高分子研究方法--电镜--D2

合集下载

高分子的表征与分析

高分子的表征与分析

F
σ = F / A = F / (πr2) F 为样品断裂时压力, A 和 r 分别为圆柱形样品起始时的截面积和直径
Flexural strength
弯曲强度(Flexural strength OR Bending strength) 也称挠曲强度或抗弯强度。弯曲强度的测定是在规定的试验条件下,对标准试样施加一静止弯曲力矩,直至试样断裂。
Differential Scanning Calorimetry
差热扫描分析(DSC) 在程控温度下,测定输入到物质和参比物之间的功率差与温度的关系。
DSC curves
Heating scan
Cooling scan
onset mid end
enthalpy
Tg
Tc
Tm
熔融焓(ΔHm),表示分子或分子链段排布由有序转换到无序所需要吸收的能量。 将 ΔHm与100%结晶试样熔融焓(ΔHm0 ,通过已知结晶度聚合物熔融焓外推得到)比较既可得到聚合物的相对结晶度 Xc。
P
P
Hardness
硬度(hardness)是指材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。 硬度不是一个简单的物理概念,而是材料弹性、塑性、强度和韧性等力学性能的综合指标。 硬度试验根据其测试方法的不同可分为静压法、划痕法、回跳法及显微硬度、高温硬度等多种方法。 常用于塑料和橡胶硬度测试的标准为邵氏(Shore)硬度。用邵氏硬度计插入被测材料,表盘上的指针通过弹簧与一个刺针相连,用针刺入被测物表面,表盘上所显示的数值即为硬度值。
粘度法只是一种测定聚合物相对分子量的方法,必须在确定的条件下,事先订定粘度与分子量的关系(即根据已知分子量的试样测定得到常数K和a)

高分子材料的分析与表征

高分子材料的分析与表征

高分子材料的分析与表征高分子材料是现代工业和科学技术中不可或缺的重要材料之一。

它们可以广泛应用于各种领域,如制造塑料制品、合成纤维和涂料等等。

然而,对于高分子材料的分析与表征是一项相当重要的任务,因为这有助于了解高分子材料的结构性质,从而提高其性能并改进制造工艺。

一、高分子材料的分析高分子材料的分析是指在不影响材料性能的前提下,对材料进行化学和物理性质的分析。

这项工作主要包括材料的成分分析、微观结构分析和宏观性能测试。

其中,对高分子材料成分的分析是最常用的方法,它可以通过化学分析或物理分析来实现。

化学分析常用的方法有红外光谱、核磁共振、质谱和元素分析等等。

红外光谱是一种常用的高分子材料分析方法。

它是一种基于吸收和反射的分析技术,能够分析材料中的基团和官能团。

高分子材料中的不同成分所含有的基团和官能团都是不同的,所以红外光谱可以帮助我们确定材料的成分。

此外,红外光谱还能够检测出材料中的化学键和官能团的类型,从而确定分子结构,为接下来向材料中引入新化学基团提供有用信息。

核磁共振(NMR)是另一种常用的高分子材料分析方法。

它是一种基于磁场和电磁波的分析技术,能够分析材料中的核自旋取向。

在高分子材料中,核自旋的取向会依赖于材料的分子结构和分子环境。

通过核磁共振技术,可以详细地了解材料分子的结构,从而改进材料的性能。

质谱就是一种基于分子质量的分析技术。

它是一种利用分子中原子的质量差异和元素分布来确定分子质量和组成的方法。

高分子材料经过化合反应、生产过程中可能会包含有机溶剂和配料,因此会含有一些未知化合物或杂质。

使用质谱技术可以对这些未知化合物和杂质进行鉴定,准确确定材料的组分。

元素分析主要是用来确定材料中的元素成分。

在高分子材料中,含氮反应物、含氧掺合物和食用和添加剂都可能会影响其性能。

因此,元素分析可以提供重要的信息来评估材料属性和其它的技术应用。

二、高分子材料的表征高分子材料的表征主要是指根据材料的微观形态和结构特征,进行结构表征、形态表征和性质表征,以便更好地了解高分子材料的性质和特性。

2019-2020 (2)高分子材料研究方法试卷A

2019-2020 (2)高分子材料研究方法试卷A

班级(学生填写):
姓名:
学号:
命题:
审题:
审核:审批:-----------------------------------------------密
----------------------------封---------------------------线-------------------------------------------------------(答题不能超出密封线)136℃160℃
2、(红外)已知某化合物的傅里叶红外光谱图如下所示,已知该化合物化学式为C7H9N,试查阅相关资料,分析相关基团的吸收情况,推测出该化合物的结构,并且说明推断的过程。

(共15分)
3.(NMR)下图是三种尼龙的1H-NMR谱图,表5-4是三种尼龙的NMR峰面积
之比,试分辨出图中(a)、(b)、(c)1H-NMR谱图分别对应的是哪种尼龙?试分析说明理由。

(15)
A B
6、简述紫外吸收光谱法的测试原理。

运用紫外吸收光谱的谱图信息区分下列两对异构体。

(共8分)
A B
7、(GPC)下图为一聚合物的GPC曲线,请比较峰A、B、C的分子量大小并说明原因,比较A、B所对应的分子量分布的宽窄;指出D代表什么峰。

(共8分)
8、医用口罩的主要成分为PP熔喷布,请选用合适的高分子研究方法和相应的仪器,研究熔喷布的成分、结构、热性能,写出研究方法及所研究内容。

(15分)。

高分子材料研究方法作业及答案

高分子材料研究方法作业及答案

⾼分⼦材料研究⽅法作业及答案第⼀章《绪论》习题答案1. 材料的定义?答:⽤以制造有⽤的构件、器件或其它物品的物质。

也可以说是将原料通过物理或化学⽅法加⼯制成的⾦属、⽆机⾮⾦属、有机⾼分⼦和复合材料的固体物质。

它们⼀⽅⾯作为构件、器件或物品的原材料或半成品,如⾦属、有机⾼分⼦、⽊材、⼈造纤维、天然⽯材和某些玻璃等;另⼀⽅⾯可以在某些⼯艺中作为最终产品,如陶瓷和玻璃制品。

2. 材料与⼈类的关系?答:关系密切,⼈类进步的⾥程碑。

(1)当代⽂明的三⼤⽀柱:材料、信息与能源;(2)新技术⾰命的主要标志:新材料、信息技术和⽣物技术。

(3)⼈类⽂明进步的标志:⽯器、青铜器、铁器和蒸汽机时代。

3. 材料的使⽤性能、固有性质、结构组成和合成⽅法之间的关系?答:材料结构与性能的关系:材料的性能是材料内部因素在⼀定的外部因素下的综合反映:材料的固有性质⼤都取决于物质的电⼦结构、原⼦结构和化学键结构。

