浅谈电力电子技术在电力系统中的应用与发展趋势

合集下载

电力电子技术的应用研究及发展趋势

电力电子技术的应用研究及发展趋势

电力电子技术的应用研究及发展趋势电力电子技术是一种应用极广的技术,它涉及到包括电力系统、工业、交通、家电等领域的许多方面。

随着社会经济的发展和科技不断进步,电力电子技术的应用越发普遍,其应用领域也在不断扩大。

在这篇文章中,我将从电力电子技术的分类、应用研究和未来发展三个方面来谈谈电力电子技术的应用研究及发展趋势。

一、电力电子技术的分类电力电子技术根据其不同的功率等级、用途和原理等因素,可以分为多种不同的类别。

其中比较常见的主要有以下几种:1、直流-直流变换器直流-直流变换器可以将直流电压转换、升压或降压,常见的应用有开关电源、电动机驱动系统等。

直流-直流变换器具有简单的控制、高效率和稳定性,目前在交通、能源、石化、冶金等领域中得到了广泛的应用。

2、交流-直流变流器交流-直流变流器可以将交流电转换为直流电供电使用,常见的应用有风力发电、光伏发电等。

这种变换器具有高效、可靠和可控的特点,是现代电力系统中最重要的组成部分之一。

3、交流-交流变换器交流-交流变换器可以改变交流电的频率和电压等参数,常见的应用有电动机驱动系统、变频空调、UPS等。

交流-交流变换器在工业、家电等领域中应用广泛,目前已经成为了工业发展的关键技术之一。

二、电力电子技术的应用研究随着电力电子技术的不断发展和进步,其应用领域也在不断拓展。

在应用研究方面,电力电子技术主要有以下几个方向:1、高电压高功率应用随着电力系统的发展和能源消费增长,电力电子技术在高电压高功率领域的应用范围也在不断扩大。

高电压高功率应用主要包括超高压输电、逆变器、脉冲电源、高压直流输电等。

电力电子技术在这些领域中的应用,可以提高电力系统的可靠性、效率和稳定性,同时也可以改善电力系统的质量和环境问题。

2、新能源发电系统新能源发电系统是近年来最热门的电力电子技术应用之一。

新能源发电系统包括太阳能发电、风力发电、潮汐能发电等。

电力电子技术在新能源发电系统中的应用,可以将风、光等无法控制的能源转化为易于控制的电能,提高了整个发电系统的效率。

电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展首先,电力电子技术在电力系统中的应用非常广泛。

电力电子技术包含了各种电力电子器件和电路,如开关电源、逆变器、整流器、变频器等。

这些技术可以用于各种不同的应用,包括电力调节、变频调速、无停电切换、能量回馈等。

电力电子技术在电力系统中的应用主要有以下几个方面:1.电力调节:电力电子技术可以用来调节电力系统的电压和频率。

例如,电力电子技术可以用于调节输电线路的电压,以保证电力系统的稳定性和可靠性。

同时,它也可以用来调节电力系统的频率,以适应不同的负载条件。

2.变频调速:电力电子技术可以用于变频调速系统中,通过改变电机的供电频率来改变电机的转速。

这可以使电机在不同负载要求下,具备良好的性能特性。

变频调速系统广泛应用于工业、交通等领域。

3.无停电切换:电力电子技术可以实现无停电切换。

例如,在配电系统中,当发生故障时,电力电子技术可以实现对备用电源的无停电切换,以保证供电的连续性和可靠性。

4.能量回馈:电力电子技术可以实现能量的回馈。

例如,通过逆变器将太阳能等可再生能源转换为电能,然后回馈到电力系统中,减少对传统能源的依赖,提高能源利用效率。

除了以上应用,电力电子技术还可以用于电力系统的电力质量改善、电力系统的故障检测和故障定位等方面,为电力系统的稳定运行和安全性提供支持。

其次,电力电子技术在电力系统中的发展也非常迅速。

随着科技的不断进步和应用需求的不断增加,电力电子技术得到了广泛的研究和应用。

目前,电力电子技术正在向下列几个方向发展:1.高效率:提高电力电子设备的工作效率是当前的重要发展方向。

高效率的电力电子设备可以减少能量损失,提高能源利用效率。

2.高功率密度:提高电力电子设备的功率密度,使其在体积相同的情况下可以提供更大的功率输出。

这对于应用于空间有限的场合非常有用。

3.高可靠性:提高电力电子设备的可靠性,使其能够在恶劣的工作环境下稳定运行。

这对于电力系统的稳定性和可靠性非常重要。

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状1. 引言1.1 电力电子技术在电力系统中的重要性电力电子技术在电力系统中的重要性体现在多个方面。

电力电子技术可以实现电力系统的高效能转换。

传统的电力系统中,能源的传输和转换过程存在能量损耗和效率低下的问题。

而通过应用先进的电力电子技术,可以实现电能的高效转换,提高系统的能源利用率。

电力电子技术还可以提高电力系统的稳定性和可靠性。

在传统电力系统中,电网的运行容易受到外部因素的影响,导致电能供给不稳定,造成供电问题。

通过引入电力电子技术,可以实现电力系统的智能化控制和优化管理,提高系统的稳定性和可靠性。

电力电子技术在电力系统中的应用具有重要意义,不仅可以提高系统的效率和稳定性,还可以推动电力系统向智能化、可持续发展的方向迈进。

1.2 电力电子技术发展的背景电力电子技术是指利用电子器件和电子电路来控制和转换电力的技术。

在电力系统中,电力电子技术的应用越来越广泛,其发展已经成为电力系统发展的重要驱动力。

电力电子技术的背景可以追溯到20世纪60年代,当时电力系统开始面临一系列新的挑战,如电力负载的快速增长、电力系统的不稳定性、传统直流和交流系统的柔性度不足等问题。

为了应对这些挑战,研究者们开始积极探索新的电力转换技术,逐渐形成了现代电力电子技术。

现代电力电子技术主要包括功率半导体器件、PWM调制技术、微电网技术、智能电网技术等。

这些技术的发展为电力系统的稳定运行、高效能利用、智能化管理提供了重要支持。

随着可再生能源的快速发展和成熟,电力电子技术在可再生能源集成和智能电网建设中也扮演着至关重要的角色。

电力电子技术的背景是电力系统发展的需要,是科技进步和市场需求的结果,是实现清洁、可靠、高效能源供应的必然选择。

【字数:234】2. 正文2.1 传统电力系统存在的问题1. 能效低下:传统电力系统在能源传输和转换过程中存在能量损耗严重的问题,导致能效较低。

在电力系统中,直流到交流的转换、电压调节和功率转换都需要耗费大量能量。

浅谈电力电子技术在电力系统中的应用与发展趋势

浅谈电力电子技术在电力系统中的应用与发展趋势

浅谈电力电子技术在电力系统中的应用与发展趋势【摘要】概述性地介绍电力电子技术在电力系统中的各类应用,重点在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用,以及电力电子技术的发展趋势。

