江苏省盐城市泽夫初级中学苏科版七年级数学上册22有理数与无理数教学案(无答案)

合集下载

苏科版-数学-七年级上册-2.2有理数与无理数 教案

苏科版-数学-七年级上册-2.2有理数与无理数  教案

2.2有理数与无理数【教学目标】1. 知道有理数的的特征,理解无理数的意义及特征;2.会判断一个数是有理数还是无理数.【教学重点】会判断一个数是有理数还是无理数【教学难点】理解无理数的意义及特征【教学过程】1.回顾整数与分数的概念、整数可表示为分母为1的分数.如155=,144-=-,100=. 我们把能够写成分数形式____________________________ 的数叫有理数。

2.把下列分数化成小数形式:53=____________;31=______________;100311-=____________;154=__________________. 事实上,分数化成小数后要么是有限小数,要么是无限的且________的小数,反过来一个有限小数或一个无限的循环小数都可以化成一个分数,因此有限小数或无限的循环小数都 是____________数。

3. 将两个边长为1的正方形分别沿对角线剪开,拼成一个大正方形,设大正方形的边长为a,那么a 2 =2,a 是有理数吗?通过计算器运用逼近的方法探求数a :由1.5×1.5=2.25, 1.4×1.4=1.96得______<a<________由1.41×1.41=1.9881, 1.42×1.42=2.0164得______<a<________…事实上这样的数量a 是一个无限的且不循环的小数,它的值是1.414213562373…aa a a 1111我们把无限不循环的小数叫做_____________数.【展示交流】将下列小数分类:Array5.1,-3.14,π,0,0.222…,1.696696669,1.696696669…,有限小数有__________________________________________________;无限小数有__________________________________________________; 无限循环小数有______________________________________________; 无限不循环小数有____________________________________________; 有理数有____________________________________________________; 无理数有____________________________________________________; 【课堂反馈】将下列各数填入相应的括号内:-6,9.3,-61,42,0,-0.33,0.333…,1.41421356,-2π,3.3030030003…,-3.1415926.正数集合:{}负数集合:{}有理数数集合:{}无理数数集合:{}【作业】课堂作业:课本17页,第1,2题。

有理数与无理数苏教版数学初一上册教案

有理数与无理数苏教版数学初一上册教案

有理数与无理数苏教版数学初一上册教案
《数学初一上册》是苏教版的一本初中数学教材,以下是《数学初一上册》中有关有
理数与无理数的教案:
教案一:有理数的概念及表示
教学目标:
1. 理解有理数的概念和特点;
2. 掌握有理数的表示方法。

教学过程:
1. 复习:复习整数的概念和表示方法;
2. 引入:通过例题,让学生发现整数之间可以使用分数互相转换,引出有理数的概念;
3. 讲解:介绍有理数的定义,并讲解有理数的表示方法(分数、小数、整数);
4. 运用:设计一些练习题,让学生练习使用各种方法表示有理数。

教案二:无理数的定义和性质
教学目标:
1. 理解无理数的概念和特点;
2. 了解无理数的表示方法;
3. 掌握无理数的一些性质。

教学过程:
1. 复习:复习有理数的表示方法;
2. 引入:通过开平方的例子,让学生发现无理数的存在;
3. 讲解:介绍无理数的概念和定义,并讲解无理数的表示方法(根号、小数);
4. 拓展:讲解无理数的性质,如无理数与有理数的运算、无理数的比较等;
5. 运用:设计一些练习题,让学生练习使用无理数进行计算和比较。

以上是两个教案的简要介绍,具体的教学内容和教学方法可以根据《数学初一上册》教材的教学目标和教学内容进行拓展和调整。

苏科版七年级数学上册2.2有理数与无理数教案

苏科版七年级数学上册2.2有理数与无理数教案
由1.41×1.41=1.9881,1.42×1.42=2.0164得______<a<________

事实上这样的数量a是一个无限的且不循环的小数,它的值是1.414213562373…
板书设计
(用案人完成)
当堂作业
课外作业
教学札记
主备人
用案人
授课时间
9月5日总ຫໍສະໝຸດ 4课时课题课型新授课
教学目标
1.知道有理数的特征,理解无理数的意义及特征;
2.会判断一个数是有理数还是无理数.
重点
有理数的特征,无理数的意义及特征
难点
判断一个数是有理数还是无理数
教法及教具
先学后教,当堂训练




教学内容
个案调整
教师主导活动
学生主体活动
【自主学习】
1.回顾整数与分数的概念、整数可表示为分母为1的分数.如 , , .
是____________数。




教学内容
个案调整
教师主导活动
学生主体活动
【例题选讲】
将两个边长为1的正方形分别沿对角线剪开,拼成一个大正方形,设大正方形的边长为a,那么a2=2,a是有理数吗?
通过计算器运用逼近的方法探求数a:
由1.5×1.5=2.25,1.4×1.4=1.96得______<a<________
我们把能够写成分数形式____________________________的数叫有理数。
2.把下列分数化成小数形式:
=____________; =______________; =____________; =__________________.

