2010级数学分析2期末试题

合集下载

数学分析(二)期末考试解答及评分标准

数学分析(二)期末考试解答及评分标准
(密封线内不答题) ………………………………………密………………………………………………封………………………………………线……………………………………
座位号
专业
学院
_____________ ________
华南理工大学期末考试
《数学分析(二)》试卷 A 参考答案
注意事项:1. 考前请将密封线内填写清楚;
⎝a ⎠ a
a
所以,综上所得
∫ e ax
cos bxdx
=
⎧ b sin bx
⎪ ⎨
a2
+ a cos bx + b2
e ax
+
C,
当a 2
+
b2

0时
⎪⎩C , 当a 2 + b2 = 0时
其中 C 为任意常数。…………………7 分
2
2
2
2、计算星形线 x 3 + y 3 = a 3 (a > 0) 的弧长。(第 2 小题 8 分)
a
i =1 ui −1
∑ ∫ ∑ ∫ =
n i =1
ui [ψ (u) −
ui −1
mi ]sin
pudu +
n i =1
ui ui −1
mi
sin
pudu
∑ ∫ ∑ ∫ n

i =1
ui ψ (u) −
ui −1
mi
n
du +
i =1
mi
ui sin pudu
ui −1
∑ ∑ ≤
n
ωi ∆ui
i =1
⎬⎫,当q ⎭
>
1时, ,
⎪ ⎪

数学分析报告2期末考精彩试题库

数学分析报告2期末考精彩试题库

数学分析2期末试题库 《数学分析II 》考试试题(1)一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、∑∞=1n na收敛的cauchy 收敛原理3、 全微分 二、计算题:(每小题8分,共32分)1、4202sin limx dt t x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。

3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和4、已知zy x u = ,求yx u∂∂∂2三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。

,一、叙述题:(每小题5分,共10分)1、 叙述反常积分a dx x f ba,)(⎰为奇点收敛的cauchy 收敛原理2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)212111(lim nn n n +++++∞→ 2、求摆线]2,0[)cos 1()sin (π∈⎩⎨⎧-=-=t t a y t t a x 与x 轴围成的面积3、求⎰∞+∞-++dx x xcpv 211)(4、求幂级数∑∞=-12)1(n nn x 的收敛半径和收敛域 5、),(yxxy f u =, 求y x u ∂∂∂2三、讨论与验证题:(每小题10分,共30分)1、yx y x y x f +-=2),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为什么?2、讨论反常积分⎰∞+0arctan dx x xp的敛散性。

高等数学,数学分析(2)期末考试题库

高等数学,数学分析(2)期末考试题库

高等数学,数学分析(2)期末考试题库高等数学②期末考试题库目录高等数学②期末考试题(一) (2)高等数学②期末考试题(二) (8)高等数学②期末考试题(三) (16)高等数学②期末考试题(四) (23)高等数学②期末考试题(五) (30)高等数学②期末考试题(六) (36)高等数学②期末考试题(七) (42)高等数学②期末考试题(八) (48)高等数学②期末考试题(九) (55)高等数学②期末考试题(十) (61)高等数学期末考试题(一)一. 解下列各题(每小题6分) 1. .设)ln(),,(22z y x z y x u y ++=, 求zuy u x u ,,及全微分)2,1,(e du . 2. 求曲线32,,t z t y t x =-==的与平面0193=-++z y x 平行的切线方程. 3. 将?+=x x dy yx dx I 222101化为极坐标系下的累次积分, 并计算I 的值.4. 判断级数∑∞=12tan1n nn和∑∞=-+-1)1()1(n n n n 的敛散性.二. 解下列各题(每小题7分)1. 设函数)(u f 具有二阶连续导数, 且)sin (y e f z x =满足方程z e yz x z x22222=??+??, 求)(u f 的表达式. 2. 计算第一类曲面积分??∑=zdS I , 其中∑为锥面22y x z +=在柱体x y x 222≤+内的部分.3. 设)(x S 函数≤<≤<-=ππx xx x f 002)(2的以π2为周期的傅里叶级数展开式的和函数, 求)3(),2(),6(),6(ππS S S S -的值.4. 计算曲线积分?-+=Ldz z xdy dx y I 222, 其中L 是平面2=+z x 与柱面122=+y x 的交线, 若从z 轴正向往负向看去, L 取逆时针方向. 三. (8分)把函数)3(1)(-=x x x f 展成1-x 的幂级数, 并指出收敛域.四. (8分)设V 是由曲面z z y x 2222=++围成的立体, 其上任一点处的密度与该点到原点的距离成正比(比例系数为)k , (1)求V 的质量; (2) 求V 的质心坐标.五.(8分)证明曲面m xyz = 0(≠m 为常数)上任一点的切平面在各坐标轴上的截距之积为常数.六. (8分)求幂级数∑∞=---121)12()1(n nn x n n 的收敛区间及和函数.七. (8分)计算曲面积分,)]([])([333??∑-+++=dxdy yz zf z dzdx y yz yf dydz x I 其中函数f 有连续的导函数, ∑为上半球面221y x z --=的上侧.八. (8分) 设函数)(y f 在+∞<<∞-y 内有连续的导函数, 且y ?,0)(≥y f ,1)1(=f , 已知对右半平面}0,),{(>+∞<<∞-x y y x 内任意一条封闭曲线Γ,都有0)(2=+-?Γy f x xdyydx , 求)(y f 的表达式.答案一. 1.1-=??y yx x u 222ln z y y x x y u y ++=?? 222z y z z u +=?? …………(3分) 1)2,1,(=??e xu52)2,1,(+=??e yu e54)2,1,(=e z u ………….(5分) dz dy e dx du 54)52(+++= ………………(6分)2. }3,1,2{2t t T -=………………..(1分) 由题设03962=+-t t , 即0322=-+t t …………………(2分) 解得1=t , 3-=t .…………………(3分) 切点为 )1,1,1(- 或 )27,3,9(-}3,1,2{=T 或}27,1,6{--=T切线为 311121-=-+=-z y x 或 27271369+=--=--z y x …………….(6分)3. ?=θθπρθ2cos sin 04d d I …………………..(2分`)θθθθπc o s 1c o s s i n 402==?d 4π)12(-= ……………………(6分)4.n n 2tan1~n2……………………….(2分) ∑∞=12n n 发散∑∞=∴12a r c t a n 1n n n 发散……………….(3分)∑∞=-+-1)1()1(n nn n ∑∞=++-=11)1(n nnn ……………………….(4分)n n ++11单调减少且趋于零, ∑∞=-+-∴1)1()1(n n n n 收敛……..(6分)二. 1.y e f x z x sin ?'=?? y e f yzx c o s ?'=?? ……………………….(2分) y e f y e f xz x x s i n s i n2222?'+?''=?? y e f y e f y zx x s i n c o s 2222?'-?''=?? ………………………..(4分)代入已知方程得 0=-''f f …………………………(5分) 012=-r 1±=ru u e C e C u f -+=21)( .………………(7分) 2.. ??+=xyD dxdy y x I 222 ……………………(3分)=θπρρθc o s 2022022d d ………………….(5分)=203c o s 3216πθθd 9232= .………………(7分)3.±=+=<<<<-=ππππx x x x x x S 2101002)(22 ………………(3分) 2)26()6(=-=πS S 2)62()62()6(-=-=-ππS S 1)0()2(==S S π 21)()3(2πππ+==S S ………..(7分)4. 解1 t z t y t x L cos 2,sin ,cos :-=== …………….(2分) dt t t t tI ]sin )cos 2(cos 2sin [(2203--+-=?π ………..………(5分)π2= …………………(7分) 解2 利用斯托克斯公式, 设S 是L 所围平面+-=Sdxdy y I )22( ………………...(3分)-=xyD dxdy y )22(π22==??xyD dxdy …………………….(7分)三.)311(31)(-+-=x x x f …………………..(2分)]211121)1(11[31----+-=x x ……………………..(4分)∑∑∞=∞=-----=00])21(21)1()1([31n n n nn x x ……………(6分) ∑∞=+----=011)1](21)1[(31n n n n x ……………….(7分)由 11<-x 及121<-x 得收敛域)2,0(∈x …………(8分)四. (1) ++=VdV z y x k m 222 ……………..(1分)=?ππ??θcos 2032020sin dr kr d d ……………(3分)58cos sin 8204πππk d k ==? …………….(4分) (2) 0=x 0=y ………………….(5分) ++= VdV z y x zk m z 2221 . ……………(6分) =?ππθc o s 2042020c o s s i n dr rd d m k .………… (7分) 783564cos sin 564206===m k d mk πππ.……………(8分) V 的质心为 )78,0,0(五. 曲面上任一点),,(000z y x P 处的切平面法向量为},,{000000y x z x z y n =…………………….(2分) 切平面 0)()()(00000000=-+-+-z z y x y y z x x x z y ……….(4分) 即 0000000003z y x z y x y z x x z y =++ 在三坐标轴上截距分别为0003,3,3z y x .………………(6分) m z y x z y x 2727333000000==?? ………………..(8分)六. 1)12)(1()12(lim lim1=++-=∞→+∞→n n n n a a n nn n …………………(1分)1=R , 收敛区间 11<<-x ………………….(2分)设∑∞=---=121)12()1()(n nn x n n x S∑∞=----='1121)12()1(2)(n n n xn x S …………………..(3分) . ∑∞=---=''1221)1(2)(n n n x x S …………………..(4分)∑∞=--=112)(2n n x 212x+=………..………(6分) x x S a r c t a n 2)(=' …………………(7分) )1l n(a r c t a n 2)(2x x x x S +-= …………………(8分)七. 设0,1:22=≤+z y x S , 利用高斯公式-+++-=+dxdy yz zf z dzdx y yz yf dydz x I S)]([])([333∑ …….….(2分)0)(3222-++=VdV z y x ……………………..(4分)=1042020s i n 3dr r d d ??θππ ……………………(6分)=1420s i n6dr r d ππ56π= ……………………(8分)八. 222)]([)(y f x y f x x Y +-=?? 222)]([)()(y f x y f y y f x y X +'-+=………..(4分) 由y X x Y ??=?? 得 222)]([)(y f x y f x +-222)]([)()(y f x y f y y f x +'-+=即)(2)(y f y f y =' ……………………(5分)ydyy f y df 2)()(=……………………(6分) 1ln 2)(ln C y y f += 2)(Cy y f = ………………….(7分) 由 1)1(=f 得1=C 2)(y y f =∴ …………………..(8分)高等数学期末考试题(二)一、求解下列各题(每小题6分)1. 已知直线3221:+==-z m y x L 与平面02:=++-D z y x π平行,且L 到π的距离为6, 求m 与D 的值.3. 计算第二类曲线积分dy y xdx y x I L ?+= 2 ,其中L 是曲线x y =上从点)1 , 1(A 到点)2 , 4(B 的弧段. 4. 设有级数)11ln(1)1(11n nn pn +-∑∞=-, 指出p 在什么范围内取值时级数绝对收敛, 在什么范围内取值时级数条件收敛, 在什么范围内取值时级数发散(要说明理由).二、解下列各题(每小题7分)1. 已知n是曲面1222=+-z y x 在点)1 , 2 , 2(处指向z 增大方向的单位法向量, z z xy u ln 2-=, 求)1 , 2 , 2(nu.2. 将函数231)(2++=x x x f 展开成)1(-x 的幂级数, 并求收敛区间及)1()5(f 的值.3. 计算三重积分Ω=zdV x I 2, 其中Ω是由柱面2x y =与平面1=y , 0=z ,2=z所围成的立体.4.求二元函数y x y x x y x f z 293),(223+---==的极值点与极值.三、(8分) 设1)(2+=x x f ,ππ≤≤-x , 将)(x f 展开成以π2为周期的傅里叶级数.四、(8分)设V 是由曲面222y x z --=与22y x z +=围成的立体, 求V 的表面积.五、(8分) 计算第二类曲面积分??++=Sdxdy dzdx y dydz x I 33, 其中S 是曲面22y x z += )10(≤≤z 的下侧.六、(8分)求幂级数∑∞=+12)(n n x n n 的收敛域与和函数.七、(8分) 已知在半平面0>x 内dy y x y x dx y x y x λλ))(())((2222++++-为二元函数),(y x f 的全微分. (1) 求λ的值; (2) 求 )0 , 2()3 , 1(f f -的值.八、(8分)设}|),,{()(2222t z y x z y x t ≤++=Ω,其中0>t . 已知)(x f 在), 0[∞+。