物质的组成与结构取决于材料的制备和使⽤条件。

4. ⾼分⼦材料研究⽅法的内容有哪些?答:材料结构研究的基本⽅法:任务有三个:成分分析、结构测定和形貌分析。

成分分析:光谱:红外:分析材料的主要基团;⾊谱:分析材料的组成特征;热谱:分析材料的热性能;质谱:分析化合物的分⼦量和元素组成。

结构测定:X-衍射:晶体结构。

举例:蒙脱⼟。

电⼦衍射:测定细微晶体的亚微⽶结构,来分析表⾯或涂层的结构。

中⼦衍射:测定材料的缺陷、空⽳等,还可研究⽣物⼤分⼦在空间的构型。

俄歇电⼦能谱:是⽤⼀束汇聚电⼦束,照射固体后在表⾯附近产⽣了⼆次电⼦。

由于俄歇电⼦在样品浅层表⾯逸出过程中没有能量的损耗,因此从特征能量可以确定样品的元素成分。

图像分析:扫描电镜:分析材料的表⾯形貌;透射电镜:分析材料的颗粒⼤⼩,晶体材料的缺陷等。

第⼆章《红外光谱》习题答案1. 红外光谱可分为哪⼏个区域,各区域的分⼦跃迁类型和适⽤范围?答:如下表格所⽰:近红外中红外远红外分⼦跃迁类型泛频,倍频分⼦振动和转动晶格振动和纯转动适⽤范围有机官能团定量分析分⼦结构分析和样品成分分析⽆机矿物和⾦属有机物2. 红外光谱吸收谱的位置和强度与相应化合物的结构有何关系?答:位置与化合物中的官能团的种类有关;强度与该官能团的数量有关。

习题答案

习题答案

1、分析电子衍射与X 衍射有何异同? 答:相同点:① 都是以满足布拉格方程作为产生衍射的必要条件。

② 两种衍射技术所得到的衍射花样在几何特征上大致相似。

不同点:① 电子波的波长比x 射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad 。

而X 射线产生衍射时,其衍射角最大可接近π2。

② 在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。

③ 因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。

④ 原子对电子的散射能力远高于它对x 射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。

2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系? 答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。

关系:① 倒易矢量g hkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向N hkl ② 倒易点阵中的一个点代表正点阵中的一组晶面③ 倒易矢量的长度等于点阵中的相应晶面间距的倒数,即g hkl =1/d hkl对正交点阵有a规则的平行四边形斑点;B. 同心圆环;C. 晕环;D.不规则斑点。

2、 薄片状晶体的倒易点形状是( C )。

A. 尺寸很小的倒易点;B. 尺寸很大的球;C. 有一定长度的倒易杆;D. 倒易圆盘。

3、 当偏离矢量S<0时,倒易点是在厄瓦尔德球的( A )。

A. 球面外;B. 球面上;C. 球面内;D. B+C 。

4、 能帮助消除180º不唯一性的复杂衍射花样是( A )。

A. 高阶劳厄斑;B. 超结构斑点;C. 二次衍射斑;D. 孪晶斑点。

聚合物化学与物理改性复习提纲

聚合物化学与物理改性复习提纲

聚合物改性:通过物理和机械方法在高分子聚合物中加入无机/有机物质,或将不同高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。

聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性1.共混改性:①化学共混、物理共混、物理化学共混物理共混(blend)就是通常意义上的“混合”,简单的机械共混;物理/化学共混(就是通常所称的反应共混)是在物理共混的过程中兼有化学反应,可附属于物理共混;化学共混则包括了接枝、嵌段共聚及聚合物互穿网络(IPN)等,已超出通常意义上的“混合”的范畴,而应列入聚合物化学改性的领域。

②根据物料形态分类:熔融共混、溶液共混、乳液共混熔融共混(最具工业应用价值,绝大多数)是将聚合物组分加热到熔融状态后进行共混。

优点:①原料准备操作简单。

②熔融时,扩散对流作用激化,强剪切分散作用,相畴较小。

③强剪切及热的作用下,产生一定数量的接枝或嵌段共聚物,促进体系相容性。

溶液共混是将聚合物组分溶于溶剂后,进行共混。

乳液共混是将两种或两种以上的聚合物乳液进行共混的方法。

2.共混物形态的两大体系三种基本类型:均相体系非均相体系:海-岛结构特点(定义)两相体系,且一相为连续相,一相为分散相(更具有价值)海-海结构特点(定义)也是两相体系,但两相皆为连续相,相互贯穿。