七年级数学上册2.2有理数与无理数教学设计(新版)苏科版

七年级数学上册2.2有理数与无理数教学设计(新版)苏科版

有理数与无理数教学目标1.理解有理数的意义.2.知道无理数是客观存在的,了解无理数的概念.3.会判断一个数是有理数还是无理数.4.经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感.重点难点1.区分有理数与无理数,知道无理数是客观存在的.2.感受估算法,估算无理数的大小.3.会判断一个数是有理数还是无理数,体会“无限”的过程.教学过程一、课堂活动:1.知识回顾下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?-8.4 , 22 , 617-,0.33 , 0 , 53-, -9 答:正数:22 , 0.33 负数:-8.4 , 617- , 53- , -9 整数:22 , 0 , -9 分数:-8.4 , 617- , 0.33 , 53- 昨天我们学习了正数、负数,因此我们可以把数如何分类呢?整数和分数呢?生答:数:正数、0、负数;整数:正整数、0、负整数;分数:正分数、负分数.3. 实际上,所有的整数都可以写成分母是1的分数;如:5,-4, 0[答]可以!如5=51,-4= 4411--或,0=01; 小结:我们把可以化为分数形式“m n (m 、n 是整数,n ≠0)”的数叫做有理数;4.想一想:小学里我们还学过有限小数和无限循环小数,它们是有理数吗?有限小数如0.3,-3.11,... ...能化成分数吗?它们是有理数吗?答: 0.3=310,-3.11=31110-,它们是有理数. (2)请将13,415,29写成小数的形式. 答: 13=0.333...,415=0.26666...,29=0.2222..... 问:这些是什么小数?答:无限循环小数小结:反之循环小数也能化为分数的形式,它们也是有理数!循环小数如何化为分数可以一起学习书P17 读一读二、讲授新课有理数分类(1)有理数:包括整数和分数,(2)有理数还可分为正有理数、0和负有理数;有理数的分类:那么是不是所有的数都是有理数呢?下面我们就来共同研究这个问题.议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形.(1)设大正方形的边长为a ,a 满足什么条件?答:22=a(2)a 可能是整数吗?说说你的理由.答:不可能,因为112=,422=,(3)a 可能是分数吗?说说你的理由,并与同伴交流.可按书P16 问题6选取无限多大于1且小于2的两个相同分数的乘积来考查.体会“无限”的过程,认可找不到一个数的平方等于2,即a 也不可能是分数.小结:经过讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,也就是不能写成 m n的形式,所以a 不是有理数,a 是一个无限不循环小数,它的值是1.414 213 562 373….概念:无限不循环小数叫做无理数.(此处可处理优学第9题)小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,因此π是无理数.三、例题讲解:把下列各数填在相应的括号内:正数集合{ }负数集合{ }正有理数集合{ }负有理数集合{ }归纳总结——有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是整数或有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.五、课时小结 1.什么叫无理数?2.数的分类?3.如何判定一个数是无理数还是有理数.六、反馈作业课作《课课练》 家作《优学》七、教学反思 中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

【精编】苏科初中数学七年级上册《2.2 有理数与无理数》教案 (1)

【精编】苏科初中数学七年级上册《2.2 有理数与无理数》教案 (1)
无理数
议一议:是不是所有的数都是有理数呢?
将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为2.
如果大正方形的边长为a,那么a2=2.a是有理数吗?
事实上,a不能写成分数形式 (m、n是整数,n≠0),a是无限不循环小数,它的值是1.414 213 562 373….
无限不循环小数叫做无理数.
小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理数.
此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.
通过拼图,探索,让学生感受a不能化为分数的形式,引出a这个无限不循环小数,从而得到无理数的定义.通过π进一步说明无理数的确存在.根据无理数的定义,我们还可以构造像0.101 001 000 1…、-0.101 001 000 1…这样的无理数.
我们把能写成分数形式 (m、n是整数,n≠0)的数叫做有理数.
想一想:
小学里学过的有限小数和无限循环小数是有理数吗?
根据有理数的定义,有理数可以进行如下的分类:
,或
结合 体会整数可化成分母为1的分数形式.
, , , .
有限小数和无限循环小数都可以化为分数,它们都是有理数.
引入有理数的定义,并按照定义说明整数、分数是有理数.通过将有限小数和无限循环小数转化为分数,说明有限小数和无限循环小数也是有理数,为有理数的分类做好铺垫.
独立完成,课堂交流.
正数集合:{
…};
负数集合:{ …};
正有理数集合:{ …};
负有理数集合:{ …}.
当堂巩固所学知识.
课堂小结:
谈谈你这一节课有哪些收获.
回顾本节的教学内容,从知识和方法两个层面进行总结.