2010级高数二期末A解答(少学时)

2010级高数二期末A解答(少学时)

2010级高等数学(二)期末试题解答及评分标准A(本科少学时)一、选择题(本大题5个小题,每小题3分,共15分)1.22ln(23)4arccos(56)z x y x y =+++的定义域为( D ).A.{(,)230}x y x y +>; B.22{(,)230561}x y x y x y +>+≤或; C.22{(,)561}x y x y +≤; D.22{(,)230561}x y x y x y +>+≤且.2.微分方程2220d yy dxω+=(ω是常数)的通解是函数( B ).A.x y ωcos =; B.x C x C y ωωsin cos 21+=; C.x C ωsin 1; D.()ϕ+=x y 10sin .3.设有命题I :函数(,)z f x y =在00(,)x y 处连续,另有命题II :函数(,)z f x y =在00(,)x y 处的两个偏导数0000(,),(,)x y f x y f x y 存在,可以断定I 是II 的( C ).A.充分条件 ; B.必要条件 ; C.既非充分也非必要条件 ; D.充分且必要条件.4.设区域D 由y x =、0y =及1x =所围城,令1DI d σ=⎰⎰、2DI xd σ=⎰⎰、23DI x d σ=⎰⎰、4DI xyd σ=⎰⎰,则1I 、2I 、3I 、4I 中值最大的是( A ).A.1I ; B.2I ; C.3I ; D.4I .5.设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点)1,1,0(的一个邻域,在此邻域内该方程( D ).A.只能确定一个具有连续偏导数的隐函数),(y x z z =;B.可确定两个具有连续偏导数的隐函数),(z y x x =和),(y x z z =;C.可确定两个具有连续偏导数的隐函数),(z x y y =和),(y x z z =;D.可确定两个具有连续偏导数的隐函数),(z y x x =和),(z x y y = .二、填空题(本大题5个小题,每小题3分,共15分)6.设22),(y x xy y x f -=+,则(,)f x y =y y y +-1)1(2 .7.设f 具有一阶连续偏导数(1)z f ≠,且(,,)z f x y z =,则dz =1x y zf dx f dy f +- .8.幂级数11(1)n n nn -∞=-∑的收敛域是11(,]22-(含端点敛散性).9.设区域D 为环形域:2214x y ≤+≤,则22()Dx y d σ+=⎰⎰152π . 10.函数)ln(22z y x u ++=在点A )1,0,1(处沿点A 指向点B )2,2,3(-的方向导数为21.三、试解下列各题(本大题6个小题,每小题8分,共48分)11.求极限011cos()lim sin x y xy x xy →→-.解 200111()1cos()2lim lim sin x x y y xy xy x xy x xy →→→→-=⋅ (5分)12=. (8分) 12. 设sin 2arctan()z xy x y =+-,求(0,1)x z 和(0,1)y z .解 212cos 21()x z y xy x y =++-,5(0,1)2x z = (4分) 同理212cos 21()y z x xy x y =-+-,1(0,1)2yz =-. (8分) 13. 写出级数234234232432234ππππ⋅⋅⋅++++ 的通项,并判定其敛散性. 解 !nn n n u nπ= (3分)因为1lim1n n nu u e π+→∞=>,所以级数发散. (8分)14. 设f 具有二阶连续偏导数,且),(y xy f z =,求22z x∂∂,2z x y ∂∂∂.解 由于//11()z f xy yf x x∂∂=⋅=∂∂, (3分) 故//112/122)(f y f x y x z =∂∂=∂∂ (6分)//12//11/1//12//11/1/12)()(yf xyf f f xy y f y f yf y y x z ++=⎥⎦⎤⎢⎣⎡+∂∂⋅+=∂∂=∂∂∂(8分)15. 计算Dxdxdy ⎰⎰,其中D 由1xy =、y x =、2x =所围成.解 211xxDxdxdy dx xdy =⎰⎰⎰⎰ (4分)43=. (8分) 16. 已知向量a 、b 、c两两垂直,且1a = ,2b = ,3c = ,求a b c ++ .解 因为a 、b 、c两两垂直,所以0a b b c a c ⋅=⋅=⋅=(3分) 又2()()a b c a b c a b c ++=++⋅++2()a a b b c c a b b c a c =⋅+⋅+⋅+⋅+⋅+⋅22214a b c =++= (7分)从而a b c ++=(8分)四、试解下列各题(本大题2个小题,每小题6分,共12分)17.求函数22(,)8006004000033f x y x y x xy y =+----的极值点,并判定取得极大值还是极小值.解 8006x L x y =--,6006y L y x =--联立0x y L L ==得 120,80x y == (3分) 又在该点处6,1,6xx xy yy A L B L C L ==-==-==-20,0AC B A -><,故在该点处取得极大值. (6分)18. 设平面图形由抛物线)0(,2>-=a x ax y 及直线1,0,0===x x y 所围成,试确定a 的值,使此平面图形的面积最小.解曲线2y a xx =-与0y =的交点为1(0,0),(,0)a,故有所围面积为120()||A a ax x dx =-⎰112210()()a ax ax dx ax x dx =-+-⎰⎰(3分)令)()(1110112102/⎰⎰⎰⎰-++-=aa a a xdx xdx dx x a dx x a da d a A 031323=+-=a , 解得唯一驻点02)(,24//3>==aa A a 且,故当32=a 时所围成的平面图形面积最小. (6分)五、证明题(本大题2个小题,每小题5分,共10分)19.设(,)f x y 在有界闭区域D 上连续,证明:在D 上至少有一点(,)ξη,使:(,)(,)Df x y d f σξησ=⎰⎰.证明 因为(,)f x y 在有界闭区域D 上连续,所以(,)f x y 在有界闭区域D 上有最大值M 和最小值m ,即:(,)m f x y M ≤≤,从而 (,)Dm f x y d M σσσ≤≤⎰⎰,(,)Df x y d m M σσ≤≤⎰⎰ (3分)根据介值定理,在D 上至少有一点(,)ξη,使得:(,)(,)Df x y d f σξησ=⎰⎰即:(,)(,)Df x y d f σξησ=⎰⎰ . (5分)20.设)(22y x f y z -=,其中)(u f 为可导函数,验证211y zy z y x z x =∂∂+∂∂. 证明 由于)(u f 可导,故/22z xyf x f ∂=-∂, /2/22(2)2z f yf y f y f y f f ∂-⋅-+==∂ (3分) 从而 22/22/2211yzyf f y f f yf y z y x z x =++-=∂∂+∂∂. (5分)。

