展开与折叠2PPT精品课件
合集下载
展开与折叠_ppt课件
将相对的两个面 涂上相同的颜色,正 方体的平面展开图共 有以下11种:
观察思考有何 规律
第一类、四个一行中排列,两端各 (记忆口诀:1 4 1) 一个任意放,共六种。
第二类,二在三上露一端,一在三下 任意放,共三种。 (记忆口诀:2 3 1)
第三类、两两三行排有序,恰似登天上云梯,仅 一种。 (记忆口诀:2 2 2)
再见!
A.B.C.Fra bibliotekD.如图所示的纸板上有 10 个无阴影的正方形, 从中选出一个,与图中5个有阴影的正方形 一起折一个正方体的包装盒,有多少种不 同的选法。
如图,这是一个正方体的展开图,如 果将它组成原来的正方体,哪些点与 点P重合。
S T H
P
R
U
V
l
M
N
Q
W
K
Z
Y
下图是一个正方体的展开图,标注了字 母 A 的面是正方体的正面,如果正方体的左 x 的 面与右面所标注代数式的值相等,求 值.
考考你
如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
下图是一些立体图形的展开图,用它们能 围成怎样的立体图形?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
拓展1:你有办法将图形(1)、(3)修改后使能折叠成棱柱?
拓展2:图形(2)、(4)是不同的平面图形,折叠出同 样的棱柱,从中你得到了什么启示?
-2
3
-4
1
A 3x-2
考考你
下面图形中,哪些是正方体的平面展开图?
1 2 3 4 5 6 祝 前 你 似 程 锦 A B C D E F
如图是一个正方体纸盒的展开图,请在图 中的6个正方形中分别填入1、2、3、-1、-2、3 ,时展开图沿虚线折叠成正方体后相对面上 的两个数互为相反数。
观察思考有何 规律
第一类、四个一行中排列,两端各 (记忆口诀:1 4 1) 一个任意放,共六种。
第二类,二在三上露一端,一在三下 任意放,共三种。 (记忆口诀:2 3 1)
第三类、两两三行排有序,恰似登天上云梯,仅 一种。 (记忆口诀:2 2 2)
再见!
A.B.C.Fra bibliotekD.如图所示的纸板上有 10 个无阴影的正方形, 从中选出一个,与图中5个有阴影的正方形 一起折一个正方体的包装盒,有多少种不 同的选法。
如图,这是一个正方体的展开图,如 果将它组成原来的正方体,哪些点与 点P重合。
S T H
P
R
U
V
l
M
N
Q
W
K
Z
Y
下图是一个正方体的展开图,标注了字 母 A 的面是正方体的正面,如果正方体的左 x 的 面与右面所标注代数式的值相等,求 值.
考考你
如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
下图是一些立体图形的展开图,用它们能 围成怎样的立体图形?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
拓展1:你有办法将图形(1)、(3)修改后使能折叠成棱柱?
拓展2:图形(2)、(4)是不同的平面图形,折叠出同 样的棱柱,从中你得到了什么启示?
-2
3
-4
1
A 3x-2
考考你
下面图形中,哪些是正方体的平面展开图?
1 2 3 4 5 6 祝 前 你 似 程 锦 A B C D E F
如图是一个正方体纸盒的展开图,请在图 中的6个正方形中分别填入1、2、3、-1、-2、3 ,时展开图沿虚线折叠成正方体后相对面上 的两个数互为相反数。
《展开与折叠》PPT课件_OK
38
把下面的正三角形沿虚线折叠后的几何 体是什么?
39
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
40
考考你 如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
41
下图是一些立体图形的展开图, 用它们能围成怎样的立体图形?
123
4
5
67
8
9 10
22
挑战自己
如图所示的纸板上有10个无阴影的 正方形,从中选出一个,与图中5个有 阴影的正方形一起折一个正方体的包 装盒,有多少种不同的选法。
123
4
5
67
8
9 10
23
右图需再添上一个面,折叠后才能围成 一个正方体,下面是四位同学补画的情 况(图中阴影部分),其中正确的是 (B )
白 黄红
乙
绿 兰黄
丙
31
提示:找到相邻面的颜色,利用排 除法,就可以得出相对面的颜色了
红黄蓝绿黑白 红 黄 蓝 绿 黑 白
32
红黄蓝绿黑白 红 黄 蓝 绿 黑 白
33
练习:有一正方体木块,它的六个面分别标 上数字1——6,下图是这个正方体木块从不 同面所观察到的数字情况。请问数字1和5对 面的数字各是多少?