苏科初中数学七上《22有理数与无理数》word教案6

苏科初中数学七上《22有理数与无理数》word教案6

2.2.1有理数与无理数导学案章节与课题本课时学习目标 1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。

2.会判断一个数是有理数还是无理数。

经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。

本课时重难点 及学习建议 重点:区分有理数与无理数,知道无理数是客观存在的。

感受夹逼法,估算无理数的大小。

难点:会判断一个数是有理数还是无理数,体会“无限”的过程。

本课时教学 资源使用教师教学参考资料 学 习 过 程学习要求或学法指导一. 自主学习(导学部分)1、我们上了六多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?在小学我们学过自然数、小数、分数.,在初一我们还学过负数。

我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充了范围,从形式上来看,我们学过的一部分数又可以分为整数和分数。

我们能够把整数写成分数的形式吗?如:5,-4,0……可以吗?可以!如5= ,-4= ,0= 我们把可以化为分数形式“mn(m 、n 是整数,n ≠0)”的数叫做有理数;2、想一想:小学里我们还学过有限小数和循环小数,它们是有理数吗?有限小数如0.3,-3.11……能化成分数吗?它们是有理数吗?0.3= ,-3.11= ,它们是有理数。

请将1 /3,4/15 ,2/9写成小数的形式。

1/3=0.333...,4/15=0.26666...,2 /9=0.2222..... 这些是什么小数?循环小数,反之循环小数也能化为分数的形式,它们也是有理数! 循环小数如何化为分数可以一起学习书P17、读一读 二.合作、探究、展示有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1.议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形。

(1) 设大正方形的边长为a ,a 满足什么条件?(2) a 可能是整数吗?说说你的理由。

苏科初中数学七年级上册《2.2 有理数与无理数》教案 (3)【精品】.doc

苏科初中数学七年级上册《2.2 有理数与无理数》教案 (3)【精品】.doc

《2.2 有理数与无理数》教案教学目标1.理解有理数的意义和会对有理数进行分类;2.了解无理数的意义.教学重点1.有理数的意义和分类;2.无理数的意义. 教学难点有理数的分类,区分有理数和无理数.教学过程有理数我们学过整数(正整数、负整数、零)和分数(正分数、负分数).实际上,所有整数都可以写成分母为1的分数的形式.如 55=,144=,1--00=.1 我们把能写成分数形式m n(m 、n 是整数,n ≠0)的数叫做有理数. 想一想: 小学里学过的有限小数和无限循环小数是有理数吗?根据有理数的定义,有理数可以进行如下的分类:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数,或⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 结合55=,144=,1--00=,1体会整数可化成分母为1的分数形式. 30.310=,3113.11100-=-,10.3333=,40.266615=. 有限小数和无限循环小数都可以化为分数,它们都是有理数.无理数议一议:是不是所有的数都是有理数呢?将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为2.如果大正方形的边长为a ,那么a 2=2.a 是有理数吗?事实上,a 不能写成分数形式m n (m 、n 是整数,n ≠0),a 是无限不循环小数,它的值是1.414 213 562 373….无限不循环小数叫做无理数. 小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理数. 此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数.有理数的分类根据有理数的定义,有理数包括整数和分数,即⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数,或⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 课堂练习: 将下列各数填入相应括号内:169.36--,,,42,0,-0.33,0.333,1.414 213 56,-2π,3.303 003 000 3,-3.141 592 6.正数集合:{ …};负数集合:{ …};正有理数集合:{ …};负有理数集合:{ …}.正数集合:{9.3,42,0.333,1.414 213 56, 3.303 003 000 3,…}; 负数集合:{166--,,-0.33,2π-,-3.141 592 6, …}; 正有理数集合:{9.3,42,0.333,1.414 213 56, …}; 负有理数集合:{166--,,-0.33,-3.141 592 6, …}. 课堂小结:谈谈你这一节课有哪些收获. 回顾本节的教学内容,从知识和方法两个层面进行总结. 归纳知识体系,提炼思想和方法.。

苏科初中数学七年级上册《2.2 有理数与无理数》教案 (7)-精选

苏科初中数学七年级上册《2.2 有理数与无理数》教案 (7)-精选
边长a
面积S
1<a<2
1<S<4
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.9881<S<2.0164
1.414<a<1.415
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.00024449
结论:a=1.41421356……,它是一个无限不循环小数
有理数与无理数
教学内容
2.2有理数与无理数
复习目标
1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。
2.会判断一个数是有理数还是无理数。经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。
复习重点
区分有理数与无理数,知道无理数是客观存在的。估算无理数的大小。
复习难点
整数和分数都是有理数。
4.将有理数进行分类。
5.议一议:有两个边长为1的小正方形,剪一剪,拼一拼,设法得到一个大正方形。
a是正方形的边长,所以a肯定是正数.因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.
(1)a可能是整数吗?
(2)a可能是分数吗?
(3)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?......借助计算器进行探索
会判断一个数是有理数还是无理数,体会“无限”的过程。
教学过程
二次备课
情景引入:
小数是否可以与分数互化?
探究学习:
1.回顾整数与分数的概念:
整数有正整数、0、负整数,如1,2,3,0,-1,-2,-3等。
分数有正分数、负分数,分示成分数的形式:
如 , ,
3.小学里我们还学过有限小数和循环小数,它们是有理数吗?

