巧求面积之割补法共49页

合集下载

【例题讲解】“割补法”求面积例完整版课件

【例题讲解】“割补法”求面积例完整版课件

所以CD=AD=DB, CD BD 可得:S弓形CD=S弓形BD,
所以S阴影=S扇形CAB-SRt△ADC
1 4
π
22
1 2
1 2
2
2
π
1.故选A.
在同圆或等圆中,等弧所对的弓形面积相等,可以依据这个性质,运用割补法对弓形面积进行
分割转化求解.
再见
A
A.π-1
B.π-2
C.1 π-1
D.1 π-2
D
2腰Rt△BCD
S弓形CD=S弓形BD
S阴影= S扇形CAB- SRt△ADC
C
B
解答 由已知可得,AC=BC=2, △ACB为等腰直角三角形, ∠CDB=90°(直径所对圆周角为90°),所以CD⊥AB,
又因为∠ABC=45°,所以△CDB为等腰直角三角形,且D为AB的中点,
“割补法”求面积
割补法求面积
D
a
C
a
O
A
B
连接AC、OB S阴影=SRt△ABC
S阴影=
1 2
a
2
割补法求面积的核心思想就是将不规则的图形通过分割,补形,拼凑成一个或几个规则的 图形进行求面积.
例 如图,以BC为直径,在半径为2,圆心角为90°的扇形内作半圆,交AB于点D,连结CD,图
中阴影部分的面积是( A )

割补法求面积

割补法求面积

3
10 4
12
方法总结
切割法:
把不规则的图形切割成已学图形,再把各部分面积加起来
拼补法:
把不规则的图形拼补成已学图形,再用总面积减去补上的图形面积
谢谢观看
练习
图形大世界
——割补法
REPORT
面积公式回顾
面积=边长×边长
面积=长×宽
面积=底×高
面积=底×高÷2
面积=(上底+下底)×高÷2
3cm 3cm
3cm 3cm
左侧图形的面积 该怎么求呢
3cm 3cm
3cm 3cm
我们学过哪些图形的面积公式呢?
可以将不规则的图形切割成两 个或多个已学图形,进行计算:
3×3+3×(3+3)=27(平方厘米)
3cm 3cm
3cm 3cm
我们学过哪些图形的面积公式呢?
可以将不规则的图形拼补成一 个或多个已学图形,进行计算:
(3+3)×(3+3)- 3×3=27(平方厘米)
10 3
3
这个图该
6 怎么求呢
单位:厘米
10 3
3
这个图该
6 怎么求呢
单位:厘米
切割法: 3×6×2+10×(3+6+3)=156(平方厘米)
10 3
3
这个图该
6 怎么求呢
单位:厘米
切割法: 3×10×2+(3+10+3)×6=156(平方厘米)
10 3
3
这个图该
6 怎么求呢
单位:厘米
拼补法: (10+3+3)×(3+6+3)- 3×3×4=156(平方厘米)

【讲义】四年级下第05讲_割补法巧算面积

【讲义】四年级下第05讲_割补法巧算面积

第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢?练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 2234 5 3 2 4 3412 4 9 DG如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯?练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割.例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢?例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?3. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?4. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?5. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少? D G 32 434 12 423 3 3 3。

巧用割补法求解二次函数中的面积问题(含答案)

巧用割补法求解二次函数中的面积问题(含答案)