1 25
4
1 2
6 41
提示:方法仍然是找出所有相邻面的颜色
34
想一想、折一折 1、以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
(5)
(6)
35
2、哪种几何体的表面能展开成下面的图形? 先想一想,再折一折。
36
观察思考:
观察圆柱形纸筒展开的侧面是一个什么图形
把下面的正三角形沿虚线折叠后的几何 体是什么?
39
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
40
考考你 如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
41
下图是一些立体图形的展开图, 用它们能围成怎样的立体图形?
123
4
5
67
8
9 10
22
挑战自己
如图所示的纸板上有10个无阴影的 正方形,从中选出一个,与图中5个有 阴影的正方形一起折一个正方体的包 装盒,有多少种不同的选法。
123
4
5
67
8
9 10
23
右图需再添上一个面,折叠后才能围成 一个正方体,下面是四位同学补画的情 况(图中阴影部分),其中正确的是 (B )
白 黄红
乙
绿 兰黄
丙
31
提示:找到相邻面的颜色,利用排 除法,就可以得出相对面的颜色了
红黄蓝绿黑白 红 黄 蓝 绿 黑 白
32
红黄蓝绿黑白 红 黄 蓝 绿 黑 白
33
练习:有一正方体木块,它的六个面分别标 上数字1——6,下图是这个正方体木块从不 同面所观察到的数字情况。请问数字1和5对 面的数字各是多少?
1 25
4
1 2
6 41
提示:方法仍然是找出所有相邻面的颜色
34
想一想、折一折 1、以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
(5)
(6)
35
2、哪种几何体的表面能展开成下面的图形? 先想一想,再折一折。
36
观察思考:
观察圆柱形纸筒展开的侧面是一个什么图形
北师大版七年级数学上册课件《展开与折叠》精品课件
种情况: ①如果EF向前折,D在下,B在上; ②如果EF向后折,B在下,D在上.
达标检测
2.如图是一张铁皮. (1)计算该铁皮的面积; (2)它能否做成一个长方体盒子?若能,请画出它的几何 图形,并计算它的体积;若不能,请说明理由.
解:(1)(3×1+1×2+3×2)×2=11×2=22(平方米);
依此为,黄白黑蓝,绿色则在红色对面.得到最终结果如下:
白色对面是蓝色,黄色对面是黑色,红色对面是绿色.
达标测评 4.把立方体的六个面分别涂上六种不同颜色,并画 上朵数不等的花,各面上的颜色与花的朵数情况见 表:
颜色
红黄蓝白紫绿
花的朵数 1 2 3 4 5 6
现将上述大小相同,颜色、花朵分布也完全相同的四个立方体 拼成一个水平放置的长方体,如图所示.问长方体的下底面共 有多少朵花?
(1)这个多面体是什么常见的几何体? (2)如果D是多面体的底部,那么哪一面在上面? (3)如果B在前面,C在左面,那么哪一面在上面? (4)如果E在右面,F在后面,那么哪一面在上面?
达标检测
解:(1)这个多面体是一个长方体; (2)面“B”与面“D”相对,如果D是多面体的底
部,那么B在上面; (3)果B在前面,C在左面,那么A在下面, ∵面“A”与面“E”相对, ∴E面会在上面; (4)由图可知,如果E在右面,F在后面,那么分两
达标测评 1.将如图所示表面带有图案的正方体沿某些棱展开后, 得到的图形是( C )
由原正方体知,带图案的三个面相交于一点,而通 过折叠后A、B都不符合,且D折叠后图案的位置正好 相反,所以能得到的图形是C. 故选C.
达标测评
2、如图,有一个无盖的正方体纸盒,下底标有字母 “M”,沿图中红线将其剪开展成平面图形,想一想,
达标检测
2.如图是一张铁皮. (1)计算该铁皮的面积; (2)它能否做成一个长方体盒子?若能,请画出它的几何 图形,并计算它的体积;若不能,请说明理由.
解:(1)(3×1+1×2+3×2)×2=11×2=22(平方米);
依此为,黄白黑蓝,绿色则在红色对面.得到最终结果如下:
白色对面是蓝色,黄色对面是黑色,红色对面是绿色.