【关键词】直流输电,电力电子,微电子,发电机,换流技术电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。

电力电子技术广泛应用于国民经济、人民生活和现代化军事装备等众多领域,是传统产业改造,高新技术发展和国防工业进步的重要支柱。

本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用,以及电力电子技术的发展趋势。

1电力电子技术的应用1.1在发电环节中的应用。

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

1.1.1大型发电机的静止励磁控制。

静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。

由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

1.1.2水力、风力发电机的变速恒频励磁。

水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速变随之发生变化。

风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。

为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。

此项应用的技术核心是变频电源。

1.1.3发电厂风机水泵的变频调速。

发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,且运行效率低。

使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。

低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状现代电力电子技术是当今电力系统领域中的重要组成部分,它在电力系统中起着至关重要的作用。

随着科技的不断进步和电力需求的不断增长,电力电子技术在电力系统中的应用也得到了日益广泛的推广。

本文将综述现代电力电子技术在电力系统中的发展现状,旨在全面了解电力电子技术的应用和发展趋势。

一、电力电子技术在电力系统中的应用概况随着电网建设的不断完善和电力需求的不断增长,电力系统对电力电子技术的需求也越来越大。

电力电子技术在电力系统中主要应用于功率变换、电能质量控制和电力传输等方面。

在功率变换领域,电力电子技术主要用于实现交、直流电能之间的相互转换,适应不同负载的功率要求。

在电能质量控制方面,电力电子技术可实现电能的稳定输出,提高电网的稳定性和可靠性。

在电力传输方面,电力电子技术可实现高效电能传输,减少能量损耗,提高电网的传输效率。

电力电子技术在电力系统中的应用范围非常广泛,对电力系统的运行和发展具有重要意义。

1. 变流器技术的发展变流器是电力电子技术的核心设备之一,其性能和效率直接影响到电力系统的运行质量。

近年来,随着功率半导体器件的不断进步和新型拓扑结构的不断涌现,变流器技术取得了显著的发展。

高压、高频、高效的变流器设备逐渐成为电力系统的主流,大大提高了电能转换的效率和质量。

2. 控制技术的创新随着数字电子技术的发展,控制技术在电力系统中的应用也得到了快速发展。

智能化控制系统、数字信号处理技术等先进控制技术的应用,使得电力电子设备的控制性能得到了显著提升,提高了电力系统的运行稳定性和可靠性。

3. 新能源技术的融合随着新能源技术的快速发展,新能源与电力电子技术的融合应用成为电力系统发展的重要趋势。

风能、光能等新能源技术的应用使得电力系统的结构发生了变革,电力电子技术成为了实现新能源并网的重要手段,为电力系统的清洁化和可持续发展提供了有力支持。

4. 智能电网技术的兴起智能电网技术是当今电力系统领域的热点之一,它以电力电子技术为核心,通过信息技术实现了电力系统的智能化管理和控制。

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状

综述现代电力电子技术在电力系统中的发展现状现代电力电子技术是电力系统领域的重要组成部分,它的发展与应用对电力系统的稳定运行、高效输送和新能源的接入具有重要意义。

本文将综述现代电力电子技术在电力系统中的发展现状,包括其在输电、配电、电力质量改善、新能源接入等方面的应用与发展情况,并对其未来发展趋势进行展望。

一、现代电力电子技术在输电系统中的应用在输电系统中,电力电子技术主要应用于柔性交流输电(FACTS)和高压直流输电(HVDC)两大领域。

通过柔性交流输电技术,可以实现对电力系统的动态控制和稳定运行,包括静态无功补偿器(SVC)、静止无功发生器(STATCOM)等,以提高系统的稳定性和可靠性。

而高压直流输电技术,可以实现远距离大容量电能的长距离传输,减少输电线损和提高输电效率,尤其在新能源远距离接入方面具有重要意义。

在配电系统中,电力电子技术主要应用于配电变压器、配电保护与控制等方面。

通过电力电子技术,可以实现对配电系统的智能化控制和监测,提高供电可靠性和电能质量,同时实现对配电网的柔性运行和功率调节,为电网接纳大规模分布式新能源提供技术支持。

电力电子技术在电力质量改善方面的应用包括电能质量改善装置(APF)、有源滤波器(AF)等,通过实时监测和控制电网内的谐波、电压波动和频率偏差等问题,提高电能供应的质量和可靠性,适应现代工业和商业对电能质量的要求。

随着新能源的快速发展和大规模接入,电力电子技术在新能源接入方面发挥越来越重要的作用。

特别是在风力发电、光伏发电和分布式储能等方面,电力电子技术可以实现对新能源的有效管理和优化利用,提高电网的安全性和稳定性。

未来展望随着能源转型和电力供应体系的变革,现代电力电子技术将继续在电力系统中发挥重要的作用。

在未来,随着电力电子器件的不断创新和提高,以及数字化技术的应用,电力电子技术将更加智能化、集成化和高效化,为电力系统的高效运行和新能源的大规模接入提供更加强有力的支撑。

电力电子技术的应用与发展趋势

电力电子技术的应用与发展趋势

电力电子技术的应用与发展趋势电力电子技术近年来在工业、交通、通讯、医疗等各个领域得到了广泛应用,成为现代技术的重要组成部分。

它以优良的性能和广泛的应用前景,被视为电力工业发展的重要方向之一。

一、电力电子技术的基本概念电力电子技术是针对电力系统中各类电力设备控制、变换、调节、保护等技术手段所采用的一种技术方案,主要包括把电力电子器件应用于各种电力设备,比如电源、逆变器、变频器、稳压器等,充分利用现代电力电子器件的优越特性和电气控制技术的新发展,来满足工业和民用电力不断增长的需求。

二、电力电子技术的应用领域1. 交通运输领域:电力电子技术广泛应用在交通运输领域。

例如,高速列车和地铁中的牵引变频组,能够使列车起动加速更加顺畅,减少因起步加速导致的电压跳动和降压脉冲幅值;智能交通控制设备,应用进入大城市交通拥堵问题来协助交通公交车道优先,智能导航系统等等都是电力电子技术让人们出行变得更加便捷。