2010级高等数学II(2)试卷A评分标准

2010级高等数学II(2)试卷A评分标准

f x ( x, y ) 2 x 0 解: 解方程组 , 得驻点 ( 0 , 1 ) , f y ( x, y ) 2 y 2 0 y2 令 L ( x, y ) x 2 y 2 2 y ( x 2 1) 2 Lx ( x, y ) 2 x 2 x 0 , 解方程组 Ly ( x, y ) 2 y 2 y 0 , 2 2 x y 2 1 , 得所有可能极值点 ( 0 , 2 ) , (0 , 2 ) , 因为 f ( 0 , 1 ) 1 , f ( 0 , 2 ) 2 2 2 , f (0 , 2 ) 2 2 2 , 所以 最大值为 f (0 , 2 ) 2 2 2 , 最小值为 f ( 0 , 1 ) 1.
若级数 bn 收敛 , 则级数 an 也收敛 .
(2) (3)
n 1 n 1
证: 由题设得 相乘得
a b a b a2 b2 , 3 3 , , n n , a1 b1 a2 b2 an 1 bn 1 an

(2) (4) (6)
a1 bn , b1
( n 1 , 2 ,3 , )

本题 得分
四、 (本题 10 分)求旋转抛物面 z x 2 y 2 含在圆柱面 x 2 y 2 1内部的那部分面积. (1) (4) (8) (9) (10)
闭区域 . 解: 投影区域 D : x 2 y 2 1 (1)
1 1 2 0 0
解: 投影区域 Dxy : x 2 y 2 1 , A 1 4 x 2 4 y 2 dxdy

(4) 将函数 f ( x)
1 展开成 ( x 1) 的幂级数, 并指出展开式成立的区间 . x2 x 6 1 1 1 1 解:f ( x) ( ) (2) ( x 3)( x 2) 5 x 3 x 2 1 1 1 1 [ ] (4) 5 4 1 x 1 1 (( x 1)) 4 1 1 ( x 1) n [ (1)n ( x 1) n ] (6) 5 4 n 0 4n n0 1 1 [ n 1 (1)n ] ( x 1) n (7) (2 x 0) (8) 5 n0 4

2009-2010云南民族大学期末考试数学分析答案

2009-2010云南民族大学期末考试数学分析答案

∑ 的级数 x n (1 − x) 的部分和函数序列为{ x − x n+1 } ,因此在[0,1]上处处收敛. n=1
…………2 分

∑ (2) (−1)n x n (1 − x) 在[0,1]上不绝对一致收敛: 从(1)可见取绝对值 n=1

后的级数 ∑ x n (1 − x) 的和函数为 S( x) = x, x ∈ [0,1), S(1) = 0 ,它在点 x = 1 的左 n=1
| f ( x) |≤ M , | g( x) |≤ M , M 为常数. 在[ xi−1 , xi ]上任取两点 x', x'' ,考虑
f ( x'')g( x'') − f ( x')g( x') = [ f ( x'') − f ( x')]g( x'') + [g( x'') − g( x')] f ( x')
=
− cos pb + cos pa

2
…………2 分
a
p
p
现在把区间[a, b]分为小区间:
a = u0 < u1 < L < un = b , ∆ui = ui − ui−1 ,
M i , mi 分别为ψ ( x) 在[ui−1 , ui ] 的上、下确界,ωi = M i − mi ,有
∫ ∑ ∫ bψ (u)sin pudu = n ui ψ (u)sin pudu
Ωi ≤ ωiM + ωi'M
从而
∑ ∑ ∑ Ω i ∆xi ≤ M ωi ∆xi + M ωi '∆xi

(试题)武汉科技大学2010级高数二期末A解答(多学时)

(试题)武汉科技大学2010级高数二期末A解答(多学时)

2010级高等数学(二)期末试题解答及评分标准A(本科、多学时)一、选择题(本大题5个小题,每小题3分,共15分)1.已知平面23x y z +-=与直线151x y z a b --==平行,则,a b 应满足( ). A.20a b ++=; B.20a b +-=;C.2a b ==-; D.2a b ==.2.下列微分方程中,不是线性微分方程的是( ).A.2()0y y '+=; B.0y y '+=;C.2x y y x '''+=; D.22d x x dt =. 3.二阶常系数非齐次线性微分方程2x y y y e '''+-=的特解形式可令为( ). A.x Ae ; B.()x x Ax B e + ; C.x Axe ; D.2x Ax e .4.设1D 是由ox 轴,oy轴及曲线0)y x =≥所围成的有界闭域,(,)f x y 是区域22:16D x y +≤上的连续函数,则有( ).A.12222(,)2(,)D D f x y d f x y d σσ=⎰⎰⎰⎰ ; B.12222(,)4(,)D D f x y d f x y d σσ=⎰⎰⎰⎰ ;C.12222(,)8(,)D D f x y d f x y d σσ=⎰⎰⎰⎰ ; D.122221(,)(,)2D D f x y d f x y d σσ=⎰⎰⎰⎰. 5.设Ω为一有界闭区域,其上各点的体密度为(,,)x y z ρ.设M 为其质量,而(,,)x y z 为其重心,Ω关于xoy 平面的静矩定义为:xy M z M =,则xy M 的三重积分计算式为( ).A.22()(,,)d xy M x y x y z v ρΩ=+⎰⎰⎰;B. (,,)d xy M x x y z v ρΩ=⎰⎰⎰;C.(,,)d xy M y x y z v ρΩ=⎰⎰⎰;D. d ),,(⎰⎰⎰Ω=v z y x z M xy ρ.二、填空题(本大题5个小题,每小题3分,共15分)6.设函数(,)z z x y =由方程2229x y z ++=所确定,则z x∂=∂_______. 7.幂级数1(1)nnn ∞=-∑_______. 8. 设L 为1x y +=,则Lx ds =⎰_____________ . 9.曲面3=+-xy z e z 在点)0,1,2(处的切平面方程为___________.10.三重积分222()f x y z dxdydz Ω++⎰⎰⎰,其中Ω为半球体2221x y z ++≤,0z ≥化为球坐标下的累次积分是______________________________.三、试解下列各题(本大题6个小题,每小题8分,共48分)11.设2sin()z x x y =-,求(,),(,)22x y z z ππππ.12.设(,)z f xy y z =-,其中f 具有一阶连续偏导数,且210f '+≠,求dz .13.求微分方程xy y '=的通解.14. 求微分方程40y y ''+=的通解.15.计算二重积分22x y De dxdy --⎰⎰,其中22:4D x y +≤.16. 求级数1n n nx ∞=∑的和函数()S x .四、试解下列各题(本大题2个小题,每小题6分,共12分)17. 计算曲线积分(sin )(cos 1)x x Le y y dx e y dy -+-⎰,其中L 是上半圆周22x y x +=(0)y >上从(0,0)O 到(1,0)A .18.计算曲面积分zdxdy xdydz ydzdx ∑++⎰⎰,其中∑是上半球面z =的下侧.五、证明题(本大题2个小题,每小题5分,共10分)19.试判断级数1!sin !n nn nn n n n n ππ∞=∑的敛散性,并证明你的结论.20.设)(u f z =,且方程⎰+=xy dt t p u u )()(ϕ确定),(y x u u =,其中)(),(u u f ϕ可微,(),()p u u ϕ'连续且()1u ϕ'≠.试证()()0zzp y p x x y ∂∂+=∂∂.。

10级高等数学(A)2期末测试题答案

10级高等数学(A)2期末测试题答案

3.
设 L : 点 (1, 0)到 点 (2010, 2012) 再到点 (3, 0)的折 线段 .求 ( x 2 + y 3 ) dx + 3 xy 2 dy . ∫
L
2 3 2
∂P ∂Q 解:这里P ( x , y ) = x + y , Q(x , y )=3 xy ,由 =3 y = ,故此积分与路径无关.............2 分 ∂y ∂x 从而可选择 (1 , 0 )到(3, 0 )的直线段,方程为: y = 0,1 ≤ x ≤ 3................4 分 3 26 从而 ∫ ( x 2 + y 3 ) dx + 3 xy 2 dy = ∫ x 2 dx = ...........6分 1 3 L
D