达标测评 4.把立方体的六个面分别涂上六种不同颜色,并画 上朵数不等的花,各面上的颜色与花的朵数情况见 表:
颜色
红黄蓝白紫绿
花的朵数 1 2 3 4 5 6
现将上述大小相同,颜色、花朵分布也完全相同的四个立方体 拼成一个水平放置的长方体,如图所示.问长方体的下底面共 有多少朵花?
(1)这个多面体是什么常见的几何体? (2)如果D是多面体的底部,那么哪一面在上面? (3)如果B在前面,C在左面,那么哪一面在上面? (4)如果E在右面,F在后面,那么哪一面在上面?
达标检测
解:(1)这个多面体是一个长方体; (2)面“B”与面“D”相对,如果D是多面体的底
部,那么B在上面; (3)果B在前面,C在左面,那么A在下面, ∵面“A”与面“E”相对, ∴E面会在上面; (4)由图可知,如果E在右面,F在后面,那么分两
达标测评 1.将如图所示表面带有图案的正方体沿某些棱展开后, 得到的图形是( C )
由原正方体知,带图案的三个面相交于一点,而通 过折叠后A、B都不符合,且D折叠后图案的位置正好 相反,所以能得到的图形是C. 故选C.
达标测评
2、如图,有一个无盖的正方体纸盒,下底标有字母 “M”,沿图中红线将其剪开展成平面图形,想一想,
新北师大版初中数学七年级上册 (初一)第1章第2节展开与折叠 两个课时课件
花花一一样样美美丽丽,,感感谢谢你你的的阅阅读读。。 87、天勇放下气眼兴通前亡往方,天匹堂只夫,要有怯我责懦们。通继往续20地,:28狱收2。获0:2的80季:3208节72.就01:42在.82前:0320方07T.。1u42e.0s2.d07a2.1y0,4TJ2uu0el.ys7d.11a44y,2,20J0u.72ly.01144。, 2020年7月14日星期二二〇二〇年七月十 四日 8、拥有梦想只是一种智力,实现梦想才是一种能力。20:2820:28:307.14.2020Tuesday, July 14, 2020
下列图形哪个不是长方体的表面展开图?
A C
B E
D
活动三
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
把左图中长方体的
E
F
表面展开图,折叠成一 A B C D
G
个长方体,那么与字母
J重合的点是哪几个?
NM
LI
H
KJ
有一正方体木块,它的六个面分别标上 数字1——6,下图是这个正方体木块从不同 面所观察到的数字情况。请问数字1和5对面 的数字各是多少?
这个棱柱有几个侧面,侧面的形状是什么图形
底面
2、棱柱的侧面形状都是长方形;
这个棱柱有几条侧棱,它们的长度之 间有什么关系?
侧面
3、棱柱的侧棱的长度都相等。
侧棱
这个棱柱侧面的个数与底面图形的边数 有什么关系?
棱柱侧面的个数和它底面图形的边 数相等
你还想到了什么结论?
棱柱的特点
(1)棱柱的所有侧棱长都相等。 (2)棱柱的上、下底面形状相同,大小相等。 (3)棱柱的侧面的形状都是长方形。 (4)侧面的个数和底面图形的边数相等。
下列图形哪个不是长方体的表面展开图?
A C
B E
D
活动三
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
把左图中长方体的
E
F
表面展开图,折叠成一 A B C D
G
个长方体,那么与字母
J重合的点是哪几个?
NM
LI
H
KJ
有一正方体木块,它的六个面分别标上 数字1——6,下图是这个正方体木块从不同 面所观察到的数字情况。请问数字1和5对面 的数字各是多少?
这个棱柱有几个侧面,侧面的形状是什么图形
底面
2、棱柱的侧面形状都是长方形;
这个棱柱有几条侧棱,它们的长度之 间有什么关系?
侧面
3、棱柱的侧棱的长度都相等。
侧棱
这个棱柱侧面的个数与底面图形的边数 有什么关系?
棱柱侧面的个数和它底面图形的边 数相等
你还想到了什么结论?