苏科版数学七年级上册2.2《有理数与无理数》教学设计

苏科版数学七年级上册2.2《有理数与无理数》教学设计

苏科版数学七年级上册2.2《有理数与无理数》教学设计一. 教材分析《有理数与无理数》是苏科版数学七年级上册第2章第2节的内容。

这一节主要介绍了有理数和无理数的概念,以及它们的特点。

教材通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们在实际问题中的应用。

二. 学情分析七年级的学生已经学习了实数的概念,对数的运算也有了一定的了解。

但是,对于有理数和无理数的概念,以及它们的特点,可能还比较陌生。

因此,在教学过程中,需要通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们的特点。

三. 教学目标1.理解有理数和无理数的概念,以及它们的特点。

2.掌握有理数和无理数的运算方法。

3.能够应用有理数和无理数的概念和运算方法,解决实际问题。

四. 教学重难点1.有理数和无理数的概念。

2.有理数和无理数的运算方法。

五. 教学方法采用问题驱动的教学方法,通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们的特点。

在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。

六. 教学准备1.教材和教案。

2.课件和教学辅助材料。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考实数的分类。

例如,问学生:“你们知道吗,有些数可以表示成两个整数的比,而有些数却不能。

你们能找出这样的数吗?”让学生列举一些例子,从而引出有理数和无理数的概念。

2.呈现(15分钟)通过PPT或者黑板,呈现有理数和无理数的定义和特点。

有理数是可以表示成两个整数比的数,无理数则不能。

有理数包括整数、分数和小数,而无理数则是无限不循环的小数。

3.操练(15分钟)让学生通过实际的例子,理解和掌握有理数和无理数的概念。

可以让学生做一些练习题,例如判断一个数是有理数还是无理数,或者将一个无理数近似为有理数。

4.巩固(10分钟)通过一些练习题,巩固学生对有理数和无理数的理解和掌握。

可以让学生做一些有关有理数和无理数的运算题,例如加减乘除等。

苏科版七年级上册数学 2.2 有理数和无理数 教案

苏科版七年级上册数学 2.2 有理数和无理数 教案

有理数与无理数教案一、教学目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数,并能说出理由.3.让学生亲自动手做拼图活动,感受无理数存在的现实性和合理性,培养学生的动手操作能力和合作精神.4.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.二、教学重点、难点(一)教学重点:1.让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.2.有理数与无理数概念的理解.(二)学习难点:无理数概念的理解.三、教具准备两个边长为1的正方形,剪刀.四、教学过程课前活动:你能把23 化成小数吗?45 呢?19 呢?(一)创设问题情境,引入新课:老师:随着年龄的增长、学习的深入,我们对数的认识也在不断地更新,请同学们回忆一下,到目前为止,我们已经认识了哪些数?(举一个具体的例子)学生:(学生可能说出的数)自然数、整数、分数、正整数、负整数、正分数、负分数、小数、有限小数、无限循环小数、无限不循环小数、偶数、奇数、质数、合数、正数、负数……(大胆地让学生说,一个学生讲完,其他学生补充,教师在黑板上记录)老师:不得了,我们已经认识这么多数,那么这些数与数之间有什么关系,你能不能帮我整理一下,理出一个思路呢?比如:整数(板书),你能把属于整数的都找出来吗?学生:正整数、负整数、0、自然数、素数(质数)、合数、奇数、偶数.(在开始记录的数的上方编号①)老师:同样,分数(板书),你能把属于分数的都找出来吗?学生:正分数、负分数、有限小数、无限循环小数、带分数.(在开始记录的数的上方编号②)老师:剩下还有一些数,它们是整数吗?是分数吗?如果学生说到“小数”:首先小数有哪几类?有限小数可以化为分数(如1.3);无限循环小数可以化为分数(如0.333…);还有没有其他的小数呢?(学生举例:π或0.3142537…)它是整数吗?是分数吗?那到底是什么数呢?如果学生说到“无限不循环小数π”,它是整数吗?是分数吗?谁知道π是多少?3.1415926…(追问:后面呢?后面呢?)课件展示π,尽可能位数多一点,让学生观察特点(无限、不循环).这样的数,生活中还有吗?我们来玩一个拼图游戏.(二)讲授新课:1.活动:请同学们拿出准备好的两个边长为1的小正方形和剪刀,将小正方形沿着图中对角线剪开,设法重新拼成一个大正方形,大家动手试一试.老师:经过同学们的努力,基本都完成任务了,请一位学生把自己拼的图在黑板上展示.老师:你们知道这个大正方形的面积是多少吗?为什么?学生:它的面积为2,因为它是由两个面积为1的小正方形拼成的.老师:你知道了这个图形的面积,对这个正方形,你还想知道它的一些什么信息呢?学生:边长.老师:你知道它的边长是多少吗?如果有学生说出,先表扬(看来你对数学是很有兴趣的,肯钻研),那么是什么数呢?若回答1.414…(后面呢?);若回答无限不循环小数(你怎么知道的呢?)2.为了便于探究这个问题,我们假设拼成的大正方形的边长为x,那么.探究(1)x是整数吗?学生:因为12=1,22=4,x是1和2之间的数,1<x<2,所以x不可能是整数?(2)x是分数吗?通过EXCEL,让学生寻找是否有这样的一个分数,它的平方正好是2?找不到这样的一个分数,它的平方正好是2(直观感受),x也不是分数.换个角度:如果x是分数,那么两个相同的分数相乘,积一定还是分数,不可能是2的.(3)x是怎样的数?1.5×1.5=2.25; 1.41×1.41=1.9881;1.4×1.4=1.96; 1.42×1.42=2.0164;1.4<x<1.5; 1.41<x<1.42; 1.414<x<1.415…探索中,运用逼近的方法,得到1.4<a<1.5,1.41<a<1.42,1.414<a<1.415,……,由此可以看到:a是一个无限小数,它总介于两个有限小数值之间,但永远找不到这样的一个有限小数等于a;同时,这些小数都不是循环小数.按照这种方法探索下去,x的值是1.414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 948 073 176 679 737 990 732 478 462 1…老师:你们发现这个数和π有什么共同点吗?学生:无限、不循环.3.引出有理数、无理数的定义.我们把这一类新的数,无限不循环小数,叫做无理数.而前面我们认识的整数和分数都是有理数.如果把整数看成是分母为1的分数,那么有理数可以这样来描述:形如mn 的数(m、n是整数,n≠0).所以分数都是有理数,随着今后学习的不断深入,我们会知道无理数是不可以用分数表示的,以后可以证明.4.学习了有理数和无理数两个概念后,下面我写几个数,你们来判断一下,它是有理数还是无理数?-3、1.1414、2π、0.1010010001…、-0.1010010001…、137 .老师:你还能写出一个无理数吗?(三)随堂练习:例题:把下列各数分别填入相应的大括号内:-0.5,-6,2.5,0,+3,-0.333,-1.41421356…,2005,3.141,85%,0.3030030003…,117 ,,π有理数集合:{-0.5,-6,2.5,0,+3,-0.333 ,2005,3.141,85%,117 ,-…};无理数集合:{ -1.41421356…,0.3030030003…,π…}.讨论:对于“分数都是有理数”,有同学提出了疑问:1.甲同学认为不一定,如227 计算器计算显示的结果是3.142857143,好像是无限不循环小数,是无理数.2.乙同学也认为不一定,如π7 就是无理数.你认为他们的说法对吗?(四)课时小结:今天这节课你的收获是……(让学生说)1.能判断一个数是有理数还是无理数.2.通过拼图活动,让学生感受数不够用了,经历无理数产生的实际背景和引入的必要性.。

