直线与方程 经典练习题

合集下载

(完整版)直线与方程练习题及答案详解

(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

直线方程练习题

直线方程练习题

直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。

A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。

A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。

2. 直线方程y=2x+3与x轴的交点坐标为______。

3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。

4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。

5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。

三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。

2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。

3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。

4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。

5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。

四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

直线与方程练习题(精选)

直线与方程练习题(精选)

直线与方程练习题一、选择题1.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 2.下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x ayb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示3.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a c m-+12D . a c m -+124.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=6.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A.[]2,2- B.(][)+∞⋃-∞-,22,C.[)(]2,00,2⋃- D.()+∞∞-,7.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=08.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是( )A .0<a <1B .a >1C .a >0且a ≠1D .a =19.直线xcos θ+y +m =0的倾斜角范围是( )A. 3,44ππ⎡⎤⎢⎥⎣⎦B. 30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C.0,4π⎡⎤⎢⎥⎣⎦D.3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦10已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是( ) (A)[-25,1] (B)[-25,0]∪(0,1) (C)[-1,25] (D) ][)+∞⋃--∞,125,(11.已知直线l 过点P(-2,1),且倾斜角α满足sin α+cos α=-51,则l 的方程是( )(A)3x +4y +2=0 (B)3x -4y -2=0 (C)3x -4y +2=0或3x +4y +2=0 (D)3x +4y -10=0 12.点P (x ,y )在直线x +2y +1=0上移动,函数f(x ,y )=2x +4y 的最小值是 ( )(A)22(B) 2 (C)22(D)4213.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为( )A .23B .32C .33D .24 14.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为( )A. (4,0)B. (13,0)C. (5,0)D. (1,0)15.设a,b,c 分别是△ABC 中,角A ,B ,C 所对边的边长,则直线sinA ·x+ay+c =0与bx-sinB ·y+sinC =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直16过点P (1,2)且与原点O 距离最大的直线l 的方程( ).A.250x y +-= B. 240x y +-= C.370x y +-= D.350x y +-=二、填空题1.光线从点(2,1)A 出发射入y 轴上点Q , 再经y 轴反射后过(4,3)B , 则点Q 的坐标是2.已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,则顶点A 的坐标是 .3.已知直线31y kx k =++.(33x -≤≤)上的点都在x 轴上方,则实数k 的取值范围是 .4.将直线1y x =绕它上面一点(115°得到的直线方程是 .5.已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,则直线l 的方程 .6.直线1l :220x my m +--=,2l :10mx y m +--=,当m = 时,12l l ⊥7.(1)若a b c -+=,则直线ax by c ++=必经过一个定点是 .(2)已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0必过定点 .8.(1)已知1122234,234x y x y -=-=,则过点1122(,),(,)A x y B x y 的直线l 的方程是(2)一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,则该直线方程是9.已知直线l 过点(3,-1),且与两轴围成一个等腰直角三角形,则l 的方程为 .10.已知点(3,8)A -、(2,2)B ,点P 是x 轴上的点,当AP PB+最小时点P的坐标是 . 11.若y =kx2x +3y -6=0的交点位于第一象限,直线l 的倾斜角的取值范围 .12.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.则22PM PN +的最小值 . 13.已知函数()f x =,设,a b R ∈,且a b ≠,则|()()|f a f b -,||a b -的大小关系 .14.直线2x -y -4=0上一点P 与两定点A (4,-1),B (3,4)的距离之差的最大值是 15.在函数24y x =的图象上一点P 到直线45y x =-的最短的距离是 .16.直线30x y +=上一点P 到原点的距离与到直线320x y +-=的距离相等.则点P 的坐标 17.△ABC 中,(3,3),(2,2),(7,1)A B C --. 则∠A的平分线AD 所在直线的方程是 .18.已知点P 到两个定点M (-1,0)、N (1,0,点N 到直线PM 的距离为1.则直线PN 的方程 .19.光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),则BC 所在直线的方程是 .20.已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________ ;若3l 与1l 关于x 轴对称,则3l 的方程为_________ . 若4l 与1l 关于x y =对称,则4l 的方程为___________ ;22.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.23.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 .24.方程1=+y x 所表示的图形的面积为_________。

直线与直线方程-练习

直线与直线方程-练习
直线与直线方程
索引
1.直线 x+ 3y+3=0 的倾斜角 α 为( D )
A.30° C.120°
B.60° D.150°
解析 由已知得斜率 k=- 33=tan α,
又倾斜角 0°≤α<180°,所以 α=150°.
1 2 3 4 5 6 7 8 9 10
2.直线ax2-by2=1 在 y 轴上的截距是( B )
1 2 3 4 5 6 7 8 9 10
(2)若直线l在x轴、y轴上的截距均不为0,点P(a,b)在直线l上,求3a+3b的最 小值. 解 由题意及(1)得l的方程为x+y-3=0, ∵点P(a,b)在直线l上, ∴a+b=3, ∴3a+3b≥2 3a·3b=2 3a+b=6 3, 当且仅当 a=b=32时等号成立.
∴3a+3b 的最小值是 6 3.
1 2 3 4 5 6 7 8 9 10
5.(多选)若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m
可以取下列哪些值( ACD )
A.0
B.1
C.2
D.3
解析 因为方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,
所以2m2+m-3=0,m2-m=0不能同时成立,
两式同时成立时解得m=1,所以m≠1.故选ACD.
7.过点(1,3)且在x轴上的截距为2的直线方程是__3_x_+__y_-__6_=__0. 解析 由题意知直线过点(2,0)和点(1,3),由两点式可得3y--00=x1- -22, 整理得 3x+y-6=0.
1 2 3 4 5 6 7 8 9 10
8.若直线(2t-3)x+y+6=0不经过第一象限,则t的取值范围为___32_,__+__∞__ . 解析 方程可化为 y=(3-2t)x-6,因为直线不经过第一象限, 所以 3-2t≤0,得 t≥32.