2. 工业领域:目前,工业生产过程在液压、气动、电气方面都大量采用电力电子技术。

例如,3D打印、机械加工、焊接、热处理等领域的机器设备中,先进的感应逆变器、电容器电源模块和功率模块、无故障热回收器等装置,都可以加强机器设备的生产力和精度。

3. 通讯、医疗等领域:电力电子技术同样广泛应用在通讯、医疗等领域,使得人们的生活更加便捷。

例如,病人监测设备中的双选一逆变器、电量计算装置等等,让医疗设备更加精确稳定,可以保存病人的重要数据。

三、电力电子技术的发展趋势1. 次级拓扑结构和高频储能器件:在面向高性能、高可靠和多功能化的发展方向上,电力电子器件的次级拓扑结构和高频储能器件等都是关键技术。

次级拓扑结构是开关元件和电容或电感等能量存储元件组成的逆变器、变换器等电路,是电力电子技术的重要研究方向之一。

而高频储能器件在体积上较小、频率高等方面的优势,可以解决现有模块在温度、体积、重量等方面,所面对的挑战。

2. 智能化和无源治理:与传统的有源控制相比,无源控制技术有更高的可靠性、更低的成本以及更简单的电路结构。

电力电子技术在电力系统电能经济性中的发展

电力电子技术在电力系统电能经济性中的发展

电力电子技术在电力系统电能经济性中的发展近年来,随着电力系统的不断发展和升级,电能经济性成为了一个重要的话题。

而电力电子技术作为电能转换的核心技术之一,在提高电能经济性方面发挥着重要的作用。

本文将介绍电力电子技术在电力系统中的应用以及对电能经济性的贡献。

一、电力电子技术在电力系统中的应用电力电子技术主要包括逆变器、直流输电、有源电力滤波器等相关技术。

这些技术通过改变电能的形式、控制电能的流动等方式,实现了电能的高效利用和灵活调控。

首先是逆变器技术的应用。

逆变器可以将直流电能转换为交流电能,使得电力系统能够更好地与不同负载进行连接。

逆变器广泛应用于光伏发电站、风力发电等可再生能源发电系统中,将直流发电转换为交流电供电给用户,提高了能源的利用效率。

其次是直流输电技术的应用。

直流输电技术可以降低输电线路的电阻和电感损耗,提高输电效率。

通过采用高压直流输电,可以减少输电线路的电流,减小线路损耗和电压降低,提高电力输送的效率和可靠性。

直流输电技术的应用,不仅可以提高电能经济性,还能满足远距离、大容量输电的需求。

另外,有源电力滤波器技术也在电力系统中得到了广泛应用。

有源电力滤波器可以通过控制电流的相位和幅值,消除电力系统中的谐波和电压波动,保证电力系统的稳定运行。

这种技术可以有效减小电力系统的谐波污染,提高电能质量,降低生产和供电成本。

二、电力电子技术对电能经济性的贡献电力电子技术在电力系统中的应用,对于提高电能经济性具有重要意义。

首先,电力电子技术提高了能源的利用效率。

逆变器技术的应用,可以将不同形式的电能互相转换,使得电力系统能够更好地利用可再生能源。

而直流输电技术的应用,降低了电能的损耗和传输损失,提高了输电效率。

这些技术的应用,使得电能转换和输送更加高效,减少资源浪费,提高电能利用效率。

其次,电力电子技术提高了电力系统的灵活调控能力。

逆变器技术和有源电力滤波器技术的应用,可以通过控制电流的波形和频率,实现对电能的精确调控。

电力电子技术的应用与发展

电力电子技术的应用与发展

电力电子技术的应用与发展一、电力电子技术概述电力电子技术是将半导体器件应用于电力系统的控制和变换技术,通过改变电路的拓扑结构和控制策略,实现电力信号的变换和控制,从而满足不同电力系统的要求。

近年来,随着能源危机的日益严峻,电力电子技术的应用与发展变得越来越重要。

二、电力电子技术的应用1. 高压直流输电技术高压直流输电技术是一种利用半导体器件实现电力直流输送的技术,具有输电长距离、损耗小等优点,适用于电压等级高、距离远的场合。

2. 电力电子变频技术电力电子变频技术是一种将交流电转换为可调频率的交流电的技术。

它可以适应不同频率的电力输入,控制输出电力的频率、电压、相位等参数,具有广泛的应用前景。

3. 电力电子调速技术电力电子调速技术是一种通过改变电机输入电压的大小和相位,改变电机的转速,从而实现电机调速的技术。

电力电子调速技术具有调速精度高、动态响应快等优点,被广泛应用于工业生产中。

4. 电力电子换流技术电力电子换流技术是一种利用电力电子器件控制交流电的电压和电流方向,实现交流电变换为直流电或直流电变换为交流电的技术。

它被广泛应用于大型高压电力变电站和电网中。

三、电力电子技术的发展趋势随着科技进步和社会需求的不断增加,电力电子技术也在不断发展。

未来电力电子技术的发展趋势主要体现在以下几个方面:1. 高压高功率电力电子器件的研发现有的电力电子器件能够承受的电压和功率有限,限制了电力电子技术的应用范围。

因此,研发高压高功率电力电子器件是电力电子技术未来的发展方向。

2. 电力电子技术的智能化发展智能化是时代的发展趋势,电力电子技术也不例外。

未来电力电子技术将会更加智能化,如利用人工智能技术优化电力系统的控制和调节。

3. 电力电子技术的集成化发展电力电子技术是由多个电力电子器件组成的,未来电力电子技术将会向器件集成的方向发展,达到更小、更轻、更节能的效果。

四、总结电力电子技术的应用和发展是推动电力系统进步的重要因素之一。

简要分析国内电力电子技术在电力系统中的发展与应用

简要分析国内电力电子技术在电力系统中的发展与应用

简要分析国内电力电子技术在电力系统中的发展与应用一、什么是电力电子技术?电力电子技术主要包括电力学、电子学、控制理论三大学科,是一门新兴的现代电气、自动化专业技术,目前已经成为电器和自动化专业主修课程,也是不可缺少的基础课程,对于培养我国高素质、高水平的电力人才具有举足轻重的作用。