苏科版七年级数学上册《有理数与无理数》教案

苏科版七年级数学上册《有理数与无理数》教案

《有理数与无理数》教案教学目标1.理解有理数的意义和会对有理数进行分类;2.了解无理数的意义.教学重、难点重点:1.有理数的意义和分类;2.无理数的意义.难点:有理数的分类,区分有理数和无理数.教学过程1.有理数我们学过整数(正整数、负整数、零)和分数(正分数、负分数).实际上,所有整数都可以写成分母为1的分数的形式.如 55=,144=,1--00=.1我们把能写成分数形式m n(m 、n 是整数,n ≠0)的数叫做有理数. 想一想: 小学里学过的有限小数和无限循环小数是有理数吗?根据有理数的定义,有理数可以进行如下的分类:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数,或⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 引入有理数的定义,并按照定义说明整数、分数是有理数.通过将有限小数和无限循环小数转化为分数,说明有限小数和无限循环小数也是有理数,为有理数的分类做好铺垫. 2.无理数议一议:是不是所有的数都是有理数呢?将两个边长为1的小正方形,沿图中红线剪开,重新拼成一个大正方形,它的面积为2.如果大正方形的边长为a ,那么a 2=2.a 是有理数吗?事实上,a 不能写成分数形式m n(m 、n 是整数,n ≠0),a 是无限不循环小数,它的值是1.414 213 562 373…. 无限不循环小数叫做无理数.小学学过的圆周率π是无限不循环小数,它的值是3.141 592 653 589…,π是无理数. 此外,像0.101 001 000 1…、-0.101 001 000 1…这样的无限不循环小数也是无理数. 例题、练习.例1: 将下列各数分别填入相应的集合中:-5,7.3,-9,+22, 32,0,-0.5,38+,-30%,25,100 自然数集合:{ ……};正整数集合:{ ……};负整数集合:{ ……};正分数集合:{ ……};负分数集合:{ ……}例1:将下列各数填入相应括号内:169.36--,,,42,0,-0.33,0.333,1.414 213 56,-2π,3.303 003 000 3,-3.141 592 6.正数集合:{ …};负数集合:{ …};正有理数集合:{ …};负有理数集合:{ …}. 例2:对下列语句的描述,错误的有①0是自然数. ② 0是整数. ③0是偶数④海拔0米就是没有海拔. ⑤ 0是非负数. ⑥一个数,不是正数就必定是负数. 课堂练习:1. 下列说法正确的是 ( )A .正整数和负整数构成整数;B .零是整数,但不是正数,也不是负数;C .分数包括正分数、负分数和零;D .有理数不是正数就是负数.2.把下列各数填入表示它所在的数集的圈里:0,,,,8343532-+--15,0.618,-3.14,-0.002, 34% 四、小结 初学有理数分类,多数学生会产生混淆,今后要加强训练,使其逐渐提高对数的判断能力.分数集 整数集 …………有理数集…… 负数集……。