直线与方程练习题

直线与方程练习题

直线与方程练习题一、填空题1. 直线斜率为2,过点(-1, 3),则直线方程为__________。

2. 直线过点(2, -5)和点(4, 1),则直线方程为__________。

3. 直线过点(-3, 4)且与x轴垂直,则直线方程为__________。

4. 直线过点(0, 7)且平行于y轴,则直线方程为__________。

5. 直线过点(3, -2)且平行于直线2x + 3y = 1,则直线方程为__________。

二、选择题1. 斜率为3,过点(1, 2)的直线方程可能是:A. y = 3x + 1B. y = 3x - 1C. y = -3x + 1D. y = -3x - 12. 过原点(0, 0)且垂直于直线2x + 3y = 6的直线方程可能是:A. x = 2B. x = -2C. y = 2D. y = -23. 过点(2, -5)且平行于直线3x - 2y = 9的直线方程可能是:A. 3x - 2y = 19B. 3x - 2y = -19C. 3x - 2y = 4D. 3x - 2y = -44. 过点(3, 4)且平行于x轴的直线方程可能是:A. x = 3B. x = -3C. y = 3D. y = -35. 过点(-2, 1)且与直线4x + 5y = 10垂直的直线方程可能是:A. 5x - 4y = 10B. 5x - 4y = -10C. 4x + 5y = 2D. 4x + 5y = -2三、应用题1. 设直线L过点(1, 2)和点(4, 7),求直线L的斜率和截距,并写出直线L的方程。

2. 已知直线L过点(-3, 5)且与x轴垂直,求直线L的方程。

3. 直线L过点(1, -4)且平行于直线2x - 3y = 6,求直线L的方程。

4. 直线L过点(-2, -1)且平行于y轴,求直线L的方程。

5. 直线L过点(3, 2)且与直线3x - 4y = 5垂直,求直线L的方程。

(完整版)必修2第三章直线与方程测试题

(完整版)必修2第三章直线与方程测试题

第三章直线与方程测试题(一)一.选择题(每题 5 分,共 12 小题,共 60 分)1.若直线过点( 3,3)且倾斜角为30 0,则该直线的方程为()A. y3x 63x 433B. yC. yx 4D. y x 23332.假如A(3,1) 、 B(2, k) 、 C (8,11),在同向来线上,那么k 的值是()。

A.6B.7C. 8D.93.假如直线 x by90 经过直线 5x 6 y 170 与直线 4x 3y 20 的交点,那么 b 等于().A.2B.3C.4D. 54. 直线(2m25m 2) x (m 24) y 5m0 的倾斜角是450,则 m 的值为()。

A.2B. 3C. -3D.- 25.两条直线3x 2 y m0 和 ( m 21) x 3 y 2 3m0的地点关系是( )A. 平行B.订交C.重合D.与m相关* 6.到直线2x y 1 0 的距离为5的点的会合是( ) 5A. 直线2x y 2 0B.直线C. 直线2x y0 或直线 2x y 2 0D. 直线2x y02 x y0或直线 2x y 2 07 直线x 2 y b0 与两坐标轴所围成的三角形的面积不大于1,那么 b 的取值范围是()A. [2,2]B. (, 2] [2, )C. [2,0)(0,2]D. (, )*8 .若直线l与两直线y 1 , x y 7 0 分别交于M,N两点,且MN的中点是P(1, 1),则直线 l 的斜率是()2A .B .3233C.2D .329.两平行线3x2y10 , 6x ay c 0 之间的距离为 2 13 ,则 c 2的值是 ( )13a A .± 1 B. 1 C. -1 D . 210.直线x 2 y 10 对于直线x1对称的直线方程是()A .x 2 y 10B.2 x y 1 0C.2x y 30D.x 2 y 3 0**11 .点P到点A (1,0)和直线x1的距离相等,且 P 到直线 y x 的距离等于2,这样的点P 2共有()A .1 个B. 2 个C.3 个D. 4 个*12 .若y a | x | 的图象与直线y x a(a 0) ,有两个不一样交点,则a 的取值范围是()A .0 a 1 0 B .a1C.a0 且 a 1 D .a1二.填空题(每题 5 分,共 4 小题,共20 分)13. 经过点(2, 3) ,在 x 轴、y轴上截距相等的直线方程是;或。

直线与方程习题(带答案)

直线与方程习题(带答案)

直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。

等于0B。

等于π/2C。

等于πD。

不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。

k1<k2<k3B。

k3<k1<k2C。

k3<k2<k1D。

k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。

2B。

-2C。

4D。

14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。

π/3B。

2π/3C。

π/4D。

3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。

第一象限B。

第二象限C。

第三象限D。

第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。

x+y-5=0B。

2x-y-1=0C。

2y-x-4=0D。

2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。

19x-9y=0,19y=0B。

9x+19y=0C。

19x-3y=0D。

3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。

3B。

-3C。

1D。

-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。

a/(a+1)B。

-a/(a+1)C。

(a+1)/aD。

-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。

(-6,8)B。

(6,-8)C。

(-6,-8)D。

(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。

直线与方程试题及答案

直线与方程试题及答案

直线与方程试题及答案1. 已知直线方程为 \(y = 2x + 3\),求该直线与 \(x\) 轴的交点坐标。

答案:将 \(y\) 设为 0,解方程 \(0 = 2x + 3\) 得到 \(x = -\frac{3}{2}\)。

因此,直线与 \(x\) 轴的交点坐标为 \((-\frac{3}{2}, 0)\)。

2. 已知直线 \(y = mx + b\) 经过点 \(A(1, 2)\) 和点 \(B(3,4)\),求直线的方程。

答案:将点 \(A(1, 2)\) 和点 \(B(3, 4)\) 代入方程 \(y = mx + b\),得到两个方程:\[2 = m \cdot 1 + b\]\[4 = m \cdot 3 + b\]解这个方程组,得到 \(m = 1\),\(b = 1\)。

因此,直线的方程为\(y = x + 1\)。

3. 已知直线方程为 \(3x - 4y + 5 = 0\),求该直线的斜率。

答案:将方程 \(3x - 4y + 5 = 0\) 转换为斜截式 \(y = mx + b\),得到\(y = \frac{3}{4}x - \frac{5}{4}\)。

