《概率论与数理统计》习题随机变量及其分布

合集下载

【高等数学】概率论与数理统计-随机变量及其分布专项试卷及答案解析

【高等数学】概率论与数理统计-随机变量及其分布专项试卷及答案解析

+ +c (4)在一元二次方程 x2 Bx
= 0中, B,C 分别是将一枚假子接连掷两次先后出现
的两个点数.试求:
< I )该方程有实根的概率ρ;
( 11)该方程有重根的概率 q.
(5)设随机变盘X服从参数为1的指数分布.试求:
< I )Y1 = I XI的分布函数F1 (y);
+ ( JI )Y2 = 3X 2的概率密度f2 (y).
lb=+·
( 1a

1’ 言
CD)斗
. ll b
一 一 一
-3 2
.
(2)设随机变量X满足XJ ~N(l, 7勺,记标准正态分布函数为φ(叫,则P{l<X<Z}
的值为
(A)φ( 2 )一 φCl). (B)φ(;fi)一 φ(1). (C)φ(1 )一0. 5.
..
CD)φ(;/3) 一φ(;fi).
t 若 P{X ζ2} = ,则 P{X =3} =
(3)设某时间段内通过路口的车流盐X服从泊松分布,已知该时段内没有车通过的概率 为土,则这段时间内至少有两辆车通过的概率为
(4 )设随机变:Lt 草在 (1,6 )上服从均匀分布,则方程x2 十位+ l=O 有实根的概率是
3. 解答题 (1)设随机变量X服从参数为 λ 以> 0 )的指数分布,且 P{X ζ1} =÷,试求:
=巾巧l}= F(乎)
!2 (y) = 川 = 叫乎) = ti(平)
号l> O,
「O,
与气。,
3 ' y> 2,
即!2 (y) = 斗 3
lO,
yζ2.
随机变量及其分布
【答案】

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P ;=>)3(X P ;=>=)04(X X P .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x xa x f ,则=a π1;=>)0(X P ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为 , ,,则()E X =15.设X 为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=,则n= 。

《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z P α723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时0)(=x X ϕ当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X xdy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ.8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______. iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案.2. ),4,2,0(!/)( ===-k k e c k X P k λλ是随机变量X 的概率分布, 则λ, c 一定满足 (A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0解. 因为),4,2,0(!/)( ===-k k e c k X P k λλ, 所以c > 0. 而k 为偶数, 所以λ可以为负. 所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y解. X ~⎩⎨⎧=01)(x ϕ 其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ 其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{max()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{min(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π 解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B).21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案. 注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度:当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m i n (1))2,(m i n ()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m i n (1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m i n (1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m i n(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====P P A P A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii. 每次抽取后总以一个正品放回X 1 2 3 4p13101311133⋅ 1312132133⋅⋅ 1331321311⋅⋅⋅ 1310)()1(1===A P X P1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|a r c s i n 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dxX P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时⎰⎰∞--=-==xdt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x t d t dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x xϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛c7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2=54145-=⎰ππxdt x当 x > 9π时1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤= 当 z ≤ 0时0)(=z F Z 当 0 < z < 1时z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解.i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。

(完整版)概率论与数理统计及其应用课后答案(浙大版)第2章随机变量及其分布

(完整版)概率论与数理统计及其应用课后答案(浙大版)第2章随机变量及其分布

第2章 随机变量及其分布1,解:显然,Y 是一个离散型的随机变量,Y 取k 表明第k 个人是A 型血而前1-k 个人都不是A 型血,因此有116.04.0)4.01(4.0}{--⨯=-⨯==k k k Y P , (Λ,3,2,1=k )上式就是随机变量Y 的分布律(这是一个几何分布)。

2,解:X 只能取值0,1,2。

设以)3,2,1(=i A i 记第i 个阀门没有打开这一事件。

则)}(){()}({}0{3121321A A A A P A A A P X P ⋃=⋃==)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P X P ,416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为3,解:根据题意,随机变量X 服从二项分布B(15, 0.2),分布律为15,2,1,0,8.02.0)(1515Λ=⨯⨯==-k C k X P k k k 。

(1),2501.08.02.0)3(123315=⨯⨯==C X P(2)8329.0)0()1(1)2(==-=-=≥X P X P X P ;(3)6129.0)3()2()1()31(==+=+==≤≤X P X P X P X P ;(4))2()3()4()5(1)5(=-=-=-=-=>X P X P X P X P X P0611.0)0()1(==-=-X P X P4,解:对于][5/3G 系统,当至少有3个元件正常工作时,系统正常工作。

而系统中正常工作的元件个数X 服从二项分布B(5, 0.9),所以系统正常工作的概率为99144.01.09.0)(535553=⨯⨯==∑∑=-=k k k k k Ck X P5,解:根据题意,次品数X 服从二项分布B(8000, 0.001),所以∑=-⨯=≤=<6080008000999.0001.0)6()7(k k k kC X P X P3134.0!8!)001.08000(6860001.08000==⨯≈∑∑=-=⨯-k k k k k e k e (查表得)。

