平行四边形章节测试

合集下载

初中数学湘教版八年级下册第2章 四边形2.2 平行四边形-章节测试习题(3)

初中数学湘教版八年级下册第2章 四边形2.2 平行四边形-章节测试习题(3)

章节测试题1.【答题】如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有()A. 12个B. 9个C. 7个D. 5个【答案】B【分析】根据平行四边形的定义即可求解.【解答】根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边AEOH,HOFD,EBNO,ONCF,AEFD,EBCF,ABNH,HNCD,ABCD都是平行四边形,共9个.选B.【点评】此题考查的知识点是平行四边形的判定,本题可根据平行四边形的定义,直接从图中数出平行四边形的个数,但数时应有一定的规律,以避免重复.2.【答题】如图,已知△ABC,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC 上方交于点D,连结AD,CD,则有()A. ∠ADC与∠BAD相等B. ∠ADC与∠BAD互补C. ∠ADC与∠ABC互补D. ∠ADC与∠ABC互余【答案】B【分析】首先根据已知条件可以证明四边形ABCD是平行四边形,然后利用平行四边形的性质即可作出判定.【解答】解:如图,依题意得AD=BC、CD=AB,∴四边形ABCD是平行四边形,∴∠ADC+∠BAD=180°,∴B正确.选B.【点评】此题主要考查了平行四边形的判定与性质,先根据已知条件判定平行四边形是解题的关键.3.【答题】已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()A. 6种B. 5种C. 4种D. 3种【答案】C【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①③;(2)两组对边相等②④;(3)一组对边平行且相等①②或③④,所以有四种组合.【解答】依题意得有四种组合方式:(1)①③,利用两组对边平行的四边形是平行四边形判定;(2)②④,利用两组对边相等的四边形是平行四边形判定;(3)①②或③④,利用一组对边平行且相等的四边形是平行四边形判定.选C.【点评】此题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.4.【答题】如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为______°.【答案】25【分析】由,▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE= =25°,故答案为:25°.5.【答题】如图,在周长为10cm的平行四边形ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为______cm.【答案】5【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=5cm.故答案为:5cm.6.【答题】如图,在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=______.【答案】22【分析】本题考查的是平行四边形的性质.【解答】因为△ABO的周长为17,AB=6,所以OA+OB=11,∵OA=OC,OB=OD,所以AC+BD=22.故答案为22.【点评】本题的关键是平行四边形的对角线互相平分的性质的运用,求出对角线一半的和,从而求出对角线的和.7.【答题】若平行四边形的周长为80cm,两条邻边的比为3:5,则较短的边为______cm.【答案】15【分析】设平行四边形的两条邻边的分别为3x,5x,再由周长为80cm求出x的值,即可得出答案.【解答】解:设平行四边形的两条邻边的分别为3x,5x,∵平行四边形的周长为80cm,∴2(3x+5x)=80cm,解得x=5cm.∴3x=15cm;故答案为:15cm.8.【答题】如图,在▱ABCD中,∠B=60°,∠BCD的平分线交AD点E,若CD=3,四边形ABCE的周长为13,则BC长为______.【答案】5【分析】利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC﹣AE=3,即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD=3,AD=BC,∠D=∠B=60°,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=CD=3,∴△CDE是等边三角形,∴CE=CD=3,∵四边形ABCE的周长为13,∴AE+BC=13﹣3﹣3=7①,∵AD﹣AE═DE=3,即BC﹣AE=3②,由①②得:BC=5;故答案为:5.9.【答题】在▱ABCD中,对角线AC、BD交于一点O,AB=11cm,△OCD的周长为27cm,则AC+BD=______cm.【答案】32【分析】首先由平行四边形的性质可求出CD的长,由条件△OCD的周长为27,即可求出OD+OC的长,再根据平行四边的对角线互相平分即可求出平行四边形的两条对角线的和.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=11cm,OA=OC,OB=OD,∵△OCD的周长为27cm,∴OD+OC=27﹣11=16cm,∵BD=2DO,AC=2OC,∴BD+AC=2(OD+OC)=32cm,故答案为:32.10.【答题】若▱ABCD中,∠A=40°,对角∠C=______°.【答案】40【分析】由▱ABCD中,∠A=40°,根据平行四边形的对角相等,即可求得答案.【解答】解:∵▱ABCD中,∠A=40°,∴∠C=∠A=40°.故答案为:40°.【点评】此题考查了平行四边形的性质.注意掌握平行四边形的对角相等定理的应用是解此题的关键.11.【答题】如图,在平行四边形ABCD中,点E在AD上,BD平分∠EBC.若平行四边形ABCD的周长为10,则△AEB的周长为______.【答案】5【分析】证出BE=DE,得出△AEB的周长=AB+AD即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD,∵BD平分∠EBC,∴∠EBD=∠ADB,∴BE=DE,∴△AEB的周长=AB+BE+AE=AB+DE+AE=AB+AD,∵▱ABCD的周长为10,∴AB+AD=5,∴△ABE的周长=AB+AD=5;故答案为:5.12.【答题】如图,在平行四边形ABCD中,E为AD上一点,∠EBC=40°,且BE=BC,CE=CD,则∠A=______°.【答案】110【分析】先根据平行四边形的性质得出∠2=∠3,再根据BE=BC,CE=CD,∠1=∠2,∠3=∠D,进而得出∠1=∠2=∠3=∠D,求出∠D=70°,即可得出∠A的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB,AB∥CD,∴∠2=∠3,∠A+∠D=180°,∵BE=BC,CE=CD,∴BE=BC=10,CE=CD=6,∠1=∠2,∠3=∠D,∵∠EBC=40°,∴∠D=∠1=∠3=70°,∴∠A=180°﹣70°=110°;故答案为:110°.13.【答题】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于______.【答案】2【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.14.【答题】在平行四边形ABCD中,∠A=70°,则∠C=______度.【答案】70【分析】根据平行四边形的对角相等得出∠A=∠C,代入求出即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A=70°,∴∠C=70°,故答案为70.15.【答题】如图,在△ABC中,∠ABC=90°,点D在AB边上,将△ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么∠ADC=______°.【答案】135【分析】延长CD到点F,根据平行四边形的性质可得出BC∥DE,结合∠ABC=90°,即可得出∠ADE=90°,再根据翻折的性质即可得出∠ADF=∠EDF=45°,从而得出∠BDC=45°,由∠ADC、∠BDC互补即可得出结论.【解答】解:延长CD到点F,如图所示.∵四边形BCDE是平行四边形,∴BC∥DE,∵∠ABC=90°,∴∠BDE=90°,∴∠ADE=90°.∵将△ACD沿直线CD翻折后,点A落在点E处,∴∠ADF=∠EDF= ∠ADE=45°,∴∠BDC=∠ADF=45°,∴∠ADC=180°﹣∠BDC=135°.故答案为:135°.【点评】本题考查了平行四边形的性质,解题的关键是求出∠BDC=45°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等的角是关键.16.【答题】在平行四边形ABCD中,对角线AC和BD交于点O,AB=2,AC=6,BD=8,那么△COD的周长为______.【答案】9【分析】△COD的周长=OC+OD+CD,根据平行四边形的对角线互相平分的性质求得OC与OD的长,根据平行四边形的对边相等可得CD=AB=2,进而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA= AC=3,OD=OB= BD=4,CD=AB=2,∴△COD的周长=OC+OD+CD=3+4+2=9.故答案为9.17.【答题】如图,已知AD∥BC,CE=5,CF=8,则AD与BC间的距离是______.【答案】5【分析】根据平行线间的距离的定义解答.【解答】解:由图可知,平行线AD与BC间的距离CE,∵CE=5,∴AD与BC间的距离是5.故答案为:5.【点评】本题考查了平行线之间的距离,熟记定义并准确识图是解题的关键.18.【答题】如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠ABC 内交于点M,连接BM并延长交AD于点E,则DE的长为______.【答案】2【分析】根据作图过程可得BE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,【解答】解:根据作图的方法得:BE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD-AE=5-3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.19.【答题】如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为______°.【答案】110【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.20.【答题】如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB 的延长线于点F,则∠BEF的度数为______°.【答案】50【分析】由“平行四边形的对边平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°-40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边平行推知DC∥AB是解题的关键.。

初中数学北师大版八年级下册第六章 平行四边形1.平行四边形的性质-章节测试习题(6)

初中数学北师大版八年级下册第六章 平行四边形1.平行四边形的性质-章节测试习题(6)

章节测试题1.【题文】如图,在□ABCD中,对角线AC,BD相交于点O,EO⊥AC.(1)若△ABE的周长为10cm,求平行四边形ABCD的周长;(2)若∠ABC=78°,AE平分∠BAC,试求∠DAc的度数.【答案】解:(1)∵四边形ABCD是平行四边形,∴OA=OC.∵OE⊥AC,∴AE=CE.故△ABE的周长为AB+BC=10(cm).根据平行四边形的对边相等,得□ABCD的周长为2×10=20(cm).(2)∵AE=CE,∴∠EAC=∠ECA.∵∠ABC=78°,AE平分∠BAC,∴∠BAE=∠EAC=∠ECA.∴3∠ACE+78°=180°.∴∠ACE=34°.∵AD∥BC,∠DAC=∠ECA=34°.【分析】【解答】2.【题文】如图,已知点A(-4,2),B(-1,-2),□ABCD的对角线交于坐标原点O.(1)请直接写出点C,D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出□ABCD的面积.【答案】解:(1)C点坐标为(4,-2),D点坐标为(1,2).(2)AB绕点O旋转180°与CD重合.(答案不唯一,合理即可)(3).【分析】【解答】3.【题文】分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,即△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF,请判断GF与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.【答案】解:(1)GF⊥EF,GF=EF.(2)GF⊥EF,GF=EF成立.∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC.∠DAB+∠ADC=180°∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°.∵.∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°.∴∠EAF+∠CDF=45°.∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF.∴△GDF≌△EAF(SAS)∴EF=FG,∠EFA=∠DFG.∴∠GFD+∠GFA=∠EFA+∠GFA=90°.∴∠GFE=90°∴GF⊥EF,GF=EF.【分析】【解答】4.【答题】如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A. AB=CDB. CE=FGC. A,B两点间的距离就是线段AB的长度D. l1与l2两平行线间的距离就是线段CD的长度【答案】D【分析】【解答】5.【答题】如图,直线AB∥CD,P是AB上的动点,当点P的位置变化时,三角形PCD的面积将()A. 变大B. 变小C. 不变D. 变大变小要看点P向左还是向右移动【答案】C【分析】【解答】6.【答题】如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=4cm,那么平行线a,b之间的距离为()A. 5cmB. 4cmC. 3cmD. 不能确定【答案】C【分析】【解答】7.【答题】已知直线a∥b∥c,直线a与直线b的距离是5cm,直线b与直线c的距离是3cm,则直线a与直线c之间的距离是______.【答案】8cm或2cm【分析】【解答】8.【答题】如图,方格纸中每个最小正方形的边长为1,则两平行直线AB,CD之间的距离是______.【答案】3【分析】【解答】9.【答题】如图,已知点E,F分别在长方形ABCD的边AB,CD上,且AF∥CE,AB=3,AD=5,那么AE与CF的距离是______.【答案】5【分析】【解答】10.【答题】如图,AD∥BC,AC,BD交于点E,S△ABC=5,S△EDC=2,则S△BEC=______.【答案】3【分析】【解答】11.【答题】如图,已知直线AB∥CD,AB与CD之间的距离为,∠BAC=60°,则AC=______.【答案】2【分析】【解答】12.【答题】平行四边形两邻边分别为20和16,若两较长边之间的距离为8,则两较短边之间的距离为______.【答案】10【分析】【解答】13.【答题】如图,直线a∥b,点A,B在直线a上,点C,D在直线b上,且AB:CD=1:2,若△ABC的面积为6,则△BCD的面积为______.【答案】12【分析】【解答】14.【题文】如图,已知l1∥l2,点C1在直线l1上,并且C1A⊥l2,点A为垂足,点C2,C3是l1上任意两点,点B在直线l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3.小颖认为S1=S2=S3,请帮小颖说明理由.【答案】解:直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等∴△ABC1,△ABC2,△ABC3同底且等高∴△ABC1,△ABC2,△ABC3的面积相等,即.【分析】【解答】15.【答题】如图,若□ABCD的面积为20,BC=5,则边AD与BC间的距离为______.【答案】4【分析】【解答】16.【答题】如图,四边形ABCD,ABDE都是平行四边形,且S□ABCD=8cm2,那么四边形ABCE的面积是______ cm2.【答案】12【分析】【解答】17.【答题】如图,直线a∥b∥c,且a,b之间的距离为1,△ABC和△CDE是两块全等的直角三角形纸板,其中∠ABC=∠CDE=90°,∠BAC=∠DCE=30°,它们的顶点都在平行线上,则b,c之间的距离是()A. 1B.C.D. 2【答案】C【分析】【解答】18.【答题】如图,a∥b,若要使△ABC的面积与△DEF的面积相等,需增加条件()A. AB=DEB. AC=DFC. BC=EFD. BE=AD【答案】C【分析】【解答】19.【答题】如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,AE=4,AF=6,□BCD的周长是40,则□ABCD的面积是()A. 48B. 40C. 35D. 30【答案】A【分析】【解答】20.【答题】如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S□AEPH=______.【答案】4【分析】【解答】。

平行四边形单元测试卷

平行四边形单元测试卷

平行四边形单元测试卷一、选择题(每题2分,共10分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 以上都不是2. 下列哪个不是平行四边形的性质?A. 对角线互相平分B. 对边相等C. 对角相等D. 内角和为360°3. 平行四边形的面积如何计算?A. 底乘高B. 对角线乘积的一半C. 周长除以4D. 以上都不是4. 如果一个平行四边形的两组对边分别相等,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 不能确定5. 平行四边形的对角线将平行四边形分成:A. 两个三角形B. 两个梯形C. 两个矩形D. 四个小平行四边形二、填空题(每空1分,共10分)1. 平行四边形的对角线_______。

2. 矩形的四个角都是_______。

3. 菱形的对角线_______。

4. 平行四边形的面积公式为_______。

5. 如果一个平行四边形的底为5厘米,高为3厘米,那么它的面积是_______平方厘米。

三、判断题(每题1分,共5分)1. 所有平行四边形都是矩形。

()2. 菱形的四条边都是相等的。

()3. 平行四边形的对角线一定垂直。

()4. 矩形和菱形都是特殊的平行四边形。

()5. 梯形不是平行四边形。

()四、简答题(每题5分,共10分)1. 请简述平行四边形和矩形的区别。

2. 请解释为什么平行四边形的对角线互相平分。

五、计算题(每题10分,共20分)1. 一个平行四边形的底是8厘米,高是4厘米,请计算它的面积。

2. 如果一个平行四边形的对角线长度分别为10厘米和12厘米,且它们相交于中点,求这个平行四边形的面积。

六、解答题(每题15分,共15分)1. 一个平行四边形的对角线互相垂直,且长度分别为12厘米和16厘米。

如果这个平行四边形的面积是96平方厘米,请求出它的底和高。

答案:一、选择题:1-5 BACAD二、填空题:1. 互相平分 2. 直角 3. 垂直且互相平分 4. 底×高 5.15三、判断题:1-5 ×√×√×四、简答题:1. 平行四边形的对边平行且相等,而矩形的四个角都是直角,且对角线相等。