因此,直线的斜率为\(\frac{3}{4}\)。

4. 求过点 \(C(2, 3)\) 且与直线 \(y = 2x - 1\) 平行的直线方程。

答案:与直线 \(y = 2x - 1\) 平行的直线具有相同的斜率,即斜率为 2。

因此,所求直线方程为 \(y = 2x + b\)。

将点 \(C(2, 3)\) 代入方程,得到 \(3 = 2 \cdot 2 + b\),解得 \(b = -1\)。

因此,所求直线方程为 \(y = 2x - 1\)。

5. 已知直线 \(y = 3x + 7\) 与 \(x\) 轴相交于点 \(D\),与 \(y\) 轴相交于点 \(E\),求点 \(D\) 和点 \(E\) 的坐标。

答案:点 \(D\) 位于 \(x\) 轴上,因此 \(y = 0\)。

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。

高二数学直线与方程精选50题

高二数学直线与方程精选50题

直线与方程精选50题1、求过点()5,3,倾斜角等于直线13+=x y 的倾斜角的一半的直线方程.★2、已知直线l 的倾斜角为α,53sin =α,且这条直线经过点()5,3P ,求直线l 的一般式方程.★3、已知矩形OACB 的顶点的坐标分别为()()()5,00,80,0B A O 、、,求该矩形的对角线所在直线方程.4、已知直线0632=+-y x ,这条直线的点方向式可以是________________★5、求过点P 且平行于直线0l 的一般式方程:(1)()04:,1,20=+x l P ★(2)()07143:,2,10=++y x l P6、求过点P 且垂直于直线1l 的直线的一般式方程:(1)()03:,1,21=-y l P(2)4231:),1,2(1+=---y x l P ★7、求满足下列条件的直线方程(1)直线l 经过()()7,3,0,2B A 两点★(2)直线l 经过点()4,3P ,且与向量()1,1-=d 平行★(3)直线l 经过点()4,3P ,且与向量()1,1-=d 垂直★8、已知直线()0816:1=--+y t x l 与直线()()01664:2=-+++y t x t l(1)当t 为何值时,21l l 与相交?(2)当t 为何值时,21l l 与平行?(3)当t 为何值时,21l l 与重合?(4)当t 为何值时,21l l 与垂直?★9、已知直线08:1=++n y mx l 与直线012:2=-+my x l .当直线1l 与直线2l 分别满足下列条件时,求实数m 、n 的值(1)直线1l 与直线2l 平行;(2)直线1l 与直线2l 垂直,且直线1l 在y 轴上的截距为1-..★10、根据下列条件,写出满足条件的直线的一般式方程.★(1)经过直线012=+-y x 与直线0122=-+y x 的交点,且与直线05=-y x 垂直.(2)经过直线01=+-y x 与直线022=+-y x 的交点,且与直线1243=+y x 平行.11、已知直线2:1++=k kx y l 与直线42:2+-=x y l 的交点在第一象限,求实数k 的范围.★12、已知集合(){}R y x y x y x A ∈=--=、,01|,,集合(){}R y x y ax y x B ∈=+-=、,02|,,且φ=⋂B A ,求实数a 的值.13、是否存在实数a ,使直线()()0121:1=--+-y a x a l 与直线()03326:2=--+y a x l 平行?若存在,求a 的值;若不存在,请说明理由.★14、求过点()3,2P 且与直线012=+-y x 垂直的直线方程★15、若坐标原点O 在直线l 的射影H 的坐标为()2,4-,求直线l 的方程★16、已知平面内三点()()()2,14,33,1---C B A 、、,点P 满足BC BP 23=,则直线AP 的方程是17、已知()()4,1,1,3--B A ,则线段AB 的垂直平分线方程是★18、已知三点()()()a C B a A 2,4,1,5,2,-共线,则实数a 的值是___________________19、不论m 取何实数,直线()()()01131=--+--m y m x m 恒过什么象限?20、分别写出下列直线的一个方向向量d 和一个法向量n ★(1)0543=-+y x(2)152=+y x (3)()5413+-=-x y (4)1=x(5)01=+y21、已知0,0<<bc ac ,则直线0:=++a cy bx l 不通过_______________象限22、直线l 的倾斜角的正弦值为54,则其斜率为______________★ 23、过()()a B a a A 2,3,1,1+-的直线的倾斜角为钝角,求实数a 的取值范围★24、直线l 的斜率k 满足13<≤-k ,求其倾斜角的取值范围★25、直线l 的倾斜角是()()2,6,1,2--B A 两点连线的倾斜角的两倍,求直线l 的倾斜角的大小26、直线l 过点()2,1且与两坐标轴围成等腰直角三角形,求l 的方程★27、求直线()R y x ∈=-+αα010cos 的倾斜角的取值范围28、直线()()039372:222=+-++-a y a x a a l 的倾斜角大小是4π,求实数=a __________★29、方程x k y =与方程()0>+=k k x y 的曲线有两个不同的公共点,则实数k 的取值范围是____________________30、过点()()3,0,0,4B A 的直线的倾斜角大小是________________★31、将直线033=++y x 绕着它与x 轴的交点顺时针旋转︒30后,所得的直线方程是★32、将直线0943=+-y x 绕其与x 轴的交点逆时针旋转︒90后得到直线l ,求直线l 的方程★33、ABC ∆的一个顶点()4,3B ,AB 边上的高CH 所在直线方程是01632=-+y x ,BC 边上的中线AM 所在的直线方程是0132=+-y x ,求边AC 所在直线方程.34、已知直线l 沿x 轴的负方向平移3个单位,再沿y 轴的正方向平移1个单位,又回到原来的位置,求直线l 的斜率k 和倾斜角α★35、过点()4,5-P 作一直线l ,使它与两坐标轴相交且与两坐标轴围成的三角形面积为5个面积单位,求直线l 的方程★36、直线()()01213:=----y a x a l (其中a 为实数)★(1)求证:不论a 取何值,直线l 恒过定点;(2)已知直线l 不通过第二象限,求实数a 的取值范围37、已知()()2211,,,y x B y x A 为直线()0≠+=k b kx y 上的两点(1)求证:2121x x k AB -+=;(2)根据(1)的形式特征,用21,,y y k 表示AB38、已知ABC ∆中,顶点()7,2-A ,AC 边上的高BH 所在直线方程为0113=++y x ,AB 边上中线CM 所在的直线方程072=++y x ,求ABC ∆三边所在直线方程39、从点()2,5A 发出的光线经过x 轴反射后,反射光线经过点()3,1-B ,求发射光线所在直线与x 轴的夹角大小★40、求经过0332:01:21=++=++y x l y x l 和的交点且与直线0523=-+y x 的夹角为4π的直线方程★'41、已知等腰直角三角形ABC 的斜边AB 的中点是()2,4,直角边AC 所在的直线方程是02=-y x ,求斜边AB 和直角边BC 所在直线的方程42、光线沿直线052=+-y x 的方向入射到直线0723=+-y x 后反射出去,求反射光线所在的直线方程43、已知()()8,4,3,2-B A 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,求直线l 的方程★44、已知平行直线21l l 与的距离为5,且直线1l 经过原点,直线2l 经过点()3,1,求直线1l 和直线2l 的方程★45、已知直线l 过点()1,0P ,且被平行直线0243:0843:21=++=-+y x l y x l 与所截得的线段的长为22,求直线l 的方程46、求与直线032012=+-=+-y x y x 和距离相等的点的轨迹47、已知点()4,3P 到直线l 的距离为5,且直线l 在两坐标轴上的截距相等,则满足条件的直线是___________________★48、过点()2,1P 的所有直线中,与原点距离最大的直线方程是______________49、直线l 经过直线002477=-=-+y x y x 与直线的交点,且原点到直线l 的距离为512,则直线l 的方程为★50、经过直线032=-+y x 和直线0624=--y x 的交点,且与y 轴平行的直线方程为★。