概率论与数理统计第二章测习题

概率论与数理统计第二章测习题

第 2 章一维随机变量及其分布一、选择题1.设 F(x)是随机变量X的分布函数,则以下结论不正确的选项是(A)若 F(a)=0 ,则对任意 x≤a 有 F(x)=0(B)若 F(a)=1 ,则对任意 x≥a 有 F(x)=1(C)若 F(a)=1/2 ,则 P( x≤a)=1/2(D)若 F(a)=1/2 ,则 P( x≥a)=1/22.设随机变量 X 的概率密度 f(x) 是偶函数,分布函数为 F(x) ,则(A)F(x)是偶函数(B)F(x) 是奇函数(C)F(x)+F(-x)=1(D)2F(x)-F(-x)=1 3.设随机变量 X1, X 2的分布函数、概率密度分别为 F1 (x) 、F2 (x) ,f 1 (x)、f 2 (x) ,若 a>0, b>0, c>0,则以下结论中不正确的选项是(A)aF (x)+bF2(x)是某一随机变量分布函数的充要条件是a+b=11(B)cF1(x) F 2(x)是某一随机变量分布函数的充要条件是c=1(C)af 1(x)+bf2(x)是某一随机变量概率密度的充要条件是a+b=1(D)cf 1(x) f 2(x)是某一随机变量分布函数的充要条件是c=14.设随机变量 X1, X2是任意两个独立的连续型随机变量,它们的概率密度分别为 f 1 (x)和 f 2 (x) ,分布函数分别为 F1 (x) 和 F2 (x) ,则(A)f 1 (x) +f 2 (x)必为某一随机变量的概率密度(B)f 1(x) f 2(x)必为某一随机变量的概率密度(C)F1(x)+F 2(x)必为某一随机变量的分布函数(D)F1(x)F 2 (x)必为某一随机变量的分布函数5.设随机变量 X 遵从正态分布N (1,12),Y遵从正态分布N (2,22) ,且P(|X1| 1) P(|Y 2| 1) ,则必有(A)1 2(B)1 2(C)1 2(D)1 26.设随机变量 X 遵从正态分布N ( ,2 ) ,则随σ的增大,概率P(|X|)(A)单调增大(B)单调减小(C)保持不变(D)增减不定7.设随机变量 X1,X2的分布函数分别为 F1 (x) 、F2(x) ,为使 aF1 (x) -bF2 (x)是某一随机变量分布函数,在以下给定的各组数值中应取(A)a3 , b2(B)a2 , b2(C)a1 , b3(D)a1 , b3 553322228.设 f(x)是连续型随机变量 X 的概率密度,则 f(x)必然是(A)可积函数(B)单调函数(C)连续函数(D)可导函数9.以下陈述正确的命题是(A)若P(X1) P(X 1), 则 P(X 1)12(B)若 X~b(n, p),则 P(X=k)=P(X=n-k), k=0,1,2,,n(C)若 X 遵从正态分布 , 则 F(x)=1-F(-x)(D)lim [ F (x) F ( x)]1x10.假设随机变量X遵从指数分布,则随机变量Y=min{X,2} 的分布函数(A)是连续函数(B)最少有两其中止点(C)是阶梯函数(D)恰好有一其中止点二、填空题1.一实习生用同一台机器连接独立的制造了 3 个同种零件,第i个零件不合格的概率为 p i1个零件中合格品的个数,则 P X2i 1,2,3 ,以 X 表示3i12.设随机变量X的概率密度函数为 f x2x0 x 1以 Y 表示对 X 的三次重复观察中0其他事件 X 1出现的次数,则 P Y2 23.设连续型随机变量X的分布密度为 f x axe 3x x 0,则 a,X的分布0x0函数为4.设随机变量的分布函数b , x0, 则 a =, b =,cF ( x)ax) 2(1c,x 0,=。

概率论与数理统计随机变量及其分布习题课

概率论与数理统计随机变量及其分布习题课
2
01 排列及其逆序数
解 以X表示此人外出时电话铃响的次数, 由题意知X~π(2t), t表示外出的总时间,则X的的分布律为
当t=10/60=1/6时, (1)
,故所求概率为
(2)设外出最长时间为t(单位:h), 因为X~π(2t),
3
01 排列及其逆序数
因此无电话打进的概率为

要使


解之得
0.3466小时约为21分钟,因此,某人应控制外出时间小
16
01 排列及其逆序数
ꢀ例8 设随机变量
,记
, 则A. p随着 μ的增加而增加
C. p随着μ的增加而减少
B. p随着 σ的增加而增加 D. p随着σ的增加而减少

因为 为单调增函数, p σ
,
所以 随着 的增加而增加
应选B.
17
01 排列及其逆序数
ꢀ例9 测量某距离时,随机误差X(单位:cm)具有密度函数:
则性。
6
01 排列及其逆序数 ꢀ例3 设随机变量X的概率密度为 为X的分布函数, 求 解 由题意知,X的分布函数为
因此,
F(x)
7
01 排列及其逆序数 ꢀ例4 设某加油站每周补给一次油,如果这个加油站每 周的销售量(单位:千升)为一随机变量,其密度函数为
试问该加油站的储油罐需要多大,才能把一周内断油的概 率控制在5%以下?
,求
解 当y≤0时,Y的密度函数为 当y>0时,Y的分布函数为
的分布. ;
对上式两边关于y求导,得
20
01 排列及其逆序数 即
这是伽玛分布
的概率密度函数.
21
01 排列及其逆序数
ꢀ例11 设电流I是一个随机变量,它均匀分布在9A~11A 之间.若此电流通过2Ω的电阻,在其上消耗的功率W=2I2, 求W的概率密度.