初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形-章节测试习题(6)

初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形-章节测试习题(6)

章节测试题1.【题文】如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.【答案】见解答.【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA= (∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°-(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.2.【题文】如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.【答案】见解答.【分析】(1)根据DE是∠ADC的角平分线得到∠1=∠2,再根据平行四边形的性质得到∠1=∠3,所以∠2=∠3,根据等角对等边即可得证;(2)先根据BE=CE结合CD=CE得到△ABE是等腰三角形,求出∠BAE的度数,再根据平行四边形邻角互补得到∠BAD=100°,所以∠DAE可求.【解答】(1)证明:如图,在平行四边形ABCD中,∵AD∥BC∴∠1=∠3又∵∠1=∠2,∴∠2=∠3,∴CD=CE;(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,又∵CD=CE,BE=CE,∴AB=BE,∴∠BAE=∠BEA.∵∠B=80°,∴∠BAE=50°,∴∠DAE=180°-50°-80°=50°.【点评】(1)由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解;(2)根据“BE=CE”得出AB=BE是解决问题的关键.3.【题文】如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.【答案】见解答.【分析】(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.【点评】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,得出△ABE≌△CDF是解题关键.4.【题文】如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE于G点,交DF于F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】见解答.【分析】根据平行三边的性质可知:AD=BC,由平行四边形的判定方法易证四边形BMDK和四边形AJCN是平行四边形,所以得∠FAD=∠ECB,∠ADF=∠EBC,进而证明:△EBC≌△FDA.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AF∥CE,BE∥DF,∴四边形BMDK和四边形AJCN是平行四边形,∴∠FAD=∠ECB,∠ADF=∠EBC,在△EBC和△FDA中,∴△EBC≌△FDA(ASA).【点评】本题考查了平行四边形的判定以及全等三角形的判定,在全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.【题文】如图1是某公交汽车挡风玻璃的雨刮器,其工作原理如图2.雨刷EF⊥AD,垂足为A,AB=CD且AD=BC,这样能使雨刷EF在运动时,始终垂直于玻璃窗下沿BC,请证明这一结论.【答案】见解答.【分析】首先证明四边形ABCD是平行四边形,然后根据平行四边形的性质即可判断.【解答】证明:∵AB=CD、AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,又∵EF⊥AD,∴EF⊥BC.【点评】本题考查了平行四边形的判定与性质,正确理解平行四边形的判定方法是关键.6.【题文】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】见解答.【分析】(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,∴△AFE≌△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题是首先利用等边三角形的性质证明全等三角形,然后利用全等三角形的性质和等边三角形的性质证明平行四边形.7.【题文】如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.【答案】见解答.【分析】(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.【解答】证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NCD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN= ∠DNC=30°,∴∠BDC=90°.∵tan∠DBC= = ,∴DB=DC=MN.【点评】本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.8.【题文】如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.【答案】见解答.【分析】(1)通过全等三角形△ADE≌△CBF的对应边相等证得AE=CF;(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.【解答】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∴∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,∴△ADE≌△CBF(ASA),∴AE=CF;(2))证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.【点评】本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.9.【题文】如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【答案】见解答.【分析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).【点评】此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.10.【题文】如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以A、F、D、E为顶点的四边形是平行四边形.【答案】见解答.【分析】(1)由全等三角形的判定定理SAS证得△ABE≌△DCF;(2)利用(1)中的全等三角形的对应角相等证得∠AEB=∠DFC,则∠AEF=∠DFE,所以根据平行线的判定可以证得AE∥DF.由全等三角形的对应边相等证得AE=DF,则易证得结论.【解答】证明:(1)如图,∵AB∥CD,∴∠B=∠C.∵在△ABE与△DCF中,∴△ABE≌△DCF(SAS);(2)如图,连接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E为顶点的四边形是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质.在证明(2)题时,利用了“一组对边平行且相等的四边形是平行四边形”的判定定理.11.【题文】如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.【答案】见解答.【分析】首先根据平行线的性质可得∠BEC=∠DFA,再加上条件∠ADF=∠CBE,AF=CE,可证明△ADF≌△CBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可.【解答】证明:∵BE∥DF,∴∠BEC=∠DFA,在△ADF和△CBE中∴△ADF≌△CBE(AAS),∴BE=DF,又∵BE∥DF,∴四边形DEBF是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.12.【题文】如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.【答案】见解答.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.13.【题文】如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【答案】见解答.【分析】通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.14.【题文】如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.【答案】见解答.【分析】根据平行四边形性质得出AD∥BC,AD=BC,求出DE=BF,DE∥BF,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.【点评】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等.15.【题文】如图,在▱ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.【答案】见解答.【分析】根据“▱ABCD的对边平行且相等”的性质推知AD=BC且AD∥BC;然后由图形中相关线段间的和差关系求得AF=CE,则四边形AECF的对边AF ∥CE,故四边形AECF是平行四边形.【解答】证明:在▱ABCD中,AD=BC且AD∥BC∵BE=FD,∴AF=CE∴四边形AECF是平行四边形【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.16.【题文】如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.【答案】见解答.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF= AD.又∵CE= BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形;(2)解:如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH= CD=2,DH=.在▱CEDF中,CE=DF= AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE=.【点评】本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.17.【题文】如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【答案】见解答.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,即DE=BF,∴四边形BFDE是平行四边形.【点评】此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.18.【题文】如图,在▱ABCD中,点E、F分别在BC、AD上,且AF=CE.求证四边形AECF 是平行四边形.【答案】见解答.【分析】由四边形ABCD是平行四边形,可得AF∥CE,又AF=CE,所以四边形AECF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形.【点评】此题主要考查平行四边形的判定:一组对边平行且相等的四边形是平行四边形.19.【题文】如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.【答案】见解答.【分析】由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.【解答】证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD=BC,主要考查学生运用性质进行推理的能力.20.【题文】已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【答案】见解答.【分析】(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM ∥DN,则由有一组对边平行且相等的四边形是平行四边形即可证明.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN,又∵AD∥BC,∴∠E=∠F.∵在△AEM与△CFN中,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB ∥CD,又由(1)得AM=CN,∴BM ∥DN,∴四边形BMDN是平行四边形.【点评】本题考查了平行四边形的判定及性质,全等三角形的判定,属于基础题,比较简单.。

初中数学浙教版八年级下册第4章 平行四边形4.3 中心对称-章节测试习题

初中数学浙教版八年级下册第4章 平行四边形4.3 中心对称-章节测试习题

章节测试题1.【题文】你能否画出一条直线,同时把如图所示的两个图形分成形状、大小都相同的两个部分?你还有什么发现?【答案】图形见解析.【分析】作出圆和正方形的对称中心,过这两个点作一条直线,则这条直线把两个图形分成形状、大小都相同的两个部分.【解答】解:如图:结论:过既是轴对称图形又是中心对称图形的对称中心的直线一定把原图形分成形状、大小都相同的两个部分.2.【题文】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△A BC以点C为旋转中心旋转180,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.【答案】(1)见解析(2)见解析(3)(-1,0)【分析】(1)根据图中的网格结构分别找出点A、B绕点C旋转180°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的位置,然后顺次连接即可;(3)根据旋转的性质,确定出旋转中心即可.【解答】解:(1)△A1B1C如图所示;(2)△A2B2C2如图所示;(3)如图所示,旋转中心为(﹣1,0)..3.【题文】如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与______成中心对称,其对称中心的坐标为______.【答案】(1)图形见解析;(2)点B2、C2的坐标分别为(0,-2),(-2,-1);(3)△A1B1C1;(1,-1).【分析】(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可;(3)连接B1B2与C1C2相交,得出其交点H的坐标即可.【解答】解:(1)△ABC关于原点O对称的△A1B1C1如图所示:(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1);(3)△A1B1C1;(1,-1).4.【题文】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-4,5),C(-5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.【答案】作图见解析.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.5.【题文】如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A, D1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)对称中心的坐标;(2)写出顶点B, C, B1 , C1的坐标.【答案】(0,);B(-2,4)C(-2,2)(2,1)(2,3).【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.【解答】解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).6.【题文】如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′,使它和△ABC关于点O成中心对称;(2)请在方格网中标出所有的D 点,使以点A,O,C′,D为顶点的四边形是平行四边形.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)根据中心对称的作法,找出对称点,即可画出图形,(2)根据平行四边形的判定,画出使以点A、O、C′、D为顶点的四边形是平行四边形的点即可.【解答】解:(1)画△A′B′C′和△ABC关于点O成中心对称的图形如下:(2)根据题意画图如下:7.【题文】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【答案】(1)作图见解析, A1(﹣2,2);(2)作图见解析,A2(4,0);(3)作图见解析,A3(﹣4,0).【分析】根据题意画出相应的三角形,确定出所求点坐标即可.【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).8.【题文】△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标______.若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值______(写出满足的一个即可).【答案】(1)作图见解析;(2)B2(1, 1);满足即可【分析】(1)利用网格结构找出点A、B、C原点成中心对称的A1、B1、C1的位置,然后顺次连接即可;(2)根据图形平移的性质画出平移后的△A2B2C2即可.【解答】解:(1)如图,(2)B2(1, 1);满足即可9.【题文】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;111222点C2的坐标.【答案】(1)C1(4,4);(2)C2(﹣4,﹣4).【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出图形.【解答】解:(1)如图所示:C1的坐标为:(-1,4);(2)如图所示:C2的坐标为:(-1,-4).10.【题文】如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.1111______.(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.【答案】(1)(6,﹣1)(2)作图见解析【分析】(1)连接AO并延长至A1,使A1O=AO,连接BO并延长至B1,使B1O=BO,连接CO并延长至C1,使C1O=CO,然后顺次连接A1、B1、C1即可得到△A1B1C1;再根据平面直角坐标系的特点写出点A1的坐标即可;(2)根据旋转变换,找出点A、B、C绕点(﹣2,1)顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)如图所示,△A1B1C1即为所求三角形,点A1的坐标是A1(6,﹣1);故答案为:(6,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形.11.【题文】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为______ .【答案】(1)画图见解析;(2)(2,-1).【分析】(1)、根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)、△A1B1C如图所示,△A2B2C2如图所示; (2)、如图,对称中心为(2,﹣1).12.【题文】如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5格得△A1B1C1,画出平移后的△A1B1C1;(2)画出△ABC关于点B成中心对称的图形;(3)在直线l上找一点P,使△ABP的周长最小.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示: △A1B1C1即为所求(2) 如图所示: △DEF即为所求(3) 如图所示: P点位置,使△ABP的周长最小.13.【题文】知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四(填“>”“<”“=”);边形DEFC(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O 的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).【答案】(1)=;(2)作图见解析;(3)作图见解析.【分析】(1)根据知识背景即可求解;(2)先找到两个矩形的中心,然后过中心作直线即可;(3)先分成两个矩形,找到中心,然后过中心作直线即可.【解答】解:(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S 四边形AEFB=S四边形DEFC;(2)如图所示:(3)如图所示:14.【题文】如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)以原点O为对称中心作△ABC的中心对称图形,得到△A1B1C1,请画出△A1B1C1,并直接写出A1、B1、C1的坐标;(2)再将△A1B1C1绕着点A1顺时针旋转90°,得到△A1B2C2,请画出△A1B2C2,并直接写出点B2、C2的坐标.【答案】(1)作图见解析;(2)A1(2,1);B1(2,4);C1(4,2);B2(5,1);C2(3,-1).【分析】(1)根据网格结构找出点A、B、C关于原点O的对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)根据网格结构找出点B1、C1绕着点A1顺时针旋转90°后的点B2、C2的位置,然后与点A1顺次连接即可,再根据平面直角坐标系写出点B2、C2的坐标.【解答】解:(1)△A1B1C1如图所示;A1(2,1),B1(2,4),C1(4,2);(2)△A1B2C2如图所示;B2(5,1),C2(3,-1).15.【题文】如图所示的正方形网格中,△A BC的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)将△ABC向右平移1个单位长度,再向上平移4个单位长度,请画出平移后的△A1B1C1.(2)画出△ABC关于坐标原点O成中心对称的△A2B2C2.【答案】见解析【分析】(1)直接利用平移的性质得出各点坐标,进而得出答案;(2)直接利用关于原点对称点的性质得出各点坐标,进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.16.【题文】△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△;②画出将△ABC绕点C顺时针旋转90°得到△.【答案】①作图见解析;②作图见解析【分析】(1)连接BO并延长BO到点B1,使得BO=OB1,得到点B1,同理可得点A1,C1,连接点B1,A1,C1,可得到△;(2)根据网格结构以及平面直角坐标系的特点,找出点A、B绕点C顺时针旋转90°的对应点的位置,然后顺次连接即可.【解答】解:①如图,△为所作;②如图,△为所作.17.【题文】在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.【答案】(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).【分析】(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(-3,1);(3)△A2B2C2如图所示,B2(3,-5),C2(3,-1).18.【题文】如图,已知四边形ABCD及点O.求作:四边形A′B′C′D′,使得四边形与四边形ABCD关于O点中心对称【答案】作图见解析.【分析】根据中心对称的性质,连结AO并延长到A′,使OA′=OA,则点A和点A′关于点O对称,同样作出点B、C、D的对应点B′、C′、D′,则四边形A′B′C′D′为满足条件的四边形.【解答】解:如图,四边形A′B′C′D′为所作.19.【题文】如图,它是一个8×10的网格,每个小正方形的边长均为1 ,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△.(2)画出△ABC关于点O的中心对称图形△.(3)△与△组成的图形是轴对称图形吗?如果是,请画出对称轴.△与△组成的图形__________(填“是”或“不是”)轴对称图形.【答案】(1)画图见解析;(2)画图见解析;(3)是,画对称轴见解析.【分析】(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:(1)如图, △即为所求;(2)如图, △即为所求;(3)如图, △与△组成的图形是轴对称图形,其对称轴为直线l.20.【题文】如图,已知△ABC和点求作△ABC关于点C成中心对称的△A1B1C1,保留作图痕迹,不要求写过程.【答案】作图见解析.【分析】延长AC到A1,使得AC=A1C,延长BC到B1,使得BC=B1C,连接B1A1即可.【解答】解:。

第一章 特殊平行四边形 单元测试(含答案)

第一章  特殊平行四边形 单元测试(含答案)

第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。

初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形-章节测试习题(5)