棱柱的特点
(1)棱柱的所有侧棱长都相等。 (2)棱柱的上、下底面形状相同,大小相等。 (3)棱柱的侧面的形状都是长方形。 (4)侧面的个数和底面图形的边数相等。
5.3展开与折叠(第二课时)课件
这样的袭击方式容易暴露自己而让害虫跑掉,它想
给害虫一个出其不意,绕过油
罐来攻其不备,那么壁虎经过 什么路线,要跑多远的路程才 能用最少的时间捕到害虫? A B
作业
P165:4 设计作业(要注重美观与实用)
有一个底面直径为5cm,高为20cm的圆柱形茶 杯,厂家请你为它设计一个棱柱形包装盒,请完成你 的方案,做成样品,说明你的设想。
由表面展开图形想象其折叠围成立体图形的方法
你还有什么问题要提出来?
1.下列平面图形经过折叠后能得到一个无盖正方
体盒子的是(
)
A
B
C
D
2.下列图形中,经过折叠后能围成一个三棱柱的图 形有( )
A.2个
B.3个
C.4个
D.5个
3.如图是正方体表面的展开图,如果将其合成原来
的正方体的表面,则与点A重合的顶点是___
正方体折叠一
返回
正方体折叠二
返回
比赛提示
返回
1 4 6
点此演示
规则:各小组先分析作出选 择后,分别剪折,剪
2
3 5
坏了不能再用,成功
的不同情况多者胜.
7
9 10
8
考考你1
将下面几何体与能围成它们的图形连结起来
1
2
3
4
5
6
1
2
3
4
5
6
考考你2 要使平面展开图,折叠围成立体图形
后,相对两面上的数互为相反数, 则x= y=
小结
通过本课的学习,你有什么收获?
______.
L A N M K J I
B
C
D E F
G
给害虫一个出其不意,绕过油
罐来攻其不备,那么壁虎经过 什么路线,要跑多远的路程才 能用最少的时间捕到害虫? A B
作业
P165:4 设计作业(要注重美观与实用)
有一个底面直径为5cm,高为20cm的圆柱形茶 杯,厂家请你为它设计一个棱柱形包装盒,请完成你 的方案,做成样品,说明你的设想。
由表面展开图形想象其折叠围成立体图形的方法
你还有什么问题要提出来?
1.下列平面图形经过折叠后能得到一个无盖正方
体盒子的是(
)
A
B
C
D
2.下列图形中,经过折叠后能围成一个三棱柱的图 形有( )
A.2个
B.3个
C.4个
D.5个
3.如图是正方体表面的展开图,如果将其合成原来
的正方体的表面,则与点A重合的顶点是___
正方体折叠一
返回
正方体折叠二
返回
比赛提示
返回
1 4 6
点此演示
规则:各小组先分析作出选 择后,分别剪折,剪
2
3 5
坏了不能再用,成功
的不同情况多者胜.
7
9 10
8
考考你1
将下面几何体与能围成它们的图形连结起来
1
2
3
4
5
6
1
2
3
4
5
6
考考你2 要使平面展开图,折叠围成立体图形
后,相对两面上的数互为相反数, 则x= y=
小结
通过本课的学习,你有什么收获?
______.
L A N M K J I
B
C
D E F
G
图形的展开和折叠PPT 演示文稿
• 将一个正方体的表面沿某些棱剪开,能展成 一个平面图形吗?你能得到哪些平面图形? 与同伴进行交流.
[例]下面图形经过折叠能否围成棱柱?
(1)侧面数(4个)≠底面边数(3条),不能围成棱柱. (2)两底面在侧面展开图的同一端,不在两端,所以也不能 围成棱柱.
(3)可以折成棱柱
考考你
1.如图,上面的图形分别是下面哪个立体图形 展开的形状?把它们用线连起来.
图形的展开和折叠
棱柱的表面展开图是
两个完全相同的多边形(作底面)和 几个长方形(作侧面)
棱锥的展开图是 由一个多边形(作底)和 几个三角形(作侧面)组成的
圆柱的表面展开图是
两个圆(作底面)和一个长方形(作侧面)
圆锥的表面展开图是
一个圆(作底面)和一个扇形(作侧面) Nhomakorabea 方 体
长方体的展开图
做一做
A.
B.
C.
D.
6、如图所示的纸板上有10个无阴影的正方 形,从中选出一个,与图中5个有阴影的正 方形一起折一个正方体的包装盒,有多少 种不同的选法。
共有四种不同的选法
本节课你收获了什么?