高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)1.经过A (2,0),B (5,3)两点的直线的倾斜角为( ) A .45° B .135° C .90°D .60°解析:选A ∵A (2,0),B (5,3), ∴直线AB 的斜率k =3-05-2=1. 设直线AB 的倾斜角为θ(0°≤θ<180°), 则tan θ=1,∴θ=45°.故选A.2.点F (3m +3,0)到直线3x -3my =0的距离为( ) A. 3 B.3m C .3D .3m解析:选A 由点到直线的距离公式得点F (3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3= 3.3.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.4.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 依题意得:直线3x -y =33的斜率为3,∴其倾斜角为60°.∴-3n =-3,-mn=tan 120°=-3,得m =3,n =1.5.直线y =ax +1a的图象可能是( )解析:选B 根据斜截式方程知,斜率与直线在y 轴上的截距同正负. 6.已知两点A (3,0),B (0,4),动点P (x ,y )在线段AB 上运动,则xy ( )A .无最小值且无最大值B .无最小值但有最大值C .有最小值但无最大值D .有最小值且有最大值解析:选D 线段AB 的方程为x 3+y4=1(0≤x ≤3),于是y =4⎝⎛⎭⎫1-x 3(0≤x ≤3),从而xy =4x ⎝⎛⎭⎫1-x 3=-43⎝⎛⎭⎫x -322+3,显然当x =32∈[0,3]时,xy 取最大值为3;当x =0或3时,xy 取最小值0.7.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A 由题意,所给两条直线平行,∴n =-2.由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0. 8.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为( )A .2 3B .3 3C .3 2D .4 2解析:选C 由题意知,M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,故其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2. 9.直线l 过点(-3,0),且与直线y =2x -3垂直,则直线l 的方程为( ) A .y =-12(x -3)B .y =-12(x +3)C .y =12(x -3)D .y =12(x +3)解析:选B 因为直线y =2x -3的斜率为2,所以直线l 的斜率为-12.又直线l 过点(-3,0),故所求直线的方程为y =-12(x +3),选 B.10.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( ) A .3x -y -13=0 B .3x -y +13=0 C .3x +y -13=0D .3x +y +13=0解析:选C 由已知可知,l 是过A 且与AB 垂直的直线,∵k AB =2-4-3-3=13,∴k l =-3,由点斜式得,y -4=-3(x -3),即3x +y -13=0.11.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( ) A .(2,0)或(4,6) B .(2,0)或(6,4) C .(4,6)D .(0,2)解析:选A 设B 点坐标为(x ,y ),根据题意知⎩⎪⎨⎪⎧k AC ·k BC =-1,|BC |=|AC |,∴⎩⎪⎨⎪⎧3-43-0×y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得⎩⎪⎨⎪⎧ x =2,y =0或⎩⎪⎨⎪⎧x =4,y =6.12.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0 解析:选D 依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0, 则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6), 解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.13.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. 解析:∵直线x -2y +5=0与直线2x +my -6=0互相垂直, ∴12×⎝⎛⎭⎫-2m =-1, ∴m =1. 答案:114.若x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,则k =________. 解析:∵直线x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,解方程组⎩⎪⎨⎪⎧ 2x +3y +8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-2,∴直线x +ky =0过点(-1,-2), 解得k =-12.答案:-1215.若过点P (1-a,1+a )与点Q (3,2a )的直线的倾斜角是钝角,则实数a 的取值范围是________.解析:k =2a -(1+a )3-(1-a )=a -1a +2<0,得-2<a <1.答案:(-2,1)16.已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为________________.解析:设直线l 的方程为x a +y b =1,∴12|ab |=3,且-b a =16,解得a =-6,b =1或a =6,b =-1,∴直线l 的方程为x -6+y =1或x6-y =1,即x -6y +6=0或x -6y -6=0.答案:x -6y +6=0或x -6y -6=017.(本小题满分10分)已知直线l 的倾斜角为135°,且经过点P (1,1). (1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标. 解:(1)∵k =tan 135°=-1, ∴l :y -1=-(x -1),即x +y -2=0. (2)设A ′(a ,b ), 则⎩⎪⎨⎪⎧b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18.(本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解:设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为 D.由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5. 由已知易得,直线AB 的方程为x -2y +3=0,所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去), 所以点P 的坐标为(7,0).19.(本小题满分12分)已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点.(2)当-3<x <3时,直线上的点都在x 轴上方,求实数k 的取值范围. 解:(1)证明:由y =kx +2k +1,得y -1=k (x +2). 由直线方程的点斜式可知直线恒过定点(-2,1).(2)设函数f (x )=kx +2k +1,显然其图象是一条直线(如图).若当-3<x <3时,直线上的点都在x 轴上方,则需满足⎩⎪⎨⎪⎧f (-3)≥0,f (3)≥0.即⎩⎪⎨⎪⎧-3k +2k +1≥0,3k +2k +1≥0,解得-15≤k ≤1.所以实数k 的取值范围是⎣⎡⎦⎤-15,1. 20.(本小题满分12分)已知点A (m -1,2),B (1,1),C (3,m 2-m -1). (1)若A ,B ,C 三点共线,求实数m 的值; (2)若AB ⊥BC ,求实数m 的值.解:(1)因为A ,B ,C 三点共线,且x B ≠x C ,则该直线斜率存在,则k BC =k AB ,即m 2-m -22=1m -2,解得m =1或1-3或1+ 3. (2)由已知,得k BC =m 2-m -22,且x A -x B =m -2.①当m -2=0,即m =2时,直线AB 的斜率不存在,此时k BC =0,于是AB ⊥BC ; ②当m -2≠0,即m ≠2时,k AB =1m -2, 由k AB ·k BC =-1,得1m -2·m 2-m -22=-1,解得m =-3.综上,可得实数m 的值为2或-3.21.(本小题满分12分)直线过点P ⎝⎛⎭⎫43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线满足下列条件:①△AOB 的周长为12;②△AOB 的面积为6.若存在,求出方程;若不存在,请说明理由.解:设直线方程为x a +yb =1(a >0,b >0),由条件①可知,a +b +a 2+b 2=12.由条件②可得12ab =6.又直线过点P ⎝⎛⎭⎫43,2,∴43a +2b =1, 联立,得⎩⎨⎧a +b +a 2+b 2=12,12ab =6,43a +2b =1,解得⎩⎪⎨⎪⎧a =4,b =3.∴所求直线方程为x 4+y3=1.22.(本小题满分12分)已知点P (2,-1). (1)求过点P 且与原点O 的距离为2的直线的方程;(2)求过点P 且与原点O 的距离最大的直线的方程,并求出最大距离;(3)是否存在过点P 且与原点O 的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.解:(1)①当直线的斜率不存在时,方程x =2符合题意. ②当直线的斜率存在时,设斜率为k ,则直线方程为 y +1=k (x -2),即kx -y -2k -1=0. 根据题意,得|2k +1|k 2+1=2,解得k =34.则直线方程为3x -4y -10=0.故符合题意的直线方程为x -2=0或3x -4y -10=0.(2)过点P 且与原点的距离最大的直线应为过点P 且与OP 垂直的直线. 则其斜率k =2,所以其方程为y +1=2(x -2), 即2x -y -5=0. 最大距离为 5.(3)不存在.理由:由于原点到过点(2,-1)的直线的最大距离为5,而6>5,故不存在这样的直线.。