3.聚合物共混物均相体系与非均相体系的判定依据:Tg均:两种聚合物共混后,形成的共混物具有单一的Tg;两相体系合物共混后,形成的共混物具有两个Tg。

4.分散度及均一性定义均一性和分散度比较的图2-2分散度是指“海-岛结构”两相体系中分散相物料的破碎程度,用通俗的话说,就是指打得散不散。

生物冷冻电镜的技术及应用

生物冷冻电镜的技术及应用

生物冷冻电镜的技术及应用随着生物学的发展,现代科学对生物结构和功能的研究已经到达了一个新的高度。

其中,冷冻电镜成为了生物结构研究中不可或缺的重要技术手段。

与传统的电镜技术不同,冷冻电镜技术可以使生物样品在冷冻状态下被固定,不失真和干扰,从而更为准确地观察和研究生物体内各种微观结构,尤其是高分子复合物的结构与互作。

一、冷冻电镜技术的基本原理冷冻电镜技术是通过将生物样品在快速冷冻的状态下迅速固定,避免样品在固化过程中产生化学反应,从而保持了样品在自然状态下的形态结构。

通常,样品的冷冻速度可达到10000-60000℃/s,减少了溶剂结晶对样品的损伤。

电子显微镜可以将冷冻过程的各个环节迅速观察和记录下来,尤其是高分子复合物的高分辨率成像,更好地反映了样品的自然结构。

二、冷冻电镜技术的发展历程冷冻电镜技术自1950年代开始,随着电子显微技术的发展不断完善和改进,鲜明的发展成果已经在现代生物学研究中不可忽视。

1950年代,人们通过旋转模型来模拟生物大分子的三维结构。

60年代初期,Patrick Boyer首次使用冷冻电镜研究鱼的肌肉组织,成功地观察到鱼肌纤维,开创了冷冻电镜领域新的历史篇章。

随后,人们开始使用冷冻技术尝试研究生物样品,1967年,探针技术的出现被认为是冷冻电镜技术具有突破性进展的标志。

1980年代,高分辨率微镜的发明,使得冷冻电镜技术的分辨率被提高到0.2奈米级别。

随着技术的发展,冷冻电镜技术已成为人们研究微生物学、生物医学和生物工程学等领域不可或缺的技术之一。

三、冷冻电镜技术的应用冷冻电镜技术广泛应用于从分子结构到大分子复合物的细胞研究,已经成为各种生物学领域的重要技术手段。

当下,主要的应用领域包括:1、细胞结构研究。

冷冻电镜技术是观察细胞组织和细胞配件的理想手段,可以在非常高的空间解析度下获取细胞超结构的实时图像,增强细胞结构研究的深度和广度。

2、蛋白质与生物大分子的研究。

冷冻电镜技术可直观地观察高级生物大分子的结构,从而使生物高分子结构和功能的研究更加精确和深入。

第5篇19电镜(透射电镜及扫描电镜)

第5篇19电镜(透射电镜及扫描电镜)
加速电压高,电子束对样品的穿透能力强,可以观察较厚的样品,同时 有利于电镜的分辨率。
放大倍数:几十到几十万(106)倍;连续可调
透射电镜的主要性能指标
衬度
指透射电镜图像中亮和暗的差别(类似于黑白照片的反差) 。衬度 是一幅图像能否被清晰观察的前提。
高分子电镜图像的衬度主要是吸收衬度,取决于样品各处参与成像 的电子数目的差别。电子数越多,散射越厉害,透射电子越少, 图像就越暗。还与下面因素有关:
1. 镜筒内为什么保持高真空状态
2. ⑴ 防止高速电子受空气分子碰撞而改变运 动轨迹;
3. ⑵ 避免因空气分子电离而引起放电而破坏 了电子枪电极间的绝缘;
4. ⑶ 避免阴极氧化及样品污染。
为什么使用电磁透镜
使用静电透镜(用电场聚焦)需要高 压,给设备的设计和操作带来不便。
故现代电镜中静电透镜只在电子枪中使 用;而聚光镜、物镜、中间镜和投影镜则 都采用电磁透镜(用磁场聚焦),可以通 过改变激磁电流来调节透镜的聚焦能力。 而且光学显微镜的玻璃透镜没有聚焦成像 的能力,不能用于电子显微镜。
低压扫描电镜 场发射电子枪 环境扫描电镜
1~100eV
扫描电镜
可变真空度
低能扫描电镜 分辨率0.4nm 1Pa~300Pa
SEM
扫描电子显微镜的结构和工作原理
由电子枪发射出来的电子束,在加速电压作 用下,经过二至三个聚光镜汇聚,再经 物镜聚集成一个细的电子束聚焦在样品 表面。在聚光镜与物镜之间装有扫描线 圈,在它的作用下使电子束在样品表面 扫描。
纳米尺寸的微结构
超高的力学性能
特殊的电学性质
热稳定性
碳纳米管
(Iijima & Bethune 1993)
(Iijima 1991)

电镜的基础知识与原理

电镜的基础知识与原理

电镜基础知识与原理1、电子束照射到样品上,电子与物质作用: 使电子改变运动方向,称为散射;电子只改变运动方向,不改变能量,称为弹性散射; 既改变运动方向,又改变能量,称为非弹性散射。

2、透射电子显微镜(TEM )的磁透镜包括:长磁透镜、短磁透镜、极靴透镜长磁透镜:像的每一点都与磁力线平行,M=1,没有放大作用,焦距长;短磁透镜:a 、短磁透镜为会聚透镜;b 、透镜光焦度1/f 与(IN)2成正比;c 、焦距 f 与加速电压U (即电子速度)有关,电子速度越大,焦距越长。

3、理想成象的条件:a 、场分布严格轴对称;b 、满足傍轴条件; c 、电子初速度相等。

4、景深与焦深:景深(Df ):试样在物平面沿轴前后移动而不使分辨率下降的距离(2∆L ),即物的空间距离。

焦深(DL )象平面沿轴前后移动而不使成象分辨率降低的距离(2∆LM2),即象的空间距离,M5、电镜的象差中球差、畸变、像散称为几何像差,倍率色差和旋转色差称为色差。

球差系数Cs 恒大于零,透镜强度越大,Cs 越小。

球差与分辨率的关系: Cs ——球差系数,α0——孔径角。

tga 0 <<1 畸变:当电子束不满足傍轴条件时,主要在中间镜和投影镜发生畸变。

像散:由于极靴加工精度的影响,使得磁场非对称,导致像在一个方向加长,另一个方向变短。

解决办法:加消像散器色差:由电子束能量宽度决定,包括倍率色差和旋转色差。

6、透射电镜成像的三个要素:分辨率(分辨能力)、衬度、放大倍数(1)分辨率(分辨能力):能分清两个点的中心距离的最小尺寸。

a 、人眼分辨能力:约b 、光学显微镜的分辨率δ——分辨率;λ——可见光波长; n sin α——透镜孔径值c 、电子显微镜的分辨率:BCs B ——常数,一般在0.43 ~ 0.65之间。

A 、TEM 分辨率的影响因素:δ=BCs ¼λ¾B ——常数,Cs ——球差系数球差、光波波长决定了TEM 的分辨率,提高电子束的加速电压,减小电子束的波长,降低球差、色差对分辨率的影响;同时影响其分辨率的因素还有:灯丝的形状:双聚光镜的第一聚光镜要求为强透镜,而第二聚光镜为弱透镜。