初中数学人教版八年级下册第十八章 平行四边形18.1 平行四边形-章节测试习题(5)

章节测试题1.【答题】如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是______cm.【答案】2【分析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.【解答】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.故答案为2.【点评】本题是应用平行四边形性质的典型题目,解决此题运用了平行四边形的对边相等和角平分线互相平分这两条性质,题目难度不大.2.【答题】如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.【答案】3<x<11【分析】根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.【解答】解:∵ABCD是平行四边形,AC=14,BD=8,∴OA= AC=7,OB= BD=4,∴7-4<x<7+4,即3<x<11.故答案为3<x<11.【点评】此题考查了平行四边形的性质及三角形三边关系定理,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.3.【答题】如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是______度.【答案】65【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD= (180°-50°)=65°,∴∠ECB=130°-65°=65°.故答案为65°.【点评】本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.4.【答题】如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是______.【答案】12【分析】根据AD∥BC和已知条件,推得AB=AE,由E是AD边上的中点,推得AD=2AB,再求平行四边形ABCD的周长.【解答】∵AD∥BC,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵E是AD边上的中点,∴AD=2AB,∵AB=2,∴AD=4,∴平行四边形ABCD的周长=2(4+2)=12.故答案为12.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现等角时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.5.【答题】如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE=______.【答案】3【分析】先根据角平分线和平行四边形的性质求出CD=CE,再由BE=BC-CE求解.【解答】在ABCD中,AB=5,AD=8,∴BC=8,CD=5,∵DE平分∠ADC,∴∠ADE=∠CDE,又▱ABCD中,AD∥BC,∴∠ADE=∠DEC,∴∠DEC=∠CDE,∴CD=CE=5,∴BE=BC-CE=8-5=3.故答案为3.【点评】本题主要考查平行四边形的性质,角平分线性质的利用是解题的关键,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.6.【答题】如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=______cm.【答案】6【分析】由平行四边形的性质及叫平分线可得∠DCE=∠DEC,即DE=DC,即可求解.【解答】在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.【点评】本题主要考查平行四边形的性质及叫平分线的性质,能够判定一个三角形是等腰三角形.7.【答题】如图,在▱ABCD中,∠A=120°,则∠D=______度.【答案】60【分析】利用平行四边形的性质得两边平行,两邻角互补,从而求出∠D的度数.【解答】平行四边形中两组对边分别平行则AB∥CD,根据两直线平行同旁内角互补∠A+∠D=180°,当∠A=120°时,∠D=60°故答案为60.【点评】此题主要考查了平行四边形的性质,平行四边形的对角相等,邻角互补.8.【答题】如图,在▱ABCD中,已知AB=9cm,AD=6cm,BE平分∠ABC交DC边于点E,则DE等于______cm.【答案】3【分析】要求DE的长,只要求出CE即可,根据平行四边形的性质和角平分线,证得CE=BC,从而求得DE.【解答】在▱ABCD中,∵AB∥CD,∴∠ABE=∠BEC,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE,∵AB=9cm,AD=6cm,∴DE=CD-CE=AB-AD=9-6=3cm故答案为3.【点评】本题考查的是利用平行四边形的性质结合等角对等边来解决有关线段长度的问题.9.【答题】如图,▱ABCD中,点A关于点O的对称点是点______.【答案】C【分析】根据平行四边形的对角线互相平分,点A、C关于点O对称.【解答】∵四边形ABCD为平行四边形,∴OA=OC,且A、O、C三点共线,∴点A关于点O的对称点是点C.【点评】平行四边形是中心对称图形,其对称中心为对角线的交点.10.【答题】如图,已知▱ABCD的对角线AC、BD相交于点O,AC=12,BD=18,且△AOB 的周长l=23,则AB=______.【答案】8【分析】根据平行四边形中两条对角线相互平分的性质可求解.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,AC=12,BD=18,∴AO= AC=6,BO= BD=9.又∵△AOB的周长l=23,∴AB=l-(AO+BO)=23-(6+9)=8.【点评】本题主要考查了平行四边形的性质及三角形的周长的计算.11.【答题】如图,方格纸中每个最小正方形的边长为1,则两平行直线AB、CD之间的距离是______.【答案】3【分析】本题主要利用平行线之间的距离的定义作答.【解答】解:由图可知,∵AB、CD为小正方形的边所在直线,∴AB∥CD,∴AC⊥AB,AC⊥CD,∵AC的长为3个小正方形的边长,∴AC=3,即两平行直线AB、CD之间的距离是3.故答案为:3.【点评】此题很简单,考查的是两平行线之间的距离的定义,即两直线平行,则夹在两条平行线间的垂线段的长叫两平行线间的距离.12.【答题】若点O为▱ABCD的对角线AC与BD交点,且AO+BO=11cm,则AC+BD=______cm.【答案】22【分析】根据平行四边形的对角线互相平分即可求解.【解答】解:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∴AC=2AO,BD=2BO∴AC+BD=2(AO+BO)=22cm.故答案为22.【点评】本题考查的是平行四边形的对角线互相平分这一性质,题型简单.13.【答题】如图,在▱ABCD中,AC、BD相交于点O,OE⊥BD交AD于点E,若△ABE的周长为5cm,则▱ABCD的周长为______cm.【答案】10【分析】根据平行四边形性质得出AD=BC,AB=CD,BO=DO,根据线段垂直平分线得出BE=DE,根据△ABE的周长求出AB+AD=5cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,BO=DO,∵OE⊥BD,∴BE=DE,∵△ABE的周长为5cm,∴AB+AE+BE=AB+AE+DE=AB+AD=5cm,∴▱ABCD的周长为2(AB+AD)=2×5cm=10cm,故答案为:10.【点评】本题考查了平行四边形的性质和线段的垂直平分线的性质的应用,关键是求出AB+AD的值,此题比较典型,是一道比较好的题目.14.【答题】如图,在▱ABCD中,EF经过对角线的交点O,交AB于点E,交CD于点F.若AB=5,AD=4,OF=1.8,那么四边形BCFE的周长为______.【答案】12.6【分析】由四边形ABCD是平行四边形,易求得BC=AD=4,易证得△AOE≌△COF,则可求得CF=AE,EF=3.6,然后由四边形BCFE的周长为:AB+BC+EF,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=4,OA=OC,AB∥CD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴CF=AE,OE=OE=1.8,∴EF=OE+OF=3.6,∴四边形BCFE的周长为:EF+BE+BC+CF=EF+BC+BE+AE=EF+BC+AB=3.6+4+5=12.6.故答案为:12.6.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.15.【答题】如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF 的长是______.【答案】3【分析】根据平行四边形的对边相等,可得CD=AB=4,又因为S ▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长是3.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,∴S ▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.故答案为3.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.16.【答题】如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O 过A、C两点,则图中阴影部分的面积之和为______.【答案】4【分析】先根据∠AOB=∠COD可知S 阴影 =S △AOB,再由平行四边形的性质得出OA= AC,由三角形的面积公式即可得出结论.【解答】解:∵∠AOB=∠COD,∴S 阴影 =S △AOB.∵四边形ABCD是平行四边形,∴OA= AC= ×4=2.∵AB⊥AC,∴S 阴影 =S △AOB = OA•AB=×2×4=4.故答案为:4.【点评】本题考查的是扇形面积的计算,熟知平行四边形的对角线互相平分是解答此题的关键.17.【答题】▱ABCD中,已知点A(-1,0),B(2,0),D(0,1).则点C的坐标为(______,______).【答案】3 1【分析】画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.【解答】解:∵平行四边形ABCD中,已知点A(-1,0),B(2,0),D(0,1),∴AB=CD=2-(-1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).【点评】本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.18.【答题】如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为______.【答案】6【分析】由于四边形ABCD是平行四边形,所以∠CAD=∠ACB,OA=OC,由此可以证明△CON≌△AOM,现在可以求出S △AOD,再根据O是DB中点就可以求出S △AOB.【解答】解:∵四边形ABCD是平行四边形,∴∠CAD=∠ACB,OA=OC,而∠AOM=∠NOC,∴△CON≌△AOM,∴S △AOD =4+2=6,又∵OB=OD,∴S △AOB =S △AOD =6.故答案为6.【点评】平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,平行四边形被对角线分成的四部分的面积相等,并且经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.19.【题文】在▱ABCD中,AB<BC,已知∠B=30°,AB=,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为______.【答案】4或6【分析】在▱ABCD中,AB<BC,要使△AB′D是直角三角形,有两种情况:∠B′AD=90°或∠AB′D=90°,画出图形,分类讨论即可.【解答】解:当∠B′AD=90°AB<BC时,如图1,∵AD=BC,BC=B′C,∴AD=B′C,∵AD∥BC,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=,∴∠AB′C=30°,∴GC= B′C=BC,∴G是BC的中点,在Rt△ABG中,BG= AB= ×=3,∴BC=6;当∠AB′D=90°时,如图2,∵AD=BC,BC=B′C,∴AD=B′C,∵由折叠的性质:∠BAC=90°,∴AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=,∴BC=AB÷=4,∴当BC的长为4或6时,△AB′D是直角三角形.故答案为:4或6.【点评】本题主要考查了翻折变换的性质,解题的关键是画出图形,发现存在两种情况,进行分类讨论.20.【题文】在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.【答案】见解答.【分析】由在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,即可求得∠DCA=∠B′AC,则可证得OA=OC.【解答】证明:∵△AB′C是由△ABC沿AC对折得到的图形,∴∠BAC=∠B′AC,∵在平行四边形ABCD中,AB∥CD,∴∠BAC=∠DCA,∴∠DCA=∠B′AC,∴OA=OC.【点评】此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.。

知识点详解人教版八年级数学下册第十八章-平行四边形章节测试试题(含详细解析)

知识点详解人教版八年级数学下册第十八章-平行四边形章节测试试题(含详细解析)