概率论与数理统计+第二章+随机变量及其分布+练习题答案

概率论与数理统计+第二章+随机变量及其分布+练习题答案

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题

1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X、Y分别表示甲乙命中的次数,求(X,Y)联合分布律。

2.袋中有两只白球,两只红球,从中任取两只以X、Y表示其中黑球、白球的数目,求(X,Y)联合分布律。

3.设,且P{}=1,求(,)的联合分布律,并指出,是否独立。

4.设随机变量X的分布律为Y=,求(X,Y)联合分布律。

5.设(X,Y)的概率分布为且事件{X=0}与{X+Y=1}独立求a,b。

6. 设某班车起点上车人数X服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0<P<1)相互独立。

以Y表示中途下车的人数。

(1)求在发车时有n个人的情况下,中途m个人下车的概率;(2)求(X,Y)联合分布律。

7. 设二维随机变量(X,Y)联合分布函数F(x.y)=A(B+arctan) (C+arctan)。

(1)A、B、C (2)(X,Y)的联合密度f(x,y) (3)(X,Y)的边缘密度,概率论与数理统计第三章二维随机变量及其概率分布例题8.设f(x,y)=为二维随机变量(X,Y)的联合密度函数,求:其它(1)C的值(2), (3)P{X+Y1}并判别X与Y是否独立。

为(X,Y)的密度函数,求:9.设f(x,y)=其它(3)P{X>1/2|Y>0}为(X,Y)的密度函数,求10. 设f(x,y)=其它11. 设f(x,y)=为(X,Y)的密度函数,求()的联合分布其它函数。

12.设X,Y独立,均服从(0,1)上的均匀分布,Z的密度函数。

13. 设f(x,y)=()为(X,Y)的密度函数,Z=X+Y,求的密度函其它数。

概率论与数理统计第三章二维随机变量及其概率分布例题14.设X,Y独立,X~N(μ,),Y~V(-π,π),Z=X+Y,求,结果用Φ( x)表示。

15.设(X,Y)的联合密度函数为f(x,y)=,Z=X+Y,求Z的概率密度。

为(X,Y)的密度函数,Z=X+2Y,求的密度函数。

二、随机变量及其分布(答案)

二、随机变量及其分布(答案)

概率论与数理统计练习题系第二章专业班姓名随机变量及其分布(一)学号一.选择题:1 .设X是失散型随机变量,以下可以作为X的概率分布是[B]X x1x2x3x4X x1x2x3x4( A)1111(B)1111 p p248162488X x1x2x3x4(D)X x1x2x3x4( C)1111p1111 p23412234122 .设随机变量ξ的分布列为X0123C ] p0.10.30.4F ( x) 为其分布函数,则 F ( 2) = [0.2( A)(B)( C)(D)1二、填空题:1 .设随机变量X的概率分布为X012,则 a = p a0.20.52 .某产品 15 件,其中有次品 2 件。

现从中任取3 件,则抽得次品数X 的概率分布为P(X 0)C13366, P( x1)C21 C13236, P( xC22 C1313 C153105C1531052)105C1533 .设射手每次击中目标的概率为, 连续射击10 次,则击中目标次数X 的概率分布为P( X k ) C10k(0.7)k (0.3)10 k(k0,1, 2,L ,10)三、计算题:1 .同时掷两颗骰子,设随机变量X为“两颗骰子点数之和”求:( 1)X的概率分布;(2)P( X3) ;(3)P( X12)解:(1)P( X2)1P( X3)2P( X4)3P(X 5)4,,,,36363636P( X6)5,P( X7) 6 , P( X5 436 8), P(X 9)363636P( X10)3 ,P( X11)2 ,P( X 1363612)36所以 X 的概率分布列:X 2 34 5 6 7 89 10 11 12P12 34 5 6 5 4 3 2 1363636363636 3636363636(2) P(X3) 336( 3) P(X>12)=02 .产品有一、 二、三等品及废品四种, 其中一、 二、三等品及废品率分别为 60%,10%,20%及 10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。

《概率论与数理统计》前三章习题解答

《概率论与数理统计》前三章习题解答

11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y , f ( x, y) 其他. 0,
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由


f ( x, y)dxdy 1可解得c 1.
返回主目录
第三章 多维随机变量及其分布
第一章 概率论的基本概念
解:
令事件Ai分别表示输入AAAA,输入BBBB, 输入CCCC, i 1, , . 令事件A 表示输出ABCA. 23
由已知条件及独立性知
1 P( A | A2 ) P( A | A3 ) . 2
3
1 P( A | A1 ) , 2
2 2
返回主目录
第一章 概率论的基本概念
由贝叶斯公式知
P( A1 A) P( A1 | A) P( A)
P( A1 ) P( A | A1 ) P( A1 ) P( A | A1 ) P( A2 ) P( A | A2 ) P( A3 ) P( A | A3 )
2p1 . (3 1) p1 1
返回主目录
第二章 随机变量及其分布
2.将一颗骰子抛掷n次,将所得的n个点
数的最小值记为X,最大值记为Y.分别求 出X与Y的分布律. 解 : 以Yi 记第i次投掷时骰子出现的点 , 数
i 1,2,, n.则X minYi , Y maxYi .
1i n 1i n
X与Y的所有可能值均为 1,2,3,4,5, 6.
14

k
返回主目录
第三章 多维随机变量及其分布
பைடு நூலகம்
(2)当m 0,1,2,时 P{ X n, Y m} P{ X n | Y m} P{Y m}

概率论与数理统计随机变量及其分布问题

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题1、假设随机变量X 的绝对值不大于1,1(1),8P X =-=1(1).4P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。

试求X 的分布函数()()F x P X x =≤解:当1x <-时,()0F x =。

当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1(1)8P X x =+-<≤ 而 5(11)1(1)(1)8P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<<(11)(111)P X P X x X =-<<-<<-<<51558216x x ++=⋅=, 于是,得 5155()8216x x F x ++=⋅=当1x ≥-时,()1F x =。