扫描电子显微镜(SEM)-介绍-原理-结构-应用

扫描电子显微镜(SEM)-介绍-原理-结构-应用
扫描线圈 物镜 物镜光栏
探头
扫描发生器 显像管
视频放大器
光电倍增管
试样
光导管
试样台
扫描电子显微镜主要由以下四个部分组成: 1. 电子光学系统:作用是获得扫描电子束,
作为信号的激发源。 2. 信号收集及显示系统:作用是检测样品在
入射电子作用下产生的物理信号 3. 真空系统:用来在真空柱内产生真空 4. 电源系统:作用是提供扫描电镜各部分所
3.3 背散射电子
背散射(backscattered)电子是指入射电子在样 品中受到原子核的卢瑟福散射后被大角度反射,再 从样品上表面射出来的电子,这部分电子用于成像 就叫背散射成像。 背散射分为两大类:弹性背散射和非弹性背散射。 弹性散射不损失能量,只改变方向。非弹性散射不 仅改变方向,还损失能量。从数量上看,弹性背反 射电子远比非弹性背反射电子所占的份额多。背反 射电子的产生范围在100nm-1mm深度。
d4
光电倍增管
d3:扫描系统ຫໍສະໝຸດ 试样光导管d4:试样室
试样台
2.1.1 电子枪
电子枪:钨丝成V形,灯丝中通以加热电流, 当达到足够温度时(一般操作温度为 2700K),发射电子束。在10-6Torr的真空 下,其寿命平均约40—80小时。
电子束 光阑孔
2.1.2 电磁透镜
电磁透镜:透镜系统中所用的透镜都是缩 小透镜,起缩小光斑的作用。缩小透镜 将电子枪发射的直径为30μm左右的电 子束缩小成几十埃,由两个聚光镜和一 个末透镜完成,三个透镜的总缩小率约 为2000~3000倍
03
SEM工作原理
3 扫描电镜成像的物理信号
入射电子轰击样品产生的物理信号
电子束与样品原子间的相互作用是表 现样品形貌和内部结构信息的唯一途 径。入射电子与样品原子中的电子和 原子核会发生弹性碰撞和非弹性碰撞, 所产生各种电子信号和电磁辐射信号 都带有样品原子的信息,从不同角度 反映出了样品的表面形貌、内部结构、 所含元素成分、化学状态等。

高分子材料成型加工及力学性能检测实验指导书

高分子材料成型加工及力学性能检测实验指导书
有酚醛、脲醛、蜜胺、环氧和不饱和聚酯等几大类。这些树脂的共同特点都是含有活性官能
团的聚合物,在加工成型过程中能够继续发生化学反应,最终固化为制品。
热固性塑料也可以通过多种的成型方法和工艺,加工成型为各式各样的塑料制品。不同
类型的热固性塑料的成型工艺有所不同,其中以酚醛塑料的压制成型最为重要。压制成型又
(2)挤出成型原理及应用。热塑性塑料的挤出成型是主要的成型方法之一,塑料的挤出成型就是塑料在挤出机中,在一定的温度和一定压力下熔融塑化,并连续通过有固定截面的模型,得到具有特定断面形状连续型材的加工方法。不论挤出造粒还是挤出制品,都分两个阶段,第一阶段,固体状树脂原料在机筒中,借助于料筒外部的加热和螺杆转动的剪切挤压作用而熔融,同时熔休在压力的推动下被连续挤出口模;第二阶段是被挤出的型材失去塑性变为固体即制品,可为条状、片状、棒状、筒状等。因此,应用挤出的方法既可以造粒也能够生产型材或异型材。
分为模压和层压,模压又叫压缩模塑。本节仅就酚醛压塑粉模压实验为例,讨论热固性塑料
的加工成型。
酚醛树脂是酚类化合物和甲醛缩聚反应的聚合物,其聚合方法又分为酸法和碱法,碱法
树脂多为层压用料,酸法多为模压料。纯粹的酚醛树脂通常是不直接加工和应用的,大多数
情况下,酚醛树脂都是与填料和其他配合剂通过一定的加工程序而成为热固性物料。用得最
八、实验报告
1).实验报告应按专用实验报告格式书写;
2).实验报告应包含实验目的、要求、实验原理;
3).实验结束后应将报告交与指导教师签字认可;
九、注意事项
1).实验过程中高温,小心烫伤!!
实验(二)热塑性塑料挤出造粒
实验学时:6
实验类型:验证
实验要求:必修
一、实验目的
熟悉挤出成型的原理,了解挤出工艺参数对塑料制品性能的影响。了解挤出机的基本结构及各部分的作用,掌握挤出成型基本操作。

高分子物理课件第二章

高分子物理课件第二章
< 1.0, 原因:更多的晶格缺陷造成非晶区。
2、同质多晶现象
聚乙烯的稳定晶系是斜方晶系,拉伸时可形成 三斜或单斜晶系。
同质多晶现象:由于结晶条件的变化,引起分 子链构象的变化或者堆积方式的改变,一种聚合 物可以形成几种不同的晶型。
形成的晶型不同,聚合物所表现出来的性能 也不相同。
3、 聚丙烯的晶胞结构
基于内聚能的加和性,即原子或基团摩尔吸引力常 数Gi的加和
CED
Gi
i
M0
CED与高聚物物理性质之间的关系
a. CED < 300 J/cm3时(70cal/cm3) 聚合物都是非极性的,分子间作用力主要是色散力,比较 弱,分子链属于柔性链,具有高弹性,作橡胶使用。 b. CED > 400 J/cm3时(100cal/cm3) 聚合物都是极性的,由于分子链上有强的极性基团或分子 间能形成氢键,分子间作用力较强,加上易于结晶和取向, 作纤维使用 c. 300 J/cm3 < CED < 400 J/cm3时(70-100cal/cm3) 聚合物的分子间作用力居中,适宜作塑料使
但是在用X射线研究聚合物的凝聚态结构时,人们 发现:聚合物内部确实存在着三维有序的规整结构。
结晶聚合物最重要的实验证据为:
x射线衍射花样(图)——一系列同心圆(德拜环) (非晶聚合物—弥散环或称无定形晕) 衍射曲线—尖锐的衍射峰 (非晶聚合物—很钝的衍射峰)
实验证明:如果高分子链本身具有必要 的规整结构,同时给予适宜的条件(温度等), 就会发生结晶,形成晶体。
纤维(>100)
解释PE的 CED < 300J/cm3 却作为塑料使用,Why? PE分子链的结构非常规整,很容易结晶, 从而使材料具有一定的强度,作为塑料使用。

溶胶-凝胶法制备不同尺寸的Fe3O4磁性颗粒及表征

溶胶-凝胶法制备不同尺寸的Fe3O4磁性颗粒及表征

2.5*10-2 2.5*10-2 2.8*10-2 2.85*10-2 2.9*10-2
/
/ 3*10-3 3.5*10-3 4*10-3
3*10416
/
282
/
81
5*10-2 5*10-2 5*10-2 5*10-2
2*10-1 2*10-1 2*10-1 2*10-1
3*10-2 3.5*10-2 4*10-2 5.5*10-2
表二:样品 1 的电子衍射和 X 射线衍射数据
R (cm) ED 结果-d 1(Å) XRD 结果-d2(Å)
理论值-d (Å) 晶面 (hlk)
1 0.73 4.71 4.78 4.85 (111)
2 1.19 2.89 2.83 2.97 (220)
3 1.38 2.49 2.52 2.53 (311)
___________________________________________________________w_w_w_._p_a_p_e_r_._e_d_u_._c_n
溶胶-凝胶法制备不同尺寸的Fe3O4磁性颗粒及表征
周洁 马明 张宇 顾宁 (东南大学生物科学与医学工程系,分子与生物分子电子
4 1.65 2.08 2.09 2.10 (400)
5 2.00 1.71 1.71 1.71 (422)
6 2.17 1.59 1.61 1.62 (511)
7 2.30 1.49 1.48 1.48 (440)
图 3:样品 1 的电子衍射照片
图 4:样品 1 的 X-射线衍射图
中__国__科__技__论__文__在__线_____________________________________________w_w_w_._p_a_p_e_r_._e_d_u_._c_n

