀刻、离子注入、化学气相沉积、物理气相沉积等。

(1)光刻:利用光刻机将器件图案转移到半导体材料上。

(2)蚀刻:利用蚀刻液或等离子体将半导体材料上不需要的部分去除。

(3)离子注入:将掺杂剂以高能离子形式注入半导体材料中,改变其电学特性。

(4)化学气相沉积:利用化学反应在半导体材料表面沉积一层薄膜。

(5)物理气相沉积:利用物理过程在半导体材料表面沉积一层薄膜。

4. 封装测试封装测试是将制造好的半导体器件进行封装,并进行性能测试的过程。

(1)封装:将半导体器件封装在保护壳中,以防止外界环境对器件的影响。

半导体基础知识PPT

半导体基础知识PPT

03
半导体器件
二极管
工作原理
二极管是由一个PN结组成的电子器件, 具有单向导电性。在正向偏置时,电流可 以流通;而在反向偏置时,电流被阻止。
应用
类型
常见的二极管类型有硅二极管和锗二 极管,它们在电气性能上略有差异。
二极管在电子线路中广泛应用,如整 流、检波、开关等。
三极管
1 2
工作原理
三极管是由两个PN结组成的电子器件,具有电 流放大作用。通过调整基极电流,可以控制集电 极和发射极之间的电流。
感谢观看
半导体的导电机制主要是由其 内部的电子和空穴的运动决定 的。
半导体的特性
半导体材料的导电能力受温度、光照、电场等因素影响,具有热敏、光敏、掺杂等 特点。
半导体的电阻率可在很大范围内变化,通过改变温度、光照、电场等条件,可以控 制其电阻率的变化。
半导体的载流子类型和浓度决定了其导电性能,可以通过掺杂等方式改变载流子类 型和浓度。
物理沉积
通过物理过程如真空蒸发、溅 射等,将所需材料沉积在晶圆
表面形成薄膜。
化学气相沉积
利用化学反应在晶圆表面生成 所需材料的薄膜。
外延生长
在单晶基底上通过控制温度、 气体流量等参数,使薄膜按照 单晶的晶体结构生长。
离子注入
将离子化的材料注入到晶圆内 部的特定区域,形成具有一定
特性的薄膜。
掺杂与刻蚀
功耗具有重要意义。
集成电路设计
01
02
03
人工智能辅助设计
利用人工智能技术进行集 成电路自动化设计,提高 设计效率和准确性。
异构集成技术
将不同工艺类型的芯片集 成在一个封装内,实现高 性能、低功耗的系统级芯 片。
定制化设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京大学
电子科学与工程学院
南京大学
电子科学与工程学院
8
扩散方程与扩散系数:
∂C ∂t
=
D
∂2C ∂2t
;D
=
D0 exp[−
Ea kT
]
半导体器件基础
3/6/14
半导体器件基础
扩散分布:固定表面浓度
C( x, t) = Cserfc[ 2
x] Dt
Q(t) =
2 π Cs
Dt
固定掺杂剂总量
C( x, t) =
4
氧化机理:
半导体器件基础
x = D [ 1 + 2C0k 2 (t + τ ) − 1]
k
DC1
较小时间: x