具体的说,电力电子技术就是电力领域的一种核心技术,就是使用专业的电力电子工具器件对电能进行变换和控制的技术。

这些电力电子器材都是有半导体制作而成,所以也成为电力半导体器件,主要用于电力的交换。

电力电子技术先后经历了三个阶段:整流器时期、逆变器时期、变频器时期,促进了很多领域的革新和飞跃,最早出现要追溯到五六十年代的硅整流器件。

在八十年代末发展起来的集高频、大电流、高压于一身的功率半导体复合器件,是电力电子技术由传统向现代化迈进的里程碑。

在整流器时期,大约20% 的电能以直流电的形式消费,工频(50HZ)的交流发电机提供工业的大功率用电。

其中比较典型的三大领域是电解(化工原料、有色金属等需要直流电解)、直流传动(造纸等)、牵引(地铁机车、电传动的内燃机车等)。

六七十年代晶闸管和硅整流管得到很大的发展和应用,现代很多的制造硅整流其的半导体企业都是在当时掀起的创办热的产物;逆变器时代的来临是由于七十年代大范围的能源危机使得以节能著称的交流电机变频调速得到迅速推广,大功率你便用的晶闸管、门极可关断晶闸管、巨型功率晶体管成为了电力电子器件的主角,在这个是其的电力电子技术虽然工作频率仍然较低,但已经可以实现整流和逆变;八十年代变频器时代的来临,大规模集成电路技术的发展奠定了现代电力电子技术发展的基础。

新型器件的发展不仅为交流电机变频调速提供了较高的频率, 使其性能更加完善可靠, 而且使现代电子技术不断向高频化发展, 为用电设备的高效节材节能, 实现小型轻量化, 机电一体化和智能化提供了重要的技术基础。

二、当前我国电力电子技术的应用电力电子技术的发展成果日新月异,在互联网日益普及的今天,电力系统也逐渐趋于现代化、智能化。

电力电子技术的发展趋势与应用前景

电力电子技术的发展趋势与应用前景

电力电子技术的发展趋势与应用前景随着科技的飞速发展,电力电子技术成为了当前发展中最受瞩目的技术之一,被广泛应用于工业、通信、医疗、交通等众多领域。

本文将探讨电力电子技术的发展趋势与应用前景。

一、电力电子技术的基础与发展历程电力电子技术指的是将电力与电子技术相结合所形成的一种技术。

它将电力转换与电子器件相结合,可实现供电系统的高效、智能化、精密控制等特点。

电力电子技术的应用范围极为广泛,包括了电源、电器、动力、照明、控制等方面。

电力电子技术的发展历程,草根于20世纪60年代,起初被用作不间断电源,进一步发展为无线输能电源、热补偿电源等。

到了21世纪,电力电子技术由于其高效节能、智能化、低耗能等特征,被广泛应用于新能源、智能电网、电动汽车等领域,成为推动技术进步的重要一环。

二、电力电子技术的发展趋势1、反义变流器将大规模普及反义变流器是电力电子技术的一个重要分支。

它可将交流电转换成直流电,再将直流电转变成交流电。

反义变流器在智能电网中起到了至关重要的作用,优点是能够对电力进行高效的流量控制,从而实现电力系统的高效、快速响应。

预计未来反义变流器将会大规模普及,满足对能源的更高要求。

2、微网将得到普及微网是由一组分布式电源、负荷和能量存储装置组成,通过电力互联,形成一种近似于小型电力网的电力系统。

微网技术能够将电力设备智能控制、自主组网和协同运行等技术集成起来,为用户提供优质的电力服务。

预计未来,微网技术将越来越普及,符合能源调节和能源转型发展趋势。

3、电力互联网的新型拓扑结构电力互联网是一种新型的能源调控方案,它将分布式电源、负荷、电池储能、高压直流输电等纳入一个交互网中,构成一种基于互联网和计算机技术的新型能源系统。