《高分子材料》实验指导书_2

《高分子材料》实验指导书_2

实验一热塑性塑料熔融指数的测定一、实验目的1、测定高压聚乙烯的熔融指数;2、了解热塑性塑料在熔融状态时的流动黏性及其重要性;3、熟悉测定塑料熔体流动指数的原理及操作。

二、实验原理衡量高聚物流动性难易程度的指标有: 熔融指数、表观黏度、流动长度等多种方法。

这里介绍熔融指数。

熔融指数是指热塑性高聚物在规定的温度、压力条件下, 塑料熔体每10min通过标准口模的质量或体积, 习惯用MFR(MI)或MVR表示。

在塑料成型加工中, 熔融指数是用来衡量熔体流动性的一个重要指标, 其测试仪器通常称为熔体流动速率测试仪(熔融指数仪)。

对一定结构的塑料熔体, 可用MI来比较其相对分子质量的大小, MI越小, 其相对分子质量越高, 反之MI越大, 其相对分子量越小, 说明它的流动性越好, 其加工性能就相应好一些, 但其它性能如断裂强度、硬度、耐老化稳定性等将差一些。

此法测定熔体流动速率简便易行, 对材料的选择和成型工艺条件的确定有其重要的实用价值, 工业生产上得到广泛采用。

三、实验仪器与材料1、试样: ABS粉料或颗粒, 测试前进行干燥处理仪器:塑料熔体流动速率测试仪, 天平, 秒表, 装料漏斗, 锋利刮刀, 玻璃镜, 液体石蜡, 绸布和棉砂, 镊子, 清洗杆和铜丝。

四、实验步骤1、准备。

熟悉仪器结构和操作规程。

接通电源, 选择测试条件, 安装好口模, 在料筒插入料杆。

调节加热控制系统使温度达到要求温度, 恒温至少15min。

加料。

取出料杆将试料加入料筒, 把料杆再插入料筒并压紧试料, 预热4min使炉温回复至要求温度。

2、注意: 取出料杆后置于耐高温物体上, 避免料杆头部与其它坚硬物体碰撞;3、切勿用料杆去压紧物料, 避免损伤;4、在料杆顶托盘上加上砝码, 随即用手轻轻压下, 促使料杆在1min内降至下环形标记距料筒口5-10mm处。

待料杆(不用手)继续降至下环形标记与料筒口相平行时, 切除已流出的样条, 并按规定的切样时间间隔开始切样, 保留连续切取的无气泡样条三个。

聚合物材料表征测试题库

聚合物材料表征测试题库

高分子研究方法题库1 在对聚合物进行各种光谱分析时,红外光谱主要来源于分子振动-转动能级间的跃迁;紫外-可见光谱主要来源于分子的电子能级间的跃迁;核磁共振谱主要来源于置于磁场中的原子核能级间的跃迁,它们实际上都是吸收光谱。

2、SEM 和TEM的三要素是分辨率、放大倍数、衬度。

2、在有机化合物中,解析谱图的三要素为谱峰的位置、形状和强度。

2 苯、乙烯、乙炔、甲醛,其1H化学位移值最大的是甲醛,最小的是乙炔,13C的化学位移值最大的是甲醛最小的是乙炔。

4、紫外光谱主要决定于分子中发色和助色基团的特性,而不是整个分子的特性。

3 差示扫描量热仪分功率补偿型和热流型两种。

第107页4 产生核磁共振的首要条件是核自旋时要有磁距产生。

5 当原子核处于外磁场中时,核外电子运动要产生感应磁场,核外电子对原子核的这种作用就是屏蔽作用.6 分子振动可分为伸缩振动,弯曲振动7 傅里叶红外光声光谱英文简称为FTIR-PAS.P288 干涉仪由光源,定镜,分束器,检测器等几个主要部分组成。

P199 高聚物的力学性能主要是测定材料的强度和模量以及变形.10 共混物的制样方法有流延薄膜法热压薄膜法溴化钾压片法P1111 光声探测器和红外光谱技术结合即为红外声光谱技术. P2712 核磁共振普与红外、紫外一样,实际上都是吸收光谱。

红外光谱来源于分子振动-转动能级间的跃迁,紫外-可见吸收光谱来源于分子的电子能级间的跃迁。

[P46]13 核磁共振谱图上谱峰发生分裂,分裂峰数是由相邻碳原子上的氢数决定的,若分裂峰数为n,则邻碳原子氢数为n-1。

P5015 红外光谱在聚合物研究中占有十分重要的位置,能对聚合物的化学性质、立体结构、构象、序态、取向等提供定性和定量的信息。

P616 红外光谱中,波动的几个参数为波长、频率、波数和光速。

17 红外光谱中,在1300~1400cm,基团和频率的对应关系比较明确,这对确定化合物中的官能团很有帮助,称为官能团区.18 红外活性振动能引起分子偶极矩变化P819 红外区是电磁总谱中的一部分,波长在0.7~1000之间。

材料方法-第5章-TEM-2(2010)