直线与方程典型基础练习题

直线与方程典型基础练习题

直线与方程典型基础练习题一、选择题1. 下列哪个方程表示一条斜率为2,经过点(-3,4)的直线?A. y = 2x - 10B. y = -2x + 10C. y = 2x + 10D. y = -2x - 102. 如果两条直线的斜率为相反数,它们是否一定垂直?A. 是B. 否3. 如何表示一条过点(4,6)且垂直于x轴的直线?A. y = 6B. y = 4C. x = 6D. x = 44. 斜率为零的直线与x轴的夹角是多少?A. 0°B. 45°C. 90°D. 180°5. 以下哪个方程表示x轴?A. x = 0B. y = 0C. x = 1D. y = 1二、填空题1. 过点(2, 5)和(4, 9)的直线的斜率是 ________。

2. 方程y = 3x - 2表示的直线与y轴的交点为 ________。

3. 方程2x + 5y = 10的斜率是 ________。

4. 过点(3, -2)且斜率为4的直线的方程为 ________。

5. 如果两条直线的斜率相等,它们是否一定平行?三、应用题1. 一辆汽车以每小时60英里的速度行驶,行驶了2小时后,汽车离起点多远?2. 通过点(1, 4)和(7, -2)的直线方程是什么?同时求出它与x轴的交点。