解:积分区域D关于x轴对称,从而
∫∫ ( y + 3)d σ = ∫∫ yd σ +∫∫ 3d σ...........................2分
D D D
1 = ∫∫ 3d σ =3 ⋅ ⋅1⋅ 2=3........................................6分 2 D
第 2 页共 3 页
解:(1) 联立方程可求得交线为: x 2 + y 2 = 1, z = 1, 从而D xy = {( x, y ) x 2 + y 2 ≤ 1}..........................2分
∫∫ zdxdy = − ∫∫ ( x
∑2 Dxy
2
+ y 2 )dxdy........................4分
).
32π
1. 设 zLeabharlann = 4 x3 y + y 2 e3 x + ln( x + tan x) + sec 2, 求

数学分析(二)期末试题

数学分析(二)期末试题

《数学分析(二)》期末试题一、选择题(共20分) 1、dxx dxd b a⎰2sin =( ) A 、22sin sinab - B 、22cos cos ab - C 、2sinxD 、02、下列积分中不是非正常积分的是( ) A 、 dx x⎰+∞+0211 B 、dxx⎰-1211 C 、dx x⎰-42211 D 、dxx ⎰-22)1(13、若任意的),(b a x ∈,有0)0(,0)(>''>'f x f 则)(x f 在),(b a 内是( ) A 、单调增加的凸函数 B 、单调减少的凹函数 C 、单调减少的凸函数 D 、单调增加的凹函数4、cx dx x f x+='⎰2ln2)(ln 1且1)0(=f ,则=)(x f ( )A 、122+xB 、x 2ln 2C 、22xD 、c x +2ln 25.下列级数中条件收敛的是() A 、∑!sin n x B 、1)1(+-∑n n nC 、∑+-]11)1[(nnnD 、nn2sin)1(∑-6、曲线1)1(3--=x y 的拐点是( )A 、)0,2(B 、)1,1(-C 、)2,0(-D 、无拐点 7、若级数∑∞=+0)1(n nu 收敛,则=∞→n n u lim ()。

A 、1B 、-1C 、0D 、不存在。

8、设)(x f 为连续函数,则dtt f dxd xx⎰2)(=( )A 、)()(22x f x xf-B 、)(22x xf C 、)(x f D 、)()21(x f x -9、若1n n μ∞=∑收敛,1nn k k S μ==∑,则下列命题中正确的是( )。

A 、lim 0nn S →∞=B 、lim n n S →∞存在C 、lim n n S →∞不存在 D 、}{n S 单调 10、13n nn xn ∞=⋅∑的收敛半径为( )A 、0B 、1C 、3D 、13二、填空题(共20分) 1、=⎰-xdx x arccos117( )2、23sin limxx t dt x→=⎰( )3、=--⎰dx x x)cos 312(2( )曲线)10(,2≤≤=x x y 绕x 轴旋转一周所成的旋转体的体积是( ) 5、dxxx p⎰+∞1sin 条件收敛,那么p 的取值范围为( )6、设13--=ax x y 在1=x 处存在极值,则=a ( )7、函数)1()1()(>-+=p x xx f pp在]1,0[上的最大值为( )8、曲线2y x=和2y x=所围城的平面图形的面积为( ) 9.级数()111n n n ∞=+∑的和为( )。

完整word版,浙江大学2010-2011数学分析(2)-试卷及答案,推荐文档

完整word版,浙江大学2010-2011数学分析(2)-试卷及答案,推荐文档

浙江大学20 10 -20 11 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。

请注意:所有题目必须做在答题本上!做在试卷纸上的一律无效!请勿将答题本拆开或撕页!如发生此情况责任自负!考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 )1. 2()(03)sin lim.x y xy x→,,求: 2222()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=⋅=,,,,2. (122)().f x y z gradf=,,设,,23(122)(122)(122)(122)11..2722.27271{122}.27f x x fr x r r r x ffyz gradf∂∂==-⋅=-=-∂∂∂∂=-=-∂∂=-,,,,,,,,令,则:则:同样,,因此,,,3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程.222()2320246.321(321){686}.343x y z F x y z x y z F x F y F z x y z n =++-===---===r 令:,,,则:,,因此,在点,,的法向量,,,故法线为:4. 2221.(2).4Cx C y L x y ds +=+⎰Ñ设曲线:的长度为计算: 222(2)(44)44.=0.CCCCx y ds x y xy ds ds L xyds +=++==⎰⎰⎰⎰蜒蜒其中:5.02z z z ∑===设为曲面和之间部分的下侧,计算: (1)(2).dS dxdy ∑∑⎰⎰⎰⎰;22224.4.x y x y x y z z z dS dxdy dxdy π∑+≤∑+≤======-=-⎰⎰⎰⎰⎰⎰⎰⎰由于因此,二、 计算题:(每题8分,共56分)1. 22()2()()()2x f x f x x f x ππππ=--≤≤设是周期为的函数,且,求:的211.n Fourier n+∞=∑级数,并计算的和22222020022112222211(1)()20.2522(1)()()cos (12).2325(1)()2cos .()(*)65(1)(1)(2)(*)0(0)2.61n n n nn n n n n f x b x x a dx a nxdx n nf x nx x R nx f n n ππππππππππππ∞=-+∞∞===-=-=-=-==-=-+∈--==-=-+⇒=⎰⎰∑∑∑L 由于是周期为的偶函数,则:,,,因此,式中,令,则:12222221111122122222211.21111(1)2.2.2(2)2(2)121.6511(*)2..266n n n n n n n n n n n n n n nx n n σσπσππππππ-+∞+∞+∞+∞∞=====+∞=+∞+∞==-==⇒=-====-=-+⇒=∑∑∑∑∑∑∑∑令:,则:因此,【或】:在式中令,则:2. 211(2)1.44n n nn n x n n +∞+∞==-⋅⋅∑∑计算级数的收敛域及和函数,并计算的值 222112221111211()(2)4(2)(1)lim lim 10 4.()(1)4(2)4(2)12104.44(04).(2)(2)()()4n n n n n n n nn n n nn n n n n n n u x x n x x u x n x x x n n n n x t t S t S t t n +++→∞→∞+∞+∞+∞+∞====∞-=-⋅-=⋅=<<<+⋅--====⋅⋅-'===∑∑∑∑∑,则:当时,发散;当时,发散因此,级数的收敛域为:,令,,则:1222111.(11).1(2)(2)()ln(1).ln 1ln 4ln(4).440 4.14(3)3ln .43n n nn nn t t x x S t t x x n x x n ∞=+∞=+∞==-≤<-⎛⎫--=--=--=-- ⎪⋅⎝⎭<<==⋅∑∑∑其中:故,所以,其中:上式中令,可得,2111112211(2)lim lim 141(1)11.11.(2)(2)[11).110444.(04)n nn n n n n n n n n n nn n n a x t n t t n a n n t t n nt x x x n n ∞∞+→∞→∞==∞∞==∞+∞==-===+-=-=----≤<<<⋅∑∑∑∑∑∑【或】:令,对于级数而言,,因此,的收敛半径为而当时,级数收敛;当时,级数发散故级数的收敛域为,因此,当,即时收敛因此,原级数的收敛域为,..下面与上同3. 222()2.y z zz f x y f x x x y∂∂=+∂∂∂设,,且具有阶连续偏导,计算:,12221112221222221112222232(1)2.111(2)222214(2).z y xf f x x z y x yf f f yf f x y x x x x y y xyf f f f x x x ∂=-∂∂⎛⎫⎛⎫=+--+ ⎪ ⎪∂∂⎝⎭⎝⎭=+---4. 2222(){()|}.Dx y dxdy D x y x y x y +=+≤+⎰⎰计算,其中,222222002212221cos 111()2()()..1222()sin 213cos sin ).281()1121.()()1()222u v x r x y D x y r r y r I d r r r rdr x u x y I u v dudv u v y v u v πθθθθθθπ+≤⎧=+⎪∂⎪-+-≤=⎨∂⎪=+⎪⎩=+++=⎧=+⎪∂⎪⎛⎫==+++⎨ ⎪∂⎝⎭⎪=+⎪⎩=++⎰⎰⎰,方法一、区域:令:,则:,,方法二、令:,则:,2222001233cos sin 344444344444204113).2281(cos sin )41313)]sin 2sin 2.444228u v uu v dudv d r rdr I d r dr d d udu udu πππθθπππθππππθπθθθθππθθπ+≤+--+=-⎛⎫++=+⋅= ⎪⎝⎭==+⋅=+===⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三、5. 222{()|1}.ze dxdydz x y z x y z ΩΩ=++≤⎰⎰⎰计算三重积分:,其中,,()2222221(0)2110cos 0cos 2011012.241(sin )4sin cos 2422.22zzx y z z z u xxu z z x y z xoy e z I e dV I d rdr dz r dr r x x xedx ue du I e dzdxdy e ππθπππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为奇函数,因此,方法一、令:方法二、()120211cos 2cos 222011cos 20(1)2.2sin 4sin 44(1)2.z dz I d d ed de d ed e d πππρϕρϕπρϕρπθϕρϕρπρρϕϕπρρπρρπ-====-=-=⎰⎰⎰⎰⎰⎰⎰⎰方法三、6. 2222()M x y z a ξηζ++=设点,,是球面第一卦限中的一点,S 是球面在该点处的切平面被3个坐标平面所截三角形的上侧,求:点()M ξηζ,,使曲面积分:⎰⎰++=Szdxdy ydzdx xdydz I 为最小,并求此最小值.22222226322262222222(1)()(cos cos cos )11.2cos 2(2).327SSS Sx y z a M x y z a xdydz ydzdx zdxdy x y z dSx y z a a a dS a dS a a a a a a ξηζξηζαβγξηζξηγξηζξηζξηζξηζξηζ++=++=++=++⎛⎫=++==⨯⨯⨯⨯= ⎪⎝⎭⎛⎫++++=≤=⇒ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰球面在点,,处的切平面方程为:由于,则:333..2.Sxdydz ydzdx zdxdy x y z M ≤++≥===⎰⎰因此,等号在故,点为62222(1).30..2(2)xy yz zxxy yz zxxy yz zx S S S S S S S S S S S Guass I xdydz ydzdx zdxdy xdydz ydzdx zdxdya a a a dV x y z a L ξηζξηζξηζ+++ΩΩ=++-++⎛⎫=+=++= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰Ò++【或】:添加切平面与坐标平面所围立体的另三个三角形、、,使其与所围闭曲面方向为外侧则:根据公式可得:切平面:,截距分别为:、、构造222222223min ()().20(1)20(2)20(3)0(4)02.(4)x y z agrange f x y z xyz x y z a f yz x f zx y f xy z f x y z a yz zx xy x y z x y z x y z x y z xyz I λλλλλλλ=+++-=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩>===-======函数:,,,令:由于、、,则:将其代入可得,由于驻点唯一,根据实际问题当因此,3.=7. 22(0)cos (0)42Cxdy ydx xC A y B x y ππ-=-+⎰计算,其中曲线是从点,沿到点,,再从(2).B D ππ-点沿直线到点,2222222222222222222222224.44(4)4(0).444410arc 42CC DA L DA LLy x P y x QP Q x y x y y x y x DA L x y xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y dy xdy ydx y πδδδπππδπ++--∂-∂•====++∂+∂•+=>----=--++++=---=-+⎰⎰⎰⎰⎰⎰Ñ方法一、,,则:连接,作:,足够小,方向为顺时针则:222224221122332222222221tan2217.88(0)(2)(2)(2).444(4)x y ydxdyA A A A A A A D L y x P y x QP Q C Lx y x y y x y x P Q πδπδππδπδπππππππ-+≤+=-+⋅=----∂-∂====++∂+∂⎰⎰方法二、从点,沿直线到点,、再从点沿直线到点,、从点沿直线到点,、再从点沿直线到点;记此路径为由于,,则:;且在由曲线、所围区域内、都1122332222222222222222202442244444422arctan arctan arctan arctan 2242248C L AA A A A A AD xdy ydx xdy ydx x y x y dy dx dy dx y x y x y x y x πππππππππππππππππππππππππππππππππππ--------==+++++--=+++++++--=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有一阶连续连导数,因此,7.4448ππππ+++=三、 证明题:(每题9分,共18分)1. 210cos ()()1n n n nxu x D f x n +∞∞===+∑∑叙述级数在数集上一致收敛的定义,并证明: (02).π在,内连续,且有连续导数22220022022200cos 11cos (1)(02)1111cos (02)(02)1cos ()(02)1cos sin (2)(){}111n n n n n nx nxx n n n n nxn N n nxf x n nx n nx ng x n nn ππππ∞∞==+∞=∞∞==∀∈≤++++∀∈+=+'⎛⎫==- ⎪+++⎝⎭∑∑∑∑∑由于对,,有,而收敛,故级数在,内一致收敛.另外,对,函数在,内连续,因此,在,内也连续.记,由于12200221cos()cos 1220()[2]sin .sin 2sin22sin sin [2](02)11.cos sin (02)()(0211nk n n xn x kx x n nx n nxDirichlet n n nx n nx f x n n δδπδπδδδπδπππ=∞∞==+-∀><∀∈-=≤-++'⎛⎫=- ⎪++⎝⎭∑∑∑单调趋向于零,且对,及,,根据判别法,在,上一致收敛,即在,上内闭一致收敛又在,内连续,故,在,)内具有连续的导数.2. 0()()y f x δδδ>-=证明:存在,及定义在,内的具有连续导数的函数, ()220(0)0sin ()2()cos 1..x dyf x f x f x x dx==+++=满足,且并计算的值22222222222()sin()2cos 1()(1)()(2)(00)0(3)2cos()2(4)(00)20(5)2cos()sin 0()()(0)0sin (y y x F x y x y y x F x y R F F y x y R F F x x y x R y f x f x f δδδ•=+++-==++=>=+->-==+令:,,*则:,在上连续;,;在上连续;,;在上连续.根据隐函数存在性定理,存在,及定义在,内的具有连续导数的函数,满足,且()222222220)2()cos 1.sin()2cos 100.cos()(22)2sin 0.sin 2cos().0.22cos()x x f x x x y y x x x y x y x yy y x x x x y dy y y x y dx=++=•+++===''+++-=-+'==++在两边同时对求导,且当时,则:因此,故,。

