七年级-冬季数学基础知识竞赛试卷

合集下载

2013年上学期七年级数学竞赛试题及答案

2013年上学期七年级数学竞赛试题及答案

大江口中学2013年上学期七年级数学基础知识竞赛试题(时量:120分钟 满分:120分)命题:李庆华一、精心选一选,旗开得胜 (共10个小题,每小题3分, 共30分)1、分解因式(x-1)2-2(x-1)+1的结果是( )A .(x-1)(x-2)B .x 2C .(x+1)2D .(x-2)2 2、已知⎩⎨⎧==21y x 是方程2mx-y=10的解,则m 的值为( )A.2 B.4 C.6 D.10 3、如果线段AB=5cm ,BC= 3cm ,那么A 、C 两点间的距离是( ) A .8 cm B 、2㎝ C .4 cm D .不能确定 4、如果一个角是64°,那么( )A .它的余角是36°B .它的补角是36°C .它的余角是116°D .它的补角是116° 5、如图1所示的图案中,不能由基本图形通过平移方法得到的图案是( )图1A B C D6、计算20092-2008×2010+(-1)2009的结果是( )A.0B.1C.-1D.37、将多项式42+x 加上一个整式,使它成为完全平方式,不能满足上述条件的整式是( ) A .4x B .-4x C .4 D .-4 8、下列说法中错误的是( )A .教室里的黑板是轴对称图形B .扑克牌中的梅花图案是轴对称图形C .五星红旗的五角星图案不是轴对称图形D .英文字母印刷体大写“W”是轴对称图形 9、等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为( ) A .40°,40° B .80°,20°C .50°,50°D .50°,50°或80°,20°10、某种商品共10件,第一天以50元/件卖出3件,第二天以45元/件卖出2件,第三天以 40元/件卖出5件,则这种商品的平均售价为每件( ) A .42 B .44 C .45 D .46二、耐心填一填,一锤定音 (每小题4分, 满分32分)11、一张试卷25道题,若做对一题得4分,做错一题倒扣1分,小红做完所有题后得70分。

初一数学奥数竞赛题

初一数学奥数竞赛题

初一数学奥数竞赛题近年来,数学奥数竞赛在中小学生中越来越受欢迎。

这些竞赛要求学生具备扎实的数学基础知识和灵活的解题能力,提高他们的逻辑思维和问题解决能力。

今天,我们来看几个适合初一学生的数学奥数竞赛题。

题目1:小美在她家门口卖冰淇淋,一支冰淇淋卖5元,两支冰淇淋卖9元。

小美今天一共卖出了30支冰淇淋,她一共赚了多少钱?解析:我们可以设冰淇淋的单价为x元,因为一支冰淇淋卖5元,所以我们可以得到一个方程:5 = x。

两支冰淇淋卖9元,所以我们可以得到另一个方程:9 = 2x。

解这个方程组,我们可以得到x = 4.5。

小美一共卖出30支冰淇淋,所以她赚的总钱数为30 * 4.5 = 135元。

题目2:小明的爸爸今年40岁,小明今年12岁。

假设小明的爸爸每年的年龄都是相同的增长,他几年后的年龄和小明的年龄之和是100岁。

请问那时小明的年龄是多少岁?解析:设小明的爸爸从现在开始每年的年龄增长为x岁。

那么,小明几年后的年龄就是12 + x岁,小明的爸爸几年后的年龄就是40 + x岁。

根据题意,小明几年后的年龄和小明的爸爸几年后的年龄之和是100岁,所以我们可以得到一个方程:(12 + x)+(40 + x)= 100。

解这个方程,我们可以得到x = 18。

所以,几年后小明的年龄就是12 + 18 = 30岁。

题目3:一个长方形花坛周长是20米,其中一条边的长度是4米。

我们要在长方形花坛的周围建一道宽度相等的砖墙,这道砖墙的长度是花坛周长的一半。

问这道砖墙的长度是多少米?解析:设砖墙的宽度为x米,花坛的长度为L米,宽度为W米。

花坛周长是20米,所以我们可以得到一个方程:2L + 2W = 20。

其中一条边的长度是4米,所以我们可以得到另一个方程:2L + W = 4。

将两个方程联立,我们可以解得L = 4,W = 6。

砖墙的长度是花坛周长的一半,所以砖墙的长度是20 / 2 = 10米。

通过解这些数学奥数竞赛题,可以让初一学生锻炼他们的数学思维和解题能力。

七年级上数学基础知识百题竞赛

七年级上数学基础知识百题竞赛

七年级上数学基础知识百题竞赛1、中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36千米属于 ( ) A.计数 B.测量 C.标号 D.排序2、下面表示数轴的图中,画得正确的是 ( )A B C D 3、45表示 ( )A. 4个5相乘B. 5个4相乘C. 5与4的积D. 5个4相加的和4、下列各数中,准确数是 ( )A.珠穆朗玛峰高出海面8848.13米B.小明的体重是56千克C.1999年12月30日澳门回归祖国D.我国科盲达5亿之多5、与数轴上的点一一对应的是 ( )A.有理数B.无理数C.实数D.整数6、下列式子中符合代数式书写规范的是 ( ) A.32318b a B.xy - C.5xy D.3+x 千米 7、下列各代数式不是整式的是 ( ) A.ab B.332y y x -+ C.3x - D.a 3 8、 下列方程中,解是x =2的方程是 ( ) A. 10151=x B.3x+2=4 C. -0.2x =-0.4 D. 2x -2=3x 9、 收集数据的方法是 ( )A 、查资料 B. 做实验 C. 做调查 D. 以上三者都是10 、下列说法中,正确的有 ( )(1)过两点有且只有一条直线 (2)连结两点的线段叫做两点的距离(3)两点之间,线段最短 (4)AB =BC ,则点B 是线段AC 的中点 (5) 射线比直线短A .1个 B.2个 C.3个 D.4个11、下列各直线的表示法中,正确的是( )A .直线ab B.直线Ab C .直线A D.直线AB12、一个角的补角为158°,那么这个角的余角是 ( )A. 22°B. 68°C. 52°D. 112°13、如右图绕直线旋转一周形成一个几何体,与它相似的物体是 ( )A.课桌B.灯泡C.篮球D.水桶14、下列说法中①-a 一定是负数;②|-a|一定是正数;③相反数等于它本身的数是0;④绝对值等于它本身的数是0和1 。