故所求分布函数为0, 155(), 11161, 1x x F x x x <-⎧⎪+⎪=-≤≤⎨⎪≥⎪⎩评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散型、连续型和混合型在类。

2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。

以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。

解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。

依题意,1A ,2A ,3A 相互独立。

X 的可能取值是0,1,2,3。

于是,得X 的概率分布为11(0)(),2P X P A ===112221(1)()()(),2P X P A A P A P A ====11223331(2)()()()()2P X P A A A P A P A P A ====11223331(3)()()()()2P X P A A A P A P A P A ====。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论与数理统计 第二章 随机变量及其概率分布 练习题 答案详解

概率论与数理统计 第二章 随机变量及其概率分布 练习题 答案详解

第二章 随机变量及其概率分布(概率论与数理统计)练习题答案与提示(答案在最后)1.一盒零件中有9个合格品和3个废品,现从中任取一个零件,如果是废品不再放回,而从其余剩下的零件中另取一个,如此继续下去,直到取得合格品为止,求取出的废品个数ξ的分布律.2.在汽车行进路上有四个十字路口设有红绿灯,假定在第一.第三个路口汽车遇绿灯通行的概率为6.0,在第二.第四个路口通行的概率为5.0,并且各十字路口红绿灯信号是相互独立的.求该汽车在停下时,已通过的十字路口数的概率分布.3.把4个球任意放到3个盒中,每个球都以同样的概率31落到任一个盒中,用ξ表示落到第一个盒中的球的个数,求ξ的分布律.4.设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是01.0,且一台设备的故障能由一个人处理,考虑两种配备维修工人的方案:其一是由4人维护,每人负责20台;其二是由3人共同维护80台.试比较两种方案在设备发生故障时不能及时维修的概率大小.5.设在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里每个人死亡的概率为002.0,每个参加保险的人在每年一月一日付12元保险费,而在死亡时其家属可到保险公司领取赔付费2000元.试问:(1) 一年内保险公司亏本的概率是多少?(2) 一年内保险公司获利不少于10000元的概率是多少? 6.某盒产品中有8件正品,2件次品,每次从中任取一件进行检查,直到取得正品为止.分别按不放回抽样和有放回抽样,求所需抽取次数的分布律.7.从一批有90个正品和10个次品的产品中任取5个,求抽得的次品数ξ的概率分布.8.通过某路口的每辆汽车发生事故的概率为0001.0=p ,假设在某段时间内有1000辆汽车通过此路口,求在此时间内发生两次以上事故的概率.9.设某种晶体管的寿命ξ(单位:小时)的概率密度函数为=)(x f ⎪⎩⎪⎨⎧≤>,100,0,100,1002x x x (1) 若一个晶体管在使用150小时后仍完好,那么该晶体管使用时间少于200小时的概率是多少?(2) 若一个电子仪器中装有三个独立工作的这种晶体管,在使用150小时之后恰有一个管子损坏的概率是多少?10.设随机变量ξ在)6,0(上服从均匀分布,求方程04522=-++ξξx x有实根的概率.11.以下哪个可以是随机变量的分布函数:(1) =)(x F 211x+, (2) =)(x F arctgx π2143+ (3) =)(x F x -e , (4) =)(x F ⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<.,,,,,1 1112121 03x x xx12.设随机变量ξ的概率分布为==)(k P ξk a2, ,3,2,1=k , 求:(1) 常数a ; (2) )(为偶数ξP ; (3) )5(≥ξP .13.已知ξ的分布律为==)(k P ξkck 6.0, ,3,2,1=k , 求常数c .14.设随机变量ξ的分布律为ξ 0 1 2 P31 61 21 求ξ的分布函数,并求:(1) )21(≤ξP ;(2) )231(≤<ξP ;(3) )231(≤≤ξP .15.设随机变量ξ的分布律为ξ 2- 0 2 3P71 73 72 71求ξ的分布函数.16.一个靶子是一个半径为2米的圆盘,设击中靶上任一同心圆的概率与该圆的面积成正比,并假设每次射击都能中靶,以ξ表示弹着点与圆心的距离,求随机变量ξ的分布函数.17.已知一本书中每页上的印刷错误ξ服从参数为2.0的泊松分布,试求(1) ξ的概率分布;(2) 求每页上印刷错误不多于一个的概率.18.设随机变量ξ的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=,,,,,,, ,41415.0112.010)(x x x x x F求ξ的分布律.19.下列哪一个函数可能成为随机变量ξ的密度函数: (1) =)(x f x-e, +∞<<∞-x ;(2) =)(x f )1(12x +π, +∞<<∞-x ;(3) =)(x f ⎩⎨⎧≤其它;,,,011x(4) =)(x f ⎩⎨⎧<<其它.,,,00sin πx x20.若)(x f ,)(x g 均在同一区间],[b a 上是概率密度函数,证明: (1) )(x f +)(x g 不是这区间上的概率密度函数;(2) 对任一数k (10<<k ),)()1()(x g k x kf -+是这个区间上的概率密度函数.21.已知连续型随机变量ξ的分布函数为⎩⎨⎧<≥+=-000e )(x x B A x F x ,,,λ (0>λ为常数),求:(1) 常数A ,B ;(2) 密度函数)(x f .22.设连续型随机变量ξ的分布函数为⎪⎩⎪⎨⎧≤>+=-,,,,000e )(22x x B A x F x 求:(1) 常数A ,B ;(2) )21(<<ξP ;(3) ξ的密度函数)(x f .23.设随机变量ξ的密度函数为)(x f xc λλ-=e(0>λ为常数),求:(1) 常数c ;(2) ξ的分布函数;(3) )21(<ξP .24.某加油站每周补充油料一次,如果它的周出售量ξ(单位:千加仑)是一个随机变量,密度函数为=)(x f ⎩⎨⎧<<-其它,,,,010)1(54x x 要使在给定的一周内油库被吸光的概率是01.0,这个油库的容量应该是多少千加仑?25.设随机变量ξ的概率密度为=)(x f ,其它,,,,,⎪⎪⎩⎪⎪⎨⎧<≤<<0211102x x x ax 求:(1) 常数a ;(2) 分布函数)(x F ;(3) )35.0(<<ξP .26.某商店出售某种商品,据历史记录分析,每月销售量服从参数为5的泊松分布,问该商店月初应库存多少件此种商品,才能以999.0的概率满足顾客的需要?27.已知某自动车床生产的零件,其长度ξ(单位:厘米)服从正态分布)75.0,50(~2N ξ,如果规定零件长度在5.150±厘米之间的为合格品, 求:(1) 零件的合格率;(2) 生产三只零件,至少有一只是不合格的概率. 