数学分析(2)期末试题参考答案

数学分析(2)期末试题参考答案

些值,使得
∫J
χK
(x,
y)dy ∫

F (x)

J χK (x, y)dy,则 F (x) 在 I 上 Riemann
可积,且有
I F (x)dx =
I ×J
χK (x,
y)dxdy
=
0。注意
F ∫
(x)

0,所以,F
(x)
几乎处处为零。另一方面,根据 Kx 的定义,有 F (x) = J χKx (y)dy,所以 Kx
0,则有
(∫ R−ε ∫ R )
I(R) =
+
ey2−R2 dy ≤ e−2 R ε+ε2 (R − ε) + ε,
0
R−ε
于是 lim sup I(R) ≤ ε,另一方面显然有 lim inf I(R) ≥ 0,最后再令 ε → 0 即可
R→+∞
R→+∞
证明 lim I(R) = 0。
R→+∞
(证法二)上述极限还可通过 L’Hôspital 法则求得:
解答:(证法一)因为
K
紧且
Lebesgue ∫
零测,所以
Jordan
零测,于是
χK (x,
y)

I
×J

Riemann ∫
可积,且有
I×J χK (x, y)dxdy = 0。根据 Fubini 定理,
积分
F (x)
= ∫
J χK (x, y)dy
几乎处处存在。在 ∫
F (x)
不存在的地方随意规定一
det J
=
det AU det AV
> 0。

广州商学院2010-2011数学分析(II)期末考试题(模拟卷).

广州商学院2010-2011数学分析(II)期末考试题(模拟卷).

广 东 商 学 院 试 题 纸2010­2011学年第_2_学期 考试时间 120分钟课程名称 数学分析 II (模拟卷) 课程代码 101025 课程班号 10应数 1.2、10信科 1 共 2页 ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­一、填空题(每小题 3 分,共 15 分). ________ dx x) lnx ( f , ) ( . 1 2 = + = ò ò 则 若 c x dx x f . ________ ) x ( F , ) ( . 2 1 cos 2 = ¢ = ò - 则 若 dt e x F xt = + - ò- dx x x x ) cos 2 1 ( . 3 1 1 2 .. ______ . 4 1 0 13 时收敛 满足条件 当 广义积分 p x dx p ò - . _______ u lim ) u 1 2u 1 . 5 1 nn = + - ¥ ® ¥ = å n n n 收敛,则 ( 若 二、单选题(每小题 3分,共 15分)的一个原函数是 则 的导函数是 若 ) ( , cos ) ( . 1 x f x x f ( )(A) x sin 1+ ; (B) x sin 1- ; (C) x cos 1+ ; (D) x cos 1- .2.函数 ) (x f 在 ] , [ b a 上可积的必要条件是 ) (x f 在 ] , [ b a 上() (A)连续 ; (B)有界; (C) 无间断点;(D)有原函数. 3.下列反常积分收敛的是( )(A) ò ¥+ 32 1 dx x ; (B) ò ¥ +3 ln dx x x ; (C) ò ¥ + 3 sin dx x x ; (D) ò ¥ + 3 ln 1 dx x . 4.下列级数发散的是( ) (A) å ¥ = + 1 3 2 11 n n ;(B) å ¥ =1 3 1 n n ; (C) å ¥ =2 2 1 n n ; (D) n n e ) ( 1 å ¥ = p . 5.交换积分次序,ò ò 1 0 2 ) , ( x x dy y x f dx =( ) (A) ò ò 1 0 2) , ( x x dx y x f dy ; (B) ò ò 1 0 10 ) , ( dx y x f dy ; (C) ò ò 1 0 ) , ( y y dy y x f dy ; (D) ò ò 1 0 2 ) , ( yy dx y x f dy .三、计算题(每小题 6分,共 30分)1. dx xx x ò + + cos 1 sin ; 2. N);n xdx tan I n n Î = ò ( 的递推表达式 求不定积分 3.求 dx x x ò - p 05 3 sin sin ; 4. 0); ( 3 x a > = - ò ¥ + a x x d 求 设 , 1p 5.求 s d e D y x òò- ,其中D 由 0 , 2 , 1 , = = = = x y y x y 围成。