电力互联网的发展是电力电子技术的最新成果,通过加强电力电子器件的功能和智能控制系统的升级,实现了电力分布式化、智能化和网络化,从而更高效的管理和分配电力资源。

三、电力电子技术的应用前景电力电子技术已经广泛应用于工业、家庭、交通运输、车辆和航空航天等领域中。

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用

电力电子技术在电力系统中的应用一、引言电力电子技术是指利用电子器件和电子控制技术来实现电力转换、控制和调节的一门学科。

它在电力系统中的应用广泛而重要。

本文将结合实际案例,探讨电力电子技术在电力系统中的应用。

二、直流输电技术1. 直流输电系统原理直流输电技术是电力电子技术在电力系统中的重要应用之一。

通过将交流电转换为直流电进行输送,可以有效解决长距离传输中所遇到的电压和电流损耗问题,提高输电效率。

例如,高压直流输电(HVDC)系统可以将电能从远距离的火电厂输送到需求地,降低了能源损耗,提高了输电容量。

2. 直流输电技术的优势直流输电技术相对于传统的交流输电技术具有以下优势:低损耗、大容量、节约输电线路、节约投资等。

而且,直流输电技术还具有可靠性高、对负荷变化响应快等特点。

三、电力调速技术1. 电力调速系统原理电力调速技术是指利用电力电子技术对发电机的输出功率进行调整,以满足电力系统的需求。

通过控制并联在发电机轴上的电动机的转速,可以调整发电机的输出功率,使其与负荷需求相匹配。

2. 电力调速系统的应用电力调速技术在调频调速水轮机、风力发电和光电发电等领域得到广泛应用。

例如,调频调速水轮机在水电站中的应用通过控制水轮机的转速,实现对水轮机的输出功率的调整,以满足电力系统负荷需求。

四、电力滤波技术1. 电力滤波技术原理电力滤波技术是指通过引入滤波器将电力系统中的电源谐波进行滤除,改善电力质量的一项技术。

电力谐波是指电力系统中包含在交流电中的频率为基波频率整数倍的电压或电流成分。

电力谐波会导致电力系统的电压失真,影响电力设备的正常工作。

2. 电力滤波技术的应用电力滤波技术在电力系统的主变电所、电动机驱动系统等领域得到广泛应用。

例如,电力滤波器可以通过滤除电力系统中的谐波,避免了负载对电力系统的干扰,保证了电力系统的正常运行。

五、智能电网技术1. 智能电网系统原理智能电网技术是指将信息通信技术与电力系统相结合,实现对电力系统的智能化、自动化管理的技术。

电力电子技术的应用和发展

电力电子技术的应用和发展

电力电子技术的应用和发展电力电子技术是指将电力进行电子化,为现代能源转换和控制提供了技术支持。

电力电子技术的应用范围非常广泛,从电源调节器到变频电机驱动器,从光伏发电到风力发电,从家电到交通运输,几乎所有领域都离不开电力电子技术的应用。

本文将从应用现状、技术特点、发展趋势等方面进行探讨。

一、应用现状电力电子技术应用的领域非常广泛,其中最广泛的莫过于家电。

电视、空调、洗衣机、吸尘器等大部分家电都采用了电力电子技术,使得家电的效率、安全性、精度等各方面都有了质的提升。

此外,电力电子技术的应用也渗透到了交通运输领域,比如地铁、高铁、汽车等。

特别是在新能源汽车领域,电力电子技术更是不可或缺的一环。

此外,电力电子技术的应用还包括:航空领域、军事领域、工业控制领域、医疗设备领域等。

二、技术特点电力电子技术的技术特点主要表现在以下几个方面:(一)高效率。

电力电子器件的特殊结构和工作原理,使得电能的损耗非常小。

相比于传统电力系统,电力电子技术能够提高电能的利用率,从而提高能源的利用效率。

(二)高精度。

电力电子技术利用数字信号或者模拟信号进行控制,具有高精度的调节能力,可以实现对电流、电压等参数进行精确控制。

(三)节能环保。

电力电子技术能够实现能量的可控转换和调节,从而能够有效地控制电能的损耗,降低能耗,减少环境污染。

(四)可靠性高。

由于电力电子器件带有宽带放大和负反馈控制等技术,使得电力电子系统更加稳定可靠,有效地减少了电力系统的故障率。

三、发展趋势在当前以及未来的一段时间内,电力电子技术的发展趋势主要表现在以下几个方面:(一)智能化。

随着人工智能技术的发展,电力电子技术也将进入智能化时代。

未来,电力电子系统将更加智能化和自动化,能够实现实时在线监测、控制与管理。

(二)高集成度。

未来电力电子系统将更加注重系统的集成度,降低整个系统的复杂度和成本。

此外,高度集成的系统还将更加适合于多功能和应用场景复杂的环境。

(三)高可靠性。

电力电子技术在电力系统中的应用研究

电力电子技术在电力系统中的应用研究

电力电子技术在电力系统中的应用研究随着现代社会的发展和电力需求的增加,电力系统的可靠性、安全性和效率已成为人们关注的焦点。

电力电子技术作为电力系统的重要支撑,对电力系统的运行和管理发挥着至关重要的作用。

本文将从电力电子技术的基本原理、在电力系统中的应用以及未来发展方向等方面展开介绍。

一、电力电子技术的基本原理电力电子技术是指利用半导体器件对电力进行控制和调节的一种技术。

其基本原理是利用半导体器件(如晶闸管、二极管、场效应管等)进行电压、电流和频率的调节,达到对电力的精确控制。

电力电子技术的基本器件包括整流器、逆变器、变压器、电力电子开关等。

1. 变流器变流器是电力电子技术中应用最为广泛的一种装置,它能够将交流电源转换成直流电源,或将直流电源转换成交流电源。

在电力系统中,变流器的应用主要包括调整电力系统中的电压、频率和相位,实现电力系统的稳定运行和对负载的精确控制。

3. 触发控制器触发控制器是电力电子技术中的一种重要装置,其主要功能是控制电力电子开关的导通和截止,实现对电力的精确控制。

在电力系统中,触发控制器通常被应用于大功率电机的调速控制和电力传输中的电压调节。

4. 智能电网技术随着电力系统的智能化发展,电力电子技术在智能电网中的应用越来越广泛。

智能电网利用电力电子技术实现对电能的精准测量、远程监测和智能控制,从而提高电力系统的可靠性、安全性和效率。

5. 输电线路的无功功率补偿在传统的电力系统中,输电线路的无功功率问题一直是一个难题。

电力电子技术能够通过静止无功功率补偿装置(STATCOM)和动态无功功率补偿装置(SVC)等装置实现输电线路的无功功率补偿,提高电力系统的稳定性和可靠性。

三、电力电子技术在电力系统中的发展趋势1. 高效节能随着能源紧缺问题的日益严重,电力电子技术在电力系统中的应用也将更加重视高效节能。

未来电力电子装置将更加注重能量转换效率的提高,减少能源损耗和环境污染。

2. 大容量、高压、高频随着电力系统的不断发展和智能化水平的提高,对电力电子技术的需求也将越来越高。

电力电子技术在电力系统中应用分析论文

电力电子技术在电力系统中应用分析论文

电力电子技术在电力系统中应用分析论文电力电子技术是指利用电子电路控制和转换电能的技术。

它将普通的交流电变成直流电,控制电流、电压,提高能量的效率。

电力电子技术在电力系统中应用广泛,不仅可以提高系统的可靠性和经济性,而且可以实现对电能的精确控制和调节。

本文将从电力电子技术在电力系统中的应用分析入手,探讨电力电子技术对电力系统的贡献以及它未来在电力系统中的发展趋势。

一、电力电子技术在电力系统中的应用分析1. 电力电子变流器在交流输电中的应用电力电子变流器是将交流电转换为直流电或将直流电转换为交流电的关键设备,它被广泛应用于交流输电系统中。