人教版八年级数学下册第十八章-平行四边形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知四边形ABCD和四边形BCEF均为平行四边形,∠D=60°,连接AF,并延长交BE于点P,若AP⊥BE,AB=3,BC=2,AF=1,则BE的长为()A.5 B.C.D.2、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为()A.30°B.36°C.37.5°D.45°3、如图,阴影部分是将一个菱形剪去一个平行四边形后剩下的,要想知道阴影部分的周长,需要测量一些线段的长,这些线段可以是()A.AF B.AB C.AB与BC D.BC与CD4、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是()A.1 B.1.5 C.2 D.45、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C D6、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.247、如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为()A.1 B C..2 D.8、如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是()A.②④B.①②④C.①②③④D.②③④9、如图,OA⊥OB,OB=4,P是射线OA上一动点,连接BP,以B为直角顶点向上作等腰直角三角形,在OA上取一点D,使∠CDO=45°,当P在射线OA上自O向A运动时,PD的长度的变化()A .一直增大B .一直减小C .先增大后减小D .保持不变10、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是( )A .菱形B .矩形C .正方形D .三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN AM AN +的最小值是________.2、如图,矩形ABCD 中,AC 、BD 相交于点O 且AC =12,如果∠AOD =60°,则DC =__.3、如图,在四边形ABCD 中,AD //BC ,∠B =90°,DE ⊥BC 于点E ,AB =8 cm ,AD =24 cm ,BC =26 cm ,点P 从点A 出发,沿边AD 以1 cm/s 的速度向点D 运动,与此同时,点Q 从点C 出发,沿边CB 以3 cm/s 的速度向点B 运动.当其中一个动点到达端点时,另一个动点也随之停止运动.连接PQ ,过点P 作PF ⊥BC 于点F ,则当运动到第__________s 时,△DEC ≌△PFQ .4、如图,在矩形ABCD中,=8AB,=5AD,点E是线段CD上的一点(不与点D,C重合),将△BCE 沿BE折叠,使得点C落在'C处,当△'C CD为等腰三角形时,CE的长为___________.5、正方形ABCD的边长为4,则图中阴影部分的面积为 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长.2、如图,四边形ABCD是一个菱形绿草地,其周长为,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则取1.732)3、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=12∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=12∠ABC,试探究线段MN、AM、CN的数量关系为.4、如图,在正方形ABCD中,P是直线CD上的一点,连接BP,过点D作DE BP⊥,交直线BP于点E,连接CE.(1)当点P在线段CD上时,如图①,求证:BE DE-;(2)当点P在直线CD上移动时,位置如图②、图③所示,线段BE,DE与CE之间又有怎样的数量关系?请直接写出你的猜想,不需证明.5、如图所示,在△ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,AB=2CD,求证:DG ⊥CE .---------参考答案-----------一、单选题1、D【解析】【分析】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,先证∠DHC =90º,再证四边形ADEF 是平行四边形,最后利用勾股定理得出结果.【详解】过点D 作DH ⊥BC ,交BC 的延长线于点H ,连接BD ,DE ,∵四边形ABCD 是平行四边形,AB =3,∠ADC =60º,∴CD =AB =3,∠DCH =∠ABC =∠ADC =60º,∵DH ⊥BC ,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD=BC=EF,AD∥EF,∴四边形ADEF是平行四边形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴22219118=-=-=,BE BD DE∴BE=故选D.【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.2、C【解析】【分析】根据矩形和平行线的性质,得30∠=∠=︒;根据等腰三角形和三角形内角和性质,得∠BOE;DBC BDA根据全等三角形性质,通过证明OBE ODF=;根据直角三角形斜边中线、等腰三角△∽△,得OE OF形、三角形内角和性质,推导得OFG∠,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD∴//AD BC∴30DBC BDA ∠=∠=︒∵OB =EB , ∴180752DBC BOE BEO ︒-∠∠=∠==︒ ∴75FOG BOE ∠=∠=︒∵点O 为对角线BD 的中点,∴OB OD =OBE △和ODF △中30DBC BDA OB OD BOE DOF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴OBE ODF △∽△∴OE OF =∵EG ⊥FG ,即90EGF ∠=︒∴OE OF OG ∴18052.52FOG OFG OGF ︒-∠∠=∠==︒ ∴9037.5OGE OGF ∠=︒-∠=︒故选:C .【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.3、A【解析】【分析】如图,延长AB,ED交于点H,证明BC DH=,再利用菱形的性质证明:阴影部分的周长=,CD BH=+++++=,从而可得答案.4AB BC CD DE EF AF AF【详解】解:如图,延长AB,ED交于点H,四边形BCDH是平行四边形,=,BC DH∴=,CD BH四边形AFEH是菱形,∴===,AF EF EH AH∴阴影部分的周长4=+++++=,AB BC CD DE EF AF AF故需要测量AF的长度,故选A.【点睛】本题考查的是平行四边形的性质,菱形的性质,证明阴影部分的周长4AF=是解本题的关键.4、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.解:取线段AC 的中点G ,连接EG ,如图所示.∵AC =BC =8,∠BCA =60°,∴△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =4,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG ,在△FCD 和△ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =2.故选:C .本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.5、D【解析】【分析】利用矩形的性质,求证明90∆中利用勾股定理求出OB的长度,弧长就是OB的∠=︒,进而在Rt AOBOAB长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】解:四边形OABC是矩形,∴90∠=︒,OAB在Rt AOB∆中,由勾股定理可知:222OB OA AB=+,OB∴==∴故选:D.【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.6、B【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD 的中位线,可得OE =12BC ,所以易求△DOE 的周长.【详解】解:∵▱ABCD 的周长为36,∴2(BC +CD )=36,则BC +CD =18.∵四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,BD =12,∴OD =OB =12BD =6.又∵点E 是CD 的中点,∴OE 是△BCD 的中位线,DE =12CD ,∴OE =12BC ,∴△DOE 的周长=OD +OE +DE =12BD +12(BC +CD )=6+9=15,故选:B .【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.7、C【解析】【分析】根据题意连接BD ,过点E 作EF ⊥AC 于点F ,根据菱形的性质可以证明三角形ABD 是等边三角形,根据平移的性质可得AD ∥A ′E ,可得A E CA AD AC ''=,6A E 'A ′E ,再利用30度角所对直角边等于斜边的一半即可得出结论.【详解】解:如图,连接BD ,过点E 作EF ⊥AC 于点F ,∵四边形ABCD 是菱形,∴AD =AB ,BD ⊥AC ,∵∠BAD =60°,∴三角形ABD 是等边三角形,∵菱形ABCD 的边长为6cm ,∴AD =AB =BD =6cm ,∴AG =GC cm ),∴AC cm ),∵AA cm ),∴A ′C cm ),∵AD ∥A ′E , ∴A E CA AD AC''=,∴6A E '= ∴A ′E =4(cm ),∵∠EA ′F =∠DAC =12∠DAB =30°,A′E=2(cm).∴EF=12故选:C.【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌握菱形的性质.8、B【解析】【分析】根据易得DF=CD,由平行四边形的性质AD∥BC即可对①作出判断;延长EF,交CD延长线于M,可证明△AEF≌△DMF,可得EF=FM,由直角三角形斜边上中线的性质即可对②作出判断;由△AEF≌△DMF可得这两个三角形的面积相等,再由MC>BE易得S△BEC<2S△EFC,从而③是错误的;设∠FEC=x,由已知及三角形内角和可分别计算出∠DFE及∠AEF,从而可判断④正确与否.【详解】①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正确;②延长EF,交CD延长线于M,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDMAF DFAFE DFM⎧⎪⎨⎪=∠=∠=∠⎩∠ ,∴△AEF ≌△DMF (ASA ),∴FE =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM =EF ,∴FC =FE ,∴∠ECF =∠CEF ,故②正确;③∵EF =FM ,∴S △EFC =S △CFM ,∵MC >BE ,122ECM EFC S CM CE S =⨯=,12BEC S BE CE =⨯∴S △BEC <2S △EFC ,故S △BEC =2S △CEF , 故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF =∠DFC =90°﹣x ,∴∠EFC =180°﹣2x ,∴∠EFD =90°﹣x +180°﹣2x =270°﹣3x ,∵∠AEF =90°﹣x ,∴∠DFE =3∠AEF ,故④正确,故选:B .【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点.9、D【解析】【分析】过点C 作CH OB ⊥于H ,CG OA ⊥于G ,先根据矩形的判定与性质可得,OG CH CG OH OB HB ===+,再根据三角形全等的判定定理证出OBP HCB ≅,根据全等三角形的性质可得4,OB CH OP HB ===,然后根据等腰直角三角形的判定与性质可得DG CG OB HB ==+,最后根据线段的和差、等量代换即可得出结论.【详解】解:如图,过点C 作CH OB ⊥于H ,CG OA ⊥于G ,则四边形OHCG 是矩形,,OG CH CG OH OB HB ∴===+,∵CBP 是等腰直角三角形,∴,90BC BP CBP =∠=︒,∴90HBC OBP ∠+∠=︒,∵CH OB ⊥,∴90HBC HCB ∠+∠=︒,∴OBP HCB ∠=∠,在OBP 和HCB 中,90OBP HCB O BHC BP CB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴()OBP HCB AAS ≅,∴4,OB CH OP HB ===,∴OG OB =,∵45,CDO CG OD ∠=︒⊥,∴OCD 是等腰直角三角形,∴DG CG OB HB ==+,∴()()28PD DG PG OB HB OP OG OB HB HB OB OB =-=+--=+--==,∴PD的长度保持不变,故选:D.【点睛】本题考查了矩形的判定与性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造矩形和全等三角形是解题关键.10、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH BD FG,EF AC HG,11,22FG BD EF AC==,∴四边形EFGH是平行四边形,∵AC BD⊥,∴EF FG⊥,∴平行四边形EFGH是矩形,又AC与BD不一定相等,EF∴与FG不一定相等,∴矩形EFGH不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.二、填空题1【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M ,则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长,∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO=CO =AO ,∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN 转化为DM 是解题的关键.2、【解析】【分析】根据矩形的对角线互相平分且相等可得OA =OD ,然后判断出△AOD 是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD 是矩形,∴OA =OD =12AC =12×12=6,∠ADC =90°,∵∠AOD =60°,∴△AOD 是等边三角形,∴AD =OA =6,∴DC故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD 是等边三角形.3、6或7【解析】【分析】分两种情况进行讨论,当Q 在F 点的右侧时,Q 在F 点的左侧时,根据△DEC ≌△PFQ ,可得FQ EC =,求解即可.【详解】解:由题意可得,四边形ABED 、ABFP 为矩形,24cm BE AD ==,3cm CQ t =、cm AP t =∴2cm CE BC BE =-=,cm BF t =∵△DEC ≌△PFQ∴2cm FQ CE ==当Q 在F 点的右侧时,(264)cm FQ BC CQ BF t =--=-∴264=2t -,解得6s t =当Q 在F 点的左侧时,()(263)(426)cm FQ BF BC CQ t t t =--=--=-∴4262t -=,解得7s t =故答案为:6或7【点睛】此题考查了全等三角形的性质,矩形的判定与性质,解题的关键是根据题意,求得对应线段的长,分情况讨论列方程求解.4、52或203【解析】【分析】根据题意分C D C C ''=,CC CD '=,DC DC '=三种情况讨论,构造直角三角形,利用勾股定理解决问题.【详解】解:∵四边形ABCD 是矩形∴90C ∠=︒,8,5CD AB BC AD ====∵将△BCE 沿BE 折叠,使得点C 落在'C 处,∴BCE BC E '≌,90C E CE BC E BCE ''∴=∠=∠=︒,BC BC '=,设CE x =,则8DE CD x x =-=-①当C D C C ''=时,如图过点C '作,C F CD C G BC ''⊥⊥,则四边形C GCF '为矩形C D C C ''=142C G DF FC CD '∴====,4EF x =- 在Rt BC G '中3BG =532C F CG '∴==-=在Rt C FE '中222C E C F EF ''=+即()22224x x =+- 解得52x =52CE ∴=②当CC CD '=时,如图,设,CC BE '交于点O ,设OE y =,BC BC EC EC ''==BE ∴垂直平分CC '11422OC OC CC CD ''∴====3OB在Rt OCE 中222OE OC CE +=即2224y x +=在Rt BCE 中,222BE BC CE =+即()2223+5y x =+联立()22222243+5y x y x ⎧+=⎪⎨=+⎪⎩,解得203163x y ⎧=⎪⎪⎨⎪=⎪⎩ 203EC ∴= ③当DC DC '=时,如图,又BC BC '=DB ∴垂直平分CC ',BC BC EC EC ''==BE ∴垂直平分CC '此时,D E 重合,不符合题意 综上所述,203=EC 或52 故答案为:52或203【点睛】 本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.5、8【解析】【分析】根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.【详解】解:11=22ABCD S S =阴影正方形×4×4=8.故答案为:8.【点睛】本题考查正方形的性质,轴对称的性质,将阴影面积转化为三角形面积是解题的关键,学会于转化的思想思考问题.三、解答题1、【分析】根据平行四边形的性质可得5BC AD ==,AD OC =,BO DO =勾股定理求得AC ,BO ,进而求得BD【详解】 解:四边形ABCD 是平行四边形115,,22BC AD OA OC AC OB OD BD ∴====== AB ⊥AC ,90BAC ∴∠=︒在Rt ABC 中,3,5AB BC ==4∴=AC122AO AC ∴== 在Rt ABO 中,3,2AB AO ==BO ∴2BD BO ∴==∴=BD【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.2、2598元【分析】根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.【详解】连接BD,AD相交于点O,如图:∵四边形ABCD是一个菱形,∴AC⊥BD,∵∠ABC=120°,∴∠A=60°,∴△ABD为等边三角形,∵菱形的周长为m,∴菱形的边长为m,∴BD=,BO=,∴在Rt△AOB 中,OA ==m ,∴AC =2OA =, ∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,∴EH =12BD =,EF =12AC =,∴S矩形==2,则需投资资金元【点睛】本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.3、(1)MN =AM +CN ;(2)MN =AM +CN ,理由见解析;(3)MN =CN -AM ,理由见解析【分析】(1)把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则AM =CM',BM =BM',∠A =∠BCM',∠ABM =∠M'BC ,可得到点M'、C 、N 三点共线,再由∠MBN =45°,可得∠M'BN =∠MBN ,从而证得△NBM ≌△NBM',即可求解;(2)把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则AM =CM',BM =BM',∠A =∠BCM',∠ABM =∠M'BC ,由∠A +∠C =180°,可得点M'、C 、N 三点共线,再由∠MBN =12∠ABC ,可得到∠M'BN =∠MBN ,从而证得△NBM ≌△NBM',即可求解;(3)在NC 上截取C M'=AM ,连接B M',由∠ABC +∠ADC =180°,可得∠BAM =∠C ,再由AB =BC ,可证得△ABM ≌△CB M',从而得到AM =C M',BM =B M',∠ABM =∠CB M',进而得到∠MA M'=∠ABC ,再由∠MBN =12∠ABC ,可得∠MBN =∠M'BN ,从而得到△NBM ≌△NBM',即可求解.【详解】解:(1)如图,把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则AM =CM',BM =BM',∠A =∠BCM',∠ABM =∠M'BC ,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∠ABC,∵∠MBN=12∠ABC=∠MBN,∴∠ABM+∠CBN=12∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M',∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM =∠C ,∵AB =BC ,∴△ABM ≌△CB M',∴AM =C M',BM =B M',∠ABM =∠CB M',∴∠MA M'=∠ABC ,∵∠MBN =12∠ABC ,∴∠MBN =12∠MA M'=∠M'BN ,∵BN =BN ,∴△NBM ≌△NBM',∴MN = M'N ,∵M'N =CN -C M',∴MN =CN -AM .故答案是:MN =CN -AM .【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.4、(1)见解析;(2)图②中BE DE +=,图③中DE BE -【分析】(1)在BE 上截取BF DE =,连接CF ,可先证得BCF DCE ∆∆≌,则CF CE =,BCF DCE ∠=∠,进而可证得△AED 为等腰直角三角形,即可得证;(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的BE ,DE 与CE 之间的数量关系.【详解】解:(1)证明:如图,在BE 上截取BF DE =,连接CF .∵四边形ABCD 是正方形,BC DC ∴=,90BCD ︒∠=,DE BP ⊥,90BCD ︒∠=,90PBC BPC PDE DPE ︒∠∠∴∠+∠=+=,BPC DPE ∠=∠,PBC PDE ∴∠=∠,BF DE =,BC DC =,(SAS)BCF DCE ∴∆∆≌,CF CE ∴=,BCF DCE ∠=∠,90FCE FCD DCE FCD BCF BCD ︒∴∠=∠+∠=+==∠∠∠,∴△ECF 是等腰直角三角形,在Rt FCE ∆中,22222FE CF CE CE =+=,EF ∴=,BE DE BE BF EF ∴-=-==;(2)图②:BE DE +,理由如下:如下图,在EB 延长线上截取BF DE =,连接CF .∵四边形ABCD 是正方形,BC DC ∴=,90BCD ︒∠=,DE BP ⊥,90BCD ︒∠=,90PBC BPC PDE DPE ︒∠∠∴∠+∠=+=,BPC DPE ∠=∠,FBC EDC ∴∠=∠BF DE =,BC DC =,(SAS)BCF DCE ∴∆∆≌,CF CE ∴=,BCF DCE ∠=∠,90FCE FCD DCE FCD BCF BCD ︒∴∠=∠-∠=∠-∠=∠=,∴△ECF 是等腰直角三角形,在Rt FCE ∆中,22222FE CF CE CE =+=,EF ∴=,图③:DE BE -=如图,在DE 上截取DF =BE ,连接CF .∵四边形ABCD 是正方形,BC DC ∴=,90BCD ︒∠=,DE BP ⊥,90BCD ︒∠=,90PBC BPC PDE DPE ︒∠∠∴∠+∠=+=,BPC DPE ∠=∠,EBC FDC ∴∠=∠BE DF =,BC DC =,(SAS)BCE DCF ∴∆∆≌,CE CF ∴=,BCE DCF ∠=∠,90FCE FCB BCE FCB DCF BCD ︒∴∠=∠+∠=+==∠∠∠,∴△ECF 是等腰直角三角形,在Rt FCE ∆中,22222FE CF CE CE =+=,EF ∴=,【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.5、见解析【分析】连接DE,根据直角三角形的性质得到DE=12AB,再根据AB=2CD,得到CD=12AB,从而可得CD=DE,根据等腰三角形的三线合一证明即可.【详解】证明:连接DE,如图:∵AD是边BC上的高,CE是边AB上的中线,∴AD⊥BD,E是AB的中点,∴DE=12 AB,∵AB=2CD,∴CD=12 AB,∴CD=DE,∵G是CE的中点,∴DG⊥CE.【点睛】本题考查了直角三角形的性质、等腰三角形的判定和性质.解题的关键是掌握直角三角形的性质、等腰三角形的判定和性质,明确在直角三角形中,斜边上的中线等于斜边的一半.。