七年级数学基础知识竞赛试卷(模拟)201304

七年级数学基础知识竞赛试卷(模拟)201304

七年级数学基础知识竞赛试卷时间:2008.12 制卷人:孙见礼一.选择题(5’×12=60’)1.如果a,b均为有理数,且b<0,则a,a-b,a+b的大小关系是()A.a<a+b<a-b B.a<a-b<a+b C.a+b<a<a-b D.a-b<a<a+b2.a、b为两个有理数,若a+b<0,且ab>0,则有()A.a>0 b>0 B.a<0 b<0C.a,b异号D.a、b异号,且负数的绝对值较大3.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a-b+c-d的值为()A.1 B.3 C.1或3 D.2或-14.如下右图,把一个长方形纸片沿EF折叠后,点D、C分别落在D/、C /的位置,若∠EFB=65°,则∠AE D/等于()(A)50°(B)55°(C)60°(D)65°5.下列四个图中,不是..正方体表面展开图的是()(A)(B)(C)(D)6.下列各数中:①-52与(-5)2;②(-3)3与-33;③-(-0.3)5与0.35;④0100与0200;⑤(-1)3与-(-1)2相等的共有几对?()A.1 B.2 C.4 D.57.观察下列算式:22=1,422=,823=,1624=,3225=,6426=,12827=,25628=……根据上述算式中的规律,你认为21302的末位数字是()(A)2 (B)4 (C)6 (D)88.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人.如果设乙队的人数为x人,则所列的方程为A. 1004=+xx B. 100104=-+xx C.()100104=-+xx D. 1001041=+-xx9.如图,点E是AC的中点,点F是BD的中点,若EF=18,CD=6,则AB的长为 ( )A.24B.12C.30D.4210.如图,直线AB、CD相交于点D,OF⊥AB于点O,OF平分∠AOE,∠1=15°30’,则下列结论中不正确的是A.∠2=45° B.∠1=∠3C.∠AOD与∠1互为补角 D.∠1的余角等于75°30’11、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A.不赚不亏B.赚8元C.亏8元D. 赚8元二.填空题(每空3’共3’×20=60’)1.已知x=2是方程ax-1=x+3的一个解,那么2.如图,OA⊥OB,OC⊥OD,∠AOD=1463.若一个数平方等于它的倒数,那么这个数是。