28.某数学竞赛中的数学成绩)10,65(~2N ξ,若85分以上者为优秀,试问数学成绩优秀的学生占总人数的百分之几?29.某地抽样调查考生的英语成绩近似服从正态分布,平均成绩为72分,96分以上的占考生总数%3.2,求考生的英语成绩在60分到84分之间的概率.30.设随机变量ξ服从参数为2,p 的二项分布,即),2(~p B ξ,随机变量η),3(~p B ,若95)1(=≥ξP ,求)1(≥ηP . 31.已知ξ服从参数为λ的Poisson 分布,且==)1(ξP )2(=ξP ,求)4(=ξP .32.已知离散型随机变量ξ的分布律为ξ 1 2 3 4 5P 51 51 51 51 51 求:(1) 12+=ξη;(2) 2)2(-=ξη的分布律.33.设随机变量ξ的分布律为ξ 2π-2ππP 2.0 3.0 4.0 1.0求:(1) 2ξη=;(2) ξηcos =的分布律.34.设某球直径的测量值为随机变量ξ,若已知ξ在],[b a 上服从均匀分布,求该球体积36ξπη=的概率密度.35.设)1,0(~N ξ,求ξη=的概率分布密度. 36.设随机变量ξ服从]2,2[ππ-上的均匀分布,求随机变量ξηsin =的分布密度)(x f .答案详解1. ξ 0 1 2 3P 43 4492209 22012. ξ 0 1 2 3 4P 4.0 3.0 12.0 09.0 09.0 3.把一个球放入盒中看作一次试验,每个球落到第一个盒中的概率都为31,4个球放入(3个)盒中可以看作4重贝努里试验,所以落入第一个盒中的球数)31,4(~B ξ,即ξ的分布律为:)(k P =ξ=kk k C -44)32()31(,4,3,2,1,0=k4.按第一种方案,每人负责20台,设每个工人需维修的设备数为ξ,则)01.020(~,B ξ.这里设备发生故障时不能及时维修的事件,也就是一个工人负责的20台设备中至少有两台发生了故障,其概率为)2(≥ξP -=-=)0(1ξP )1(=ξP20002099.001.01⋅⋅-=C 1912099.001.0⋅⋅-C 2.00!02.01--≈e 2.01!12.0--e =-=-2.02.11e 0175231.0.上述近似计算是用了泊松定理,其中参数2.0==np λ.按第二种方案,3名维修工人共同维护80台设备,设需要维修的设备数为η,则)01.080(~,B η,这里设备发生故障时不能及时维修的事件,就是80台中至少有4台发生故障,其概率为)4(≥ηP =∑=--30808099.001.0C 1k k k k∑=--≈308.0!8.01k k e k 00908.0≈,比较计算结果,可见第二种方案发挥团队精神,既能节省人力,又能把设备管理得更好.5.(1) 000069.0, (2) 986305.06.不放回抽样,所需抽取次数的分布律为:ξ 1 2 3P 54 458 451放回抽样,所需抽取次数的分布律为:==P )(k ξ54)51(1⋅-k , ,3,2,1=k7.==)(k P ξ510059010C C C k k -⋅, 5 ,4 ,3 ,2 ,1 ,0=k 8.0045.09.(1) 41, (2) 9410.5.011.(4)12.(1) 1=a , (2) 31, (3) 16113.由分布律的性质可知:∑∞====1)(1k k P ξ∑∞=16.0k kk c ,为了求级数∑∞=16.0k kk 的和,令)(x f =∑∞=1k k k x ,逐项求导,得)(x f '=∑∞=-11k k x =x -11,从而 ⎰'xx x f 0d )(=⎰-x x 0d x 11,即)(x f -)0(f =)1ln(x --,又因)0(f =0,从而)(x f =)1ln(x --,令6.0=x ,得=)6.0(f 25ln 4.0ln =-,从而1)2ln 5(ln --=c14.=)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<212121103100x x x x ,,,,,,, (1) 31; (2) 0; (3) 6115.=)(x F ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<3 ,1,32,76,20,74,02,71,2,0x x x x x 16.=)(x F ⎪⎪⎩⎪⎪⎨⎧≥<≤<2,1,20,4,0,02x x xx 17.(1) ==)(k P ξ2.0e !2.0-k k , ,2,1,0=k , (2) 983.0)1(=≤ξP 18. ξ 1- 1 4P 2.0 3.0 0.5 19.(2) 20.略21.(1) 1=A ,1-=B (2) =)(x f ⎩⎨⎧<≥-0,0,0 ,e x x x λλ22.(1) 1=A ,1-=B , (2) 4712.0, (3) =)(x f ⎪⎩⎪⎨⎧≤>-0 ,0,0,e 22x x x x23.(1) 21, (2) =)(x F ⎪⎪⎩⎪⎪⎨⎧≥-<-,0,e 211,0 ,e 21x x x xλλ (3) 2e 1λ--24.设油库的容量为x 千加仑,据题意,01.0)(=>x P ξ,即99.0)(=≤x P ξ,=≤)(x P ξ⎰-xdx 04x )(15=--=5)1(1x 99.0,从而01.0)1(5=-x ,3981.01=-x ,解得6019.0=x (千加仑)25.(1) 1, (2) =)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤<,2,1,21,123,10,2,0,02x x x x x x (3) 875.026.1327.(1) 9545.0, (2) 1304.0 28.%3.229.设考生的英语成绩为ξ,则ξ),72(~2σN ,由题意知,=≥)96(ξP 023.0)729672(=-≥-σσξP , 故977.0)24()2472(=Φ=<-P σσσξ, 查表得,224=σ,所以12=σ,因此,)12,72(~2N ξ,从而所求概率为=≤≤)8460(ξP )1272841272127260(-≤-≤-ξP )1()1(-Φ-Φ=6824.0= 30.=<)1(ξP 94951=-,即94)1(C )0(2002=-==p p P ξ,解得31=p ,从而=≥)1(ηP )1(1<-ηP )0(1=-=ηP =--=3003)1(1p p C 271931.2e 32-32.(1) η 3 5 7 9 11 (2) η 0 1 4 9P 51 51 51 51 51 P 51 52 51 5133.(1) η 0 42π 2πP 3.0 0.6 0.1(2) η 1- 0 1P 1.0 6.0 3.034.=)(y f η⎪⎩⎪⎨⎧≤≤-其它-,0,66,92133323b y a y a b πππ 35.=)(y f η⎪⎩⎪⎨⎧≤>0,0,0,e 222y2y y -π36.ξ的密度函数为=)(x f ξ⎪⎩⎪⎨⎧≤≤-,,0,22,1其它πππx由于x y sin =在]2,2[ππ-内严格单调增加,因此存在反函数y x arcsin =,其导数为:211y x y -=',x y sin =在]2,2[ππ-上的最大值为1,最小值为1-,利用随机变量的单调函数的分布密度的公式,得η的密度函数为:=)(y f η⎪⎩⎪⎨⎧<<-',,0,11)(arcsin )(arcsin 其它,y y y f ξ⎪⎩⎪⎨⎧<<--=其它,0,11,112y yπ。