材料方法-第5章-TEM-2(2010)
• 衍射角θ很小:约为10-2rad。而X射线产生衍射 时,其衍射角最大可接近π/2。 • 尺寸效应:薄样品的倒易阵点并不是一个圆点, 而会沿着样品厚度方向延伸成杆状,因而,增加 了倒易阵点和爱瓦尔德球相交截的机会,结果使 略微偏离布拉格条件的电子束也能发生衍射。
• 分析方便: 电子衍射产生的衍射斑点大致分布在 一个二维倒易截面内。这个结果使晶体产生的衍 射花样能比较直观地反映晶体内各晶面的位向。
• 应用电子衍射和X 射线衍射一样,可以用来作物相鉴定、 测定晶体取向和原子位置。由于电子衍射强度远强于X 射 线,电子又极易为物体所吸收,因而电子衍射适合于研究 薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究 由原子序数相差悬殊的原子构成的晶体时,电子衍射较X 射线衍射更优越些。
电子衍射的优点是可以原位同时得到微观形貌 和结构信息,并能进行对照分析。电子显微镜 物镜背焦面上的衍射像常称为电子衍射花样。 电子衍射作为一种独特的结构分析方法,在材 料科学中得到广泛应用,主要有以下三个方面: (1)物相分析和结构分析; (2)确定晶体位向; (3)确定晶体缺陷的结构及其晶体学特征。
• 曝光时间短:原子对电子的散射能力远高于它对X 射线的散射能力(约高出四个数量级),故电子 衍射束的强度较大,摄取衍射花样时曝光时间仅 需数秒钟。
• 当晶体较厚且甚完整时,可以得到一种由非弹性散射效应 而形成的衍射图。因为在散射过程中部分透过上层晶体的 电子保持其波长不变,但略改变了方向。对于下层晶体而 言,入射电子便分布在以原入射电子束为轴的圆锥内。这 时的电子衍射图由许多对相互平行的黑、白线所组成,这 种衍射图称菊池衍射图,可以用来精确测定晶体的取向。
多晶体结构分析
• 多晶体的hkl倒易点是以倒易原点为中 心,(hkl)晶面间距的倒数为半径的倒 易球面. • 此球面与Ewald反射球面相截于一个圆, 所有能产生衍射的斑点都同理扩展成 圆,所以多晶的衍射花样是一系列同 心的环. • 环半径正比于相应的晶面间距的倒数

高分子物理习题参考答案

高分子物理习题参考答案

《高分子物理》标准化作业本参考答案沈阳化工学院材料科学与工程学院《高分子物理》课程组第一章 高分子链的结构一、 概念1、构型:分子中由化学键所固定的原子在空间的几何排列。

2、由于单键的内旋转而产生的分子中原子在空间位置上的变化叫构象。

3、均方末端距:高分子链的两个末端的直线距离的平方的平均值。

4、链段:链段是由若干个键组成的一段链作为一个独立动动的单元,是高分子链中能够独立运动的最小单位。

5、全同立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。

6、无规立构:当取代基在主链平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接而成。

二、选择答案1、高分子科学诺贝尔奖获得者中,( A )首先把“高分子”这个概念引进科学领域。

A 、H. Staudinger,B 、, ,C 、P. J. Flory,D 、H. Shirakawa2、下列聚合物中,( A )是聚异戊二烯(PI)。

A 、 CCH 2n CH CH 2CH 3B 、O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、OC CH CH O O n O C3、下列聚合物中,不属于碳链高分子的是( D )。

A 、聚甲基丙烯酸甲酯,B 、聚氯乙烯,C 、聚乙烯,D 、聚酰胺4、下列四种聚合物中,不存在旋光异构和几何异构的为( B )。

A 、聚丙烯,B 、聚异丁烯,C 、聚丁二烯,D 、聚苯乙烯5、下列说法,表述正确的是( A )。

A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。

B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。

C 、ABS 树脂中苯乙烯组分呈橡胶弹性,可改善冲击强度。

D 、ABS 树脂中丙烯腈组分利于高温流动性,便于加工。

6、下列四种聚合物中,链柔顺性最好的是( C )。

A 、聚氯乙烯,B 、聚氯丁二烯,C 、顺式聚丁二烯,D 、反式聚丁二烯7、在下列四种聚合物的晶体结构中,其分子链构象为H31螺旋构象为( B )。

电镜的基本原理(1)透射电镜

电镜的基本原理(1)透射电镜


在台湾只要往有山的道路上走一走,就随处都可看到「农 舍」变「精舍」,山坡地变灵塔,无非也是为了等到死后,
a
25
透射电子显微镜的样品处理
样品的一般制备方法 1、粉末样品可将其分散在支持膜上进行观察。
2、直接制成厚度在100-200nn之间的薄膜样品,观 察其形貌及结晶性质。一般有真空蒸发法、溶 液凝固(结晶)法、离子轰击减薄法、超薄切片 法、金届薄片制备法。
3、采用复型技术,即制作表面显微组织浮雕的复形
a
9

光学显微镜的分辨率为光波波长的一半(约为2000Å),
眼睛的分辨率为0.2mm,因此光学显微镜最大放大倍数为
1000倍, 超过这个数值并不能得到更多的信息,而仅仅是
将一个模糊的斑点再放大而已.多余的放大倍数称为空放
大。
• 为了看清楚原子.电镜必须有优于2.5 Å的原子尺寸的 分辨率和50万~100万倍的放大倍数,否则就不能在底片 上记录下原子的存在。目前200kV电镜的技术水平已达到 放大倍数100万倍,点分辨率1.9 Å,晶格分辨率1.4 Å.目 前最高水平仪器的品格分辨率可达0.5 .基本可以在底 片上记录下原于的存在,清晰地反映原子在空间的排列.
个原于的显微镜,并且还能进行纳米尺度的晶
体结构及化学组成分析,成为全面评价固体微 观结构的综合性仪器.
a
8
电子显微镜利用电磁透镜使电子束聚焦成 像,具有极高的放大倍数和分辨率,可以洞察 物质在原子层次的微观结构.但是高聚物和生 物大的结构本身又容易在 电子束的照射下产生损伤,因此像的反差及清 晰度不高。英国医学研究委员会分子生物实验 室的A Klug博士,把衍射原理与电子显微学巧 妙地结合在一起,发展了一整套图像处理方法, 把生物标本的电子显微像的分辨率提高到可以 观察生物分子内部结构的水平.并用它研究了 核酸—蛋白质构成的染色体的结构,对细胞分 化和癌症起因的探讨起到了重要作用,因而获 得了1982年诺贝尔化学奖.这也为从分子水平 上阐明高聚物的结构和弄清高聚物结构与性能 的关系开辟了新的前景。

无机高分子复合絮凝剂的扫描电镜制样新方法

无机高分子复合絮凝剂的扫描电镜制样新方法
t a r p i g t e f c ua t n ac e n sie. n t k n ns p eh l e i cl ,te la g r a n h td o pn o e ln l a l h l o d a d si ig i o a l od r r t c t m d e y h n ac e rf u e w su 。 i d rt e ee t n mir s o e e lcr c o c p . h o Ke r s lcr n mir s o e iu e;i o g n c p lme o c l n y wo d :e e t c o c p ;f r o g n r a i oy rf c u a t l
中 图分 类 号 :Q 5 , T 004 文 献标 识 码 : A
A lw eh d f r s a n n l cr n mir s o e s mp e fi o g n c poy r c m p st o c l n l e m t o o c n i g e e to c o c p a l so r a i l me o o ie f c u a t n l
1 材 料 与 方 法
( ) 1m×1m 的玻 片和表面皿洗净 、 1将 c c 干燥
备用。
对于 絮凝剂 样 品, 传统 的扫 描 电镜 制样 方法 是: 取适量制备好 的絮凝 剂溶液 , 低温 干燥得到粉 末, 再将 其 粘 在样 品 座 上 ( 可在 样 品 座 上 先 涂 一 层
线衍射等现代测试技术相 比, 电镜 观察可获得上述 方法 无法 获得 的 一 些 直 观 信 息 。用 电镜 观 察 絮 凝 剂外 在 的形貌 特征 , 在一 定 程 度 上 揭示 其 高 效 以及