人教版七年级数学上册竞赛试卷及答案

人教版七年级数学上册竞赛试卷及答案

人教版七年级数学上册竞赛试卷及答案一.选择题(共10小题,共30分)1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( )A .2C ︒-B .2C ︒+ C .3C ︒+D .3C ︒-2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2;B .57.510⨯千米2;C .47510⨯千米2;D .57510⨯千米23.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( ) A .3(2)+- B .3(2)-- C .3(2)⨯- D .(3)(2)-÷-5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 二.填空题(共5小题,15分)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB的中点,则点C 所表示的数是 .12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,要准备 种不同的车票.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 (只写一种)15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -= .三.解答题(共8小题,共75分)16.(8分)先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.学校:______________ 班级:___________ 姓名:_____________ 考场_____________ 学号:___________........................... 装.......................订.........................线......................17.(9分)平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?18.(9分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x+---的值. 19.(9分)先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解:原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+10=-,故原式110=-;请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.20.(9分)已知有理数a 、b 、c 在数轴上的位置,(1)a b + 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.21.(10分)已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --. (1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 22.(10分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆. 23.(11分)如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.参考答案1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( ) A .2C ︒- B .2C ︒+ C .3C ︒+ D .3C ︒-【解答】解:“正”和“负”相对,如果温度上升3C ︒,记作3C ︒+, 温度下降2C ︒记作2C ︒-. 故选:A .2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2B .57.510⨯千米2C .47510⨯千米2D .57510⨯千米2 【解答】解:数据750000用科学记数法可表示57.510⨯, 故选:B .3.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识. 故选:A .4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3(2)+-B .3(2)--C .3(2)⨯-D .(3)(2)-÷- 【解答】解:.3(2)1A +-=,故A 不符合题意; .3(2)325B --=+=,故B 不符合题意; .3(2)6C ⨯-=-,故C 符合题意;D .(3)(2) 1.5-÷-=,故D 不符合题意.综上,只有C 计算结果为负. 故选:C .5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .1 【解答】解:由题意得, |21|3a +=,解得,1a =或2a =-, 故选:A .6.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转【解答】解:将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是,故选:B .7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 【解答】解:单项式12m a b -与212n a b 的和仍是单项式,∴单项式12m a b -与212n a b 是同类项,12m ∴-=,2n =, 3m ∴=,2n =,8m n ∴=.故选:C .8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =【解答】解:A 、2a ab =-,即20a ab +=,即()0a a b +=,当0a b +=时,2a ab =-一定成立,故选项一定能由0a b +=得到;B 、因为a b =-,即a 与b 互为相反数,根据互为相反数的两个数的绝对值相等,得到||||a b =; C 、因为a b =-,即a 与b 互为相反数,则0a =,0b =不一定成立,故不能由0a b +=得到;D 、因为a b =-,即a 与b 互为相反数,则22a b =,一定成立,故能由0a b +=得到. 故只有C 不一定能由0a b +=得到. 故选:C .9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+【解答】解:方程两边同时乘以6得:2(1)63(31)x x x -+=+,故选:B .10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 【解答】解:C 是线段AB 的中点,12AB cm =, 11126()22AC BC AB cm ∴===⨯=, 点D 是线段AC 的三等分点, ①当13AD AC =时,如图,26410()3BD BC CD BC AC cm =+=+=+=; ②当23AD AC =时,如图, 1628()3BD BC CD BC AC cm =+'=+=+=.所以线段BD 的长为10cm 或8cm , 故选:C .二.填空题(共5小题)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB 的中点,则点C 所表示的数是 1- .【解答】解:数轴上A ,B 两点所表示的数分别是4-和2,∴线段AB 的中点所表示的数1(42)12=-+=-. 即点C 所表示的数是1-. 故答案为:1-12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 8 折. 【解答】解:设商店打x 折, 依题意,得:180********%10x⨯-=⨯, 解得:8x =. 故答案为:8.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问要准备 种不同的车票. 【解答】解:(1)如图:根据线段的定义:可知图中共有线段有AC ,AD ,AE ,AF ,AB ,CD 、CE ,CF 、CB 、DE ,DF 、DB 、EF ,EB ,FB 共15条,有15种不同的票价;因车票需要考虑方向性,如,“A C →”与“C A →”票价相同,但车票不同,故需要准备30种车票. 故答案为: 30.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 8(6)[4(2)]24⨯-÷÷-= (只写一种) 【解答】解:8(6)[4(2)]24⨯-÷÷-= 故答案为:8(6)[4(2)]24⨯-÷÷-=.(答案不唯一) 15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -=1394π- .【解答】解:339S =⨯=正方形,290393604ADC S ππ⨯==扇形, 2902360EAF S ππ⨯==扇形,()129139944EAF ADC S S S S S πππ⎛⎫∴-=--=--=- ⎪⎝⎭正方形扇形扇形. 故答案为:1394π-.三.解答题(共8小题)16.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =. 【解答】解:原式2233626x xy y x y =---+23x xy =-,把1x =-,2y =代入223(1)3(1)27x xy -=--⨯-⨯=.17.平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?【解答】解:如答图所示,连接AC ,BD ,它们的交点是H ,点H 就是修建水池的位置,这一点到A ,B ,C ,D 四点的距离之和最小.18.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x +---的值.【解答】解:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2, 0a b ∴+=,1cd =,2x =±,当2x =时,111(1)32(01)31227222a b cd x +---=⨯--⨯-⨯=-;当2x =-时,111(1)32(01)312(2)222a b cd x +---=⨯--⨯-⨯-=.19.先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解: (方 法一) 原式12112151()[()()]()()30361053062=-÷++--=-÷-1330=-⨯110=-(方 法二) 原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+ 10=-故原式110=-请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.【解答】解: 原式的倒数为13221()()6143742-+-÷-1322()(42)61437=-+-⨯- 79281214=-+-+=-故原式114=-.20.已知有理数a 、b 、c 在数轴上的位置,(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.【解答】解:(1)由数轴可得:0c a b <<<, 0a b ∴+<,0a c +<,0b c ->,(2)0a b +<,0a c +<,0b c ->, ||||||0a b a c b c a b a c b c ∴+-++-=--+++-=.故答案为:(1)<;<;>.21.已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --.(1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 【解答】解:(1)根据题意知22232(31)B x x x x =----+ 2223231x x x x =---+- 223x x =---,则22(31)(23)A B x x x x -=-+---- 223123x x x x =-++++244x x =++;(2)x 是最大的负整数, 1x ∴=-,则原式24(1)14=⨯--+414=-+ 7=.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.23.如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC = BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.【解答】解:(1)①AB CD =, AB BC CD BC ∴+=+, 即,AC BD =, 故答案为:=;②34BC AC =,且12AC cm =, 3129()4BC cm ∴=⨯=,1293()AB CD AC BC cm ∴==-=-=, 12315()AD AC CD cm ∴=+=+=,故答案为:15; (2)如图,设每份为x ,则3AB x =,4BC x =,5CD x =,12AD x =, M 是AB 的中点,点N 是CD 的中点N , 32AM BM x ∴==,52CN DN x ==, 又16MN =, ∴3541622x x x ++=, 解得,2x =,1224()AD x cm ∴==,答:AD 的长为24cm.。