3. 通过点(-1, 2)且与x轴垂直的直线方程是什么?同时求出它与y轴的交点。

4. 通过点(-2, 5)和(4, -3)的直线方程是什么?同时求出它与y轴的交点。

5. 求方程3x + 2y = 10的斜率,并判断这条直线与x轴的夹角是锐角、直角还是钝角。

四、解答题1. 已知直线L1的斜率为-3,直线L2经过点(2, 5)且与L1垂直,求直线L2的方程。

2. 求过点(3, -2)且平行于直线y = 2x + 1的直线方程。

3. 通过点(1, -1)且与直线2x + 3y = 6平行的直线方程是多少?4. 求通过点(4, -3)且与直线y = -x + 2垂直的直线方程。

直线与方程练习题总

直线与方程练习题总

直线与方程练习题一、选择题1.若直线过点(1,2),(4,2+,则此直线的倾斜角是( ) A 030 B 045 C 060 D 0902. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=( ) A 、 -3 B 、-6 C 、23- D 、323. 设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A. 1=+b aB. 1=-b aC. 0=+b aD. 0=-b a 4. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 5.点P (-1,2)到直线8x-6y+15=0的距离为( )A 2B 21 C 1 D 276. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( )A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =57.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=08.过点M(2,1)的直线与x 轴,y 轴分别交于P,Q两点,且|MP|=|MQ|,则l 的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 9. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )A (-2,1)B (2,1)C (1,-2)D (1,2) 10. 直线0202=++=++n y x m y x 和的位置关系是 ( ) (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 11. 如图1,直线l1、l2、l 3的斜率分别为k 1、k 2、k 3,则必有( ) A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 112.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的 边AB 上的中线所在的直线方程为( ) (A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=013. 已知0,0ab bc <<,则直线ax by c +=通过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限14. 若直线l:y=kx-1与直线x+y-1=0的交点位于第一象限,则实数k 的取值范围是( )A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞) 15.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A. 0≠mB. 23-≠mC. 1≠mD. 1≠m ,23-≠m ,0≠m16. 已知直线1l 和2l 夹角的平分线所在直线的方程为x y =,如果1l 的方程是),0(0>=++ab c by ax 那么2l 的方程是( )A bx+ay+c=0 B ax-by+c=0 C bx+ay-c=0 D bx-ay+c=017.将直线y=3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )A.y=3131+-xB.y=131+-xC.y=3x-3D.y=131+x18.下列说法的正确的是 ( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a yb+=1表示D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程 ()()()()y y x x x x y y --=--121121表示二、填空题(本大题共4小题,每小题3分,共12分)19.已知点(5,4)A -和(3,2)B 则过点(1,2)C -且与A,B 的距离相等的直线方程 为 .20.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 . 21.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 22.原点O在直线l 上的射影为点H(-2,1),则直线l 的方程为 .23. 点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________直线与方程练习题参考答案:1.A ;2.B3.D ;4.A ;5.B ;6.D ;7.B ;8.D ;9.A ;10.C.11.A.12.A 13.C 14.C 15.C 16.A 17.A 18.D19.x+4y-7=0或x=-1; 20.x+y-3=0或2x-y=0; 21.261; 22.2x-y+5=0;23.8。

(完整版)直线与方程测试题(含答案)

(完整版)直线与方程测试题(含答案)

第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。

A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。

A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。

直线与方程典型题

直线与方程典型题

直线方程典型题 姓金 分数 一、选择题1 .直线x +氏_2 = 0的倾斜角为( )2兀 5/rA.—B.—C. ---D.——6 3 3 62・若过点P(6,m)和Q(m,3)的直线与斜率为丄的直线垂直侧2 m 的值为 ( )A. 9B. 4C. 0D. 53直线2x+〉‘ + m = 0 利lx + 2y +n = 0的位置关系是A 平行B 垂直C 相交但不垂直D 不能确定4. 直线&x —y + l — 3R = 0,当k 变动时,所有直线都过泄点9・若直线2x+3y+8二0,x ・y ・l=0和x+ky=0相交于一点贝J k=1 1A ・--B ・一C ・-2D ・22 2io.已知点A©, 2)(a > 0)到直线/:x-y + 3 = 0的距离为1,则。

为11. 若直线/: y = kx-l 与直线x + y-\= 0的交点位于第一象限,则实数R 的取值范围是() A. (一oc, 一 1) B. (一oc, 一 1] C.(丄+00) D. [1,+8)12. 将直线y=3x 绕原点逆时针旋转90。

,再向右平移1个单位,所得到的直线为()=--X + - =--x+l3 3 3=3x-3 = —x+1313•若直线l:y=kx-l 与直线x +y-l=0的交点位于第一象限,则实数k 的取值范用是() A. (0, 0) B. (0, 1) C. (3, 1) D. (2, 1)5 ■不论"为何实数,直线@ + 3)牙+ (2°_1)),+ 7 = 0恒过 A.第一象限 B.第二象限 C.第三象限6 .过两点(-1,1)和(0,3)的直线在x 轴上的截距为 3 3 A. 一二 B.二 C ・ 3 2 27 .过点(1,0)且与直线x-2y-2=0平行的直线方程是 ( )D.第四象限( )D. -3( )D. x+2y-l=08・如果两直线3x + y-3 = 0与6x + my + \= 0互相平行,那么它们之间的距离为( )A. 4B. -V13 c D 存A. B. 2-血 c. V2 — 1 D. \/2 +1A・(-FL) B・(r-1] C・(l,+g)14.直线mx-y+2m+l=0经过一定点,则该点的坐标是A (-2, 1)B (2, 1)C (1, -2)D (1, 2) 15•点P (-1, 2)到直线8x-6y+15=0的距离为()A2 B 丄Cl D Z2 216.已知vO,Z?c <0 ,则直线ctx+by=c通过( )_A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限17 •过点(- 2,4)且在两坐标轴上截距的绝对值相等的直线有( )A・1条B. 2条C. 3条D. 4条18.如果直线x + 2ay-1 = 0与直线(3a-\)x-ay-1=0平行,则a等于 ( )1 p r 1A・0 B・一C・0或1 D・0或一6 619.过点(1,2)且与原点距离最大的直线方程是()・A. x + 2y - 5 = 0B.2x + y — 4 = 0C・ x + 3y - 7 = 0 D・ 3x + y - 5 = 020 .如果两直线3x+y-3 = 0与6x + my + \ = 0互相平行,那么它们之间的距离为( )2_5 7A ・ 4B ・—J13C ・—3D ・—J1013 26 2021.若方程⑵爪+m-3)x + (m2 -加)y-伽+ 1 = 0表示一条直线,则实数zn满足3 3A. B・m 羊 _一 C. rn 1 D・m 1, m 丰、 m #= 02 - 222.过点P(-l,3)且垂直于直线x-2y + 3 = 0的直线方程为( )_A. 2x + y -1 = 0B. 2x + y-5 = 0C. x + 2y-5 = 0D. x-2y + 7 = 023.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A. 4x + 2y = 5 B・ 4x-2y = 5C・x + 2y = 5D・ x-2y = 524.若A(—2,3),B(3,—2),C』")三点共线则加的值为( )C. -2D. 225.直线4-4 = 1在y轴上的截距是( )a~A. |/?|B. -b2C. b2D. ±b26.直线kx-y + \ = 3k,当&变动时,所有直线都通过立点( )A. (0,0)B. (0,1)C. (3,1)D. (2,1)27.两直线3x+y-3 = 0与6x + my + \ = 0平行,则它们之间的距禽为( )2 5 7A. 4B. —A/13C.—V13D.—应13 26 2028.已知点A(2,3),B(—3,-2),若直线/过点P(l,l)与线段A"相交,则直线/的斜率&的取值范用是( )a 3 3A. k>-B.-<k<2 c. k > 2i&k < - D.k<24 4 4二、填空题}1 若三点4(2,2),B(°,O),C(O,b)(dbHO)共线,则十 + 土的值为 ____________ 。