2、下图是一些立体图形的展开图,用它 们能围成怎样的立体图形?
3.下图所示的平面图形中不能围成三棱柱的 是( B )
4.下列哪个平面图形沿虚线折叠不能围成正方体 的是( B )
5 、右图需再添上一个面,折叠后才能围成一个正方 体,下面是四位同学补画的情况(图中阴影部分), 其中正确的是( B )
[例]下面图形经过折叠能否围成棱柱?
(1)侧面数(4个)≠底面边数(3条),不能围成棱柱. (2)两底面在侧面展开图的同一端,不在两端,所以也不能 围成棱柱.
(3)可以折成棱柱
考考你
1.如图,上面的图形分别是下面哪个立体图形 展开的形状?把它们用线连起来.
图形的展开和折叠
棱柱的表面展开图是
两个完全相同的多边形(作底面)和 几个长方形(作侧面)
棱锥的展开图是 由一个多边形(作底)和 几个三角形(作侧面)组成的
圆柱的表面展开图是
两个圆(作底面)和一个长方形(作侧面)
圆锥的表面展开图是
一个圆(作底面)和一个扇形(作侧面) Nhomakorabea 方 体
长方体的展开图
做一做
A.
B.
C.
D.
6、如图所示的纸板上有10个无阴影的正方 形,从中选出一个,与图中5个有阴影的正 方形一起折一个正方体的包装盒,有多少 种不同的选法。
共有四种不同的选法
本节课你收获了什么?
2、下图是一些立体图形的展开图,用它 们能围成怎样的立体图形?
3.下图所示的平面图形中不能围成三棱柱的 是( B )
4.下列哪个平面图形沿虚线折叠不能围成正方体 的是( B )
5 、右图需再添上一个面,折叠后才能围成一个正方 体,下面是四位同学补画的情况(图中阴影部分), 其中正确的是( B )
展开与折叠精选课件PPT
1.以小组为单位,用手中的剪刀将准备好的正 方体的表面沿某些棱剪开, 说一说是怎样剪
的.
2.比较是否有重复的,有些展开图通过旋转后
是一样的.
3.把正方体中任意两个相对面作为 上下底面,其余四面作为侧面,将上、 下底面与侧面相连的四条棱各任意 剪开三条,再将四条侧棱任意剪开一
条,就可以得到正方体的平面展开图.
小丽制作了一个如下图所示的正方体礼品盒, 其对面图案都相同,那么这个正方体的平面展 开图可能是 ( A )
A
B
C
D
〔解析〕基本方法是先定上下,后定左右,可 知A正确.故选A.
检测反馈
1.下列各图形中,经过折叠能围成一个正 方体的是 ( )
1.下列各图形中,经过折叠能围成一个正方体的
是
A
()
解析:由平面图形的折叠及正方体的
2021/3/2
8
正方体展开图分类
第一类,1,4, 1型,共六种。
2021/3/2
9
第二类,2,3,1型,共三种。
2021/3/2
10
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
2021/3/2
11
总结规律
一四一, 二三一, 一在图层可任意, 三个二, 成阶梯,两个三,
目状连.
二、找正方体相邻或相对的面 1.从展开图找.
如右图所示的是一个正方体的展 开图,如果正方体相对的面上标注 的值相同,那么x= 4 , y= 10 .
〔解析〕“2x”与“8”中间隔一个正方 形,是相对的面,“y”与“10”是相对的 面.所以x=4,y=10. 〔答案〕 4 10
如下图所示的是一个正方体的三种不同的放置 方式,该正方体的表面分别标上数字1,2,3,4,5,6, 则下底面标有的数字依次是 2,5,1 .
的.
2.比较是否有重复的,有些展开图通过旋转后
是一样的.
3.把正方体中任意两个相对面作为 上下底面,其余四面作为侧面,将上、 下底面与侧面相连的四条棱各任意 剪开三条,再将四条侧棱任意剪开一
条,就可以得到正方体的平面展开图.
小丽制作了一个如下图所示的正方体礼品盒, 其对面图案都相同,那么这个正方体的平面展 开图可能是 ( A )
A
B
C
D
〔解析〕基本方法是先定上下,后定左右,可 知A正确.故选A.