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题基础知识测试题(南京下关)一、填空题(共6小题,每空0.5分,计10分)1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步发展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近发展区理论”认为学生的发展有两种水平:一种是学生的___________发展水平;另一种是学生_________________发展水平,两者之间的差异就是最近发展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论发展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著《怎样解题》中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表”有两个特点,即普遍性和_____________性.二、简答题(共3小题,每小题5分,计15分)7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.《义务教育数学课程标准》(2011年版)从知识与技能等四个方面对总目标进行了阐述.(1)请写出其他三个方面目标的名称;(2)请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等”这一结论在苏教版义务教育数学教材八上的《1.4线段、角的轴对称性》以及九上的《1.2直角三角形全等的判定》中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.基础知识、基本技能、基本思想、基本活动经验.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,(试验结果的)有限性,(每个结果的)等可能性.6.弄清问题、拟定计划、实施计划、回顾反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等.8.(1)数学思考、问题解决、情感态度;(2)四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上《1.4线段、角的轴对称性》中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上《1.2直角三角形全等的判定》是通过严格的推理论证,采用自己画图、写已知、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进行严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知发展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括基础知识测试和解题能力测试两部分.基础知识测试内容包括数学文化(数学史)常识和数学教育基础知识(教材、课程标准、教育学、心理学、教学论、教学法等).解题能力测试内容包括基础题(教材中的基本定理、公式的证明,教材例题、习题、复习题)与综合题(与中考中档题难度相当).2.第1、2、8题考查对《课标》学习和理解情况(称为课标板块);第4、5、7题结合苏教版初中数学教科书的教学内容对数学史进行简单的考查(称为数学史板块);第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考查(称为综合板块).2012年雨花台区小学数学青年教师教学基本功比赛教育教学知识常识比赛试卷(满分100分,时间60分钟)姓名成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。

数学人教版七年级下册1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答

数学人教版七年级下册1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答
实际问题
例题:甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物划算?
学生先自己逐句阅读,并用铅笔画出自己认为重点的词句.再请学生逐句分析,说明自己得到的结论.
教学重点
分析实际问题的数量关系建立不等式模型
教学难点
如何从实际问题中抽象出不等关系,建立不等式模型
教学方法
探究式、启发式
教学过程设计
教学内容
师生活动
设计意图
情景引入
你为准备春游去超市购物,现有一张8折的购物券和一张满40元立减10元的购物券.
(1)如果他购买原价30元的商品,用哪张购物券划算?40元呢?
(2)如果购买商品原价x元如何选呢?
学生认真观看,进入实际生活情境中,并通过思考、计算回答教师提出的问题.
运用生活中简单常见的实际问题引入本节课,提高学生学习的兴趣,体会学好数学能够解决实际生活中的一些问题.
通过将这道较简单的实际问题转化为两个代数式比大小的数学问题,体会分类讨论的数学思想,并为下一个例题的顺利解决分散难点.
课题
9.2.2实际问题与一元一次不等式
教学目标
1.能将实际问题转化为数学问题,分类讨论数量关系建立不等式进行求解.
2.经历将实际问题转化为数学问题进行讨论求解,再将数学问题转化为实际问题进行解答的过程,体会建模思想和分类讨论思想的应用,积累利用一元一次不等式解决问题的经验.
3.通过利用一元一次不等式解决实际问题,强化使用数学解决实际问题的意识,从而乐于接触、观察、思考生活中的数学信息积累学习经验.
从学生已有的经验出发,将文字信息翻译为代数式,培养学生阅读的方法.通过回答问题,提高清晰流畅地表达自己的想法的能力.

七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版

七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版

2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第一章~第二章(人教版2024)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B.3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有 .【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P:―23+209=149=159,或―23+203=183=6.故P站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=20时,点M表示的数为 ,点Q表示的数为 .(2)在整个运动过程中,当CQ=PM时,求出点M表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ和MN重合部分长度为1.5时所对应的t的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t的代数式表示点运动后所表示的数.(1)当t=20时,根据起点位置以及运动方向和运动速度,即可得点M表示的数为8、点Q表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。