(完整版)概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

(完整版)概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P 0.6 ;=>)3(X P 0.1 ;=>=)04(X X P 0.125 .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则()P AB =____________.(0.18)5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 0.16. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x x a x f ,则=a π1;=>)0(X P 0.5 ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为0.6 , 0.3 ,0.1,则()E X = 0.515.设X为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=4.8,则n= 。

概率论与数理统计第三章多维随机变量及其分布习题解答

概率论与数理统计第三章多维随机变量及其分布习题解答

习题3-11、设(,)X Y 的分布律为求a 。

解:由分布律的性质,得1,0iji jp a =>∑∑,即111111691839a +++++=,0a >, 解得,29a =。

注:考察分布律的完备性和非负性。

2、设(,)X Y 的分布函数为(,)F x y ,试用(,)F x y 表示:(1){,}P a X b Y c ≤≤<;(2){0}P Y b <<;(3){,}P X a Y b ≥<。

解:根据分布函数的定义(,){,}F x y P X x Y y =≤≤,得(1){,}{,}{,}(,)(,)P a X b Y c P X b Y c P X a Y c F b c F a c ---≤≤<=≤<-<<=-; (2){0}{,}{,0}(,)(,0)P Y b P X Y b P X Y F b F -<<=≤+∞<-≤+∞≤=+∞-+∞; (3){,}{,}{,}(,)(,)P X a Y b P X Y b P X a Y b F b F a b ---≥<=≤+∞<-<<=+∞-。

3、设二维随机变量(,)X Y 的分布函数为(,)F x y ,分布律如下:试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤;(3)(2,3)F 。

解:由(,)X Y 的分布律,得 (1)1311{,04}{1,1}{1,2}{1,3}002244P X Y P X Y P X Y P X Y <<<<===+==+===++=; (2){12,34}{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y P X Y ≤≤≤≤===+==+==+==1150016416=+++=;(3)(2,3){2,3}{1,1}{1,2}{1,3}F P X Y P X Y P X Y P X Y =≤≤===+==+==1119{2,1}{2,2}{2,3}000416416P X Y P X Y P X Y +==+==+===+++++=。