检测反馈
1.下列各图形中,经过折叠能围成一个正 方体的是 ( )
1.下列各图形中,经过折叠能围成一个正方体的
是
A
()
解析:由平面图形的折叠及正方体的
2021/3/2
8
正方体展开图分类
第一类,1,4, 1型,共六种。
2021/3/2
9
第二类,2,3,1型,共三种。
2021/3/2
10
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
2021/3/2
11
总结规律
一四一, 二三一, 一在图层可任意, 三个二, 成阶梯,两个三,
目状连.
二、找正方体相邻或相对的面 1.从展开图找.
如右图所示的是一个正方体的展 开图,如果正方体相对的面上标注 的值相同,那么x= 4 , y= 10 .
〔解析〕“2x”与“8”中间隔一个正方 形,是相对的面,“y”与“10”是相对的 面.所以x=4,y=10. 〔答案〕 4 10
如下图所示的是一个正方体的三种不同的放置 方式,该正方体的表面分别标上数字1,2,3,4,5,6, 则下底面标有的数字依次是 2,5,1 .
2020年北师大版七年级数学上册第1章第2节展开与折叠 两个课时课件
1 25
4
1 2
6
4
1
如图,这是一个正方体的展开图,如
果将它组成原来的正方体,哪些点与
点P重合。
S
T
P
H
R
U
V
M
N
Q
Z
l
W
K
Y
下图是一个正方体的展开图,标注了字 母A的面是正方体的正面,如果正方体的左
面与右面所标注代数式的值相等,求 x 的
值.
-2
3 -4 1
A 3x-2
如图是一个正方体纸盒的展开图,请在图
A
BCD
E
F
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
(Ⅱ)动手操作,探究新知
第二类,2,3,1型,共三种。
(Ⅱ)动手操作,探究新知
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
(Ⅱ)动手操作,探究新知
问题
1.既然都是正方体,为什么剪出的平 面图形会不一样呢?
2.一个正方体要将其展开成一个平面 图形,必须沿几条棱剪开?
(Ⅲ)先猜想再实践,发展几何直觉
活动一
观察圆柱形纸筒展开的侧面是一个什么图形
(Ⅰ)创设情境,导入课题
活动一
观察圆锥形圣诞帽的侧面是什么图形?
考考你
如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
想一想: 下面几个图形是一些常见几何 体的展开图,你能正确说出这些几何 体的名字么?
(Ⅱ)动手操作,探究新知
做一做
D1 A1
D A
C1 1.如图: ⑴ 长方体有 8 个顶点,
12条棱,
2展开与折叠②
球体的展开图是不是平面图形?
折
一
折
如图,第二行的平面图形折叠后得到第一行的某个几 何体,请用线连一连。
1
2
3
4 5
A
B
C
D
E
下列图形能折叠成什么立体图形?
圆பைடு நூலகம்柱
棱 柱 棱 柱
圆 锥
小壁虎的难题: 如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁 虎要想尽快吃到蚊子,应该走哪条路径?
●
蚊子
你有何高招 ?
壁虎
●
●
蚊子
壁虎
●
蚊子
●
●
壁虎
展开与折叠
圆柱 棱柱
圆锥
棱柱
长方体
展
一
展
长方体
展开
展
一
展
五棱柱
展 开
展
一
展
三棱锥
展 开
折
一
折
下列三图中哪一个可 以折叠成多面体?
(1)
(2) 三棱锥的平面展开图
(3)
展 四
一 棱
展 锥
展 开
展 五
一 棱
展 开
展 锥
展
一
展
圆 柱
展 开
展
一
展
圆 锥
展 开
是不是所有的立体图 形展开后,都是平面图形?
北师大版数学七年级上册1.2《展开与折叠》(第2课时)课件
作业
1、 P12习题1.3; 2、资源与学案第1.2节
坚
持就是
胜
利
圆柱体 展开 长方形 侧面
圆锥体 展开 扇形 侧面
棱柱结构特征:
底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
二. 折叠后你能说出这些多面体的名称吗?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式
的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)ห้องสมุดไป่ตู้
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗?
(1)
(2)
(3)
(√)
(√)
(4)
(5)
(√)
(×)
(√) (6)
(×)
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
同学们 下午好!