余姚市实验学校第九届“实验杯”学科知识竞赛七年级数学试卷

余姚市实验学校第九届“实验杯”学科知识竞赛七年级数学试卷

余姚市实验学校第九届“实验杯”学科知识竞赛七 年 级 数 学 试 卷( 时间:100分 满分:120分 )一、选择题(每小题3分,共36分)1.下列说法:①立方根是它本身的数是0和1;②3是9的算术平方根;③绝对值是它相反数的数是负数;④将方程2.13.01.0=-x 变形可得123110=-x ,其中正确的有( )(A )0个(B )1个(C )2个(D )3个2.16的平方根为( ) (A )±4(B )±2(C )4(D )23.根据如图所示程序计算,若输入x 的值为1,则输出的y 的值为( ) (A )4 (B )-2(C )28(D )14.如果a +b <0,且b >0,则a , b , -a , -b 的大小关系为( )(A )a <b <-a <b (B )-b <a <-a <b (C )a <-b <-a <b (D )a <-b <b <-a5.若ab ≠0,则bb a a ||||+的值不可能是( ) (A )0(B )1(C )2(D )-26.在时刻8:30时,时针上的时针和分针之间的夹角为( ) (A )85°(B )75°(C )70°(D )60°7.现规定一种新的运算“*”,a *b =a b ,如果3*2=32=9,则21*3为( )(A )81 (B )8 (C )61 (D )68.平面上有A 、B 、C 三点,已知AB =2,BC =5,则AC 的长为( ) (A )3(B )7(C )3或7(D )无法确定9.若∠1和∠2互补,且∠1>∠2,那么∠2的余角为( ) (A )21(∠1+∠2) (B )21∠1 (C )21(∠1—∠2) (D )不确定10.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a 、b 、c 对应的密文a +1,2b +4,3c +9,例如明文1,2,3对应的密文为2,8,18,如果接收方收到密文7,8,15,则解密得到的明文为( ) (A )4,5,6(B )2,6,7(C )6,7,2(D )7,2,611.小明在A 、B 两家超市发现他看中的英语学习机和书包的单价都相同,英语学习机和书包的单价和为540元,且英语学习机比书包的单价3倍多52元,这天恰好赶上商场促销,超市A 所有商品打8折销售;超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),如果他只在一家超市购买,那么在哪家买最便宜?最少付多少钱?(A )A 超市,432元 (B )A 超市,420元 (C )B 超市,420元(D )B 超市,432元 12.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中,已知:①每所学校至少有他们的一名学生;②在二中联欢会上,甲、乙、戊被作为邀请的客人,演奏了小提琴;③乙过去曾在三中学习,后来转学了,现在同丁在同一个班级学习;④丁、戊是同一所学校的三好生,根据以上信息,可以判定甲所在学校为( ) (A )一中(B )二中(C )三中(D )不确定二、填空题(每小题4分,共28分)13.请写出一个系数为—21且含有两个字母的三次单项式____________. 14.用计算器计算112,1112,11112,111112,你发现了其中的规律了吗?请直接写出1111111112=____.15.一个瓶子的容积为1升,瓶内装着一些水,当瓶子正放时,瓶内水的高度为20cm ,倒放时,空余部分的高度为5cm ,则瓶内水的体积为_______升. 16.若(x 136118712141---+)÷4361-=,则计算 (x 136118712141---+)÷361361+÷(x136118712141---+)的值为______. 17.已知∠ABC 和∠DEF 中,AB ⊥DE ,BC ⊥EF ,∠DEF =40°,则∠ABC 的度数为_____.M南 北西 东O45° 18.观察一组数1,21,22,21,31,32,33,32,31,41,42,43,44,43,42,41,……,则85是第______个数. 19.如果方程2ax —4=(a +2)x 的解是正整数,那么a 可取的整数值是________. 三、解答题(20、21每题5分,22、23、24每题8分,25题10分,26题12分,共56分)20.计算:|2007|61)2131()1()2(2200722--÷-⨯---+-.21.如图,BP 平分∠ABD ,BC 平分∠PBD ,∠ABC =90°,求∠ABD 的度数.22.小明和小华同时在求代数式(3a 2-ab +2b 2)-(a 2-5ab +b 2) -2(a 2+2ab +b 2)的值,小明用“a =21,b =1”代入,小华用“a =-21,b =1”代入,经老师验证,他们都没算错,答案竟然相同的,你觉得可能吗?说说你的理由.23.小马虎在解方程21512ax x +=+- 时,因为在去分母时,方程左边的1没有乘以10,因此求得方程的解是x =4,请你帮他先求出a 的值,并正确地求出原方程的解.24.根据指令[S ,A ](S ≥0,0°<A <180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离S ,现机器人在如图所示的O 点,且面向正北方向.(1)若给机器人下一个指令[4,60°],请你在图中画出机器人所在的位置N (要求标出相应的线段长度与角度) (2)请你给机器人下一个指令,使其移动到如图所示的 M 点(OM =8)25.一位旅客下午1时从酒店出门游玩,晚上6时回到酒店。

七年级数学基础知识竞赛试题(A卷)

七年级数学基础知识竞赛试题(A卷)

七年级数学基础知识竞赛试题(A 卷)班级 姓名 学号 得分一、选择题1.下列四个数中,大于-3的数是 ( )A .-5 B.-4 C.-3 D.-22.若a 与2互为相反数,则2+a 等于 ( )A.0B.-2C.2D.43.下列计算正确的是 ( )A.-6+6=0B.-6-6=0C.-6+(-6)=36D.-6-(-6)=-124.如果05.205.2002005-=-x ,那么x 等于 ( )A.1814.55B.1824.55C.1774.45D.1784.455.一个数的相反数是3,则这个数是 ( ) A.31- B.31 C.-3 D.3 6.对于()42-与42-,下列说法正确的是 ( )A.它们的意义相同B.它们的结果相等C.它们的意义不同,结果相等D.它们的意义不同,结果不等7.对于用四舍五入法得到的近似数51020.8⨯,下列说法正确的是 ( )A.有3个有效数字,精确到百分位B.有6个有效数字,精确到个位C.有2个有效数字,精确到万位D.有3个有效数字,精确到千位8.若,0,0><+ab b a 则 ( ) A.b a ,都为正数 B.b a ,都为负数C.b a ,一个为正数,一个为负数D.b a ,中有一个为09.三个书的积为正数,那么三个数中负数的个数是 ( )A.1个B.2个C.3个D.0个或2个10.下列说法中,正确的是( )A.在有理数中,0的意义仅表示没有B. 一个有理数,它不是正数就是负数C.正有理数和负有理数组成有理数集合D.0是非负数11.一个数的倒数等于它本身的数一共有( ).A.1个;B.2个;C.3个;D.4个12.“神舟”五号载人飞船,绕地球飞行了14圈,共飞行约590200km ,用科学记数法表示590200,结果正确的是( ).A .5.902×104B .5.902×105C .5.902×106D .0.5902×10613.如果a+b=0,那么实数a,b 的取值一定( )A.都是0B. 互为相反数 ;C.至少有一个是0D. 互为倒数14.下列计算错误的是( )A.4222054x x x =⋅B.12431535y y y =⋅C.6332)(b a ab =D.4224)2(a a =- 15.若y b a 25.0与b a x 的和仍是单项式,则正确的是( )A.x =2,y =0B. x =-2, y =0C. x =-2, y =1D. x =2, y =116.一条裙子的售价为a 元, 打七折后的售价为( ) A. 7.0a B. 30%a C. 70%a D. 3.0a 17.下面去括号错误的是( )A .()a b c a b c -+=-- B.()a b c a b c +-=+-C .3()3a b a b -=- D.(2)2a b a b --=-+18.下列说法正确的是( )A. 0.720有两个有效数字B. 3.6万精确到十分位C. 300有一个有效数字D. 5.078精确到千分位19.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数; ③4,12,5a x ab +都是整式; ④22y xy x +-是按字母y 的升幂排列的多项式.其中判断正确的是( )A .①②B .②③C .③④D .①④20.已知方程2x-3=m 的解满足︱x ︱-1=0,则m 的值是 ( )A.-6;B.-12;C.-6或-12;D.任何数。