高分子材料微观形态结构的扫描电镜研究

高分子材料微观形态结构的扫描电镜研究

高分子材料微观形态结构的扫描电镜研究李文臣;温冬梅【摘要】利用扫描电镜对聚乙烯(PE)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)等高分子材料填料的分散性及表面与断裂界面进行了研究.结果表明,扫描电镜能够详细观察研究高分子材料的表面结构、微观相分离等,便于表征高分子材料微观结构形态,是分析高分子材料微观结构形态的有效手段.【期刊名称】《弹性体》【年(卷),期】2014(024)006【总页数】3页(P78-80)【关键词】扫描电镜;高分子材料;微观结构【作者】李文臣;温冬梅【作者单位】吉化集团吉林市锦江油化厂,吉林吉林132021;中国石油吉林石化公司研究院,吉林吉林132021【正文语种】中文【中图分类】TQ317.3扫描电镜(SEM)是利用聚焦电子束在样品上扫描时激发的某些物理信号(例如二次电子)而成像,从而观测物质的形貌、组成、晶体结构、电子结构等。

近年来,扫描电镜以其分辨率高、景深大、可连续放大到几万倍等优点,被广泛应用于高分子材料的微观形态结构研究。

用SEM观察高分子材料的表面形态和微观结构,在一定程度上能获得一些更为直观的信息,而且由于扫描电镜景深大,因此所得扫描电子图像非常富有立体感,具有三维形态,所显示的样品形貌从深层次、高景深的角度呈现材料的本质,在研究高分子材料的性能和机理方面有着不可替代的作用,也是各种材料性能分析以及工艺过程合理性判定的一个强有力的手段[1-3]。

1 实验部分1.1 原料聚乙烯(PE)薄膜:中国石油吉林石化公司研究院提供;丙烯腈-丁二烯-苯乙烯共聚物(ABS):中国石油吉林石化公司合成树脂厂提供;液氮:中国石油吉林石化公司研究院提供;丙酮试剂:中国石油吉林石化公司研究院提供。

1.2 主要仪器S-3000N型扫描电子显微镜:日本日立公司;E1010离子溅射仪:日本日立公司。

1.3 试样制备首先,一般情况下,高分子材料的硬度较低,柔韧性好,不容易获得易于观察的断口截面,所以要对样品进行处理,制成易于用电镜测试的样品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环氧树脂包埋切片的局限性:
AAS、AES、ABS、PU、丙烯酸酯类极性较强的聚合物 用环氧树脂包埋容易造成假象。
PU包埋切片RuO4染色
PU冷冻切片RuO4染色
Ⅱ、冷冻切片:
用液氮控制切片刀、样品以及环境温度均在较低 温度,通常比样品基体的玻璃化转变温度(Tg) 低至少20 C。
不能采用水面漂膜的方式转移切下的薄片,操作 上难度会增加很多。
28
ZnO 六棱锥晶体
29
如果晶体点阵完全未知,是新晶体。此时要通过 标定衍射图,来确定该晶体的结构及其参数。所 用方法较复杂,可参阅电子衍射方面的专著。
30
第六节 TEM 样品的制备
镍、金、铝、钼、钛、
载网(“铜网”-Grid)铍、碳、硅、尼龙 ……
Φ 3.05 mm
载网孔的尺寸(“目”--Mesh)
方法:用0.5%RuO4水溶液熏15 ~ 40min。
尼龙和聚丙烯的反应速率比较
a 聚丙烯 b 尼龙
尼龙在聚丙烯中的分散情况
RuO4染色10分钟
RuO4染色20分钟
(3)其它染色剂:
氯磺化后用乙酸双氧 铀或锇酸染色,可染PE和 CPE(氯化聚乙烯)等;
三氟乙酸汞可染PPO 和PC等;
磷钨酸可染PA; H2S-AgNO3可染PAN。
Z (111)
Y
晶面族
晶面族: 晶体中具有相同条件 (原子排列和晶面间 距完全相同),空间 位向不同的各组晶面 。用{hkl}表示。
六方晶系中的晶向、晶面指数
对六方晶系,用三个指数表示晶
面和晶向时,取a,b,c为晶轴 ,而a 轴与b 轴的夹角为120° ,c轴与a,b 轴相垂直,如图
所示。
用三指数表示六方晶系的晶面和晶向最大的缺点是晶 体学上等价的晶面和晶向不具有类似的指数。
[111] Y 轴坐标 — 1
Z 轴坐标 — 1
o
y
[112]
晶 面晶指面数指:数
a 建立坐标系(标定面之外 ):
确定原点、坐标轴和度量单 位。
b 量截距:x,y,z
c 取倒数:h’,k’,l’
X
d 化整数:h,k,l
e 加圆括号:(hkl)
说明:
1)指数意义:代表一组平行的晶面; 2) 0的意义:面与对应的轴平行; 3)指数相同,或数字相同但正负号相反 的晶面平行;
视野(选区)中有多个 晶粒的纳米颗粒或团聚 体,其电子衍射结果与 多晶类似。
典型的多晶衍射点(环)
A- 晶粒尺寸较大(环细而锐),选区中晶粒数量较少(环不连续) B- 晶粒尺寸较小(环粗而晕),选区中晶粒数量较多(环连续)
19
非晶
非晶—弥散环
结晶非晶混合体系
20
2)判定晶体物相(什么物质、什么晶型) 准备工作:
ko
kg
A
BO C
双散射元
原子对电子的散射因数:
fe
me2 2h2
( )2(Z sin
fx)
式中
Z——原子序数;
fx ——原子对X射线的散射因子
经运算,可以得到:
fe
e2 m0c
2
fx
104
因此,
a、fe 和fx 都随散射角增 大而单调减小;
b、电子散射因数比X射线 大得多;
sin nm1
垂直于SBS铸膜面切片
双头螺旋层状结构模型
接枝共聚物:
CE/CPE接枝共聚物
EVA/PVC接枝共聚物
3、其它应用 ①动态观察:研究高聚物的断裂机理。
耐冲击性聚苯乙烯原位拉伸过程中银纹的引发
拉伸中
断裂后
从较浓溶液(0.01 ~ 0.1%)结晶时,可形成树枝 晶等。
PE的树枝状结晶
由甘油—水溶液中得到的 尼龙—4叶脉状结晶
③ 球晶:
从浓溶液或熔融冷却结晶时,可以得到球晶。球晶 的直径取决于结晶条件,可在几十到几百微米范围内。
PP球晶
PE球晶
球晶内片晶间的纤维状连接 复型后的PE球晶表面
2、 串晶 PE串晶
x
3、晶体对电子的散射:
晶体对电子的衍射遵循布拉格定律:
2d(hkl) sinn
n=0,±1,±2……
d(hkl) —晶面间距
4. 借用光学透镜的方法描述电子衍射:
非晶——漫散射环 结晶——锋锐衍射束(斑)
5、选区电子衍射(Selected area electron diffraction,SAED):
要求:硬度与被包埋的材料相近。
a、甲基丙烯酸酯包埋;
包埋树脂混合比
季节 A液 B液
b、环氧树脂包埋:
冬季 3
7
A液:环氧树脂812 62ml
春秋 2
8
十二烷基琥珀酸酐 100ml 夏季 1
9
B液:环氧树脂812
100ml
甲基内次甲基邻苯二酸酐 89ml
包埋块
纤维
样条
将A、B液按比例混合后加入1.5-1.7%的促进 剂DMP-30(N,N-二甲基对苯二胺),包入试 样,固化40小时。
59
第七节 透射电镜在材料研究中的应用
聚合物合金