七年级数学上册2.2有理数与无理数教案(新版)苏科版【精品教案】

七年级数学上册2.2有理数与无理数教案(新版)苏科版【精品教案】

备注栏课题:§2.2有理数与无理数教课目的:1.理解有理数的意义。

2.知道无理数是客观存在的,认识无理数的观点。

3.会判断一个数是有理数仍是无理数。

4.经历数的扩大,在研究活动中感觉数学的迫近思想,领会“无穷”的过程,发展数感。

教课重、难点:娴熟对有理数、无理数进行分类,教课过程:一、复习回首:1、将以下说法正确的选项是()A.正整数和负整数组成整数;B.零是整数,但不是正数,也不是负数;C. 分数包含正分数、负分数和零;D.数不是正数就是负数.2、判断下表中的各数分别属于哪一类?(在空格里打“√”)正整数负整数分数正数负分数0.61 85-6-3.143、如图,两个圈分别表示负数集和分数集,请将3,0,1, 31, 5, 3.4 中2 3切合条件的数填入圈中:负数集分数集二、新知研究:(一)创建问题情境,引入新课:跟着年纪的增加、学习的深入,我们对数的认识也在不停地更新,当前为止,我们认识了哪些数?你能把属于整数的都找出来吗?属于分数的呢?我们认识的整数和分数都是.假如把整数当作是分母为1的分数,有理数能够这样来描绘:有有理理数数备注栏有理数还能够按“正有理数、0、负有理数”来进行分类,你能模仿上述形式在上表写出相应的分类试着填写下表:表吗?1(二)研究新知:本15-16 ,回答 :(三)数的分数三、典型例1. 学 了有理数和无理数两个观点后,下边几个数,它是有理数① 是无理数②?13- 3、 1.1414 、 2π、0.1010010001 ⋯、- 0.1010 010001⋯、7. 2.你 能写出一个无理数 ? 四、当堂反 : 1 .判断 : ( 1)一个整数不是正数就是 数. ( )( 2)最小的整数是零. ( )(3) 数中没有最大的数. ( )( 4)自然数必定是正整数. ( )( 5)有理数包含正有理数、零和 有理数. ( )2.以下 法中正确的选项是 ( )A .有最小的正数;B .有最大的 数;C .有最小的整数;D .有最小的正整数3.零是()A .最小的正数B .最大的 数C .最小的有理数D .整数4.把以下各数填在相 会合内:32 , 3 6 ,7 .7 , 24 , 0.08 , 3 .1415 ,0, 5 , - π7 8正有理数会合: { ,⋯}无理数会合: { ,⋯}非正整数会合: { ,⋯}非 分数会合: { ,⋯}堂心得:2。

苏科版-数学-七年级上册-2.2 有理数与无理数 教案

苏科版-数学-七年级上册-2.2 有理数与无理数 教案

2.2有理数与无理数教学目标:1.使学生理解有理数、无理数的意义,并能将给出的有理数进行分类;2.培养学生树立分类讨论的思想.教学重点:有理数的分类.教学难点:无理数的概念教学过程:(一)从学生原有的认知结构提出问题1.什么是正、负数?2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.3.任何一个正数都比0大吗?任何一个负数都比0小吗?4.什么是整数?什么是分数?根据学生的回答引出新课.(二)讲授新课1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更确切的译名应译作“比3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

(三)例题1.下列说法:①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数.其中正确的有()A.4个B.3个C.2个D.1个2.下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3.把下列各数填入相应集合的括号内:27,―5.8,2 002,―1,90%,3.14,0,―2,1,―0.01,π.(1)整数集合: { ……};(2)分数集合:{ ……};(3)负有理数集合:{ ……};(4)正有理数集合:{ ……};(5)非负整数集合:{ ……}.(四)思考:如果一个正方形的面积为2,那么它的边长是多少?我们不妨设正方形的边长为a,那么a2=2,a是有理数吗?无限不循环小数叫做无理数。