初一数学的竞赛试题

初一数学的竞赛试题

初一数学的竞赛试题初一数学的竞赛试题初一的数学竞赛有哪一些测试的重点呢?下面就随小编一起去阅读初一数学的竞赛试题,相信能带给大家启发。

一、填空题(每小题4分,共40分)1. 甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__2.计算(-2124 +7113 ÷24113 -38 )÷1512 =___。

3. 已知与是同类项,则=__。

4. 有理数在数轴上的位置所示,化简5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____.6. 小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。

7. 学校开运动会,班长想分批买汽水给全班50名师生喝,喝完的空瓶根据商店规定每5个空瓶又可换一瓶汽水,则至少要买瓶汽水,才能保证每人喝上一瓶汽水.8. 有这样一个衡量体重是否正常的简单算法。

一个男生的标准体重(以公斤为单位)是其身高(以厘米为单位)减去110。

正常体重在标准体重减标准体重的10%和加标准体重的10之间。

已知甲同学身高161厘米,体重为W,如果他的体重正常,则W的公斤数的取值范围是_____.9. m、n、l 都是二位的正整楼,已知它们的最小公倍数是385,则m+n+l的最大值是__。

10. 已知x=5时,代数式ax +bx-5的值是10,当x=-5时,代数式ax +bx+5=__。

二、选择题(每小题5分,共30分)1.-|-3|的相反数的负倒数是()(A)-13 (B)13 (C)-3 (D)32. 如图2所示,在矩形ABCD中,AE=B=BF= AD= AB=2,E、H、G在同一条直线上,则阴影部分的面积等于( )(A)8. (B)12. (C)16. (D)20.3. 十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是()岁。

七年级数学上学期竞赛试题(含答案)

七年级数学上学期竞赛试题(含答案)

七年级数学竞赛试题(满分:150分,时间:120分钟)第一卷 基础知识(满分100分)一、选择题(每小题5分,共50分) 1、(-0.125)2007×(-8)2008的值为( )(A )-4 (B )4 (C)-8 (D)82、任意有理数a ,式子1,1,,1a a a a a -+-++中,值不为0的是( ) (A )1a - (B )1a + (C )a a -+ (D )1a +3、若,,,a b c m 是有理数,且23,2a b c m a b c m ++=++=,那么b 与c ( ) (A )互为相反数 (B )互为倒数 (C )互为负倒数 (D )相等4、要使不等式753246a a a a a a a <<<<<<<成立,有理数a 的取值范围是( )(A )01a << (B )1a > (C )10a -<< (D )1a <- 5、把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分涂成红色,那么红色部分的面积为( ) (A )21 (B )24 (C )33 (D )376、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( ) A.不赔不赚 B.赚160元 C.赚80元 D.赔80元7、已知9999909911,99P Q ==,那么,P Q 的大小关系是( )(A )P Q > (B )P Q = (C )P Q < (D )无法确定8、小刘写出四个有理数,其中每三数之和分别是2,17,1,3--,那么小刘写出的四个有理数的乘积是( )(A )-1728 (B )102 (C )927 (D )无法确定 9、122-+-++x x x 的最小值是 ( ) (A ) 5 (B)4 (C)3 (D) 210、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( ) (A) 273 (B) 819 (C) 1911 (D) 3549二、填空题(每小题6分,共30分) 11、当整数m =_________ 时,代数式136-m 的值是整数。