小学数学西师大版第八册第六单元 平行四边形和梯形梯形的认识-章节测试习题

小学数学西师大版第八册第六单元 平行四边形和梯形梯形的认识-章节测试习题

章节测试题1.【答题】下列说法,错误的是().A.平行四边形两组对边分别平行B.梯形有无数条高C.平行线无限延长,也可能相交【答案】C【分析】根据平行四边形、梯形和平行线的性质进行判断即可.【解答】A,平行四边形两组对边分别平行,说法正确;B,梯形有无数条高,说法正确;C,平行线延长之后永不相交,所以原说法错误.选C.2.【答题】延长梯形的上底和下底,它们().A.永不相交B.相交C.无法判断【答案】A【分析】本题考查的是梯形的性质.【解答】因为梯形的上底和下底互相平行,所以延长后的两直线还是平行的,永远也不相交.选A.3.【答题】下列说法正确的是()A.用15°的放大镜看25°的角,角变成40°B.用四舍五入法得到的数比原数小C.所有的梯形都有无数条高【分析】根据题意,对各题进行依次分析,进而得出结论.【解答】A、用15°的放大镜看25°的角,角变成40°,说法错误,因为角的大小不变.B、用四舍五入法得到的数比原数小,说法错误,四舍得到的数比原数小,五入得到的数比原数大.C、根据梯形高的含义可知:所有的梯形都有无数条高,说法正确.故选C.4.【答题】下面图形中,是梯形的一条高的是线段().A.①B.②【答案】B【分析】本题考查的是认识梯形的高.【解答】题中图是一个梯形,平行的两边中较短的边是梯形的上底,较长的边是梯形的下底,从梯形上底的一点向下底作一条垂线,这点和垂足之间的线段叫做梯形的高.所以线段②是梯形的一条高.选B.5.【答题】下图中共有()个梯形.A.0B.1C.2D.3【分析】本题考查的是认识梯形.【解答】以大三角形的边为底,由三个小三角形组成的梯形有3个,所以图中共有3个梯形.选D.6.【答题】一个梯形上底和下底间的距离处处().A.不相等B.不一定相等C.相等【答案】C【分析】本题考查的是梯形的性质.【解答】因为梯形的上底和下底互相平行,在梯形上底上任取一点,过这一点向下底作垂线段即为梯形的高.这样的线段可以作无数条,而且都相等.所以梯形的上底和下底之间的距离处处相等.选C.7.【答题】()的四边形叫做梯形.A.两组对边分别平行B.只有一组对边平行C.有一组对边平行【答案】B【分析】本题考查的是梯形的定义.【解答】根据梯形的定义:只有一组对边平行的四边形叫做梯形.选B.8.【答题】等腰梯形的两腰().A.相等B.不相等【答案】A【分析】本题考查的是等腰梯形的特征.【解答】两条腰相等的梯形叫做等腰梯形,所以等腰梯形的两腰相等.选A.9.【答题】在梯形里可以画()条高.A.1B.2C.4D.无数【答案】D【分析】本题考查的是认识梯形的高.关键是要理解梯形的特征:“梯形的两底平行”以及“两平行线间的距离处处相等.”【解答】根据梯形高的定义可知:梯形的上底有无数个点,过上底的点向下底作垂线段,可以作无数条,所以在梯形里可以画无数条高.选D.10.【答题】在一个等腰梯形中画一条线段,可以将它分割成两个完全一样的().A.梯形B.平行四边形C.三角形【答案】A【分析】本题考查的是认识等腰梯形.【解答】等腰梯形的上底和下底的中点的连线,将这个等腰梯形分成了两个完全一样的梯形,画图如下:.选A.11.【答题】一个等腰梯形的上底是6厘米,下底是8厘米,一条腰长7厘米,围成这个等腰梯形至少要______厘米长的铁丝.【答案】28【分析】本题考查的是梯形的周长.【解答】等腰梯形的周长=上底+下底+腰长×2.一个等腰梯形的上底是6厘米,下底是8厘米,一条腰长7厘米,围成这个等腰梯形至少要铁丝6+8+7×2=28(厘米).故本题的答案是28.12.【答题】一个等腰梯形的周长是35厘米,上、下底之和是15厘米,那么一条腰长是______厘米.【答案】10【分析】本题考查的是梯形的周长.【解答】等腰梯形的周长=上、下底之和+2×腰长,等腰梯形的腰长相等,所以一条腰的长度为:(35-15)÷2=10(厘米).故本题的答案是10.13.【答题】从梯形的一个底上的一点到对边的______叫梯形的高.梯形有______条高.【答案】垂线,无数【分析】本题考查的是认识梯形的高.【解答】根据梯形的特点可以知道从梯形的一个底上的一点到对边的垂线叫梯形的高.梯形有无数条高.故本题的答案是垂线,高.14.【答题】下图中共有______个平行四边形,______个梯形.【答案】3,3【分析】本题考查的是数平行四边形和梯形.【解答】平行四边形:大三角形的3个顶点上的小三角形,都和中间的那个小三角形可以组成一个平行四边形,所以共有3个平行四边形;以大三角形的3条边为下底,以中间的那个小三角形的3条边为上底,可以组成3个梯形.所以,图中共有3个平行四边形,3个梯形.故本题的答案是3,3.15.【答题】只有一组对边平行的四边形是______形.【答案】梯【分析】本题考查的是梯形的概念.【解答】只有一组对边平行的四边形是梯形.故本题的答案是:梯.16.【答题】平行四边形只有一条边可以当作底,梯形只有一条高.()【答案】×【分析】本题考查的是平行四边形和梯形的高.【解答】平行四边形的高是指对边之间的距离,两组对边分别平行,所以平行四边形的四条边都可以作底,可以作出两种不同的高;梯形虽然只有一组对边平行,但是在这组对边里,也可以画无数条垂直线段,所以也有无数条高.故本题错误.17.【答题】有一组对边平行的四边形是梯形. ( )【答案】×【分析】根据梯形的含义可知:只有一组对边平行的四边形叫做梯形;可知有一组对边平行的四边形,可能是梯形,也可能不是梯形,如平行四边形;由此判断即可.【解答】由分析知,只有一组对边平行的四边形是梯形;有一组对边平行,不能判断另外一组对边是否平行,所以原题的说法是错误的.故答案为:错误.18.【答题】平行四边形有无数条高,梯形只有一条高. ( )【答案】×【分析】根据平行四边形高的含义和梯形高的含义:平行四边形的高是指对边之间的距离,那么,两组对边之间都可以画无数条垂直线段,所以,有无数条高;梯形虽然只有一组对边平行,但是,在这组对边里,也可以画无数条垂直线段,所以也有无数条高.【解答】由分析可知:平行四边形和梯形的高都有无数条;所以原题说法错误.19.【答题】有一组对边平行的四边形是梯形. ( )【答案】×【分析】根据梯形的含义可知:只有一组对边平行的四边形叫做梯形;可知有一组对边平行的四边形,可能是梯形,也可能不是梯形,如平行四边形;由此判断即可.【解答】由分析知,只有一组对边平行的四边形是梯形;有一组对边平行,不能判断另外一组对边是否平行,所以原题的说法是错误的.20.【答题】两个面积相等的梯形可以拼成一个平行四边形. ()【答案】×【分析】本题考查的是认识梯形.【解答】两个完全一样的梯形才能拼成平行四边形,两个面积相等的梯形不一定完全相同,所以两个面积相等的梯形不一定能拼成一个平行四边形.故本题错误.。

小学数学西师大版第八册第六单元 平行四边形和梯形平行四边形的认识-章节测试习题

小学数学西师大版第八册第六单元 平行四边形和梯形平行四边形的认识-章节测试习题

章节测试题1.【答题】下列图形中,最容易变形的是()A.长方形B.平行四边形C.梯形【答案】B【分析】考察了平行四边形的特性,平行四边形具有易变形,据此来进行解答.【解答】平行四边形易变形.2.【答题】平行四边形的()相等.A.四条边B.四个角C.对边【答案】C【分析】本题考查的是平行四边形的性质.【解答】平行四边形的对边相等,对角相等.选C.3.【答题】把一个长方形框架拉成一个平行四边形,平行四边形的周长长方形的周长,中应填的符号是().A.>B.<C.=【答案】C【分析】本题考查的是平行四边形的周长.【解答】因为把一个长方形的框架拉成一个平行四边形后,四条边的长度没变,所以四条边的长度和不变,即它的周长不变.选C.4.【答题】下面的平行四边形中,底边AB上的高是().A.16cmB.23cmC.7cmD.无法确定【答案】A【分析】本题考查的是认识平行四边形的高.【解答】从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底.本题中底为AB,则AB 边上的垂线段就是AB边上的高,即为16cm,选A.5.【答题】下列长度的线段,不能围成平行四边形的一组是().A.5厘米、5厘米、8厘米、8厘米B.5厘米、5厘米、5厘米、5厘米C.4厘米、5厘米、6厘米、7厘米【答案】C【分析】根据平行四边形的性质可知:如果4根小棒能围成一个平行四边形,那么必须有两组对边分别相等.【解答】不能围成平行四边形的一组是4厘米、5厘米、6厘米、7厘米.选C.6.【答题】在一个平行四边形里,其中两条边的长度分别是8厘米和5厘米,这个平行四边形的周长是().A.13厘米B.40厘米C.26厘米【答案】C【分析】本题考查的是求平行四边形的周长.【解答】(8+5)×2=26(厘米),所以这个平行四边形的周长是26厘米.选C.7.【答题】平行四边形具有()的特性.A.稳定性B.容易变形【答案】B【分析】本题考查了平行四边形的特性.【解答】平行四边形具有容易变形的特性.选B.8.【答题】小明用两根10厘米和两根8厘米的木条钉成了一个长方形,然后又将它推成了一个平行四边形.这个平行四边形的底长10厘米,它的高可能是()厘米.A.6B.8C.11【答案】A【分析】本题考查的是认识平行四边形.【解答】小明用两根10厘米和两根8厘米的木条钉成了一个长方形,然后又将它推成了一个平行四边形.这个平行四边形的底长10厘米,它的高小于8厘米,所以可能是6厘米.选A.9.【答题】一个平行四边形的周长是24厘米,其中一条边是8厘米,那么相邻的另一条边长是______厘米.【答案】4【分析】根据平行四边形的周长公式,首先用周长除以2求出一组邻边的长度和,然后用一组邻边的长度和减去已知的边长即可,据此解答.【解答】24÷2-8=4(厘米),所以相邻的另一条边长是4厘米.故本题的答案是4.10.【答题】平行四边形的两组对边分别平行且______.【答案】相等【分析】本题考查的是平行四边形的性质.【解答】平行四边形的对边相等,对边平行.故本题的答案是:相等.11.【答题】图中AF是______边上的高,CD边上的高是______.【答案】BC,AE【分析】根据平行四边形的高和底的意义:从平行四边形一条边上的一点到它对边的垂线段是平行四边形的高,这条对边是平行四边形的底,解答此题.【解答】图中AF是BC边上的高,CD边上的高是AE.12.【答题】一个平行四边形相邻的两条边分别是6厘米和8厘米,它的周长是______厘米.【答案】28【分析】本题考查的是求平行四边形的周长.【解答】(8+6)×2=28(厘米),所以这个平行四边形的周长是28厘米.故本题的答案是28.13.【答题】学校大门做成伸缩门,这是应用了平行四边形易______的特性.【答案】变形【分析】学校大门做成伸缩门,这是应用了平行四边形易变形进行制作的,便于伸缩.【解答】根据生活的需要,学校大门做成伸缩门,这是应用平行四边形易变形制作的.故本题的答案是:变形.14.【答题】平行四边形有______条边,______个角.(填数字)【答案】4,4【分析】根据平行四边形的性质可知:平行四边形有4条边,4个角,据此解答即可.【解答】平行四边形有4条边,4个角.故本题的答案是4,4.15.【答题】从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的______,垂足所在的边叫做平行四边形的______.【答案】高,底【分析】本题考查的是认识平行四边形的底和对应的高.【解答】从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底.故本题的答案是高,底.16.【答题】两组对边分别平行的四边形叫做______.【答案】平行四边形【分析】根据平行四边形的含义:有两组对边分别平行的四边形叫做平行四边形;由此解答即可.【解答】两组对边分别平行的四边形叫做平行四边形.17.【答题】一个平行四边形两条相邻的边长分别是15厘米和18厘米,那么这个平行四边形的周长是______厘米.【答案】66【分析】本题考查平行四边形的特征:平行四边形的对边平行且相等.【解答】(15+18)×2=66(厘米),所以这个平行四边形的周长是66厘米.故本题的答案是66.18.【答题】两组对边分别______的四边形叫做平行四边形.【答案】平行【分析】本题考查的是平行四边形的定义.【解答】两组对边分别平行的四边形叫做平行四边形.故本题的答案是:平行.19.【答题】平行四边形的两组对边不但平行,而且相等. ()【答案】✓【分析】本题考查的是平行四边形的特征.【解答】根据平行四边形的特征可知:平行四边形的两组对边不但平行,而且长度相等.故本题正确.20.【答题】过平行四边形的一个顶点可以向对边作无数条高. ()【答案】×【分析】本题考查的是认识平行四边形的高.【解答】平行四边形能画出无数条高,但过一个顶点向两条对边只能分别画1条高,共2条.故本题错误.。

第18章 平行四边形单元测试卷(6)

第18章 平行四边形单元测试卷(6)

第18章平行四边形单元测试卷(6)一.选择题(共10小题,满分30分,每小题3分)1.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,∠ABD=30°,BC=4,则边AD与BC之间的距离为()A.2B.2C.D.2.(3分)下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB∥CD,∠A=∠CC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D3.(3分)在平行四边形ABCD中,∠A=65°,则∠C的度数是()A.65°B.105°C.115°D.125°4.(3分)如图,已知点D、E、F分别是△ABC边AB、AC、BC的中点,设△ADE和△BDF 的周长分别为L1和L2,则L1和L2的大小关系是()A.L1=L2B.L1<L2C.L1>L2D.L1与L2的大小关系不确定5.(3分)在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动,若限定点P、Q分别在线段AB、AD边上移动,则点A′在BC边上可移动的最大距离为()A.1B.2C.3D.46.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=10,点D边AB上的动点,连接CD,线段CD绕点C顺时针旋转90°得CE,连接AE,则△ACE的面积()A.是变量B.等于5C.等于10D.等于7.(3分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 8.(3分)如图,E是边长为2的正方形ABCD的对角线AC上一点,且AE=AB,F为BE 上任意点,FG⊥AC于点G,FH⊥AB于点H,则FG+FH的值是()A.B.C.2D.19.(3分)如图,在平行四边形ABCD中,AC,BD相交于点O,若AC=8,则线段AO的长为()A.3B.4C.5D.1610.(3分)如图,在菱形ABCD中,E、F分别是AB、BC边的中点,EP⊥CD于点P,∠BAD=110°,则∠FPC的度数是()A.35°B.45°C.50°D.55°二.填空题(共10小题,满分30分,每小题3分)11.(3分)如图,在▱ABCD中AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为.12.(3分)计算:8a2b5÷(2ab2)2=.13.(3分)已知a,b,c为三角形ABC的三边,且a4﹣b4=c2(a2+b2),则三角形ABC为三角形14.(3分)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形,其中正确的结论序号是.15.(3分)如图,在▱ABCD中,AC=BC,∠CAD=30°,则∠D的度数为.16.(3分)如图,矩形ABCD中,已知:AB=3,BC=9,将矩形沿EF翻折,使点C与点A重合,点D落在点D'处,则EF=.17.(3分)已知菱形的两条对角线的长分别是8和6,则该菱形的周长是.18.(3分)边长为a的正方形,在一个角剪掉一个边长为的b正方形,则所剩余图形的周长为.19.(3分)如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=66°,则∠ADE的大小为.20.(3分)如图,P为菱形ABCD的对角线上一点,PE⊥AB于E,AP=5,AE=4,则点P 到边AD的距离等于.三.解答题(共8小题,满分70分)21.(6分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD 交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.22.(6分)如图,∠A=∠B=40°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当α等于多少度时,以A、M、B、N为顶点的四边形是菱形?23.(8分)如图,平行四边形ABCD中,∠BCD的平分线交AD于E,∠ABC的平分线交ED于点F.(1)求证:AE=DF;(2)若∠A=120°,BF=8,EF=3,求BC的长.24.(8分)如图,△ABC中,∠BAC=90°,AH是高,BD平分∠ABC交AH于E,DF⊥BC于F,试说明四边形AEFD是菱形.25.(10分)如图,E为矩形ABCD对角线BD上一点,AE=AB=a,∠ADB=θ,请你用a、θ表示BE的长.26.(10分)如图所示,AB∥CD,AF∥CE,BE=DF,求证:AB=CD.27.(10分)如图所示,▱ABCD中的对角线AC、BD相交于O,EF经过点O与AD延长线交于E,与CB延长线交于F.求证:OE=OF.28.(12分)如图,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G.(1)求证:AE=BF;(2)若AB=4,CE=1,求BF的长.。