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学20 10 -20 11 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___考试形式:闭卷,允许带___笔____入场考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。

请注意:所有题目必须做在答题本上!做在试卷纸上的一律无效!请勿将答题本拆开或撕页!如发生此情况责任自负! 考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 )1. 2()(03)sin lim .x y xy x→,,求: 2222()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=⋅=,,,,2.(122)().f x y z gradf =,,设,,23(122)(122)(122)(122)11..2722.27271{122}.27f x x f r x r r r xf f y zgradf ∂∂==-⋅=-=-∂∂∂∂=-=-∂∂=-,,,,,,,,令,则:则:同样,,因此,,,3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程.222()2320246.321(321){686}.343x y z F x y z x y z F x F y F z x y z n =++-===---===令:,,,则:,,因此,在点,,的法向量,,,故法线为: 4. 2221.(2).4Cx C y L x y ds +=+⎰设曲线:的长度为计算: 222(2)(44)44.=0.C C C Cx y ds x y xy ds ds L xyds +=++==⎰⎰⎰⎰其中:5.02z z z ∑===设为曲面和之间部分的下侧,计算: (1)(2).dS dxdy ∑∑⎰⎰⎰⎰;22224.4.x y x y x y z z z dS dxdy dxdy π∑+≤∑+≤======-=-⎰⎰⎰⎰⎰⎰⎰⎰由于因此,二、 计算题:(每题8分,共56分)1. 22()2()()()2x f x f x x f x ππππ=--≤≤设是周期为的函数,且,求:的 211.n Fourier n +∞=∑级数,并计算的和22222020022112222211(1)()20.2522(1)()()cos (12).2325(1)()2cos .()(*)65(1)(1)(2)(*)0(0)2.61n nn nn n n n n f x b x x a dx a nxdx n nf x nx x R n x f n n ππππππππππππ∞=-+∞∞===-=-=-=-==-=-+∈--==-=-+⇒=⎰⎰∑∑∑由于是周期为的偶函数,则:,,,因此,式中,令,则:12222221111122122222211.21111(1)2.2.2(2)2(2)121.6511(*)2..266n n n n n n n n n n n n n n n x n n σσπσππππππ-+∞+∞+∞+∞∞=====+∞=+∞+∞==-==⇒=-====-=-+⇒=∑∑∑∑∑∑∑∑令:,则:因此,【或】:在式中令,则:2. 211(2)1.44n n n n n x n n +∞+∞==-⋅⋅∑∑计算级数的收敛域及和函数,并计算的值 222112221111211()(2)4(2)(1)lim lim 10 4.()(1)4(2)4(2)12104.44(04).(2)(2)()()4n n n n n n n nn n n n n n n n n n n u x x n x x u x n x x x n n n n x t t S t S t t n +++→∞→∞+∞+∞+∞+∞====∞-=-⋅-=⋅=<<<+⋅--====⋅⋅-'===∑∑∑∑∑,则:当时,发散;当时,发散因此,级数的收敛域为:,令,,则:1222111.(11).1(2)(2)()ln(1).ln 1ln 4ln(4).440 4.14(3)3ln .43n nn n n n t t x x S t t x x n x x n ∞=+∞=+∞==-≤<-⎛⎫--=--=--=-- ⎪⋅⎝⎭<<==⋅∑∑∑其中:故,所以,其中:上式中令,可得,2111112211(2)lim lim 141(1)11.11.(2)(2)[11).110444.(04)n nn n n n n n n n n n nn n n a x t n t t n a n nt t n n t x x x n n ∞∞+→∞→∞==∞∞==∞+∞==-===+-=-=----≤<<<⋅∑∑∑∑∑∑【或】:令,对于级数而言,,因此,的收敛半径为而当时,级数收敛;当时,级数发散故级数的收敛域为,因此,当,即时收敛因此,原级数的收敛域为,..下面与上同3. 222()2.y z z z f x y f x x x y ∂∂=+∂∂∂设,,且具有阶连续偏导,计算:, 12221112221222221112222232(1)2.111(2)222214(2).z y xf f x xz y x yf f f yf f x y x x x x y y xyf f f f x x x ∂=-∂∂⎛⎫⎛⎫=+--+ ⎪ ⎪∂∂⎝⎭⎝⎭=+---4. 2222(){()|}.Dx y dxdy D x y x y x y +=+≤+⎰⎰计算,其中,222222002212221cos 111()2()()..1222()sin 213cos sin ).281()112 1.()()1()222u v x r x y D x y r r y r I d r r r rdr x u x y I u v dudv u v y v u v πθθθθθθπ+≤⎧=+⎪∂⎪-+-≤=⎨∂⎪=+⎪⎩=+++=⎧=+⎪∂⎪⎛⎫==+++⎨ ⎪∂⎝⎭⎪=+⎪⎩=++⎰⎰⎰,方法一、区域:令:,则:,,方法二、令:,则:,2222001233cos sin 34440443444442004113).2281(cos sin )41313)]sin 2sin 2.444228u v u u v dudv d r rdr I d r dr d d udu udu πππθθπππθππππθπθθθθππθθπ+≤+--+=-⎛⎫++=+⋅= ⎪⎝⎭==+⋅=+===⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三、5. 222{()|1}.ze dxdydz x y z x y z ΩΩ=++≤⎰⎰⎰计算三重积分:,其中,,()2222221(0)2110000cos 0cos 2011012.241(sin )4sin cos 2422.22z z x y z z z u x x u z z x y z xoy e z I e dV I d rdr dz r dr r x x xe dx ue du I e dzdxdy e ππθπππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为奇函数,因此,方法一、令:方法二、()120211cos 2cos 2220000011cos 2000(1)2.2sin 4sin 44(1)2.z dz I d d e d d e d e d e d πππρϕρϕπρϕρπθϕρϕρπρρϕϕπρρπρρπ-====-=-=⎰⎰⎰⎰⎰⎰⎰⎰方法三、6. 2222()M x y z a ξηζ++=设点,,是球面第一卦限中的一点,S 是球面在该点处的切平面被3个坐标平面所截三角形的上侧,求:点()M ξηζ,,使曲面积分:⎰⎰++=Szdxdy ydzdx xdydz I 为最小,并求此最小值.22222226322262222222(1)()(cos cos cos )11.2cos 2(2).327S SS Sx y z a M x y z a xdydz ydzdx zdxdy x y z dSx y z a a a dS a dS a a a a a a ξηζξηζαβγξηζξηγξηζξηζξηζξηζξηζ++=++=++=++⎛⎫=++==⨯⨯⨯⨯= ⎪⎝⎭⎛⎫++++=≤=⇒ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰球面在点,,处的切平面方程为:由于,则:333..2.S xdydz ydzdx zdxdy a x y z M ≤++≥===⎰⎰因此,等号在故,点为62222(1).30..2(2)xy yz zx xy yz zx xy yz zx S S S S S S S S S S S Guass I xdydz ydzdx zdxdy xdydz ydzdx zdxdy a a a a dV x y z a L ξηζξηζξηζ+++ΩΩ=++-++⎛⎫=+=++= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰++【或】:添加切平面与坐标平面所围立体的另三个三角形、、,使其与所围闭曲面方向为外侧则:根据公式可得:切平面:,截距分别为:、、构造222222223min ()().20(1)20(2)20(3)0(4)02.(4)x y z agrange f x y z xyz x y z a f yz x f zx y f xy z f x y z a yz zx xy x y z x y z x y z x y z xyz I λλλλλλλ=+++-=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩>===-======函数:,,,令:由于、、,则:将其代入可得,由于驻点唯一,根据实际问题当因此,3.=7. 22(0)cos (0)42C xdy ydx x C A y B x y ππ-=-+⎰计算,其中曲线是从点,沿到点,,再从 (2).BD ππ-点沿直线到点,22222222222222222222022224.44(4)4(0).444410arc 42C C DA L DA LL y x P y x Q P Q x y x y y x y xDA L x y xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y dy xdy ydx y πδδδπππδπ++--∂-∂∙====++∂+∂∙+=>----=--++++=---=-+⎰⎰⎰⎰⎰⎰方法一、,,则:连接,作:,足够小,方向为顺时针则:2220224221122332222222221tan 2217.88(0)(2)(2)(2).444(4)x y y dxdyA A A A A A A D L y x P y x Q P Q C L x y x y y x y xP Q πδπδππδπδπππππππ-+≤+=-+⋅=----∂-∂====++∂+∂⎰⎰方法二、从点,沿直线到点,、再从点沿直线到点,、从点沿直线到点,、再从点沿直线到点;记此路径为由于,,则:;且在由曲线、所围区域内、都11223322222222222222022202442244444422arctan arctan arctan arctan 2242248C L AA A A A A A Dxdy ydx xdy ydx x y x y dy dx dy dx y x y x y x y x πππππππππππππππππππππππππππππππππππ--------==+++++--=+++++++--=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有一阶连续连导数,因此,7.4448ππππ+++=三、 证明题:(每题9分,共18分)1. 210cos ()()1n n n nx u x D f x n +∞∞===+∑∑叙述级数在数集上一致收敛的定义,并证明: (02).π在,内连续,且有连续导数22220022022200cos 11cos (1)(02)1111cos (02)(02)1cos ()(02)1cos sin (2)(){}111n n n n n nx nx x n n n n nx n N n nx f x n nx n nx n g x n n n ππππ∞∞==+∞=∞∞==∀∈≤++++∀∈+=+'⎛⎫==- ⎪+++⎝⎭∑∑∑∑∑由于对,,有,而收敛,故级数在,内一致收敛.另外,对,函数在,内连续,因此,在,内也连续.记,由于12200221cos()cos 1220()[2]sin .sin 2sin 22sin sin [2](02)11.cos sin (02)()(0211n k n n x n x kx x n nx n nx Dirichlet n n nx n nx f x n n δδπδπδδδπδπππ=∞∞==+-∀><∀∈-=≤-++'⎛⎫=- ⎪++⎝⎭∑∑∑单调趋向于零,且对,及,,根据判别法,在,上一致收敛,即在,上内闭一致收敛又在,内连续,故,在,)内具有连续的导数. 2. 0()()y f x δδδ>-=证明:存在,及定义在,内的具有连续导数的函数, ()220(0)0sin ()2()cos 1..x dy f x f x f x x dx ==+++=满足,且并计算的值 22222222222()sin()2cos 1()(1)()(2)(00)0(3)2cos()2(4)(00)20(5)2cos()sin 0()()(0)0sin (y y x F x y x y y x F x y R F F y x y R F F x x y x R y f x f x f δδδ∙=+++-==++=>=+->-==+令:,,*则:,在上连续;,;在上连续;,;在上连续.根据隐函数存在性定理,存在,及定义在,内的具有连续导数的函数,满足,且()222222)2()cos 1.sin()2cos 100.cos()(22)2sin 0.sin 2cos()x f x x x y y x x x y x y x yy y x x x x y dy++=∙+++===''+++-=-+'在两边同时对求导,且当时,则:。