概率论与数理统计+第二章+随机变量及其分布+练习题

概率论与数理统计+第二章+随机变量及其分布+练习题

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题1.假设X 是在区间(0,1)内取值的连续型随机变量,而X Y -=1,已知{}75.029.0=≤X P ,则满足{}25.0=≤K Y P 的常数k= .2.设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p= .3.设10件产品中恰好有2件不合格品,从中一件一件地抽出产品直到抽到合格品为止,则最后抽出产品件数X 的分布函数为 .4.设随机变量X 的分布函数为()⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=,,若;,若;,若;,若3 131 210 20 0x x x x x x F ,则P {}25.0<≤X = .5.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 .6.设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .7.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 8 .设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = .9.若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 10.已知离散型随机变量X 的可能取值为5202,,,-,相应的概率依次为a 1,a 23,a45,a87,求)0|2|(|≥≤X X P = . 11.设随机变量X 的概率密度函数为⎩⎨⎧<<=其它0102)(x x x f ,Y 表示对X 的3次独立重复观察中事件}21{≤X 出现的次数,则)2(=Y P = . 12.已知随机变量X 服从正态分布)4,2(N ,则2/X e Y =的概率密度)(y f Y = .二、选择题1.设随机变量X 和Y 相互独立,其分布函数相应为)(1x F 和)(2y F ,则随机变量{}Y X U ,max =的分布函数为=)(u F ( ). (A) {})(),(max 21u F u F ; (B) {})(1),(1min 21u F u F --; (C) )()(21u F u F ; (D) ()[]()[]u F u F 211 11---.2.设随机变量),(~2σμN X ,则随σ的增大,概率{}σμ≤-X P ( ). (A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定.3.假设X 是只有两个可能值的离散型随机变量,Y 是连续型随机变量,且X 和Y 相互独立,则随机变量Y X +的分布函数( ).(A) 是阶梯函数; (B) 恰好有一个间断点;(C) 是连续函数; (D) 恰好有两个间断点. 4.下列函数中,可以做随机变量的分布函数的是( ). (A)211)(x x F +=; (B)x x F arctan 2143)(π+=;(C)⎪⎩⎪⎨⎧>+≤=0,10,0)(x x x x x F ; (D) x x F arctan 21)(π+=.5.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数 ; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数;(D )是连续型随机变量的分布函数 .6.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .7.设21,X X 是任意两个连续型随机变量,它们的概率密度函数分别为)(),(21x f x f ,分布函数分别为)(),(21x F x F ,则( ).(A ))(32)(3121x f x f +必为某一随机变量的概率密度; (B ))()(21x f x f 必为某一随机变量的概率密度; (C ))()(21x F x F +必为某一随机变量的分布函数; (D ))()(21x F x F -必为某一随机变量的分布函数.8.设随机变量Y X ,相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则( ).(A)1,2==b a ; (B) 2,1==b a ; (C) 1,2=-=b a ; (D) 2,1-==b a .⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数9.设X 为随机变量, 若矩阵的概率为0.5, 则( ).(A) X 服从区间[0,2]上的均匀分布; (B) X 服从二项分布B(2, 0.5); (C) X 服从参数为1的指数分布; (D) X 服从标准正态分布.10.设函数⎪⎩⎪⎨⎧≥<≤<=1110200)(x x xx x F ,则)(x F ( ). (A )是随机变量的分布函数; (B )不是随机变量的分布函数; (C )是离散型随机变量的分布函数; (D )是连续型随机变量的分布函数 .11.已知随机变量X 的分布列为: ,2,1,0,!2)(===k k Ck X P k ,则常数C 等于( ). (A )1-e ; (B )2-e ; (C )3-e ; (D )4-e .12.设随机变量X 服从参数为0>λ的泊松分布, 设8.0)11(=≤=X X P ,则λ等于( ).(A ) 0.8; (B ) 2 ; (C ) 4 ; (D ) 0.25.13.已知)7,1(~23N X ,则)21(<<X P 等于( ).(A ))1()2(Φ-Φ; (B ))1()2(3Φ-Φ; (C )21)1(-Φ; (D ))2()3(33Φ-Φ.14.设随机变量X 的任一线性函数0,≠+=a b aX Y 则下面命题不成立的是( ). (A) 如果X 是连续型随机变量, 则Y 也是连续型随机变量; (B) 如果X 是泊松分布, 则Y 也是泊松分布; (C) 如果X 是均匀分布, 则Y 也是均匀分布;(D) 如果X 是正态分布, 则Y 也是正态分布. 三、解答题1.一个正立方体容器盛有3/4的液体, 假设在其6个侧面(含上、下两个底面)的随机部位出现了一个小孔,液体经此小孔流出.求剩余液体液面的高度X 的分布函数)(x F .2.假设一装置启动后无故障工作的时间X (小时)服从指数分布,平均无故障工作的时间为2百小时;每次启动(在无故障的情形下)只需工作10小时便自行关机.试求该装置每次启动无故障工作的时间Y 的分布函数.3.设试验E 是一伯努利试验,其成功的概率为p, 而失败的概率为q=1-p .现在将E 独立地一次接一次地进行直到成功或完成n 次试验为止,其中n ≥2是给定的自然数.试求所作试验次数X 的概率分布.4.假设某自动生产线上产品的不合格品率为0.02,试求随意抽取的30件中, (1) 不合格品不少于两件的概率α;(2) 在已经发现一件不合格品的条件下,不合格品不少于两件的概率β.5.假设有10台设备,每台的可靠性(无故障工作的概率)为0.92,每台出现故障时需要由一人进行调整.问为保证在95%的情况下当设备出现故障时都能及时得到调整,至少需要安排几个人值班?6.假设一部机器在一个工作日因故停用的概率为0.2.一周使用5个工作日可创利润10万元;使用4个工作日可创利润7万元;使用3个工作日只创利润2万元;停用3天及多于3天亏损2万元.求所创利润的概率分布.7.某生产线平均每三分钟生产一件产品,假设不合格品率为0.01.问为使至少出现一件不合格品的概率超过95%最少需要多长时间?8.假设一日内到过某商店的顾客数服从参数为λ的泊松分布,而每个顾客实际购货的概率为p .分别以X 和Y 表示一日内到过该商店的顾客中购货和未购货的人数,分别求X 和Y 的概率分布.9.假设一商店每周(7天)平均售出56台电冰箱,其中因为质量问题要求返修的占5‰ .试求一个季度(90天)售出的电冰箱中返修件数X 的概率分布.10.假设随机变量X 服从正态分布)9 108(,N ,求满足{}01.0 =≥-a a X P 的常数a . 11.假设随机测量的误差()210,0~N X ,求在100次独立重复测量中,至少三次测量的绝对误差大于19.6的概率α的近似值.12.设)(1x F 和)(2x F 都是随机变量的分布函数,a 和b 是非负常数且1=+b a ,证明)()()(21x bF x aF x F +=具有随机变量的分布函数的基本性质.13.假设随机变量X 服从参数为λ的指数分布,)(x F 是其分布函数,证明随机变量Y =)(X F 在区间(0,1)上服从均匀分布.14.