巧用割补法求解二次函数中的面积问题二次函数中的面积问题是初中数学中的热点.本文以二次函数223y x x =--+为背景,以四边形、斜三角形为载体,介绍如何引导学生用割补法求解二次函数中的面积问题.【例题】 如图1,已知二次函数223y x x =--+,其图象与x 轴交于,A B 两点,与y 轴交于点C ,二次函数的顶点为D ,连结,AD CD ,求四边形AOCD 的面积.引导 问题在平面直角坐标系中求四边形AOCD 的面积,四边形的这四个顶点是二次函数中最重要的四个点,如何求出坐标轴上的点,以及二次函数的顶点D ?有了点的坐标以后,如何利用这些坐标求四边形面积?在求一般四边形AOCD 的面积遇到困难时,运用什么方法去解决?请学生提出自己的观点并尝试解决,然后分享学生的解题思路.评析 本次建模从二次函数中四个重要点构成的四边形面积如手.四边形两边在坐标轴上,学生容易想到割补思想.给学生充足的时间,分享交流如图2、3、4三种不同的割补方法,明确两种基本方法:割——用与原点的连线或与坐标轴平行的线段;补——用与坐标轴平行的线段.指出割补的目标是求图形面积的和或差,并为引出三角形的割补方法做好铺垫.变式1如图5,点P 是位于抛物线223y x x =--+上的一个动点,当点P 的横坐标为2时,则ACP ∆的面积为 .引导 问题求ACP ∆的面积,在例题中已求解,A C 两点,关键求出什么?三角形的三个顶点都求出后,三角形面积能直接求出吗?若不能,能否运用例题中的割补方法求面积?哪些方法适合本题,尝试探究解决.设计意图 学生通过四边形的割补,在三角形无法直接求解面积时会考虑割补法,三角形没有边是在坐标轴上,学生会发现与原点的连线无法解决,思考用平行于坐标轴的线段割补三角形,如图6,7,8,从而利用坐标求出线段长度,达到求解面积的目的.变式2 如图9,点P 是位于抛物线第二象限图象上的一个动点,连结,,PA PC AC .设ACP ∆的面积为S ,求S 的取值范围,并求S 的最大值.引导 问题从变式1到变式2,都是求面积问题,有何不同?为何会有不同?二次函数最值问题如何求解?如何建立ACP ∆面积关于点P 坐标的函数关系式?建模中的割补思想对解题有何帮助?解题思路 过点P 作//PQ y 轴,交AC 于点口.设Q 为2(,23)a a a --+,求出直线AC 解析式,求出Q 为(,3)a a +,32ACP APQ CPQ S S S ∆∆∆=+=,化归为PQ 的最值问题.变式3 如图10,若点P 为抛物线上位于第一象限上的一动点,连结,PA PC .设ACP ∆的面积为S ,求S 的取值范围.引导 问题变式3与变式2有区别与联系吗?这两题的主要不同点在哪里?能不能用相同的办法求解?请你尝试探究解决.评析 变式3中的点P 变化到第一象限,学生在解决问题时想到的基本都是作与x 轴平行的线段对三角形进行分割.考虑到学生很难作出同变式2中平行于y 轴的辅助线,这条辅助线添加到图形外面,虽然与变式2的思路是一致的,但添加图形外的辅助线对学生来说是个难点,两三角形的面积和变为面积差,难度增大,拓展了思维.解法1 如图11,过点P 作//PQ x 轴,交AC 于点口,设Q 为2(,23)a a a --+.∵直线AC :4y x =+,故设Q 为22(2,23)a a a a ----+,∵22(2)3PQ a a a a a =---=+,∵ACP APQ CPQ S S S ∆∆∆=+ 2133(3)22PQ a a =⨯⨯=+ 23327()228a =+-. ∵01a <<,∵S 随a 的增大而增大,∵06S <<.解法2 如图12,过点P 作//PQ y 轴,交AC 延长线于点Q ,设P 为2(,23)a a a --+.∵直线AC :4y x =+,∵(,3)Q a a +,∵2(3)(23)PQ a a a =+---+23a a =+, ∵PAC APQ CPQ S S S ∆∆∆=-2133(3)22PQ a a =⨯⨯=+23327()228a =+-. ∵01a <<,∵S 随a 的增大而增大,∵06S <<.。

(完整版)用割补法求面积

(完整版)用割补法求面积

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。

例1求下列各图中阴影部分的面积:分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。

π×4×4÷4-4×4÷2=4.56。

(2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。

如下图所示,将右边的阴影部分平移到左边正方形中。

可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。

分析与解:阴影部分是一个梯形。

我们用三种方法解答。

(1)割补法从顶点作底边上的高,得到两个相同的直角三角形。

将这两个直角三角(2)拼补法将两个这样的三角形拼成一个平行四边形(下页左上图)。

积和平行四边行面积同时除以2,商不变。

所以原题阴影部分占整个图形面(3)等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,注意,后两种方法对任意三角形都适用。