催化剂
机 材
纳米材料

介孔及层状材料
碳纤维


碳纳米管

其它碳材料
碳材料

聚合物 +

纳米材料 层状材料
材 料
无机材料 + 无机材料
高分子材料
一、结晶性高分子 1、折叠链晶片: ① 单晶:
PE单晶及其电子衍射谱
② 树枝晶:
对于磁性粉末,需要在分散后在支持膜表面滴加聚乙烯 醇缩甲醛溶液,以加强固定;
或者将粉末混于火棉胶或聚乙烯醇缩甲醛溶液制膜。
2、溶剂液面铸膜:
(1)将聚合物配成0.5%~1%的溶液,滴在水面或与溶
液互不浸润的溶剂液面上。 (2)待溶液中的溶剂挥发干后,在水面上成膜。 (3)用网将聚合物膜捞起,晾干,必要时经染色即可
PA/SEBS/AAS
PP/PA/SEBS
PP/SBS(OsO4染)
以上左图和中图为用RuO4染色的聚合物合金,左 图白色为PA,中图白色为PP,灰色为PA。
3、嵌段共聚物和接枝共聚物的结构形态
SBS球状相(30%S) PS/PNIPAM嵌段共聚物层状相
SBS用甲苯作溶剂铸膜缓慢挥发后得到的各种结构
氯乙烯接枝CPE氯磺化后用OsO4染色
(4)负染(Negative Staining):
常用磷钨酸的缓冲溶液,利用离子吸附,染色聚合物 胶束、纳米颗粒、乳液(干)、蛋白质、病毒体等等
PS/PNIPAM核壳颗粒(1:1 ?)
58
乙酸铀酰(“醋酸铀”)溶液负染
PEO45-b-PCL26棒状胶束的形成
样品
AB
选区电子衍射原理图
物镜 物镜背焦面
物镜像平面 中间镜
B’
A’
选区 光阑
中间镜像平面
三、电子衍射的使用:
判定单晶、多晶、非晶 判定晶体物相(什么物质、什么晶型) 判定晶面和晶轴取向 未知晶体结构定量
1)区分单晶、多晶、非晶:
单晶
特点:大量规则排列的衍射斑点
多晶
Au 蒸发膜的多晶花样
第五节 电子衍射简介
电子衍射与X射线衍射的比较:
电子衍射 X射线衍射 衍射条件和几何关系 遵循布拉格方程和劳埃方程
与物质的 相互作用 衍射强度
物质的散射 强度 结构分析精度
原子对电子 的散射
Z4/3
10000
原子对X
Z2 1


1
一、晶体学基本概念
固态物质
晶 体 —— 规则排列,长程有序 非晶体 —— 无规排列,长程无序
样品至少在一个维度上可被电子束穿透 (对于高分子材料,通常<200nm)
样品在任何一个维度都不超过铜网有效面 积(< 3mm)
37
1、直接分散制备:
在观察维度上的厚度小于电子可穿透厚度的样品,包括纳 米颗粒、纳米纤维、纳米超薄膜(片),以及胶束溶液、 乳液:
可将粉末分散撒在支持膜上。
可将固体粉末混于分散液(非溶剂)中,超声分散后, 直接滴加在支持膜上;胶束溶液、乳液等本身就是液体 的样品可以直接滴加在支持膜上。自然干燥后,即可电 镜观察。
对所研究材料的成分、组织以及相组成等充分调研; 使用ASTM卡片等工具查清楚可能出现的相的晶体结构; 计算所有查到的结构的晶面间距值。
21
根据衍射点阵选择可能晶型,缩小范围
1.平行四边形---七大晶系都有可能 2.矩形---不可能是三斜晶系 3.有心矩形---不可能是三斜晶系 4.正方形---只可能是四方或立方晶系 5.正六角---只可能是六角、三角
观察。
液滴 膜

滤纸或塑料薄膜
4、超薄切片:
(1)对超薄切片的要求: ①要使电子束能穿透,如:200KV加速电压下观察
的切片厚度应在100nm以下。 ②切片应平整,无拉伸变形,无折皱,无刀痕和颤
痕。
(2)超薄切片的一般步骤:
常温切片 冷冻切片
包埋 修块
修块
切片
染色
切片
染色
TEM观察
无机晶体高分辨样品的制备:
或立方晶系
22
测量各主要衍射斑点(或衍射环)对应的晶面间距,与 XRD数据库(PDF卡片)中的可能物质做比较,找到匹配 的晶体物相。
23
2)判定晶面和晶轴取向 根据PDF卡片数据确定主要的电子衍射斑点或环 对应的晶面(或晶面族)指数。
24
体心立方 bcc
面心立方 fcc
六方最密堆积
hcp
六方晶系中的晶向、晶面指数 a 指数标定的特殊性:四轴坐标系 b 晶面指数的标定
相关文档
最新文档