小学数学冀教版第八册多边形的认识平行四边形的认识-章节测试习题(1)

小学数学冀教版第八册多边形的认识平行四边形的认识-章节测试习题(1)

章节测试题1.【答题】两个形状完全相同的平行四边形可以拼成一个平行四边形.( )【答案】√【分析】两个完全相同的平行四边形中长度相等的两条边相对,可以拼成一个平行四边形.【解答】两个形状完全相同的平行四边形可以拼成一个平行四边形如图:故答案为:正确.2.【答题】两个高相等的平行四边形一定能拼成一个大的平行四边形. ( )【答案】×【分析】当它们的角不相等时无法拼成平四边形,画图举反例即可.【解答】如图:虽然高相等,但是它们对应角的度数不相等,无法拼成一个新的平行四边形.所以原题说法错误.3.【答题】平行四边形易变形,具有不稳定性.()【答案】✓【分析】本题考查的是平行四边形的特性.【解答】平行四边形具有不稳定性,容易变形.故本题正确.4.【答题】伸缩门利用了平行四边形容易变形的性质.()【答案】✓【分析】本题考查的是平行四边形的特性.【解答】伸缩门做成平行四边形的形状,是利用平行四边形易变形的特性.故本题正确.5.【答题】过平行四边形的一个顶点可以向对边作无数条高. ()【答案】×【分析】本题考查的是认识平行四边形的高.【解答】平行四边形能画出无数条高,但过一个顶点向两条对边只能分别画1条高,共2条.故本题错误.6.【题文】作出下面平行四边形的高.【答案】【分析】从平行四边形的一个顶点向对边引垂线,这一点到垂足之间的线段就是平行四边形的高,据此画图.【解答】7.【题文】动手操作.(1)画出梯形的一条高.(2)画一条线段,把这个梯形分成一个三角形和一个平行四边形.【答案】【分析】(1)梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线,用三角板的直角可以画出梯形的一条高.(2)利用过直线外一点作已知直线的平行线的方法,过梯形的上底的一个顶点D,作腰AB的平行线DE即可.【解答】如图所示:8.【题文】一个长方形的长是15厘米,宽是10厘米.把它拉成一个平行四边形后,这个平行四边形的周长是多少厘米?【答案】这个平行四边形的周长是50厘米.【分析】把长方形拉成平行四边形后,面积变小,周长不变,根据长方形的周长公式:C=(a+b)×2,把数据代入公式解答.【解答】(15+10)×2=25×2=50(厘米).答:这个平行四边形的周长是50厘米.9.【题文】已知一个平行四边形的周长是38厘米,其中一条边长10厘米,另外三条边长分别是多少厘米?【答案】平行四边形另外三条边分别是10厘米,9厘米,9厘米.【分析】根据平行四边形的特点,对边相等可得,平行四边形的周长的求解方法与长方形相似,都是相邻两条边的和的2倍,由此先用周长38厘米除以2,求出相邻两边的和,再减去其中的一条边10厘米,即可求出另一条边.【解答】如下图的平行四边形中,AD=BC=10厘米.38÷2-10=19-10=9(厘米).答:平行四边形另外三条边分别是10厘米,9厘米,9厘米.10.【题文】在平行四边形里面画一条线段,把它分割成两个三角形,有几种画法?【答案】2种【分析】连接对角线即可分成两个三角形,有2条对角线,所以一共有2种画法.【解答】根据题干分析画图如下:答:在平行四边形里面画一条线段,把它分割成两个三角形,一共有2种画法.11.【答题】下图中有()个平行四边形.A.2B.3C.4【答案】A【分析】本题考查的是认识平行四边形.【解答】图中的平行四边形有:平行四边形ABDC、平行四边形ABED,共有2个.选A.12.【答题】平行四边形有()种不同的高.A.1B.2C.无数【答案】B【分析】本题考查的是认识平行四边形的高.【解答】平行四边形有两组对边,每组对边平行且相等,对应一条高,所以平行四边形有2种不同的高.选B.13.【答题】下图中,AB表示平行四边形的().A.底B.高【答案】B【分析】本题考查的是认识平行四边形的高.【解答】从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.选B.14.【答题】下列说法,错误的是().A.长方形对边相等,4个角都是直角B.正方形4条边都相等,4个角都是直角C.平行四边形对边相等,4个角都是直角【答案】C【分析】本题考查的是认识平行四边形.【解答】长方形的特点:对边相等,4个角都是直角;正方形的特点:每条边都相等,4个角都是直角;平行四边形的特征:两组对边分别平行且相等,两组对角分别相等,但不一定是直角.选C.15.【答题】用木棒做一个周长为50cm的平行四边形,其中一根木棒长15cm,另外三根木棒的长分别是______cm,______cm,______cm.(从大到小填写)【答案】15,10,10【分析】本题考查的是认识平行四边形.【解答】已知用木棒做一个周长为50cm的平行四边形,其中一根木棒长15cm,因为平行四边形对边相等,那么另一根木棒应该也为15cm,剩下的两根木棒一共为:50-15×2=20(cm),每根木棒的长度为:20÷2=10(cm),所以另外三根木棒的长分别是15cm,10cm,10cm.故本题的答案是:15,10,10.。

平行四边形测试题含答案

平行四边形测试题含答案

数学试题第十八章平行四边形班级________ 姓名________ 得分_______一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

1.下列命题中,真命题的个数是( )①对角线互相平分的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个2.已知一个平行四边形两邻边的长分别为10和6,那么它的周长为( ).A. 16B. 60C.32D. 303.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直4.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形②两条对角线相等的四边形是菱形③两条对角线互相垂直的四边形是正方形④两条对角线相等且互相垂直的四边形是正方形A.4B.3C.2D.15.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形6.平行四边形ABCD中, ∠A:∠B:∠C:∠D的值可以是( )A. 4:3:3:4B. 7:5:5:7C. 4:3:2:1D. 7:5:7:57. 菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为( )8.(2013·襄阳中考)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形A BCD的两条对角线的和是( )A.18B.28C.36D.469.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cmB.5cmC.6cmD.8cm10.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm二、填空题(本大题共8个小题,11至14题每题3分,15至18题每题4分,共28分.请把答案填在题中的横线上)11.在平行四边形ABCD中, ∠A=40º,则∠B=______.12.矩形的一边长是3.6㎝, 两条对角线的夹角为60º,则矩形对角线长是_____ .13.等腰梯形两条对角线互相垂直,一条对角线长为6㎝,则这个梯形的面积为 .14.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)15.如图,在平行四边形ABCD中,AE⊥BC于E,AC=AD, ∠CAE=56º,则∠D= .16.如图,在平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2 cm,则AB=______cm.17.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点M,N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为______.18.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.三、解答题(本大题共5个小题,共62分。

平行四边形测试题及答案

平行四边形测试题及答案

平行四边形测试题及答案一、选择题1. 平行四边形的定义是什么?A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 四边形的对角线互相垂直答案:A2. 平行四边形的对角线具有什么性质?A. 互相垂直B. 互相平分C. 相等D. 互相平行答案:B3. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:C4. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 互相垂直答案:B5. 平行四边形的对角线将平行四边形分成几个全等的三角形?A. 1B. 2C. 4D. 8答案:B二、填空题6. 平行四边形的对角线互相________。

答案:平分7. 平行四边形的对边互相________。

答案:平行8. 如果一个四边形的对角线互相平分且相等,那么这个四边形一定是________。

答案:矩形9. 平行四边形的面积可以通过底和高的乘积来计算,公式为________。

答案:面积 = 底× 高10. 菱形是特殊的平行四边形,它的四条边都________。

答案:相等三、简答题11. 请描述平行四边形的判定定理。

答案:一个四边形是平行四边形,如果满足以下任一条件:(1)两组对边分别平行;(2)两组对边分别相等;(3)对角线互相平分;(4)一组对边平行且相等。

12. 在平行四边形中,如果一组对边是垂直的,那么这个平行四边形是什么形状?答案:如果一组对边垂直,那么这个平行四边形是矩形。

四、计算题13. 已知平行四边形的底为10cm,高为5cm,求其面积。

答案:面积= 10cm × 5cm = 50平方厘米14. 已知平行四边形的对角线长度分别为8cm和6cm,且对角线互相平分,求平行四边形的面积。

答案:设平行四边形的面积为S,对角线交点为O,那么OA=4cm,OB=3cm,根据三角形面积公式,S = 2 × (1/2) × OA × OB = 2 × (1/2) × 4cm × 3cm = 12平方厘米。

第18章 平行四边形单元测试题1(全)

第18章 平行四边形单元测试题1(全)