初中数学七年级上册苏科版2.2有理数与无理数优秀教学案例

初中数学七年级上册苏科版2.2有理数与无理数优秀教学案例
(四)总结归纳
1.学生总结:教师可以引导学生对自己学习过程中遇到的问题、解决问题的方法等进行总结,提高学生的自我认知能力。
2.教师归纳:教师应对学生的学习过程和结果进行客观、公正的评价,总结本节课的主要知识点,强调有理数与无理数的重要性和应用价值。
(五)作业小结
1.布置作业:教师应布置一些有关有理数与无理数的练习题,让学生巩固所学知识,提高学生的应用能力。
(三)学生小组讨论
1.分工合作:教师可以将学生分成不同的小组,每个小组成员负责一部分内容,共同探讨有理数与无理数的相关问题。
2.交流互动:小组成员之间可以相互交流、讨论,分享自己的观点和解题方法,共同解决问题。
3.分享成果:每个小组可以选择一名代表,向全班同学分享自己的讨论成果,让其他同学从中受益。
2.举例说明有理数与无理数的应用:教师可以通过一些实际例子,如物理中的圆周率、数学中的勾股定理等,让学生了解有理数与无理数在现实世界中的应用价值。
3.引导学生自主探究有理数与无理数的关系:教师可以设置一些具有启发性的问题,引导学生运用已有的知识体系,自主发现有理数与无理数之间的差异和联系,培养学生的自主学习能力。
(一)知识与技能
1.让学生掌握有理数与无理数的基本概念,理解有理数与无理数的区别和联系。
2.能够运用有理数与无理数的知识解决实际问题,提高学生的数学应用能力。
3.培养学生对数学知识的探究能力,提升学生的创新思维。
在教学过程中,教师需要通过生活实例、教学道具和多媒体等教学手段,引导学生从实际问题中发现数学问题,从而激发学生对有理数与无理数的兴趣。同时,通过设置一些具有挑战性的数学问题,让学生在解决问题的过程中,自然而然地引出有理数与无理数的概念,进一步理解和掌握相关知识。

【苏科版】初中数学七年级上册《2.2 有理数与无理数》教案 (7)【精品】.doc

【苏科版】初中数学七年级上册《2.2 有理数与无理数》教案 (7)【精品】.doc
有理数与无理数
教学内容
2.2有理数与无理数
复习目标
1理解有理数的意 义;知道无理数是客观 存在的,了解无理数的概念。
2.会判断一个数是有理数还是无 理数。经历数的扩充,在探索活动中感受数学 的逼近思想,体会“无 限”的过程,发展数感。
复习重点
区分有理数与无理数,知道无理数是客观存在的。估算无理数的大小。
探索:a的小数部分是多少?
6.定义
有理数总可 以用有限小数或无限循环小数表示。
反之,任何有限小数或无限循环小数也都是有理数。
无限不循环小数是无理数,反之,无理数就是无限不循环小数。
7.更多无理数
(1)圆周率型
(2)构造型
典型例题
例1下列各数中,哪些是有理数?哪些是无理 数?
3.14 , -4/3, 0.57, 0.101000100 0001…(相邻两个1之间0的个数逐次加2)
复习难点
会判断一个数是有理数还是无理数,体会“无限”的过程。
教学过程
二次备课
情景引入:
小数是否可以与分数互化?
探究学习:
1.回顾整数与分数的概念:
整数有正整数、0、负整数,如1,2,3,0,-1,-2,-3等。
分数有正分数、负分数,分数的形式为 (m、n是整数,n≠0)
2.整数也可以表示成分数的形式:
边长a
面积S
1 <a<2
1<S<4
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.9881<S<2.பைடு நூலகம்164
1.414<a<1.415
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.000244 49

苏科版七年级数学上册《2.2有理数与无理数》教学设计

苏科版七年级数学上册《2.2有理数与无理数》教学设计

苏科版七年级数学上册《2.2有理数与无理数》教学设计一. 教材分析《苏科版七年级数学上册》第二章第二节《有理数与无理数》的内容是在学生学习了有理数的基础上进行拓展的。

本节内容主要包括有理数和无理数的概念、性质以及两者之间的关系。

通过本节的学习,使学生能够理解有理数和无理数的概念,掌握它们的性质,能够正确判断一个数是有理数还是无理数,并能够运用有理数和无理数的概念解决实际问题。

二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和相关性质,对有理数有一定的理解。

但是,对于无理数的概念和性质可能会感到陌生,理解起来会有一定的难度。

因此,在教学过程中,需要引导学生通过观察、思考、探究等方式,逐步理解无理数的概念和性质,建立有理数和无理数的概念体系。

三. 教学目标1.知识与技能目标:使学生理解有理数和无理数的概念,掌握它们的性质,能够正确判断一个数是有理数还是无理数。

2.过程与方法目标:通过观察、思考、探究等方式,培养学生的逻辑思维能力和抽象思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.教学重点:有理数和无理数的概念、性质以及两者之间的关系。

2.教学难点:无理数的概念和性质的理解,以及如何判断一个数是无理数。

五. 教学方法1.情境教学法:通过生活实例引入有理数和无理数的概念,使学生能够更好地理解知识。

2.问题驱动法:通过提出问题,引导学生思考和探究,激发学生的学习兴趣。

3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作意识。

4.实践操作法:通过让学生进行实际的计算和操作,巩固所学知识。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示知识点。