也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。

例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。

求这个梯形的面积。

分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。

割补法巧算面积

割补法巧算面积

割补法巧算面积割补法巧算面积知识精讲:分割法:把不规则的的大图形化为规则的小图形添补法:把不规则图形周围添上规则的小图形,使总面积便于计算例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)练习1如图中的每个数字分别表示所对应的线段的长度(单位:米).这个图形的面积等于多少平方米?例题2如图,在正方形ABCD内部有一个长方形.EFGH.已知正方形ABCD的边长是6厘米,图中线段AE、AH都等于2厘米.求长方形EFGH 的面积.例题4. 如图1和图2,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点.已知图1中阴影部分的面积是294平方分米.请问:图2中的阴影部分的面积是多少平方分米?练习47.如图所示,将三个相同的长方形从上到下排列,依次进行两等分、三等分、四等分,各取出其中的一份画上阴影,则阴影部分的面积占全部面积的几分之几?选做题例5 如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A的面积是36平方厘米,那么正方形B的面积是多少平方厘米?例6.已知一个四边形ABCD的两条边的长度和三个角(如下图所示),求四边形ABCD的面积是多少?作业:1.如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连. 图中阴影部分的面积总和是多少?2. .(2013秋•诸暨市校级期中)如图,已知一个四边形的四条边AB,BC,CD和DA的长分别是3,4,13和12,其中∠B=90°,求这个四边形的面积3. 求阴影部分面积.4.求阴影部分面积.5. 求阴影部分面积:6.求阴影部分面积.7. 求阴影部分面积.8.(2011秋•宁波期中)求阴影部分的面积.9. 求阴影部分的面积.10. 求阴影部分的面积.11.求阴影部分的面积.12.求阴影部分的面积.。

第五讲割补法巧算面积ppt课件

第五讲割补法巧算面积ppt课件
练习4:如图,把两个同样大小的正方形分别分成5×5和3×3的方格表。 图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?
例题5:如图,在两个相同的等腰直角三角形中各画一个正方形, 如果正 方形A的面积是36平方厘米,那么正方形B的面积是多少平方厘米?
例题6:如图所示, 已知一个四边形的两条边的长度和三个角的度数,这 个四边形的面积是多少平方厘米?(单位:厘米)
练习3:如图所示,大正三角形的面积为10平方厘米.连接大正三角形的 各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正 三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分 的面积总和等于多少平方厘米?
例题4:如图,把两个相同的正三角形的各边分别三等分和四等分,并连 接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中 阴影部分的面积是多少平方分米?
例题1:图中的数字分别表示对应线段的长度,试求下面多边形的面积。 (单位:厘米)
练习1:图中的数字分别表示对应线段的长度,试求下面多边形的面积。 (单位:厘米)
例题2:如图所示, 在正方形ABCD 内部有一个长方形 EFGH. 已知正方 形ABCD 的边长是6厘米 , 图中线段 AE、 AH都等于2厘米. 求长方形 EFGH 的面积.
巩固练习 1、右图中的数字分别ቤተ መጻሕፍቲ ባይዱ示对应线段的长度,图中多边形的面积是多少?
2、如右图所示,在正方形ABCD内部有梯形EHGF.已知正方形ABCD的 边长是6厘米,图中线段AE、AH、BF、DG都等于2厘米.则梯形EHGF 的面积是多少平方厘米?
3、如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点 与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?

第10讲 割补法巧求面积一

第10讲  割补法巧求面积一

42
B
10
两个一样的梯形,重叠一部分拼出下图,求 阴影部分A的面积是多少?
A
2B
2
8
利用差不变原理求面积
利用差不变原理,把求不规则图形的 面积转化成求规则图形面积。
例题3
下图是两个相同的直角梯形重叠在一起形成的组合 图形,其中AB=8cm,CD=10cm,ED=20cm,求阴影 部分的面积。
答案 160
割补法巧算面积
利用割补法求不规则 图形的面积
2
每块图形的面积
均可求
10
2
切割成若干块规 则图形
2 10
切法1
3
切法2
切法3
2
10 2
10
2
10 2
10
2
10 2
10
孟子的母亲,世人称她孟母。孟子小时候,居住的地方离墓地很近, 孟子学了些祭拜之类的事,玩起办理丧事的游戏。他的母亲 说:“这个地方不适合孩子居住。”于是将家搬到集市旁 ,孟子学 了些做买卖和屠杀的东西。母亲又想: "这个地方还是不适合孩子 居住。”又将家搬到学官旁边。孟子学习会了在朝廷上鞠躬行礼 及进退的礼节。孟母说: "这才 是孩子居住的地方。”就在这里 定居下来了。
练习3
下图是两个相同的直角三角形组合而成,其中BC=8cm, ED=15cm,AE=6cm,求阴影部分的面积。
答案
66
把下面两个长方形拼成一个大长方形 3 4
3 5
一块正方形的钢板,先截去个宽3厘米的 长方形 ,又截去-个宽4厘米的长方形(如 图) ,面积比原来正方形减少51平方厘米. 原正方形的面积是多少平方分米?
3
4
利用转化的思想求面积 利用转化的思想通过添补把不规则图 形转化成规则图形