第18章平行四边形单元测试题(1)一、单选题1.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D′,B之间的距离为()A.1cm B.2cm C.(2√2+1)cm D.(2√2−1)cm2题图3题图6题图7题图2.满足下列条件的四边形是正方形的是()A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的菱形C.对角线相等的矩形D.对角线互相垂直平分的四边形3.如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用HL证明Rt△AEP≌Rt△AFPC.AP平分∠BAD D.点P一定是菱形ABCD的两条对角线的交点4.在▱ABCD中,若∠A=60°,则∠D的度数是()A.60∘B.90∘C.120∘D.30∘5.平行四边形的两条对角线将它分成4个小三角形,则这4个小三角形的面积()A.都不相等B.不都相等C.都相等D.结论不确定6.在平行四边形ABCD中,AC,BD相交于O,AC=10,BD=8,则AD的长度的取值范围是()A.AD>1B.1<AD<9C.AD<9D.AD>97.如图,矩形ABCD 的对角线AC与BD相交于点O,∠AOB=60°,AB=3,则OC等于()A.3 B.3.5 C.4 D.58.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=55°,∠ANM=45°,则∠B=().A.20°B.45°C.80°D.70°8题图9题图10题图15题图9.如图,在▱ABCD中,∠A=45°,AD=2,点M、N分别是边AB、BC上的动点,连接DN、MN,点E、F分别为DN、MN的中点,连接EF,则EF的最小值为( )D.2√2A.1 B.√2C.√22BD的长为半径作弧,两弧相交于两点,过这两点10.如图,BD为▱ABCD的对角线,分别以B,D为圆心,大于12的直线分别交AD,BC于点E,F,交BD于点O,连接BE,DF.根据以上尺规作图过程,下列结论不一定正确的是() A.点O为▱ABCD的对称中心B.BE平分∠ABDC.S△ABE:S△BDF=AE:ED D.四边形BEDF为菱形11.在▱ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出在▱ABCD中是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD12.给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③有一条对角线平分一个内角的平行四边形为菱形.其中不正确的有( )A.3个B.2个C.1个D.0个1至12题答案:二、填空题13.已知平行四边形的周长是30,相邻两边的长相差3,则两条邻边中较长的边长为.14.一个直角三角形斜边上的中线和高分别是6和5,它的面积=.15.如图,在△ABC中,D,E分别是边AB,BC的中点,若DE的长是2√2,则AC的长为.16.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,EF=1,则BC长为.16题图19题图20题图21题图17.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为 . 18.若顺次连接对角线长分别为10和16的菱形ABCD四边中点形成新的四边形,则该新四边形的周长为.19.如图已知正方形ABCD的边长为16,M在DC上,且DM=4,N是AC上的一动点,则DN+MN的最小值是 . 20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E为边BC的中点,连接OE,已知OE=a,则菱形ABCD 的周长为(用含a的式子表示).21.如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB 上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为.22.如图,在同一平面内,直线l同侧有三个正方形,A,B,C,若A,C的面积分别为9和4,则阴影部分的总面积为22题图23题图13至22题答案:三、解答题23.已知,如图所示,折叠长方形OABC的一边BC,使点B落在AO边的点D处,已知B(10,8),求:(1)求D的坐标;(2)求E的坐标.)×√624.(1)计算:(2√12−√13(2)直角三角形ABC中,∠ACB=90°,D是斜边AB的中点,两直角边AC=6,BC=8,求CD的长.24题图25题图25.如图,在△ABC中.【实践与操作】请利用尺规作图完成以下操作:(1)作△ABC的角平分线AD,交边BC于点D;(2)作线段AD的垂直平分线,分别交边AB,AC于点E,F;(3)连接DE,连接DF.(要求:不写作法,标明字母);【猜想与证明】试猜想四边形AEDF的形状,并加以证明.26.如图,已知A(2,3)和直线y=x.(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标;(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由.27.在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N.(1)如图1,试判断四边形PQMN怎样的四边形,并证明你的结论;(2)若在AB上取一点E,连接DE,CE,恰好△ADE和△BCE都是等边三角形(如图2),判断此时四边形PQMN 的形状,并证明你的结论.28.如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.参考答案:1.D【分析】先求出BD,再根据平移性质得BB′=1cm,然后由DB′=BD−BB′求解即可.【详解】解:由题意,BD=√22+22=2√2(cm),由平移性质得BB′=1cm,∴点D,B′之间的距离为DB′=BD−BB′=(2√2−1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.2.A【分析】根据正方形的判定方法即可求解.【详解】解:A选项,对角线互相垂直且相等的平行四边形是正方形,故A选项正确,符合题意;B选项,对角线互相垂直的菱形还是菱形,故B选项错误,不符合题意;C选项,对角线相等的菱形是正方形,故C选项错误,不符合题意;D选项,对角线互相垂直平分的长方形是正方形,故D选项错误,不符合题意;故选:A.【点睛】本题主要考查正方形的判定,掌握“对角线相互垂直的矩形是正方形”,“对角线相等的菱形是正方形”,“对角线互相垂直且相等的平行四边形是正方形”的知识是解题的关键.3.D【详解】试题分析:根据到角的两边距离相等的点在角的平分线上判断出AP平分∠BAD,根据菱形的对角线平分一组对角线可得AC平分∠BAD,然后对各选项分析判断利用排除法求解.∵PE⊥AB,PF⊥AD,PE=PF,∴AP平分∠BAD,∵四边形ABCD是菱形,∴对角线AC平分∠BAD,故A、C选项结论正确;可以利用“HL”证明Rt△AEP≌Rt△AFP,故B选项正确;点P在AC上,但不一定在BD上,所以,点P一定是菱形ABCD的两条对角线的交点不一定正确.考点:菱形的性质;全等三角形的判定;角平分线的性质4.C【分析】本题主要考查了平行四边形的性质,掌握平行四边形的邻角互补成为解题的关键.如图:由平行四边形的性质得出∠A+∠D=180°,据此即可解答.【详解】解:如图:∵▱ABCD中,AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=180°−∠A=120°.故选:C.5.C【分析】根据平行四边形的性质,对角线互相平分,则可知,两条对角线将它分成4个小三角形都是等底等高的,因此面积相等.【详解】如图,作DQ⊥AC,BP⊥AC∵▱ABCD中,CE=EA,DE=EB,AD=BC∴△ADE≌△CBE(SSS),∴DQ=PBCE⋅DQ,∴4个小三角形的面积都可表示为12∴4个小三角形的面积相等.故选:C【点睛】此题考查平行四边形的性质,解题关键是三角形面积公式为底乘以高的一半,三角形等底等高即可证明面积相等.6.B【分析】根据平行四边形性质可知,平行四边形的对角线互相平分,则AO,DO,与AD三边组成三角形,然后再利用三角形三边关系解题即可.【详解】解:设AC,BD交于点O,平行四边形对角线平分,则有AO=CO=5,BO=DO=4,再根据三角形两边之和大于第三边,两边之差小于第三边,可得:1<AD<9.故选:B .【点睛】本题结合三角形的三边关系,考查了平行四边形的对角线互相平分这一性质,解题时注意数形结合. 7.A【分析】由矩形的性质得出OA =OB ,由已知条件证出△AOB 是等边三角形,得出OA =AB =3,得出OA =OC =3即可.【详解】解:∵四边形ABCD 是矩形, ∴OA =12AC ,OB =12BD ,AC =BD ,∴OA =OB , ∵∠AOB =60°,∴△AOB 是等边三角形, ∴OA =AB =3, ∴OA =OC =3; 故选:A .【点睛】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证是解题的关键. 8.C【分析】根据三角形中位线定理得出MN //BC ,进而利用平行线的性质解答即可. 【详解】解:∵M 、N 分别是△ABC 的边AB 、AC 的中点,∠A =55°,∠ANM =45°, ∴MN //BC ,∴∠C =∠ANM =45°,∴∠B =180°−∠A −∠C =180°−55°−45°=80°, 故选:C .【点睛】此题考查三角形中位线定理,关键是根据三角形中位线定理得出MN //BC 解答. 9.C【分析】连接DM ,根据中位线的性质得出EF =12DM ,当DM ⊥AB 时,DM 最小,根据等腰直角三角形的性质,勾股定理即可求解.【详解】解:如图,连接DM ,∵E、F分别为DN、MN的中点,∴EF=12DM,∴EF的最小值,就是DM的最小值,当DM⊥AB时,DM最小,∴DM=√22AD=√2∴EF=12DM=√22,故选:C.【点睛】本题考查了中位线的性质,垂线段最短,勾股定理,等腰直角三角形的性质,掌握中位线的性质是解题的关键.10.B【分析】由作图知,EF是线段BD的垂直平分线,利用平行四边形的性质可判断选项A;根据菱形的判定定理可判断选项C;根据菱形的性质得到S△BDF=S△BDE,可判断选项D;BE不一定平分∠ABD,选项B不正确.【详解】解:由作图知,EF是线段BD的垂直平分线,即点O为▱ABCD的对称中心,故选项A正确,不符合题意;∵四边形ABCD是平行四边形,∴DE∥BF,∴∠DEF=∠BFE,∵EF是线段BD的垂直平分线,∴BE=ED,BF=FD,∠BFE=∠EFD,∴∠DEF=∠EFD,∴DE=DF,∴DE=DF=BE=BF,∴四边形BEDF为菱形,故选项D正确,不符合题意;∴S△BDF=S△BDE,∴S△ABE:S△BDF=S△ABE:S△BDE=AE:ED,故选项C正确,不符合题意;BE不一定平分∠ABD,故选项B不正确,符合题意;故选:B.【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.12.B【分析】根据平行四边形、矩形以及菱形的判定定理进行逐一分析判断,从而得出答案即可.【详解】一组对边平行且相等的四边形是平行四边形,故①错误;对角线相等的平行四边形是矩形,故②错误;有一条对角线平分一个内角的平行四边形为菱形,故③正确;综上所述,不正确的有2个,故选:B.【点睛】本题主要考查了平行四边形、矩形以及菱形的判定,熟练掌握相关概念是解题关键.13.9【分析】根据平行四边形的对边相等,设较长的边长为x,则较短的边长为(x−3),根据周长是30,建立一元一次方程解方程求解即可.【详解】解:设较长的边长为x,则较短的边长为(x−3),2(x+x−3)=30解得x=9故答案为:9【点睛】本题考查了平行四边形的性质,平行四边形的性质是解题的关键.14.30【分析】根据直角三角形斜边上的中线先求出斜边长,再利用三角形的面积进行计算即可解答.【详解】解:∵直角三角形斜边上的中线是6,∴斜边长=2×6=12,∵直角三角形斜边上的高是5,×12×5=30,∴直角三角形的面积=12故答案为:30.【点睛】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线是解题的关键.15.4√2【分析】根据三角形中位线定理,即可求解.【详解】解:∵D,E分别是边AB,BC的中点,∴AC=2DE,∵DE的长是2√2,∴AC=4√2.故答案为:4√2【点睛】本题主要考查了三角形中位线定理,熟练掌握三角形的中位线等于第三边的一半,并且平行于第三边是解题的关键.16.15.【分析】根据平行四边形的性质和角平分线的定义得∠ABF=∠AFB,∠DCE=∠CED,从而得AB=AF,DC=DE,进而即可求解.【详解】∵四边形ABCD为平行四边形,AB=8,∴CD=AB=8,AD//BC,∴∠AFB=∠CBF,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AF=AB=8,同理DE=DC=8,∵EF=1,∴AE=AF−EF=8−1=7,∴AD=AE+DE=7+8=15,故答案为15.【点睛】本题主要考查平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,综合应用平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,是解题的关键.17.21cm【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵平行四边形的周长等于56cm,∴AB+CD+AD+BC=56cm,∴AB+BC=28cm.∵BC:AB=3:1,∴BC=21cm,AB=7cm,∴这个平行四边形较长的边长为21cm.故答案为21cm.18.26【分析】根据三角形的中位线得出EH=12BD,GF=12BD,EF=12AC,HG=12AC,求出EH、GF、EF、HG的长度,再求出周长即可.【详解】解:如图,∵E、F、G、H分别是边AB、BC、CD、AD的中点,∴EH=12BD,GF=12BD,EF=12AC,HG=12AC,∵AC=10,BD=16,∴EH=8,FG=8,EF=5,HG=5,∴四边形EFGH的周长是EF+FG+HG+EH=5+8+5+8=26,故答案为:26.【点睛】本题考查了菱形的性质,三角形的中位线性质等知识点,能熟记三角形的中位线平行于第三边,并且等于第三边的一半是解此题的关键.19.20.【详解】试题解析:连接BN.∵四边形ABCD是正方形,∴NB="ND."∴DN+MN="BN+MN."当点B、N、M在同一条直线上时,ND+MN有最小值.由勾股定理得:BM=√MC2+BC2=20考点:轴对称-最短路线问题.20.8a【分析】根据菱形性质和直角三角形斜边上中线等于斜边一半,可以求出BC=2OE,进而可以求出菱形周长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵点E为边BC的中点,∴BC=2OE=2a,∴菱形ABCD周长为8a.故答案为:8a.【点睛】本题也可以根据菱形性质得到O为AC中点,利用三角形中位线性质求出AB,亦可求解.21.(8,0)或(-2,0)/(-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE=CE,∵CE2=BC2+BE2,∴CE2=9+(9-CE)2,∴CE=5,∴AE=5,∵△AEP为等腰三角形,且∠EAP=90°,∴AE=AP=5,∴点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.22.6【分析】如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,证明△GPF≌△DPQ,可得:DQ=GF,PD=PG=3,同理利用三角形全等的性质可得:QD=2,QE=3,从而可得答案.【详解】解:如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,∵A,C的面积分别为9和4,∴PG=3,NK=2,∵正方形,A,B,C,∴PQ=PF,∠QPF=90°,∠PDQ=∠PGF=90°,∴∠GPF+∠DPF=90°,∠DPF+∠DPQ=90°,∴∠GPF=∠DPQ,∴△GPF≌△DPQ,∴DQ=GF,PD=PG=3,同理可得:GF=NK=2,PG=FK=3,EN=NK=2,QE=FK=3,∴DQ=2,∴S=12×3×2+12×2×3=6.故答案为:6.【点睛】本题考查的是全等三角形的判定与性质,作出适当的辅助线构建全等三角形是解题的关键. 23.(1)(6,0)(2)(10,3)【分析】本题主要考查了折叠变换的性质、勾股定理等几何知识点及其应用问题.(1)根据折叠性质得,CD=AB=10,由勾股定理得OD=6,可得点D坐标;(2)在Rt△ADE中,根据勾股定理即可求点E坐标.【详解】(1)解:由折叠可知:CD=CB,∵B(10,8),∴CD=CB=10,OC=8,在Rt△ODC中,由勾股定理得OD=6,∴点D坐标为(6,0);(2)∵OA=BC=10,OD=6,∴AD=OA−OD=10−6=4由折叠可知:BE=DE,设AE=x,则DE=BE=8−x,在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,解得:x=3,∴点E坐标为(10,3).24.(1)11√2;(2)5【分析】(1)原式利用乘法分配律计算即可得到结果.(2)首先利用勾股定理求出AB=10.再利用直角三角形斜边上中线的性质可得答案.×6【详解】解:(1)原式=2√12×6−√13=12√2−√2=11√2;(2)在Rt△ABC中,由勾股定理得,AB=√AC2+BC2=√62+82=10,∵D是斜边AB的中点,AB=5.∴CD=12【点睛】本题主要考查了勾股定理,二次根式的混合运算,直角三角形斜边上中线的性质等知识,熟练掌握性质是解题的关键.25.实践与操作:见解析;猜想与证明:菱形,见解析【分析】[实践与操作]根据角平分线,垂直平分线的作法作图即可;[猜想与证明]根据垂直平分线的性质得到FA=FD,EA=ED,∠EOA=∠FOA=90°,证明△AEO≌△AFO(ASA),得到AE=AF,再根据四边相等的四边形是菱形证明即可.【详解】解:[实践与操作]如图,即为所求;[猜想与证明]四边形AEDF为菱形,理由如下:∵EF垂直平分AD,交点为O,∴FA=FD,EA=ED,∠EOA=∠FOA=90°,∵AD平分∠BAC,∴∠EAO=∠CAO,∵AO=AO,∴△AEO≌△AFO(ASA),∴AE=AF,∴AE=ED=DF=FA,∴四边形AEDF是菱形.【点睛】本题考查了尺规作图,角平分线和垂直平分线的作法,垂直平分线的性质,菱形的判定,解题的关键是掌握基本尺规作图的方法,菱形的判定方法.26.(1)B(3,2),C(−2,−3)(2)矩形,见解析【分析】本题考查矩形,点关于直线对称的知识,解题的关键是掌握点关于直线对称的性质,矩形的判定,即可.(1)根据点A关于直线y=x对称,则x,y互换即为对称点坐标求出点B,根据点关于原点对称横纵坐标互为相反数,即可;(2)根据点关于原点对称横纵坐标互为相反数,求出点D,再根据矩形的判定,即可.【详解】(1)∵A(2,3),∴点A关于直线y=x的对称点B(3,2);∵关于原点对称横纵坐标互为相反数,∴A(2,3)关于原点的对称点C的坐标为:C(−2,−3).(2)∵点B(3,2),∴点B(3,2)原点的对称点D的坐标为:D(−3,−2),∵点B与点D关于原点对称,点A与点C关于原点对称,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵点A关于直线y=x的对称点为B,点A关于原点的对称点为C,点B关于原点的对称点为D,∴AC=DB,∴平行四边形ABCD是矩形.27.(1)平行四边形,证明见解析;(2)菱形,证明见解析【分析】(1)根据平行四边形的判定,对边平行且相等的四边形是平行四边形即可求解.(2)根据题意列出方程,数形结合证明平行四边形PQMN 的临边相等,根据一组临边相等的平行四边形是菱形即可求解.【详解】解:(1)四边形PQMN 为平行四边形;连接AC 、BD .∵PQ 为△ABC 的中位线,∴PQ ∥AC ,PQ =12AC , 同理MN ∥AC .MN =12AC . ∴MN =PQ ,MN ∥PQ ,∴四边形PQMN 为平行四边形;(2)四边形PQMN 是菱形;理由如下:设△ADE 的边长是x ,△BCE 的边长是y ,∴DB 2=(12x +y )2+(√32x )2=x 2+xy +y 2,AC 2=(x +12y )2+(√32y )2=x 2+xy +y 2, 由(1)得MN =12AC 与(1)同理可证MP =12BD∴MN =MP ,∴平行四边形PQMN 是菱形;【点睛】本题考查中位线的性质、平行四边形的性质、等边三角形的性质、菱形的判定等知识点,熟练掌握几何图形的性质,进行等量代换、数形结合即可求解.28.见解析.【分析】先证明CE =DE, 再证明EF 是△CDB 的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.。

初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题

初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题

章节测试题1.【题文】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.【答案】见解析【分析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=DM,DN=CN,由等腰三角形的性质得到∠MAD=∠MDA,∠NCD=∠NDC,等量代换得到∠ADM=∠CDN,即可得到结论.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,∵AD=CD,∠ADB=∠ADC,DB=DE,∴△ABD≌△CDE;(2)解:∵△ABD≌△CDE,∴∠BAD=∠DCE,∵M、N分别是AB、CE的中点,∴AM=DM,DN=CN,∴∠MAD=∠MDA,∠NCD=∠NDC,∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.2.【题文】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG且EG⊥CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?【答案】(1)证明见解析;(2)成立,证明见解析;(3)成立,即EG=CG且EG⊥CG.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;【解答】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△D AG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。