2010年浙江师范大学数学专业期末数学分析试卷答案

2010年浙江师范大学数学专业期末数学分析试卷答案

浙江师范大学《数学分析B (二)》A 卷答案与评分参考(数101班 和 数103班)一、选择题(每小题2分,共12分)1.D 2.C 3.A 4.C 5.A 6.B 二、填空题(每小题2分,共8分)①4π ②31 ③)13(31+x F ④]2,0(三、计算积分(每小题6分,共24分) 1.⎰-+x x e e xd .解 原式C e e e e x e xx x x x +=+=+=⎰⎰arctan )(1d 1d 22. 2. ⎰+x x x xd sin cos cos .解 原式⎰+-+=x x x xx d )sin cos sin cos 1(21 C x x x x x x x x +++=+++=⎰)sin ln(cos 2121sin cos )sin d(cos 2121. 3.⎰+-)1()1(d 222x x x.解 因2222111)1(1)1()1(2x xx x x x ++---=+-,故原式C x x x +++-+--=)1ln(211ln 112. 4.x x x d 1)1ln(102⎰++.解 令t u -=4π,则t t u u t t d cos ln d cos ln d )4cos(ln 400440⎰⎰⎰=-=-ππππ,令t x tan =,则 原式t t x x d )tan 1ln(arctan d )1ln(4010⎰⎰+=+=πt t t t t d cos ln d )sin ln(cos 404⎰⎰-+=ππt t t t d cos ln d )4cos(2ln 4040⎰⎰--=πππ2ln 4π=. 四、解答题(每小题6分,共42分)1. 求函数x x x f -=1)(2的极值点、极值和单调区间.解 因)32(322x x x x -=-,⎪⎩⎪⎨⎧≥-≤-=1,1,)(2332x x x x x x x f ,故⎩⎨⎧>-<-='1,)23(1),32()(x x x x x x x f ,由0)(='x f 得两个稳定点0和32,因)1(f '不存在,故利用0,32和1将),(∞-∞分成4个区间,并列表如下:由上表知,极小值点为0和1,极大值点为32,极小值为0,极大值为274,单调增区间为)32,0(和),1(+∞,单调减区间为)0,(-∞和)1,32(. 2. 求曲线t t t y x d 102⎰-=的拐点和凹凸区间.解 因⎪⎩⎪⎨⎧≥-≤-='1,1,2332x x x x x x y ,故⎩⎨⎧>-<-=''1,)23(1),32(x x x x x x y ,由0=''y 解得32,0=x .利用0,32和1,将),(∞-∞分成4个区间,并列表如下:由上表知,拐点:)0,0(、)274,32(和)0,1(,凹凸区间:)32,0(、),1(+∞、)0,(-∞和)1,32(. 3. 求由2y x =与22y x =-所围图形的面积. 解 面积为23423824344d )22(2d )22(203202222=-=⎥⎦⎤⎢⎣⎡-=-=-⎰⎰-x x x x x x4. 判别积分x x x d 1)sgn(sin 12⎰∞++敛散性.解 绝对收敛.因22111)sgn(sin x x x +≤+,而⎰∞++121d x x 收敛,故由比较判别法即知.5. 判别级数∑∞=+-1321)1(n nn 绝对收敛还是条件收敛.解 条件收敛.因为(1)由01132↓+n 知,∑∞=+-1321)1(n nn 是Leibniz 级数,故收敛.(2)因11/1)1(lim3232=+-∞→nn nn ,而∑∞=1321n n发散知,故由比较判别法即知∑∞=+-1321)1(n nn 发散.6. 判别级数∑∞=12n nnx 在]1,0[上一致收敛性.解 因221n n x n ≤,而∑∞=121n n 收敛,故由M 判别法知,级数∑∞=12n n nx 在]1,0[上一致收敛.7. 求级数∑∞=+-+0)!12()1)(1(n nn n 的和.解 原式∑∑∞=∞=+-++-+=00)!12()1(21)!12()1)(21(n n n nn n n 21sin 1cos 1sin 21)!2()1(210+=+-=∑∞=n n n 五、证明题(任选两题,每小题7分,共14分) 1. 证明xxx f sin )(=在),0(+∞上一致连续. 证 0>∀ε,因⎪⎩⎪⎨⎧>==0,sin 0,1)(x xx x x g 在]2,0[上连续,故由康托定理知,)(x g 在]2,0[上一致连续,因此存在与x 无关的)1,0(1∈δ,使得当1δ<-y x 且]2,0[,∈y x 时,有ε<-)()(y g x g .取}2,m i n {1εδδ=,则01>>δ且δ与x 无关,当δ<-y x 且+∞<<<y x 0时,必有2≤y 或2>y .情形1 若2≤y ,则因1<-y x ,故]2,0(,∈y x ,从而ε<-=-)()()()(y g x g y f x f .情形2 若2>y ,则因1<-y x ,故),1[,+∞∈y x ,因此xyy x x y y yx x y f x f sin sin sin sin )()(-=-=-y x y y xyy y x y xy sin sin 1sin sin 1-+-≤x y xyy y x x -+-=sin sin sin 1x y y x -+-≤sin sin εδ≤<-≤22x y综上xxx f sin )(=在),0(+∞上一致连续.证完 2. 若0d )(102=⎰x x f ,)(x f 在]1,0[上连续,证明在]1,0[上0)(=x f .证 因)(x f 在]1,0[上连续,若0)0(2≠f ,则0)0()(lim 22>=+→f x f x 知,必有 )1,0(0∈x ,使得0)(02>x f .同理,若0)1(2≠f ,则由0)1()(lim 221>=-→f x f x 知,必有)1,0(0∈x ,使得0)(02>x f .因此,若在]1,0[上0)(=x f 不成立,则不妨设)1,0(0∈x ,使得0)(02>x f ,因此0)()(lim 0220>=→x f x f x x ,由极限的保号性知,存在0>δ,使得)1,0(),(00∈+-δδx x ,且当δ<-0x x 时,0)(21)(022>>x f x f ,从而 ⎰⎰⎰⎰++--++=122021020000d )(d )(d )(d )(δδδδx x x x x x f x x f x x f x x f0)()(212d )(21d )(020********>=≥≥≥⎰⎰+-+-x f x f x x f x x f x x x x δδδδδδ这与0d )(102=⎰x x f 矛盾. 证完3. 证明∑∞==13sin )(n n nxx f 在),(+∞-∞有连续的导函数. 证 (1)233cos sin n nx n nx dx d =连续,(2)因 2213cos n n nx ≤,而∑∞=121n n 收敛,故由M 判别法知,级数∑∞=123cos n n nx在),(+∞-∞上一致收敛,(3)∑∞=13sin n n nx 在0=x 处收敛.因此,∑∞=123cos n n nx连续.而且∑∞=13sin n n nx 在),(+∞-∞可以逐项求导,即∑∞==13sin )(n n nx x f 在),(+∞-∞有连续的导函数.证完4. 证明级数∑∞=1sin n n nx在)2,0(π内闭一致收敛.证 设)2,0(],[π⊂b a ,则π20<<<b a ,记2sin 12sin 1b a M +=,则因M x xnx x x kx x x kx nk n k ≤≤---==∑∑==2sin12sin 2)2cos()2cos(sin 2sin 22sin 21sin 11, 对],[b a x ∈和1≥n 一致成立.而01↓n,故由级数一致收敛的Dirichlet 判别法知,级数∑∞=1sin n n nx 在],[b a 上一致收敛,这表明级数∑∞=1sin n n nx在)2,0(π内闭一致收敛.证完 5. 证明当1>x 时,级数∑∞=+++1)()2)(1(!n n x x x n 收敛.证 记)()2)(1(!n x x x n a n +++=,则因])()2)(1(!/)1()2)(1()!1(1[)1(1n x x x n n x x x n n a a n n n ++++++++-=-+ 11)111(>→++=+++-=x n x nxn x n n ,故由拉贝判别法的极限形式知,原级数收敛.证完。