田小平
§1.2 展开与折叠 (第二课时)
探索什么样的图形能围成棱柱
1、 P12习题1.3; 2、资源与学案第1.2节
坚
持就是
胜
利
圆柱体 展开 长方形 侧面
圆锥体 展开 扇形 侧面
棱柱结构特征:
底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
二. 折叠后你能说出这些多面体的名称吗?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式
的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)ห้องสมุดไป่ตู้
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗?
(1)
(2)
(3)
(√)
(√)
(4)
(5)
(√)
(×)
(√) (6)
(×)
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
同学们 下午好!
田小平
§1.2 展开与折叠 (第二课时)
探索什么样的图形能围成棱柱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展开与折叠(2)
2021/3/1
1
你还记得规律了吗?
2021/3/1
2
右图需再添上一个面,折叠后才能围成一个正方体, 下面是四位同学补画的情况(图中阴影部分),其中 正确的是( B )
A.
B.
2021/3/1
C.
D.
3
如图所示的纸板上有10个无阴影的正方形, 从中选出一个,与图中5个有阴影的正方形 一起折一个正方体的包装盒,有多少种不 同的选法。
2021/3/1
4
考考你 下面图形中,哪些是正方体的平面展开图?
1
祝
23 45 6
前你 似程
锦
ABC DE F
2021/3/1
7
有一个正方体,在它的各个面上分别涂了
白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
17
思考:左边的图形可能是右边哪些图形 的展开图?
√
√√
2021/3/1
18
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/3/1
19
2021/3/1
11
练习巩固:下图中的那些图形可以沿虚 线折叠成长方体包装盒,先想一想,再 折一折。
2021/3/1
12
2021/3/1
13
2021/3/1
14
下列图形哪个不是长方体的表面展开图?
A
C
2021/3/1
B
D
15
活动三
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
2021/3/1
16
水平放置的正方体的六个面分别用“前面、后 面、上面、下面、左面、右面”表示.如右图, 是一个正方体的平面展开图,若图中的“似” 表示正方体的前面, “锦”表示右面, “程”表示下 面. 则“祝”、 “你”、前”分别表示正方体的
______________________.
2021/3/1
黑 红兰
甲
2021/3/1
白 黄红
乙
绿 兰黄
丙
9
有一正方体木块,它的六个面分别标上 数字1——6,下图是这个正方体木块从不同 面所观察到的数字情况。请问数字1和5对面 的数字各是多少?
1 25
4
1 2
6 41
2021/3/1
10
想一想: 下面几个图形是一些常见几何体 的展开图,你能正确说出这些几何体的 名字么?
2021/3/1
1
你还记得规律了吗?
2021/3/1
2
右图需再添上一个面,折叠后才能围成一个正方体, 下面是四位同学补画的情况(图中阴影部分),其中 正确的是( B )
A.
B.
2021/3/1
C.
D.
3
如图所示的纸板上有10个无阴影的正方形, 从中选出一个,与图中5个有阴影的正方形 一起折一个正方体的包装盒,有多少种不 同的选法。
2021/3/1
4
考考你 下面图形中,哪些是正方体的平面展开图?
1
祝
23 45 6
前你 似程
锦
ABC DE F
2021/3/1
7
有一个正方体,在它的各个面上分别涂了
白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
17
思考:左边的图形可能是右边哪些图形 的展开图?
√
√√
2021/3/1
18
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/3/1
19
2021/3/1
11
练习巩固:下图中的那些图形可以沿虚 线折叠成长方体包装盒,先想一想,再 折一折。
2021/3/1
12
2021/3/1
13
2021/3/1
14
下列图形哪个不是长方体的表面展开图?
A
C
2021/3/1
B
D
15
活动三
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
2021/3/1
16
水平放置的正方体的六个面分别用“前面、后 面、上面、下面、左面、右面”表示.如右图, 是一个正方体的平面展开图,若图中的“似” 表示正方体的前面, “锦”表示右面, “程”表示下 面. 则“祝”、 “你”、前”分别表示正方体的
______________________.
2021/3/1
黑 红兰
甲
2021/3/1
白 黄红
乙
绿 兰黄
丙
9
有一正方体木块,它的六个面分别标上 数字1——6,下图是这个正方体木块从不同 面所观察到的数字情况。请问数字1和5对面 的数字各是多少?
1 25
4
1 2
6 41
2021/3/1
10
想一想: 下面几个图形是一些常见几何体 的展开图,你能正确说出这些几何体的 名字么?