平行四边形单元测试题及答案

平行四边形单元测试题及答案

平行四边形单元测试题及答案一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD2.依次连接菱形各边中点所得的四边形是()A.矩形B.菱形C.正方形D.平行四边形3.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE:EF等于()A.1:2 B.2:1 C.3:2 D.3:14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°5.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm6.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.467.将一张矩形纸片ABCD如图所示那样折起,使顶点C落在C′处,其中AB=4,若∠C′ED=30°,则折痕ED的长为()A . 4B .C . 8D .8.如图,在菱形ABCD 中,对角线AC ,BD 分别等于8和6,将BD 沿CB 的方向平移,使D 与A 重合,B 与CB 延长线上的点E 重合,则四边形AECD 的面积等于( )A . 36B . 48C . 72D . 969.如图,已知四边形ABCD 中,R ,P 分别是BC ,CD 上的点,E ,F 分别是AP ,RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是( )A . 线段EF 的长逐渐增大B . 线段EF 的长逐渐减少C . 线段EF 的长不变D . 线段EF 的长与点P 的位置有关10.如图,甲、乙两人想在正五边形ABCDE 内部找一点P ,使得四边形ABPE 为平行四边形,其作法如下:(甲) 连接BD 、CE ,两线段相交于P 点,则P 即为所求(乙) 先取CD 的中点M ,再以A 为圆心,AB 长为半径画弧,交AM 于P 点,则P 即为所求.对于甲、乙两人的作法,下列判断何者正确?( )A . 两人皆正确B . 两人皆错误C . 甲正确,乙错误D . 甲错误,乙正确二、填空题11.四边形ABCD 中,如果AB=DC ,当AB________DC 时,四边形ABCD 是平行四边形;当AD________BC 时,四边形ABCD 是平行四边形.12.如图菱形ABCD 的边长是2cm ,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为________cm 2.13.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24第12题第13题厘米,△OAB的周长是18厘米,则EF=厘米.14.在平行四边形ABCD中,∠C=∠B+∠D,则∠A=___,∠D=___。

平行四边形单元测试卷(5套题)

平行四边形单元测试卷(5套题)

第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。

四边形章节测试题含答案

四边形章节测试题含答案

四边形章节测试姓名 成绩一、选择题(本大题共12小题,每小题3分,共36分) 1、如图,E F 、是ABCD 对角线AC 上两点,且AE CF =,连结DE 、BF ,则图中共有全等三角形的对数是( )A.1对B.2对C.3对D.4对2、如图,在在平行四边形ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是是平行四边形( )A.OEOF =B.DEBF =C.ADE CBF ∠=∠D.ABE CDF ∠=∠3、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角线是否都为直角D .测量其中三角形是否都为直角4、如果一个四边形绕对角线的交点旋转90,所得的图形与原来的图形重合,那么这个四边形一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形5、下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是A B C D 6. 已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图,在平行四边形ABCD 中,AC BD ,相交于点O .下列结论:①OA OC =,②BAD BCD ∠=∠,③AC BD ⊥,④180BAD ABC ∠+∠=.其中,正确的个数有( ) A.1个 B.2个C.3个D.4个8、如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( ) A.6 B.8C.9D.109、把长为10cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉..部分的面积为12cm 2,则打开后梯形的周长是 ( )中点 中点 中点ABF ECDDCABOFEABCDOAB CDEA 、(10+25)cm B 、(12+25)cm C 、22cm D 、20cm10、如图,正方形ABCD 的边长为2,点E 在AB 边 上,四边形EFGB 也为正方形,设AFC △的面积为 S ,则( ) A.2S = B. 2.4S = C.4S = D.S 与BE 长度有关11、梯形ABCD 中,AD ∥BC ,E 、F 为BC 上点,且DE ∥AB ,AF ∥DC ,DE ⊥AF 于G ,若AG =3,DG =4,四边形ABED 的面积为36,则梯形ABCD 的周长为( )A .49B .43C .41D .4612、 已知:如图,正方形ABCD ,AC 、BD 相交于点O ,E 、F 分别 为BC 、CD 上的两点,BE=CF ,AE 、BF 分别交BD 、AC 于M 、N 两点, 连结OE 、OF.下列结论,其中正确的是( ).①AE=BF ;②AE ⊥BF ;③OM=ON=12DF ;④CE+CF=22AC .(A )①②④ (B )①②(C )①②③④(D )②③④二、填空题(本大题共4小题,每小题3分,共12分) 13、已知任意直线l把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在的位置需满足的条件是_______________________________________________________________________________________________________. (只要填上一个你认为合适的条件).14、已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =23,那么AP 的长为.15、在四边形ABCD 中,对角线AC 、BD 交于点O ,从(1)AB CD =;(2)AB CD ∥;(3)OA OC =;(4)OB OD =;(5)AC BD ⊥;(6)AC 平分BAD ∠这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒ABCD 是菱形,再写出符合要求的两个: ⇒A B C D 是菱形; ⇒A B C D 是菱形. 16、如下图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k = .三、解答题(本大题共8小题,其中第17、18、19、20、21、22小题每题7分,第23小题8分、第24小题10分、第25小题12分,共72分,)17、(7分)已知任意..四边形ABCD ,且线段AB 、BC 、CD 、DA 、AC 、BD 的中点分别是E 、F 、G 、H 、P 、Q .(1)若四边形ABCD 如图①,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”). 甲:顺次连接EF 、FG 、GH 、HE 一定得到平行四边形;( ) 乙:顺次连接EQ 、QG 、GP 、PE 一定得到平行四边形.( )(2)请选择甲、乙中的一个,证明你对它的判断. (3)若四边形ABCD 如图②,请你判断(1)中的两个结论是否成立?DCFD C HPGQGCDBF A E ABCDO M ENF ……GF EDCBA18、(7分)如图,已知四边形纸片ABCD ,现需将该纸片剪拼成一个与它面积相等的平行四边形纸片.如果限定裁剪线最多有两条,能否做到: (用“能”或“不能”填空).若填“能”,请确定裁剪线的位置,并说明拼接方法;若填“不能”,请简要说明理由.答案:能 如图,取四边形ABCD 各边的中点E G F H ,,,,连接EF GH ,,则EF GH ,为裁剪线.EF GH ,将四边形ABCD 分成1,2,3,4四个部分,拼接时,图中的1不动,将2,4分别绕点H F ,各旋转180,3平移,拼成的四边形满足条件.直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形.(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.ABCDA BCD H F GE1 2 3 4A BCD HFGE12 343中点中点 ① ②③ ①②③19、(7分)如图,在ABC △中,AB BC =,D、E、F分别是BC 、AC 、AB 边上的中点.(1) 求证:四边形BDEF 是菱形;(2) 若12AB =cm ,求菱形BDEF 的周长.20、(7分)如图,将一张矩形纸片A B C D ''''沿EF 折叠,使点B '落在A D '' 边上的点B 处;沿BG 折叠,使点D '落在点D处,且BD 过F 点.⑴试判断四边形BEFG 的形状,并证明你的结论. ⑵当∠BFE 为多少度时,四边形BEFG 是菱形.21、(7分)如图,四边形ABCD 为平行四边形,E 为AD 上的一点,连接EB 并延长,使BF=BE ,连接EC 并延长,使CG=CE ,连接FG .H 为FG 的中点,连接DH . (1) 求证:四边形AFHD 为平行四边形;(2)若CB=CE ,∠BAE=600 ,∠DCE=200 求∠CBE 的度数.22、(7分)如图,梯形ABCD 中,120AD BC AB DC ADC =∠= ∥,,,对角线CA 平分DCB ∠,E 为BC 的中点,试求DCE △与四边形ABED 面积的比.AFBDCEADBEC23、(8分)在矩形纸片ABCD 中,33AB =,6BC =,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,30BPE ∠= .(1)求BE 、QF 的长; (2)求四边形PEFH 的面积.24、(本小题10分)如图1,在正方形ABCD 中,点E 、F 分别为边BC 、CD 的中点,AF 、DE 相交于点G ,则可得结论:①AF=DE ,②AF ⊥DE (不须证明).(1)如图②,若点E 、F 不是正方形ABCD 的边BC 、CD 的中点,但满足CE=DF ,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”) (2)如图③,若点E 、F 分别在正方形ABCD 的边CB 的延长线和DC 的延长线上,且CE=DF ,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE 和EF ,若点M 、N 、P 、Q 分别为AE 、EF 、FD 、AD 的中点,请先判断四边形MNPQ 是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.25、(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x 轴上,A 点函数xy 2=上,且AB ∥CD ∥y轴,AD ∥x 轴,B (1,0)、C (3,0)。

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案
∵AD=a, ∴a 的取值范围是:2<a<10. 故答案为:2<a<10. 15.【解答】解:∵四边形 ABCD 是平行四边形, ∴∠AEB=∠EBC,AD=BC=5cm, ∵BE 平分∠ABC,
∴∠ABE=∠EBC, ∴∠ABE=∠AEB, ∴AB=AE=3cm, 同理可得:DF=DC=3cm, ∴EF=AE+FD﹣AD=3+3﹣5=1(cm). 故答案为:1cm. 16.【解答】解:连接 DE 并延长交 AB 于 H. ∵CD∥AB, ∴∠C=∠A, ∵E 是 AC 中点, ∴DE=EH, 在△DCE 和△HAE 中,
新多边形的内角和为 720°,则对应的图形是( )
A.
B.
C.
D.
10.平面直角坐标系中一个平行四边形的三个顶点的坐标分别(0,0),(3,0),(1,3),
则第四个顶点的坐标可能是下列坐标:①(4,3)②(﹣2,3)③(﹣1,﹣3)④(2,
﹣3)中的哪几个( )
A.①②③
B.②③④
C.①②④
D.①③④
有( )
A.1 对
B.2 对
C.3 对
D.4 对
5.如图,在平行四边形 ABCD 中,AB⊥AC,若 AB=8,AC=12,则 BD 的长是( )
A.22
B.16
6.下列结论正确的是( )
C.18
D.20
A.平行四边形是轴对称图形
B.平行四边形的对角线相等
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
北师大版八年级数学下册第 6 章《平行四边形》章节综合测试含答案
一.选择题(共 10 小题,满分 30 分)
1.在▱ ABCD 中,∠A:∠B=7:2,则∠C 的度数是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形章节测试
(满分100分,考试时间60分钟)
学校____________ 班级_________ 姓名___________
一、选择题(每小题3分,共30分)
1. 如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,不能判定四边形
ABCD 是平行四边形的是( ) A .AB ∥CD ,AD =BC B .AB ∥CD ,AD ∥BC
C .AB =C
D ,AD =BC
D .OA =OC ,OB =OD
第1题图 第3题图 第4题图 2. 在平行四边形ABCD 中,若∠B =2∠A ,则∠C 的度数为( )
A .120°
B .60°
C .30°
D .15°
3. 如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 是BC 边的中点,
且OE =2,则CD 的长为( ) A .2
B .4
C .1
D .8
4. 如图,在矩形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.若
AB =2,AD =4,则图中阴影部分的面积为( ) A .8
B .6
C .4
D .3
5. 下列说法:①一个四边形任意相邻的两个内角都互补,则这个四边形是平行
四边形;②一组对边平行,另一组对边相等的四边形是平行四边形;③若AC ,BD 是四边形ABCD 的对角线,且AC 平分BD ,则四边形ABCD 是平行四边形;④一组对边平行,一组对角相等的四边形是平行四边形.其中正确的有( )
O
E
D C
B
A
E
O
D
C
B
A
A.1个B.2个C.3个D.4个
6.如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,
若∠DAC=20°,∠ACB=66°,则∠FEG的度数为()
A.47°
B.46°
C.41°
D.23°
7.如图,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,
AC=20,则MN的长是()
A.2 B.3 C.6 D.17
第7题图第8题图第10题图
8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰
好与点O重合,若BC=3,则折痕CE的长为()
A.B.C D.6
9.A,B,C是平面内不在同一直线上的三点,D是平面内任意一点,若A,B,
C,D四点恰能构成一个平行四边形,则在平面内符合该条件的点D有()A.1个B.2个C.3个D.4个
10.如图,在四边形ABCD中,点E,F,G,H分别为AD,BD,BC,CA的中
点.要使四边形EFGH是菱形,则应满足的条件是()
A
C
D F
E
G
N
B
A
C E
O
D C
B
A
H
G
F
E
O
D
C
B
A
A .AC ⊥BD
B .A
C =B
D C .AB =CD D .AD =BC
二、填空题(每小题3分,共15分)
11. 在平行四边形ABCD 中,已知AB ,BC ,CD 三条边的长度分别为3x +,4x -,
16,则这个平行四边形的周长为___________.
12. 如图,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥DC 于点F ,BC =5,
AB =4,AE =3,则AF 的长为_______.
第12题图 第13题图 第14题图
13. 如图,在平行四边形ABCD 中,点E 在AD 边上,以BE 为折痕,将△ABE
向上翻折,点A 恰好落在CD 边上的点F 处.若△DEF 的周长为8,△BCF 的周长为32,则CF 的长为___________.
14. 如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,
垂足为点E ,连接DF ,则∠CDF =_______.
15. 如图,在△ABC 中,AC 的垂直平分线分别交AC ,AB 于点D ,F ,BE ⊥DF
交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的
面积为_________.
三、解答题(本大题共4小题,满分55分)
16. (10分)如图,在平行四边形ABCD 中,E ,F 是对角线BD 上的两点,BE =DF ,
点G ,H 分别在BA ,DC 的延长线上,且AG =CH ,连接GE ,EH ,HF ,FG .
F
E
D
C
B A F E D C
B
A
D
A
E
F B
C
F
D C B
A
求证:(1)△BEG ≌△DFH ;(2)四边形GEHF 是平行四边形.
H
G
F E
D C
B
A
17. (13分)如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A ,
D 不重合),G ,F ,H 分别是B
E ,BC ,CE 的中点. (1)证明:四边形EGFH 是平行四边形; (2)若E
F ⊥BC ,且1
2
EF BC =
,证明:平行四边形EGFH 是正方形.
18. (15分)如图,在梯形ABCD 中,AD ∥BC ,E 是BC 的中点,AD =5,BC =12

CD =C =45°,P 是BC 边上一动点,设BP 的长为x .
(1)当x 的值为____________时,以P ,A ,D ,E 为顶点的四边形是平行四边形;
A B
C
D
E F
G
H
(2)点P 在BC 边上运动的过程中,以P ,A ,D ,E 为顶点的四边形能否成为菱形?请说明理由.
19. (17分)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一
条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)如图1,已知格点(小正方形的顶点)O (0,0),A (3,0),B (0,4),请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的勾股四边形OAMB ; (2)如图2,将△ABC 绕顶点B 顺时针旋转60°,得到△DBE ,连接AD ,CD ,∠DCB =30°,求证:四边形ABCD 是勾股四边形.
E C
D
B
A
E
P D
C B
A E
D
C B
A
图1 图2。

相关文档
最新文档