交流电通过变流器采用PWM脉宽调制技术,可以得到高质量的直流电,这对于电力系统中的稳定运行具有很大意义。

在输电线路过长或有远距离跨越海底等特殊条件下,高压直流输电技术也是一种很好的选择。

电力电子变流器在高压直流输电系统中的应用已经得到了广泛的应用。

2. 电力电子器件在电力系统中的应用电力电子器件是电力电子技术中不可缺少的重要部分。

它们通常可以分为大功率晶闸管、大功率MOSFET、IGBT等。

这些器件的特点是高可靠性、大电流密度和快速切换速度等,使之可以在电力系统中发挥出重要的作用。

例如,在电力系统的配电控制中,通常使用全电子变压器、变频调速技术等来进行分配电压和控制电流。

此外,还应用在电力系统中的许多其他方面,例如电力质量控制、无功补偿和过电压保护等领域。

3. 电力电子半导体器件在新能源领域的应用电力电子技术在新能源领域的应用日益重要。

以风力发电为例,在风力发电机组中,通常使用多台并联的发电机对电力进行转化,控制电机转速和输出电压。

在这个过程中,电力电子器件发挥着重要的作用。

此外,电力电子器件也被广泛应用于太阳能发电、燃料电池汽车等新能源领域。

二、电力电子技术在电力系统中的贡献电力电子技术对电力系统的贡献可以从以下几个方面进行探讨。

1. 提高效率电力电子技术可以实现交、直流电的相互转换,提高了系统的能量转换效率。

电力电子技术与应用

电力电子技术与应用

电力电子技术与应用电力电子技术是指利用半导体器件和电磁元件等电子器件,对电力进行高效、稳定的转换与控制的技术领域。

它在现代电力系统和电力设备中扮演着至关重要的角色。

本文将从电力电子技术的定义、应用、发展趋势等方面进行探讨。

一、电力电子技术的定义电力电子技术是指利用电子器件对电能进行调节、变换、控制的技术。

电力电子器件一般具有高功率、高频率、高唯一性和高可靠性等特点,主要包括晶体管、可控硅、IGBT等。

电力电子技术通过改变电路的开关状态和电源工作方式,实现电能的调整和转换,从而满足电力系统对不同形式电能的需求。

二、电力电子技术的应用1. 高压直流输电技术高压直流输电是电力电子技术的一项重要应用。

通过将交流电能转换为直流电能,再进行输送,可以有效降低输电损耗,提高电网稳定性。

高压直流输电技术在远距离、大容量输电方面具有明显优势,已广泛应用于长距离跨区域输电工程。

2. 可再生能源发电技术电力电子技术在可再生能源发电中起到了关键作用。

风力发电、光伏发电等可再生能源具有不稳定性和间歇性,而电力电子技术可以实现对可再生能源的有效调节和控制,使其能够稳定地并入电力系统。

此外,电力电子技术还可以实现电能的质量改善和功率因数校正。

3. 变频调速技术变频调速技术是电力电子技术在电机控制领域的应用。

通过电力电子器件对电机进行调节,可以实现电机转速的连续调整和转矩的精确控制。

变频调速技术广泛应用于电力、化工、交通等行业,可以实现能量的高效利用和运行的平稳可靠。

4. 无功补偿技术无功补偿是电力电子技术在电力系统中的重要应用之一。

通过电力电子器件对无功功率的生成和吸收进行调节,可以实现电网的无功功率平衡和电压稳定控制。

无功补偿技术对提高电力系统的电能质量和稳定性具有重要意义。

三、电力电子技术的发展趋势1. 高功率、高可靠性随着电力需求的增长和电力器件技术的不断进步,电力电子技术将朝着高功率、高可靠性方向发展。

电力电子器件的集成化和可靠性的提升将进一步推动电力电子技术的发展。

电力电子技术在电力系统中的应用研究

电力电子技术在电力系统中的应用研究

电力电子技术在电力系统中的应用研究随着科技的不断进步,电力电子技术在电力系统中的应用越来越广泛。

电力电子技术是通过控制和调节电气能量传输和转换的技术,它在提高电力系统效率、稳定性和可靠性方面发挥着重要作用。

本文将讨论电力电子技术在电力系统中的应用研究,并且探讨其未来发展方向。

1. 可再生能源接入电网随着可再生能源如风能、太阳能等的不断发展和普及,电力系统需要更多的可再生能源接入。

电力电子技术提供了各种变流器和逆变器,可以将可再生能源转换为可控的交流电,以便接入电网。

电力电子技术还提供了各种功率电子器件,用于调节和控制可再生能源的输出功率,确保其安全可靠地接入电网。

2. 电力质量改善电力系统中存在各种电力质量问题,如电压波动、谐波、闪变等。

电力电子技术可以通过各种有源和无源滤波器来改善电力质量问题。

有源滤波器可以通过电力电子器件实时补偿电网中的谐波和无功功率,提高电力质量。

而无源滤波器则可以通过电容、电感等元件来抑制电网中的谐波和波动,改善电力质量。

3. 柔性输电电力电子技术可以实现柔性交流输电(FACTS)和柔性直流输电(HVDC)等技术,从而提高电力系统的稳定性和灵活性。

FACTS可以通过控制电力系统的电压和无功功率来提高系统的稳定性,降低输电损耗。

HVDC可以通过控制换流器来实现不同频率、不同相电网之间的电能传输,提高电力系统的互联互通。

4. 电能质量调节电力电子技术在直流输电和无功补偿方面也发挥着重要作用。

直流输电可以通过换流器实现长距离的高功率电能传输,减少输电损耗和电压降。

无功补偿装置可以通过控制有源或无源电力电子器件来实现高效率的无功功率调节,提高电力系统的稳定性和可靠性。

二、电力电子技术的未来发展方向1. 大功率、高效率未来电力电子技术的发展方向是实现更大功率、更高效率的电力电子器件和系统。

随着电力系统规模的不断扩大,需要更大功率的变流器、逆变器等设备来应对电力系统的需求。

为了提高能源利用效率,电力电子技术需要不断提高其转换效率和功率密度。

电力电子技术在电力系统中的应用前景

电力电子技术在电力系统中的应用前景

电力电子技术在电力系统中的应用前景电力电子技术是一种新型的电气电子技术,它将半导体器件、控制电路和继电器等技术结合起来,能够实现对电能的控制、变换和传递。

电力电子技术已经广泛应用于各个领域中,包括了电机驱动、电源、照明、通讯、计算机、交通等领域。

而在电力系统中,电力电子技术也得到了越来越多的应用,具有广阔的应用前景。

电力电子技术可以用于电力系统的各个环节,从电源到负荷,电力电子技术都能够发挥重要的作用。

尤其是在新能源发电、大电网等领域,电力电子技术已经成为不可或缺的关键技术。

一、电力电子在电源领域中的应用电力电子技术在电源领域的应用主要集中在交流直流变换、直流直流变换、直流交流变换等方面。

在新能源发电中,电力电子技术可以实现太阳能光伏发电、风力发电、潮汐能发电等各种形式的电能转换。

在电力系统运行过程中,电力电子技术还可以对电力系统的稳定性和功率质量进行控制。

二、电力电子在输配电领域的应用电力电子技术在输配电领域的应用主要是用于提高输电效率、增加变电站容量、提高电网对新能源接入的容错能力和灵活性。

其中,HVDC、STATCOM(静态同步补偿装置)、UPFC(统一功率流控制器)等成为电力电子技术在输配电领域中的重要应用。

三、电力电子在智能电网领域中的应用智能电网是一种新型电力供应系统,由于其具有可控、智能和双向传输等特点,对电力系统的安全、稳定和发展起到了重要的作用。

在智能电网领域,电力电子技术成为实现各种新型电力服务的重要手段。

例如,智能电表、智能家居等智能化设备,全球统一的电力交易平台等智能电力服务,都离不开电力电子技术的支持。