C0k C1
(t
+
τ)
较大时间:x ≅ 2DC0 (t + τ ) C1
南京大学
电子科学与工程学院
半导体器件基础
抛物线速率常数与氧化气氛的关系,与晶向无关
3/6/14
半导体器件基础
线性速率常数与晶向,氧化气氛的关系:
南京大学
电子科学与工程学院
南京大学
电子科学与工程学院
2
半导体器件基础
浮动区技术
一小的向上缓慢运动的高温区使相应部分晶体熔化。其中逐 渐冷却的部分生长在籽晶上。 可获得较Czochralski更纯的晶体,并无来自于甘锅的沾污。 应用于大功率,高压器件中(高阻材料)。
3/6/14
半导体器件基础
园片加工与材料表征
1924年出生于瑞士,分别在剑桥大学和日内瓦大学取得博士学
位。1959年,Jean Hoerni发明了平面工艺使用一种叫做光学蚀刻的处 理方法,这种方法有些类似于利用底片冲洗照片的过程。开始,他用的 是一片锗或硅。然后他在上面喷洒上一层叫做光阻剂的物质。如果你把 光照在上面,光阻剂就会变得坚硬,然后你就可以用一种特殊的化学药 品清除掉没有被光照射到的光阻剂。所以,霍尔尼就创造了一个光罩, 它就像一张底片,上面有一簇小孔,用来过滤掉不清洁的东西,然后让 它在光线中翻动。在化学洗涤之后,金属板上只要是留下光阻剂的地方, 杂质就不会散落到下面。来解决平面晶体管的可靠性问题,因而使半导 体生产发生了革命性的变化。堪称为“20世纪意义最重大的成就之一”, 并称其奠定了硅作为电子产业中关键材料的地位。
细微的尘埃、杂散电荷、微量气体的侵入都会妨碍晶体管正常工 作,成为晶体管制造中的大敌。正是霍尔尼找出了解决办法:在N—P—N 芯片上敷置氧化硅,形成极薄的保护膜,从而解决了这个难题。
南京大学
电子科学与工程学院
工艺流程(2)
1
工艺流程(3)
1。单晶生长
3/6/14
半导体器件基础
Czochralski 直拉法
S πDt
exp[− x 2 ] 4 Dt
Cs (t) =
S Dt
半导体器件基础
南京大学
电子科学与工程学院
半导体器件基础
二氧化硅及氮化硅:
LTCVD:硅烷,氧气及掺杂 (AP和LP,500C以下) ITCVD:TEOS (Si(OC2H5)4的分解(700C)及掺杂 HTCVD:SiCl2H2 及N2O
南京大学
电子科学与工程学院
南京大学
电子科学与工程学院
6
多晶硅:硅烷的分解。
圆片加工: (1)去除两端;(2)磨出主平区及辅平区; (3)加工成园片;(4)磨平;(5)抛光 参数:晶向;厚度;厚度的变化;弯曲度
南京大学
电子科学与工程学院
半导体器件基础
晶体表征:
缺陷:(1)点缺陷;(2)线缺陷;(3)面缺陷;(4)体缺陷
南京大学
电子科学与工程学院
半导体器件基础
材料性质:
C会有助于缺馅的产生,不利于材料。O会改变材料的电 阻率,但处于间隙态的氧有助于增加Si的强度
南京大学
电子科学与工程学院
南京大学
电子科学与工程学院
3
半导体器件基础
2。氧化与薄膜沉积
热氧化层(栅氧化及场绝缘),介质层(导电层之间的绝 缘,扩散及离子注入的图形保护,钝化层),多晶硅(M OS栅)及金属薄膜(欧姆接触,低阻互连)
热氧化
3/6/14
半导体器件基础
南京大学
电子科学与工程学院
生长机理:
铝合金化
3/6/14
电迁移:电流作用下金属的转移。
MTF
~
1 J2
exp[ Ea ] kT
硅合金化:较低的电阻率和较高的耐温。
半导体器件基础
南京大学
电子科学与工程学院
3. 扩散与离子注入
半导体器件基础
南京大学
电子科学与工程学院
半导体器件基础
(1)扩散机理
硅:惰性气氛,P-type,B;N-type,P和As;共溶度: 5!1020。 砷化镓:As气氛中,P-type,Zn,N-type,S和Se。
半导体器件基础
3/6/14
半导体器件基础
薄层多晶硅的方块电阻与粒子注入的关系:
南京大学
电子科学与工程学院
金属化:物理气相沉积(蒸发)
半导体器件基础
南京大学
溅射:离子的加速与轰击
电子科学与工程学院 半导体器件基础
南京大学
电子科学与工程学院
南京大学
电子科学与工程学院
7
半导体器件基础
化学气相沉积:钨,钼,钛等,易大批量及台阶覆盖。
南京大学
电子科学与工程学院
干氧氧化厚度与氧化时间的关系:
半导体器件基础
南京大学
电子科学与工程学院
南京大学
电子科学与工程学院
5
半导体器件基础
杂质浓度对氧化过程的影响(低温下):
3/6/14
(2)介质膜的沉积
APCVD,LPCVD及PCVD
半导体器件基础
南京大学
电子科学与工程学院
能量增强CVD(较低温沉积):
半导体器件基础
(1)电炉(石英甘锅,石墨支托及旋转系统);(2) 晶体拉伸系统(籽晶支托及旋转系统);(3)环境气氛 的控制。
南京大学
电子科学与工程学院
半导体器件基础
Bridgman技术
双温区电炉:一端:As,温度610C;另一端GaAs,温度1240C。 电炉向右的缓慢运动,温度逐渐降低使晶体沿固液面生长。
半导体器件基础
Si(solid ) + O2(gas) → SiO2(solid ) Si(solid ) + 2H2O(gas) → SiO2(solid ) + 2H2(gas)
南京大学
电子科学与工程学院
半导体器件基础
二氧化硅的基本结构:晶体结构与非晶结构
南京大学
电子科学与工程学院
南京大学
电子科学与工程学院
南京大学
3. 半导体器件工艺
半导体器件基础
1。单晶生长 2。氧化与薄膜淀积 3。扩散与离子注入 4。光刻与腐蚀 5。集成器件(自学)
电子科学与工程学院
工艺流程(1)
3/6/14
器件工艺
半导体器件基础
琼·霍尔尼(Jean Hoerni, September 26, 1924- January 12, 1997)。
相关文档
最新文档