直线与方程习题(带答案)

直线与方程习题(带答案)

直线与方程习题(带答案)、选择题1 •若直线X = 1的倾斜角为,贝U ( ) •3•已知直线11经过两点(一1,— 2)、( — 1, 4),直线12经过两点(2, 1)、(x , 6),且 11 // 12,则 x =( ).A. 2B.— 2C. 4D . 14.已知直线 1 与过点 M( — 3 , 2) , N( 2 ,- -3)的直线垂直,则直线1的倾斜角是( ).A.-32 B. 2C.-34D .乞45 .如果AC V 0,且BC v 0,那么直线Ax + By + C = 0不通过( ).A .第一象限B .第二象限C •第三象限D .第 四象限6.设A , B 是x 轴上的两点,点P 的横坐标为2,且| PA| =|PB|,若直线 PA 的方程为x — y + 1= 0,则直线PB 的方程是().A . x + y — 5= 0 B. 2x — y — 1= 0C. 2y — x — 4= 0D . 2x + y —7 = 07. 过两直线11: x — 3y + 4 = 0和12: 2x + y + 5 = 0的交点和原点的直线方程 为().A. 19x — 9y = 0 B . 9x + 19y = 0C. 19x — 3y = 0 D . 3x+ 19y = 0A .等于0B •等于2.图中的直线11, 12, 13的斜率分别为 A . k 1< k 2< k 3 B. k 3V k 1 v k 2C. k 3 v k 2 v k 1D . k 1 v k 3v k 2(第28. 直线11:x+ a2y+ 6 = 0和直线12 : (a—2)x+ 3ay+ 2a= 0 没有公共点,则a的值是().9. 将直线I 沿y 轴的负方向平移a(a >0)个单位,再沿x 轴正方向平移a +11.已知直线I 1的倾斜角 1= 15°直线I 1与I 2的交点为A ,把直线I 2绕着点A 按逆时针方向旋转到和直线I 1重合时所转的最小正角为60°则直线12的斜 率k 2的值为 __________ .12. 若三点 A( — 2, 3) , B(3, — 2) , C(1 , m)共线,贝U m 的值为 _____ .213. 已知长方形ABCD 的三个顶点的坐标分别为 A(0, 1) , B(1 , 0) , C(3 , 2),求第四个顶点D 的坐标为 _________ .14. 求直线3x + ay = 1的斜率 ______ .15. 已知点 A( — 2 , 1) , B(1 , — 2),直线 y = 2 上一点 P,使 | AP| = | BP| ,则P 点坐标为 ___________ .16. 与直线2x + 3y + 5 = 0平行,且在两坐标轴上截距的和为 6的直线方程 是 _______________ .17. 若一束光线沿着直线x — 2y + 5 = 0射到x 轴上一点,经x 轴反射后其反 射线所在直线的方程是 ______________ .三、解答题18. 设直线 I 的方程为(m 2 — 2m — 3)x + (2m 2 + m — 1)y =2m — 6(m € R, —1),根据下列条件分别求m 的值:A . 3B.— 3C. 1 D .— 11个单位得直线 I',此时直线I'与I 重合,则直线r 的斜率为(A .亠 a+ 110.点(4, B.-旦C.吐a + 1a0)关于直线5x + 4y + 21 = 0的对称点是( D .a +1 aA . ( — 6, 8)二、填空题 B. ( — 8,— 6) C. (6, 8) D . (—6,— 8)①I在x轴上的截距是一3; ②斜率为1.19. 已知△ ABC的三顶点是A( —1, —1) , B(3, 1) , C(1, 6).直线I平行于AB, 交AC, BC分别于E, F,A CEF的面积是△ CAB面积的1.求直线I的方程.420. —直线被两直线l1:4x+ y+ 6= 0, I2:3x—5y—6= 0截得的线段的中点恰好是坐标原点,求该直线方程.21. 直线I过点(1, 2)和第一、二、四象限,若直线I的横截距与纵截距之和为6, 求直线I的方程.第三章直线与方程参考答案一、选择题1. C 解析:直线x = 1垂直于x 轴,其倾斜角为90°.2. D 解析:直线l i 的倾斜角1是钝角,故k i v 0;直线12与13的倾斜角2, 3均为锐角且2> 3,所以k 2 > k 3> 0,因此k 2> k 3> k i ,故应选D.3. A解析:因为直线l i 经过两点(一1 , -2)、( 一1,4),所以直线l i 的倾斜角为 5,而l i // 12,所以,直线12的倾斜角也为2 ,又直线12经过两点(2 , 1)、(X , 6),所以,x = 2.4. C所以直线1的斜率为1,故直线1的倾斜角是-.45. C解析:直线Ax + By + C = 0的斜率k = - v 0,在y 轴上的截距D =-C >0,BB所以,直线不通过第三象限.6. A 解析:由已知得点 A - 1, 0) , P(2, 3) , B(5, 0),可得直线PB 的 方程是x + y -5= 0.7. D 8. D 9. B解析:结合图形,若直线1先沿y 轴的负方向平移,再沿x 轴正方向平移后, 所得直线与1重合,这说明直线1和1'的斜率均为负,倾斜角是钝角.设1'的 倾斜角为,则tan =——.a +110. D解析:这是考察两点关于直线的对称点问题.直线5x + 4y + 21= 0是点A(4, 0)解析:因为直线MN 的斜率为、一 2+3—3— 2=-1,而已知直线I 与直线MN 垂直,与所求点A'(x, y)连线的中垂线,列出关于x, y的两个方程求解.二、填空题 11. — 1.解析:设直线12的倾斜角为2,则由题意知: ••• k 2= tan 2 = tan( 180°—45° = — tan45°=— 1. 12. -.2解:••• A , B , C 三点共线, • k AB = k Ac , 2 3 = m _3 .解得 m =-.3+21 + 22213. (2, 3).解析:设第四个顶点D 的坐标为(x , y), ••• AD 丄CD, AD // BC,• k AD • k CD =— 1,且 k AD = k BC.y —1 • y —2 = — 1 y j = 1. x — 0 x — 3 x — 0解得x =°(舍去)x =2 y =1y =3所以,第四个顶点D 的坐标为(2, 3). 14. — 3或不存在.a解析:若a = 0时,倾角90°无斜率. 若 a M 0 时,y = — — x +— a a•••直线的斜率为—3 .a15. P(2, 2).解析:设所求点 P(x , 2),依题意:(x 2)2 (2 1)2 = , (x 1)2 (2 2)2,解 得x = 2,故所求P 点的坐标为(2 , 2).16. 10x + 15y — 36 = 0.解析:设所求的直线的方程为2x + 3y + c = 0,横截距为—c ,纵截距为—c ,23180°— 2+ 15° = 60°135(第11题)36-3x o + 5y o — 6=0 ②进而得 c =— 517. x + 2y + 5= 0.解析:反射线所在直线与入射线所在的直线关于 x 轴对称,故将直线方程中 的y 换成 -y .三、解答题18. ①m =— 5 :②m =-.33解析:①由题意,得②由题意,得m 一2m ^ = — 1,且2m 2 + m - 1工0.2m 2 m 1 解得 m =4. 319. x — 2y + 5= 0.解析:由已知,直线AB 的斜率k = 因为EF// AB ,所以直线EF 的斜率为丄.2因为△ CEF 的面积是厶CAB 面积的1,所以E 是CA 的中点.点E 的坐标是4(0, 5).2直线EF 的方程是y-| = 1x ,即 X -2y + 5= 020. x + 6y = 0.解析:设所求直线与h, 12的交点分别是A ,B,设A(X 0, y 0),则B 点坐标 为 (—X0,—y o ).因为A , B 分别在11, 12上,4x 0+ y o + 6=0 ①所以2m 6m 2 2m 3且 m 2— 2m — 3工 0.①+②得:X0+ 6y o= 0,即点A在直线x+ 6y= 0上,又直线x+ 6y= 0过原点,所以直线I的方程为x+ 6y= 0.21. 2x + y —4= 0 和x+ y—3 = 0.解析:设直线I的横截距为a,由题意可得纵截距为6—a.•••直线I的方程为△ +丄=1.a 6—a•点(1,2)在直线I 上,二-+ ―^ =1 , a2—5a + 6= 0,解得a i = 2, a2= 3.当 a 6— aa = 2时,直线的方程为y 1,直线经过第一、二、四象限.当a= 3时,直2 4线的方程为-y 1,直线经过第一、二、四象限.3 3综上所述,所求直线方程为2x+ y—4= 0和x+ y—3= 0.。