设随机变量X 的概率密度函数为xx e e Cx f -+=)(试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率. 15.连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.16.设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3)))(1(2)|(|a F a X P -=>17.一袋中装有4个球,球上分别记有号码1,2,3,4.从中任意取2个球,以X 记取出的球中小的号码.求X 的分布列与分布函数.18.使用了t 小时的计算机,在以后t ∆小时内损坏的概率等于)(t o t ∆+λ,其中λ为不依赖于t 的常数,假设在不相重叠的时间内,计算机损坏与否相互独立,求计算机在T 小时内损坏的概率.19.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.20.设离散型随机变量X 的概率分布为 ,2,1,0,)(===n ap n X P n ,而且X 取奇数值的概率为73,试求常数a, p 的值. 21.设随机变量t 服从数学期望为21的指数分布,求方程042=++tx x 有实根的概率. 22.设随机变量X 的概率密度为∞<<∞-=-+-x e x f x x,1)(122π试求:(1)2X Y =的概率密度;(2))211(+<<X P 23. 设随机变量X 的概率密度为+∞<<∞-=-x e x f x ,21)(||, 求(1)||X Y =的分布函数)(y F Y ; (2)证明对任意的实数0,0>>b a ,均有 )()|(b Y P a Y b a Y P ≥=≥+≥. 24.设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤=其他08131)(32x x x f()x F 是X 的分布函数,求随机变量()x F Y =的分布函数.25.假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间为5小时, 设备定时开机, 出现故障时自动关机, 而无故障的情况下工作2小时便关机, (1)试求该设备每次开机无故障工作的时间Y 的分布函数)(y F Y ,(2) 求Ye Z =的分布函数,并判断Z 是否为连续型随机变量.26.设随机变量X 的可能取值为 ,,,2,1k ,且 ,2,1,21)(===k k X P k ,令 ⎩⎨⎧-=是奇数如果是偶数如果X 1X 1Y试求二次方程022=++Y t t 无实根的概率.27. 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x , 试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度. 28.设随机变量X 的概率密度函数为xx ee Cx f -+=)( 试求:(1)常数C ;(2)在对X 进行的5次独立观察中,X 的取值都小于1的概率;(3)求)0(>X P .29.过平面上一点)1,0(任作一直线L 与x 轴的夹角为α,设α服从区间),0(π上的均匀分布,求(1)此直线在x 轴上的截距Z 的概率密度; (2)截距Z 在1到2之间的概率.30. 设X X 1n ,, 为i.i.d. ~ 0-1分布(即贝努利分布),参数为p. 试对固定正整数k ≤ n ,求(1)P X k i i n ()==∑1;(2)P X k X i n i n(,)===∑11;(3)P( min{n: )},2,1,0k n X n ==≠. 31.设X 为只取正整数值的随机变量,则下列命题等价: (1)X 服从几何分布.(2) ,1,0,)()|(=>=>+>n m m X P n X n m X P . (3) ,1,0,,2,1)()|(====>+=n m m X P n X n m X P .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b (X, Y)P24α 66α 251α 126α 72αab = 216α, 5391=α 6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: 下面求X 的边沿密度: 当x < 1或x > e 2时 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=Λ服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)则 i. Z = X + Y iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)(Λ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)(Λ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y解. X ~⎩⎨⎧=01)(x ϕ 其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ 其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π解. )2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时 当z ≥ 0时 =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z x z y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数: 当y ≥ 2时 当0 ≤ y < 2时 当y < 0时于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3,…) i. ii.1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P ΛΛ, (k = 1, 2, …) iii. 每次抽取后总以一个正品放回3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c cx c dx xc dx x4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 当-1< x < 1时 当x ≥ 1时所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时当0 ≤ x < 1时 当1 ≤ x < 2时 当2 ≤ x 时所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x 5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402).i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=-6. 设电子元件的寿命X 具有密度为问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ其它65≤≤d假设42D X π=, X 的分布函数为F(x).当x ≤ 0时, F(x) = 0 当x > 0时当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x=54145-=⎰ππxdt x当 x > 9π时所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx Fππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)所以Y 的分布律为所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时 y = xz (z < 1)D 1当z ≥ 1时zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时当0 < x < 1时所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时当0 < y < 1时所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ 其它1,0,0<+>>y x y x页眉内容所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x。

相关文档
最新文档