七年级数学知识竞赛试卷附答案

七年级数学知识竞赛试卷附答案

七年级数学知识竞赛试卷一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是 A 、34-B 、34C 、43- D 、432、下列算式正确的是 A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是A 、0275.3=-ab ab B 、xy y x 532=+ C 、2245a b ab ab -=- D 、2x x +=3x 5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为 A 、1 B 、21k - C 、21k + D 、12k-6、七年级有一位善于动脑筋的同学,在学完有效数字后,他测了一下自己的钢笔长为0.06250米,问自己的同桌:“你能说出它的有效数字的个数以及精确到哪一位吗?” A 、有4个有效数字,精确到万分位 B 、有3个有效数字,精确到十万分位 C 、有4个有效数字,精确到十万分位 D 、有3个有效数字,精确到万分位7、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是A1A 、125元B 、135元C 、145元D 、150元8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是A 、7xy -B 、7xyC 、xyD 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为 A 、17124110=--+x x B、107124110=--+x x C、1710241010=--+x x D、10710241010=--+x x 10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”A 、0B 、 2C 、 1D 、–112、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是A 、11B 、8C 、7D 、5选择题答题卡二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 .14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________.15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________.18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分)19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3(7[122222b a ab b a ab ---21、解方程:(每题3分,共6分)(1) 1285+=-x x (2)151423=+--x x22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数. (1)请用一个等式表示a 、b 、c 、d 之间的关系;( 2分)(2)若日历中竖列上相邻的3个数和是75,你认为可能吗?为什么? ( 4分)日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031a bc d25、( 8分)刘老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ”王老师算了一下,说:“你肯定搞错了. ”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(4分)(2)刘老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?( 4分)附:答案(七年级)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCBABCADCACB13、211,32,211; 14、-34; 15、2)13(1+-=-x x ; 16、-11; 17、3025; 18、211110=+xx ,110=x 19、(1)原式12524(24)(24)236=-⨯+-⨯--⨯121620=--+ ---------------------3分8=-. ----------------------4分 (2)解:原式=124810-÷+- ----------------------3分=12210-+-=-20 ----------------------- 4分 20、(1)原式=22、解:原式22622x y x y =+-+----------------------2分 243x y =+. ----------------------3分当21=x ,1-=y 时, ---------------------- 4分 原式214()3(1)2=⨯+⨯- ---------------------- 5分14(3)4=⨯+-1(3)=+-2=-. ----------------------6分(直接代入求值的,若答案正确给2分,否则不给分)23、解:设应分配x 名工人生产脖子上的丝巾, …………………1分则:x x 12002)70(1800⨯=- ……………………3分 解得:30=x ……………………………………4分40-x………………………………5分-=307070=答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.……6分25、(1)设单价为8.00元的课外书为x本,…………………1分则单价为12.00元的课外书则为(105-x)本.根据题意,得8x+12(105-x)=1500-418 …………………2分解之得x=44.5 (不符合题意) …………………3分所以刘老师肯定搞错了…………………4分(2)设单价为8.00元的课外书为y本,笔记本的单价为a元…………5分根据题意,得8y+12(105-y)=1500-418-a…………………6分即178+a=4y,因为a、y都是整数,且178+a应被4整除,a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8 …………………7分当a=2时,4x=180,x=45,符合题意;当a=4时,4x=182,x=45.5,不符合题意;当a=6时,4x=184,x=46,符合题意;当a=8时,4x=186,x=46.5,不符合题意.所以笔记本的单价可能2元或6元…………………8分。

七年级数学基础知识百题竞赛试题及答案

七年级数学基础知识百题竞赛试题及答案

七年级数学基础知识百题竞赛试题满分:100分 考试时间:60分钟班级 姓名 得分一、 填空题1、将点P(4,3)先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为2、一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是3、一张电影票的座位5排2号记为(5,2),则3排5号记为 。

4、点(-3,5)到x 轴上的距离是_______,到y 轴上的距离是_______。

5、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,则a 的值为________。

6、甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x ,乙数为y ,则方程组7、已知一个两位数,它的十位上的数字x 比个位上的数字y 大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是8、在方程29x ay -=中,如果31x y =⎧⎨=⎩,是它的一个解,那么a 的值为___ ___9、羊圈里白羊的只数比黑羊的脚数少2,黑羊的只数比白羊的脚数少187,则设白羊有X 只,黑羊有y 只,列方程组为10、把面值为1元的纸币换为1角或5角的硬币,则换法共有___ __种11、用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子少了3尺,这根绳子长__ ___尺.12、写出满足方程x+2y=9的一对整数解________________。

13、方程组:2,328.y x y x =⎧⎨+=⎩的解是 。

14、二元一次方程组的两个方程的 叫做这个二元一次方程组的解。

15、已知x+y=5,且x -y=1,则xy=_________。

16、写出一个以⎩⎨⎧==23y x 为解的二元一次方程组 . 17、-32x y __________5的系数是,次数是__________. 18、直线外一点到这条直线的___ _____,叫做点到直线的距离.19、如右图所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.20、对顶角的性质是______________________.21、在同一平面内,____________________________________叫做平行线.22、若AB ∥CD,AB ∥EF,则_____∥______,理由是_________ _________.23、直线L 同侧有A,B,C 三点,若过A,B 的直线L 1和过B,C 的直线L 2都与L 平行,则A,•B,C 三点________,理论根据是___________________________.24、大数和小数的差为12,这两个数的和为60,则大数是______ ______.25、某哨卡运回一箱苹果,若每个战士分6个,则少6个;若每个战士分5个,•则多5个,那么这个哨卡共有________名战士,箱中有_______个苹果.26、若方程13121m n x y -++=是二元一次方程,则m =_____,n =_____.27、AD 是中线,则⊿ABD 的面积______ ⊿ACD 的面积(填“>”“<”“=”)。

2016年秋人教版七年级上册数学知识竞赛试卷(含答案)

2016年秋人教版七年级上册数学知识竞赛试卷(含答案)

(七年级数学知识竞赛试卷 共6页 第1页) (七年级数学知识竞赛试卷 共6页 第2页)密封线内不要答题. 县(区) 学校 班级 姓名 准考证号2016年秋人教版七年级上册数学知识竞赛试卷(含答案)(考试时间:120分钟 满分:120分)一、选择题(每题3分,共30分)1、-|-3|的相反数的负倒数是( )A 、-13B 、13 C 、-3 D 、3 2、有理数a 等于它的倒数,则a 2004是( )A、最大的负数 B、最小的非负数 C、绝对值最小的整数 D、最小的正整数 3、一个商店把某件商品按进价加20%定价,可是总卖不出去,后来老板按定价减价20%,以96元出售,很快就卖掉了,则这次生意的盈亏情况为( )A 、赚6元B 、亏不赚C 、亏4元D 、亏24元4、若,,,a b c m 是有理数,且23,2a b c m a b c m ++=++=,那么b 与c ( ) A 、互为相反数 B 、互为倒数 C 、互为负倒数 D 、相等5、已知代数式3x y +的值是4,则代数式261x y ++的值是( ) A 、10 B 、9 C 、8 D 、不能确定6、某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( )A 、不赚不赔B 、赚9元C 、赔18元D 、赚18元7、x 、y 、z 在数轴上的位置如图所示,则化简y z y x -+-的结果是( )A 、x z -B 、z x -C 、2x z y +-D 、以上都不对8、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压, 所以就按销售价的70%出售。