南京师范大学2010数学分析真题

南京师范大学2010数学分析真题
早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。
数学分析试卷,此乃得于淘宝主之手,花了16块买之。因不满其价,于是生共享之心。传,私想赚钱分,哈哈哈。分享之!
数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。
微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。

《数学分析II》期末试卷+参考答案

《数学分析II》期末试卷+参考答案

《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。

yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。

a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。

四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。

]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。

求。

∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。

证明:存在且小于)(lim x f x +∞→41π+。

七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。

1>x 判别级数∑∞=2)(1n n f 的敛散性。

八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。

求级数的和。

∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。

二.。

3=a 三. 是紧集。

四.一致收敛。

五.43。

六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。

2009-2010学年第二学期高等数学(2)期末试卷及其答案

2009-2010学年第二学期高等数学(2)期末试卷及其答案

2009-2010学年第二学期高等数学(2)期末试卷及其答案D有一阶连续偏导数,如果曲线积分(,)(,)LP x y dx Q x y dy+⎰与路径无关,则(,),(,)P x y Q x y 应满足条件 .5. 当p 时,级数211pn n +∞=∑收敛.二.选择题(本题共15分,共5小题,每题3 分)1.直线221:314x y z L -+-==-与平面:6287x y z π-+=的位置关系是 .A .直线L 与平面π平行;B .直线L 与平面π垂直;C .直线L 在平面π上;D .直线L 与平面π只有一个交点,但不垂直.2. 函数(,)f x y 在点(,)x y 可微分是(,)f x y 在该点连续的( ).A .充分条件; B. 必要条件; C. 充分必要条件; D. 既非充分也不必要条件 3.改变积分次序,则100(,)y dy f x y dx⎰⎰.A .1(,)xdx f x y dy ⎰⎰; B .11(,)dx f x y dy ⎰⎰;C .11(,)x dx f x y dy ⎰⎰;D .11(,)xdx f x y dy ⎰⎰4.下列级数中收敛的是 . A .∑∞=+1884n n nn B .∑∞=-1884n n nn C .∑∞=+1824n n nnD .1248n nn n ∞=⨯∑.5.级数1...-++A. 发散B. 绝对收敛C. 条件收敛D. 既绝对收敛又条件收敛 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分). 1.设sin uz e v=,而u xy =,v x y =- 求xz .2.设22(,tan())u f x y xy =-,其中f 具有一阶连续偏导数,求yz . 3.求旋转抛物面221z x y =+-在点(2,1,4)处的切平面方程及法线方程. 4.计算 22Dx d y σ⎰⎰,其中D 是由直线y x =.2x =和曲线1xy =所围成的闭区域. 5.计算L⎰,其中L 是圆周222x y a +=(0a >).6.计算22()(sin )Lxy dx x y dy--+⎰,其中L 是上半圆周y =x 轴所围区域的边界,沿逆时针方向.7.将函数1()3f x x =+展开成(3)x -的幂级数. 8.计算曲面积分xydydz yzdzdx xzdxdy ∑++⎰⎰,其中∑为1x y z ++=,0,x =y =,0z =所围立体的外侧.9.求抛物面22z xy =+到平面10x y z +++=的最短距离.2009 至 2010 学年度第 2 期高等数学(下)课程试题A 参考答案试题使用对象: 2009 级 理科各专业(本科) 向瑞银一.填空题(本题共15 分,共5 小题,每题 3 分) 1. 1-; 2. 2; 3. π; 4.y P ∂∂=xQ ∂∂; 5.12p >二.选择题(本题共15分,共5小题,每题3 分) 1.B ; 2.A ; 3.D ; 4.C ; 5.C 三. 求解下列各题(本题共70分,共9小题,1~2每题7 分,3~9每题8 分).1.z z u z vx u x v x∂∂∂∂∂=+∂∂∂∂∂……4分sin cos u u ye v e v=+(sin()cos())xy e y x y x y =-+-……7分 2.2212()(tan())y y uf x y f xy y∂''''=⋅-+∂ ……4分2122sec ()()yyf f xy xy '''=-+2122sec ()yf xf xy ''=-+……7分 3. 令22(,,)1F x y z xy z=+--,则法向量(2,2,1)n x y =-,(2,1,4)(4,2,1)n=- ……3分在点(2,1,4)处的切平面方程为 4(2)2(1)(4)0x y z -+---=.即4260x y z +--=. (6)分法线方程为214421x y z ---==-. ……8分 4.22Dx d yσ⎰⎰22121xxx dx dy y=⎰⎰……4分221/11()x xx dxy=-⎰……6分231()x x dx =-⎰322111()42x x =-94=……8分5.令cos ,sin x a y a θθ==,则sin ,cos x a y a θθ''=-=,ds θ=ad θ= ……3分20a Le ad πθ=⎰⎰ ……6分=2aae π ……8分6.2P xy=-,1P y ∂=-∂ ,2(sin )Q x y =-+,1Q x∂=-∂ , ……4分()0DDQ PI dxdy dxdy x y∂∂=-=∂∂⎰⎰⎰⎰ ……6分=……8分 7.1136(3)x x =++-113616x =-+ ……4分 当316x -<,即 39x -<<时,13x +013()66nn x +∞=-=-∑ ……8分8. ⎰⎰∑++zxdxdy yzdzdx xydydz=()x y z dxdydz Ω++⎰⎰⎰……4分 =1110()xx ydx dy x y z dz---++⎰⎰⎰……6分81=……8分9.设抛物面一点(,,)x y z ,它到平面的距离为1d x y z =+++满足条件220x y z +-= ……3分 拉格朗日函数为222(1)()3x y z L x y z λ+++=++- ……5分2(1)203x x y z L x λ+++=+=,2(1)203yx y z Ly λ+++=+=2(1)3z x y z L λ+++=-=,220Lx y z λ=+-=解方程组得,12x y ==-,12z =. 由问题本身知最短距离存在,所以最短距离为0.5,0.5,0.5)d --=6=……8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(每小题2分,共26分)
1、函数155345++-=x x x y 在]1,1[-上的最大值为 ,最小值为 。

2. 利用定积分定义得=-∑=∞→n i n i n 1
2241lim 。

3. 若点)2,1(为曲线23bx ax y +=的拐点,则=a , =b 。

4.若级数∑∞
=1n n a 收敛,则=∞→n n a lim 。

5.设集合⎭
⎬⎫⎩⎨⎧∈+-=+N n n S n 1)1(]1,0[ ,则集合S 的所有聚点之集为 。

6、积分⎰1
02dx x a 当 时收敛,级数∑-p n n
)1(当 时条件收敛。

7、=⎰-1
132tan xdx x 。

8、⎰+=)1()(x e dx x f x ,则=)(x f 。

9、曲线)(x f y =,],[b a x ∈绕x 轴旋转一周所得旋转曲面的面积为
=S 。

10、函数列一致收敛的柯西准则为 。

11、=+--⎰dx x x x 3
252 。

12、设]1,1[-∈x ,则=⎰∑∞=-x n n dt n
t 0121。

13、函数x e 带有拉格朗日余项的麦克劳林公式为
=x e 。

二、计算下列积分(每题6分,共18分)
1、
⎰xdx x arctan ; 2、
⎰-10221dx x x ; 3、⎰-40
22dx x x 。

三、判断下列反常积分和级数的敛散性,(每题6分,共24分) 1、dx x x ⎰+∞+12)1ln(; 2、dx x
x ⎰103arctan ; 3、 ∑∞
=-1!)2(n n n n n ; 4、∑∞=⎪⎭⎫ ⎝⎛+-11)21(n n n 。

四、证明题(第1题12分,第2、3题各10分,共32分)
1、利用定积分证明:
(1)半径为R 的园周长为R π2。

(2)半径为R 的球体体积为33
4R π。

2、设)(x f 是定义在),(+∞-∞上且以T 为周期的连续函数,证明:)(x f 在),(+∞-∞上有最大值与最小值。

3、证明函数∑∞==13sin )(n n nx x f 在),(+∞-∞上连续,且有连续的导函数。

相关文档
最新文档