割补法求面积ppt课件

割补法求面积ppt课件
❖ 方法二:也可以把右上角的长方形补完整,用大长方形的面 积减去阴影部分周围的三个三角形的面积和。
❖ (7+4)×7-[(7+4)×(7-4)÷2+4×4÷2+7×7÷2]=28 (平方厘米)
❖ 答:阴影部分面积是28平方厘米。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
经典例题
下图中ABCD和DEFG都是正方形,求阴影部分的 面积。(单位:厘米)
B
7
A
F
4
C
D
E
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
画龙点睛
❖ “割”是一种最常见的求面积的辅助方法,即把要 求面积的图形分割成若干小块,并且每一小块的面 积都可以直接用公式算出,最后求和;“补”也是 一种辅助解决问题的好办法,它能得到的一个更加 完整的图形,使要求面积的图形包含在整个图形之 中,解法二就是利用的此思路。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
B
E
A
F
D
C
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人

小升初奥数巧求面积割补法ppt课件

小升初奥数巧求面积割补法ppt课件
例5. 如下图所示,在一个等腰直角三角形中,削去一个三角形后, 剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。 求这个梯形的面积。
9厘米 5厘米
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
例3.求图中阴影部分的面积
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
解析
如图所示,将左下角的阴影部分分为两部分,然后按照右下图所示, 将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等 于右下图中AB弧所形成的弓形,其面积等于扇形OAB与三角形 OAB的面积之差。 解: π× 4× 4÷ 4-4× 4÷ 2=4.56。
S正=(5× 2)×(5× 2)=100(平方厘米) S阴=157+100=257(平方厘米)
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
例2.求图中阴影部分的面积
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
课后作业
以等腰直角三角形的两条直角边为直径画两个半圆弧(见下图), 直角边长4厘米,求图中阴影部分的面积。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益

几何第30讲割补法的面积

几何第30讲割补法的面积

几何第30讲_割补法的面积一个不规则的圆与扇形,在求解之前,我们要先当一次“裁缝”,将图形拆分、重组,然后再利用规则图形的相加相减以及圆与扇形的面积公式来进行求解.重难点:寻找图形中每一个扇形的圆心.题模一:割补为规则图形例1.1.1如图,3个半径为1的圆弧围出了一个区域ABCD .其中,弧AB 、AD 都是四分之一圆,弧BCD是半个圆.那么,这个区域的面积为__________.例1.1.2此图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于________.(圆周率 取3)例1.1.3如图,正方形ABCD的边长是20厘米.其中AO、BO、CO、DO四段圆弧完全相同,都是是以正方形各边中点为圆心,10厘米为半径的90°圆弧.那阴影部分的面积是________平方厘米.(π取近似值3.14)例1.1.4图为某商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40mm、20mm,则阴影图形的面积是多少mm2?4020题模二:割补成扇形例1.2.1如图圆的半径为r,圆周上六个点将圆六等分点将圆周六等分,则阴影部分面积为________(结果保留π).例1.2.2如图3所示,4BC 厘米,是等腰直角三角形ABC的腰,是半圆的直径,D是半圆周长上的中点.那么阴影部分的面积是__________平方厘米.(π取3.14)图3例1.2.3如图所示,四个半径是1厘米的圆放在一起,四个圆的圆心刚好在一个边长是2厘米的正方形的四个顶点上,图中阴影部分的面积是__________平方厘米.(π取3.14)例1.2.4如图,圆O的直径12BC 厘米,则阴影部分的面积是_________平方厘米.(π取3.14)例1.2.5已知图中的小圆直径为1,图中阴影部分的面积为_________.(π取3.14)例1.2.6如图所示,每个圆都过另两个圆的圆心,并且半径都是2,那么阴影部分的面积是多少平方厘米?(π取3.14)例1.2.7如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积(π取3)随练1.1如图,则各图形中阴影部分的面积分别为:(1)________,(2)________,(3)________.(图中长度单位为厘米,π取3.14).311122随练1.2图中的4个圆的圆心恰好是正方形的4个顶点,如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?( 取3.14)随练1.3如图,求图中阴影部分的面积.(图中长度单位为厘米,π取3.14.)10随练1.4如下图所示,正方形的边长为4厘米,那么阴影部分的面积为__________平方厘米.(π取3.14)随练1.5已知虚线正方形的面积为100,则阴影的面积是_________.(π取3.14)随练1.6如右图,在正方形中画一个最大的圆.已知正方形的边长是4,那么阴影部分的面积是_______.(π取3.14)作业1如下图,图形中阴影部分的面积是__________.(π取3.14)111作业2如图,阴影部分面积为__________.4222作业3求阴影部分的面积是__________.(单位:厘米)作业4右图中阴影部分的面积是_________平方厘米.(图中长度单位为厘米, 取3.14)4作业5如图所示,已知大圆的半径为2,则阴影部分的面积为__________(圆周率用π表示).作业6求如图所示的图形中的阴影部分的面积等于_________.(π取3.14)作业7图中三个圆的半径都是1,求阴影部分面积.(π近似取3)作业8右图是在完全相同的4个等边三角形,水平的底边长度为2,按图示方法画圆弧(圆心是小三角形某顶点),图中则整个图形的面积为__________(取3.14为π的近似值,结果保留到十分位).作业9如图,圆内接一个边长为a的正方形ABCD,分别以正方形各边为直径向正方形外作半圆,则四个半圆与正方形外接圆的四条弧围成的四个新月形的面积为__________.。