那么每台实际售价为( ). A 、(1+25%)(1+70%)a 元 B 、70%(1+25%)a 元C 、(1+25%)(1-70%)a 元D 、(1+25%+70%)a 元9、现定义两种运算“⊕”,“*”。

对于任意两个整数,1a b a b ⊕=+-,1a b a b *=⨯-, 则(6⊕8)*(3⊕5)的结果是( ) A 、60 B 、69C 、112D 、9010、请从备选的图形中选择一个正确的(a,b,c,d)填入空白方格中( )A 、aB 、bC 、cD 、d二、填空题(每题3分,共18分)11、已知()2230x y -++=,则y x +x y =12、关于x 的一元一次方程(2m -6)x │m │-2=m 2的解为13、某商品价格为a 元, 降低10%后, 又降低10%, 销售量猛增, 于是商店决定再提价20%, 此时这种商品的价格为___ ___元。

七年级数学基础知识竞赛题及答案

七年级数学基础知识竞赛题及答案

七年级数学基础竞赛题一、初赛1、什么叫做质数和合数:一个数,如果只有1和它本身两个约数,这样的数叫做质数;一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

2、分数有哪几类?真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3、整数的读法与写法:整数的读法:从高位到低位,一级一级地读。

整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

4、分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

5、列举三个运算定律(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变。

(3)乘法交换律:两个数相乘,交换因数的位置它们的积不变。

(4)乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变。

(5)乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加。

(6)减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变。

6、常见的数量关系- 总价= 单价×数量- 路程= 速度×时间- 工作总量=工作时间×工效- 总产量=单产量×数量7、常见的长度单位有哪些公里(km) 米(m) 分米(dm) 厘米(cm) 毫米(mm) 微米(um)8、什么是正方形?等边平行且相等,4个角都是直角的四边形。

9、如何比较分数的大小?(1)分母相同的两个分数,分子大的分数就大;(2)分子相同(0除外)的两个分数,分母小得分数大。

10、什么是直线、射线和线段?直线:没有端点,向两边无限延长,不能度量;射线:只有一个端点,把线段的一段无限延长,得到一条线段,无法度量;线段:有两个端点,是直线上两点之间的一段,可以度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级冬学竞赛数学试卷
一、填空
1.-1的倒数是___ __;
2.已知b a m 225-
和437a b n -是同类项,则m+n 的值是
3、近似数0.034,精确到 位。

4、单项式-3
22
4c ab 的系数是 。

5.小明在写作业时不慎将一滴墨水滴在数轴上,根据图的数值,判断墨迹盖住的整数共有_____ _个.
6.、已知,一个角的补角是这个角的余角的3倍,则这个角是 度
7.若关于x 的方程372x x a -=+的解与方程437x +=的解相同,则a 的值为_______。

8、将一副三角板.....如图摆放,若∠BAE=135 °,则∠CAD 的度数是 。

9、观察下列各式:31
=3,32
=9,33
=27,34
=81,35
=243,36
=729…你能从中发现底数为
3的幂的个位数有什么规律吗?根据你发现的规律回答:32010
的个位数字是 .
二、选择
10.下面计算正确的是( )
A 、32x -2x =3
B 、32
a +23a =55a C 、3+x =3x D 、-0.25a
b +4
1
ba =0 11.下列方程中,一元一次方程是( )
A 、2y =1
B 、3x -5
C 、3+7=10
D 、x 2+x =1
※※※※※※※※※※※※※※※※※※※※※ 密 封 线 内 不 要 答 题 ※※※※※※※※※※※※※※※※※※※※
班级: 姓名: 学号:____得分:
6.3-
6
1- 4.15 0
A B D
C
E
A
65
O
12、图中是几何体的主视图与左视图, 其中正确的是( )
A :
B :
C :
D :
13、如图,点A 位于点O 的 方向上。

( )
A 、南偏东35°
B 、北偏西65°
C 、南偏东65°
D 、南偏西65°
14、如图将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使得点C 落在长方形内部点E 处,若FH 平分∠BFE ,则关于∠GFH 的度数α说法正确的是( ) A 、90°﹤α﹤180° B 、0°﹤α﹤90° C 、α= 90°
D 、α随折痕GF 位置的变化而变化
三、简答题 15. 解方程 413-x - 6
7
5-x = 1
16.在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC 的度数。

A
B C
D G
E
F
H
17. 一项工程甲单独做要20小时,乙单独做要12小时。

现在先由甲单独做5小时,然后乙加入进来合做。

完成整个工程一共需要多少小时?
18、如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE , (1)写出∠AOC 与∠BOD 的大小关系: ,
判断的依据是 。

(2)若∠COF=35°,求∠BOD 的度数.
A
B D
E
F C O
19.某地上网有两种收费方式,用户可以任选其一:
(A)记时制:3元/小时,(B)包月制:100元/月。

此外,每一种上网方式都加收通讯费1.2元/小时。

(1)某用户一个月上网多少小时,两种付费方式的上网费用一样?
(2)某用户为选择合适的付费方式,记录了一个月中连续5天的上网时间如下表:
第一天第二天第三天第四天第五天上网时间/时** ** ** ** **
如果
一个月按30天计算,根据上述信息,该用户选择哪种付费方式合算?请说明理由。

相关文档
最新文档