直线与直线方程练习题

直线与直线方程练习题
15.−9
16.2
17.
a 2或1
a
1
3
18. + − 7 = 0
19.2√2
20.3 + 4 + 10 = 0或3 + 4 − 20 = 0.
答案第 1 页,总 2 页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
1
21.[ , +∞) ∪ (−∞, −1]
4
22.(4,3).
19.点(, )是直线 + − 4 = 0上任意一点,为坐标原点,则√2 + 2 的最小值为__________________
20.与直线3 + 4 = 5平行,并且距离等于 3 的直线方程是__________.
21.已知点(−4,1), (3, −1),若直线 = + 2与线段恒有公共点,则实数的取值范围是_________.
14.直线 4x-my-2-0 和 2mx-6y-3-0 的交点位于第二象限,则 m 的取值范围为________-
15.若三点 (3,1),(−2, ),(8,11) 在同一直线上,则实数 = ________________-
16.直线 + ( − 1) + 1 = 0与直线4 + − 2 = 0互相平行,则实数 =________.
23.2.
24.(1) = −2, = 4.
4
(2)5 √5.
答案第 2 页,总 2 页
17.若直线 a 1 x 2 y 0 与直线 x ay 1 互相平行,则实数 a ______,若这两条直线互相垂直,则 a
______.
18.直线 = + 1 上一点 的横坐标是 3,把已知直线绕点 按逆时针方向旋转 90∘ 后所得的直线方程是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与方程复习题
1. 若直线过点()()
32421+,,,
则此直线的倾斜角是 2. 若直线06:1=++ay x l 与()0232:2=++-a y x a l 平行,则21l l 与的距离为
3. 不论a 为何实数,直线()()07123=+-++y a x a 恒过第______象限
4. 已知AB C ∆的三个顶点坐标为()()()32-C 2-1B 42A ,,,,,
,则BC 边上的高AD 所在直线的斜率为
5. 已知直线1l 经过点()()2,13A -m B m ,,直线2l 经过点()()22-D 21
C +m ,,, (1)当6=m 时,试判断直线21l l 与的位置关系
(2)若21l l ⊥,求实数m 的值
6. 直线032=+-y x 关于直线02=+-y x 对称的直线方程是
7. 已知()()1log 2+=x x f ,且0>>>c b a ,则
()()()c c f b b f a a f ,的大小关系 8. 函数84122+-++=x x x y 的最小值是
9. 根据下列条件求直线方程
(1)过点()4-5-A ,
作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5 (2)经过直线0323:0532:21=--=-+y x l y x l ,的交点且平行于直线032=-+y x 的直线方程是
10. 已知直线33:+=x y l ,求:
(1)点()54P ,
关于l 对称的点的坐标 (2)直线l 关于点()23A ,
的对称直线的方程。

相关文档
最新文档