四、电力电子在大电网领域中的应用电力电子技术在大电网领域中具有广阔的应用前景。

在大电网中,由于电力系统的复杂性和规模,传统的电力设备无法满足其需求。

而电力电子技术则可以通过半导体器件和控制电路等电气电子元器件的组合,实现大电网良好运行所必需的电能控制和传输。

电力电子技术在大电网领域中的主要应用有:实现大容量输电和调速控制、提高电能质量、减少电网损耗、增加电力系统稳定性等。

电力电子技术在电力系统保护中的发展

电力电子技术在电力系统保护中的发展

电力电子技术在电力系统保护中的发展随着电力系统的不断发展和扩大,电力系统的保护问题变得越来越重要。

为了解决电力系统中的故障和障碍,电力电子技术逐渐成为电力系统保护的重要手段。

本文将探讨电力电子技术在电力系统保护中的发展,并对其未来的发展趋势进行展望。

一、电力电子技术在电力系统保护中的应用1. 开关技术电力电子技术中的开关技术是实现电力系统保护的基础。

通过使用开关技术,可以实现电力系统中的故障隔离和电力设备的保护。

例如,采用硅控整流器和逆变器作为开关装置,可以实现电力系统的开关控制和保护功能。

2. 故障检测和定位技术电力系统中的故障和障碍需要及时检测和定位,以确保电力系统的正常运行。

电力电子技术可以通过采用高速断路器和全数字式保护装置等技术手段,实现对电力系统中故障的检测和定位。

这些技术可以提高电力系统的故障处理效率,使电力系统保持高可靠性。

3. 相序控制技术电力系统中的相序控制是确保电力系统稳定运行的重要环节。

电力电子技术可以通过采用相序控制技术,实现对电力系统中的相序进行快速检测和控制。

这种技术可以有效防止电力系统中的相序反转,提高电力系统的稳定性和可靠性。

二、电力电子技术在电力系统保护中的发展趋势1. 高压直流输电技术随着电力需求的增加,电力系统中的输电距离也在不断增加。

传统的交流输电技术存在电流损耗大和输电距离限制等问题,为了解决这些问题,高压直流输电技术应运而生。

电力电子技术在高压直流输电中的应用可以实现电力系统的高效、稳定和可靠运行。

2. 智能保护技术随着电力系统的智能化发展,智能保护技术成为电力系统保护的重要方向。

电力电子技术可以通过采用智能保护装置和数据通信技术,实现对电力系统中的故障和障碍进行智能化的检测和保护。

这种技术可以提高电力系统的安全性和可靠性,减少电力设备的损坏和故障发生。

三、电力电子技术在电力系统保护中的挑战和前景1. 挑战电力电子技术在电力系统保护中面临一些挑战。

首先,电力电子技术的成本较高,需要大量的投资才能实现电力系统的保护。

电力电子技术在电力升级中的应用

电力电子技术在电力升级中的应用

电力电子技术在电力升级中的应用电力电子技术是指将电力工程与电子学相结合,利用半导体器件和电子控制技术,实现对电力的调控和转换。

随着电力需求的增加和能源结构的优化,电力电子技术在电力升级中的应用越来越重要。

本文将详细介绍电力电子技术在电力升级中的应用,并探讨其对电力系统的影响和未来发展趋势。

一、交流输电与直流输电技术比较在电力输送过程中,交流输电与直流输电是两种常见的方式。

传统的交流输电技术已经发展了很多年,但是在长距离输电和海上风电接入等方面存在一些困难。

而直流输电技术在这些方面具有明显的优势。

利用电力电子技术,我们可以实现直流输电与交流输电之间的无缝连接和相互转换,提高电力系统的灵活性和稳定性。

二、电力电子变压器的应用电力电子变压器作为一种新型的变压器技术,在电力系统中具有广阔的应用前景。

相比传统的磁性变压器,电力电子变压器具有体积小、重量轻、效率高等优点。

同时,通过电力电子技术的控制,可以实现变压器的无级变比和精确调节,适应不同负荷条件下的电能调节需求。

电力电子变压器的应用将进一步提高电力系统的稳定性和可靠性。

三、电力电子器件的应用电力电子器件是电力电子技术的核心部分,它包括各种功率器件和控制电路。

功率器件如IGBT、MOSFET等,可以实现对电力的快速开关和控制。

控制电路如PWM调制技术、谐振技术等,可以实现电力的调制和转换。

这些电力电子器件的应用,使得电力系统在输电、变换和配电等方面更加高效、可靠。

例如,在太阳能发电和电动车充电等领域,电力电子器件的应用使得能源的利用更加智能化和环保。

四、电力电子技术对电力系统的影响电力电子技术的应用对电力系统有着积极的影响。

首先,它提高了电力系统的稳定性和可靠性。

通过电力电子器件的控制,可以实时监测和控制电力系统的运行状态,保持电力系统的平衡和稳定。

其次,它优化了电力系统的能源结构。

通过电力电子技术,可实现不同能源之间的有效转换和利用,提高电力系统的能源利用效率和可持续性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈电力电子技术在电力系统中的应用与发展趋势李洪新胜利油田滨南采油厂山东省滨州市256606摘要,概述性地介绍电力电子技术在电力系统中的各类应用,重点在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用.以及电力电子技术的发展趋势。

关键词s直流输电;电力电子;微电子;发电机;换流技术前言电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。

电力电子技术广泛应用于国民经济、人民生活和现代化军事装备等众多领域,是传统产业改造,高新技术发展和国防工业进步的重要支柱。

据估算,现代化国家所用电能的90%以上都将利用电力电子技术进行各种处理,可大量节约电能和提高用电设备的性能。

发电和远距离输电的现代化技术更大量需要电力电子技术。

经过50年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。

最成功地应用于电力系统的大功率电力电子技术是直流输电(HVDC)。

自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。

本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用,以及电力电子技术的发展趋势。

l电力电子技术和微电子技术1947年晶体管发明之后,到50年代末开始向两个方向发展。

一个是以1958年集成电路的诞生为标志的微电子技术,它面向处理,其特点是加工线条越来越细,集成度越来越高,功能越来越全。

目前生产水平典型线宽为0.5-0.6微米,典型产品为16Mb的动态随机存储器(DRAM)和PowerPC及Pentium(奔腾)微处理器。

研制水平还远高于此。

微电子技术的发展带动了一系列高新技术的兴起,标志着第一次电子技术革命的开始,其应用几乎遍及所有领域。

1957年晶闸管的问世标志着电力电子技术的开端,它面向电力处理,其特点是功率越来越大,性能越来越高,派生器件越来越多。

到70年代末期80年代初为传统电力电子技术已经衍生出快速晶闸管、逆导晶闸管、不对称晶闸管、光控晶闸管等整个家族。

80年代以来,微电子技术和电力电子技术在各自发展的基础上,又逐渐走向结合。

电力电子器件在工艺和结构上,大量采用微电子微细加工技术的工艺方法和加工设备,使传统电力电子器件的高电压、大电流、深注入技术与微细加工技术有机结合,统一在一块芯片上。