割补法求面积之欧阳音创编

割补法求面积之欧阳音创编

割补法求面积阴影面积的计算是本章的一个中考热点,计算不规则图形的面积,首先应观察图形的特点,通过分割、接补将其化为可计算的规则图形进行计算.一、补:把所求不规则图形,通过已知的分割线把原图形分割成的图形进行适当的组合,转化为可求面积的图形.例题1 如图1,将半径为2cm 的⊙O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连接PM ,则图中阴影部分的面积是_____cm 2(结果用π表示).解析:如图1,根据对称性可知:S 1=S 2,S 3=S 4,S 5=S 6,S 7=S 8,因此阴影部分的面积占整个圆面积的21,应为:ππ22212=⨯(cm 2).练习:如图2,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为_______.答案:2π.二、割:把不规则的图形的面积分割成几块可求的图形的面积和或差.例题2 如图3,在Rt△ABC 中,已知∠BCA=90°,∠BAC=30°,AB=6cm ,把△ABC 以点B 为中心旋转,使点C 旋转到AB 边的延长线上的点C′处,那么AC 边扫过的图形(图中阴影部分)的面积是_______cm 2(不取近似值).解析:把所求阴影部分的面积分割转化,则 S 阴影=(S 扇形BAA′+S △A′C′B )-(S △ACB +S 扇形BCC′)=S 扇形BAA′-S 扇形BCC′ 3603120360612022⨯-⨯=ππ=π9.练习:如图4,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点,∠MEN=60°.则图中阴影部分的面积是_________. 答案:4361--π.三、先割后补:先把所求图形分割,然后重新组合成一个规则图形.例题3 如图5,ABCD 是边长为8的一个正方形,EF 、HG 、EH 、FG 分别与AB 、AD 、BC 、DC 相切,则阴影部分的面积=______.解析:连接EG 、FH ,由已知可得S 1=S 2,S 3=S 4,所以可把S 1补至S 2,S 3补至S 4.这样阴影部分的面积就转化为正方形面积的21,因此阴影部分的面积为328212=⨯.练习:如图6,AB 是⊙O 的直径,C 、D 是AB 上的三等分点,如果⊙O 的半径为1,P 是线段AB 上的任意一点,则图中阴影部分的面积为( )A .3πB .6πC .2πD .32π时间:2021.03.11创作:欧阳音。

第11讲 割补法巧求面积二

第11讲  割补法巧求面积二
A
B
D
C
P
利用旋转求面积 通过旋转,得到规则图形
利用网格求面积
1、每小格面积均相等 2、已知部分求整体或已知整体求部分
以O点为中心, 顺针旋转 90°
O
5 3
以O点为中心, 逆时针旋转 180°
O
以O点为中心,顺时针旋90°,180°,270°
以O点为中心,逆时针旋90°,180°,270°
如图,三角形ABC是等腰三角形,P是三角形 外的一点,其中∠BPC=90°,AP=8厘米,求 四边形ABPC的面积。
求大正方形的边长为 10厘米,求阴影部分 面积。
大正方形的边长为10 厘米,求阴影部分面 积。
大正方形的边长为10 厘米,求阴影部分面 积。
平行四边形的面积是 90平方厘米,求阴影 部分面积。
大三角形的面积是90 平方厘米,求阴影部 分面积。
求阴影部分的面积为 12,求大三角形的面 积。
割补法巧算面积
利用割补法求不规则 图形的面积
2
添补成一个柜子
图形
10
2
总的面积减去空 白部分面积
2
10
3 添补
2
总面积:10×10=100
10
空白面积:8×8=64
总面积-空白面积
2
=100-64=36
10
利用分割法求不规则图形的面积
通过割补,把不规则图形转化成规则的图形
利用网格求面积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧求面积之割补法
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
谢谢!
ቤተ መጻሕፍቲ ባይዱ
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
相关文档
最新文档