目前,典型电力电子器件的最细线条可达2-3微米。

从此产生现代电力电子技术,开始了第二次电子技术革命。

电力电子技术与微电子技术结合,首先出现了多种全控型器件。

它们的功能特点是实现了自关断,从而避免了传统电力电子器件关断时所需的强迫换流电路。

其结构特点是,一个器件由多个元胞并联,大面积集成。

例如,1000A的门极关断晶闸管(GTO)含有近千个单元(GTO)。

一个40A/IOOV的电力MOS场效应管(VDMOS),有3.5万个元胞并联,最小间距3微米,整个制造过程共i00多道工序,全部利用微电子MOS集成电路制造技术。

其中关键工艺为离子注入、细线光刻、外延、自对准双扩散、薄栅氧化、表面钝化及背面金属化等。

一个300A的静电感应晶闸管(SITH)含有5万个元胞,而一个50A/500V的MOS控制晶闸管(McT)则含有10万个元胞并联。

功率集成电路(PowerIC,PIC)是电力电子技术与微电子技术结合的另一种形式。

它将MOS型功率器件与低压逻辑电路或模拟电路制作在一块芯片上。

这种器件一般包括MOS型功率器件,电平转换电路、保护和驱动电路。

有人将它分成高压集成电路(HighVoltageIC,HVIC)和智能功率集成电路(SmartPower,SPIC)。

前者为低输出电流(例如几百毫安)高输出电压(例如几百伏)的横向器件,目前典型水平为600mA/500V。

后者为输出电流多在几十安以下输出电流多在几百伏以下的纵向器件,目前水平为5A/550V。

从总体上看,电力电子技术包括三个方面:电力电子器件,功率变换技术和自动控制技术。

任何电力电子装置均以电力电子器件为核心,应用集成电路,微处理器或微型计算机和自动控制技术(经典的、现代的和模糊控制)对电压、电流、频率、相数和相位进行变换,以实现功率处理。

从这个意义上理解,电力电子技术和微电子技术也是相辅相成,紧密结合的。

2电力电子技术的应用自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。

已有不少文献介绍和总结了相关设备的基本原理和应用现状。

以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

2.1在发电环节中的应用电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

2.1.1大型发电机的静止励磁控制静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。

由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

2.1.2水力、风力发电机的变速恒频励磁水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速变随之发生变化。

风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。

为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。

此项应用的技术核心是变频电源。

2.1.3发电厂风机水泵的变频调速发电厂的厂用电率平均为8%,风机水泵耗电量约占火电设备总耗电量的65%,且运行效率低。

使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。

低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。

2.2在输电环节中的应用电力电子器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改善了电力网的稳定运行特性。

2.2.1直流输电(HVDc)和轻型直流输电(HVDCLight)技术直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。

1970年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。

从此以后世界上新建的直流输电工程均采用晶闸管换流阀。

2.2.2柔性交流输电(FACTS)技术FACTS技术的概念问世于20世纪80年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。

20世纪90年代以来,国外在研究开发的基础上开始将FACTS技术用于实际电力系统工程。

其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。

472.3在配电环节中的应用配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。

电能质量控制既要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。

电力电子技术和现代控制技术在配电系统中的应用,即用户电力(CustomPower)技术或称DFACTS技术,是在FACTS各项成熟技术的基础上发展起来的电能质量控制新技术。

可以将DFACTS设备理解为FACTS设备的缩小版,其原理、结构均相同,功能也相似。

由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着电力电子器件价格的不断降低,可以预期DFACTS设备产品将进入快速发展期。

2.4在节能环节的运用2.4.1变负荷电动机调速运行电动机本身挖掘节电潜力只是节电的一个方面,通过变负荷电动机的调速技术节电又是另一个方面,只有将二者结合起来,电动机节电方较为完善。

目前,交流调速在冶金、矿山等部门及社会生活中得到了广泛的应用。

首先是风机、泵类等变负荷机械中采用调速控制代替挡风板或节流阀控制风流量和水流量具有显著的效果。

国外变负荷的风机、水泵大多采用了变频调速,我国正在推广应用中。

变频调速的优点是调速范围广,精度高,效率高,能实现连续无级调速。

在调速过程中转差损耗小,定子、转子的铜耗也不大,节电率一般可达30%左右。

其缺点主要为:成本高,产生高次谐波污染电网。

2.4.2减少无功损耗,提高功率因数在电气设备中,变压器和交流异步电动机等都属于感性负载,这些设备在运行时不仅消耗有功功率,而且还消耗无功功率。

因此,无功电源与有功电源一样,是保证电能质量不可缺少的部分。

在电力系统中应保持无功平衡,否则,将会使系统电压降低,设备破坏,,系统解裂,造成大面积停电事故。

所以,当电力网或电气设备无功容量不足时,应增装无功补偿设备,提高设备功率因数。

3电力电子技术的发展趋势90年代以来,电力电子技术的发展方向,主要是大功率化、高频化、模块化和智能化。

3.I大功率化由于加工工艺的不断进步,各类电力电子器件的容量日益增大,表1列出电力电子器件最大电流电压水平,为了便于比较,表中同时列出国际和国内水平。

表l电力电子器件最大电流/电压水平器件SCRGTRGTOVDMOS国际3500A/6500V800A/1200V10000A/8000V200A/1500V国内1650A/4500V200A/1200V2500A/4500V4A/850V器件IGBTSITSITHMCT国际1000A/1800V‘”250A/2000V‘1’2000A/4000V‘1’1000A/2500V‘‘’国内30A/1200V‘‘’30A/800V‘‘’IOOA/IOOOV‘”IOA/900V‘”注(1)研制水平3.2高频化全控型器件正向高频化发展。

以几种典型器件为例,其最大开关频率(赫)分别为GTO,lOk;IGBT,50k:VDMOS,20M:SIT,200M,SITH,lOOk。

高频化器件出现,将使变流装置中磁性元件的尺寸减小,重量减轻,有利于装置的小型轻量化。

3.3模块化模块就是把各种电力电子器件的芯片按一定的电路联成二单元、四单元或六单元,装在导热的绝缘衬底上,封装在一个外壳内而成,模块与同等容量的分立器件相比,具有体积小,使用简单,维修方便,重量轻,结构紧凑,可靠性高等优点,受到各国的普遍重视和大力开发,已被广泛应用。

3.4智能化前面已经提到,将功率器件和低压逻辑电路集成在一块芯片上,制成智能集成电路,它将信息处理与电力变换统一在一起,可使体积减小,重量减轻,可靠性提高,因而降低装置成本,是今后的重要发展方向。

相关文档
最新文档