2.教学素材:准备一些实际的例子和习题,用于引导学生进行观察和操作。

3.教学设备:准备好计算机、投影仪等教学设备,保证教学顺利进行。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如测量物体长度时遇到无法精确测量的情况,引导学生思考这种情况下如何表示长度。

苏教版数学七年级上册教学设计《2-2 有理数与无理数》教学设计

苏教版数学七年级上册教学设计《2-2 有理数与无理数》教学设计

苏教版数学七年级上册教学设计《2-2 有理数与无理数》教学设计一. 教材分析《2-2 有理数与无理数》这一节内容是苏教版数学七年级上册的重点内容。

主要介绍了有理数和无理数的概念,以及它们的特点。

通过这一节的学习,使学生能够理解有理数和无理数的概念,掌握它们的性质,能够进行有理数和无理数的混合运算,为后续的数学学习打下基础。

二. 学情分析七年级的学生已经掌握了实数的概念,对于有理数也有一定的了解。

但是,对于无理数的概念和性质可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的实数概念出发,逐步过渡到无理数的概念,并通过具体的例子,让学生感受无理数的特点。

三. 教学目标1.了解无理数的概念,掌握有理数和无理数的特点。

2.能够进行有理数和无理数的混合运算。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.无理数的概念和特点。

2.有理数和无理数的混合运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考,从而引出无理数的概念;通过具体的案例,让学生感受无理数的特点;通过小组合作学习,让学生在讨论中掌握有理数和无理数的混合运算。

六. 教学准备1.PPT课件。

2.教学案例和习题。

3.笔记本和黑板。

七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的实例,如圆的周长、声音的频率等,引导学生思考这些实例与数学有什么关系。

通过提问,让学生意识到这些实例都与数学中的无理数有关,从而引出本节内容的主题。

2.呈现(10分钟)利用PPT课件,介绍无理数的概念,以及无理数与有理数的区别。

通过具体的例子,让学生感受无理数的特点。

同时,引导学生回顾已有的实数概念,从而更好地理解无理数的概念。

3.操练(10分钟)让学生进行一些有关有理数和无理数的运算,如加、减、乘、除等。

通过这些运算,让学生掌握有理数和无理数的混合运算方法,巩固所学知识。

4.巩固(10分钟)让学生解决一些实际问题,如计算圆的周长、求声音的频率等。

苏科初中数学七年级上册《2.2 有理数与无理数》教案 (7)【精品】.doc

苏科初中数学七年级上册《2.2 有理数与无理数》教案 (7)【精品】.doc
如 , ,
3.小学里我们还学过 有限小数和循环小数,它们是有理数吗?
有限小数可以化成 的形式,是有理数。1/3=0.333...,4/15=0.26666...,2 /9=0.2222.....这些是什 么小数?循环小数,反之循环小数也 能化为分数的形式,它们也是有理数!
循环小数如何化为分数可以一起学习书P17、读一读
探索:a的小数部分是多少?
6.定义
有理数总可 以用有限小数或无限循环小数表示。
反之,任何有限小数或无限循环小数也都是有理数。
无限不循环小数是无理数,反之,无理数就是无限不循环小数。
7.更多无理数
(1)圆周率型
(2)构造型
典型例题
例1下列各数中,哪些是有理数?哪些是无理 数?
3.14 , -4/3, 0.57, 0.101000100 0001…(相邻两个1之间0的个数逐次加2)
复习难点
会判断一个数是有理数还是无理数,体会“无限”的过程。
教学过程
二次备课
情景引入:
小数是否可以与分数互化?
探究学习:
1.回顾整数与分数的概念:
整数有正整数、0、负整数,如1,2,3,0,-1,-2,-3等。
分数有正分数、负分数,分数的形式为 (m、n是整数,n≠0)
2.整数也可以表示成分数的形式:
边长a
面积S
1 <a<2
1<S<4
1.4<a<1.5
1.96<S<2.25
1.41<a<1.42
1.9881<S<2.0164
1.414<a<1.415
1.999396<S<2.002225
1.4142<a<1.4143
1.99996164<S<2.000244 49

七年级数学上册第二章有理数2.2有理数与无理数教案(新版)苏科版

七年级数学上册第二章有理数2.2有理数与无理数教案(新版)苏科版

1.理解有理数的意义和会对有理数进行分类;2.认识无理数的意义.1.有理数的意义和分类;2.无理数的意义.有理数的分类,划分有理数和无理数.教课过程(教师)整数(正整数、负整数、零)和分数(正分数、上,全部整数都能够写成分母为 1 的分数的形,4= 4, 0=. 11写成分数形式m( m、 n 是整数, n≠0)的数叫n过的有限小数和无穷循环小数是有理数吗?数的定义,有理数能够进行以下的分类:正整数整数零负整数,或正分数分数负分数正整数理数正分数负整数理数负分数2.2有理数与无理数学生活动联合5=5, 4=4, 0=, 领会整数可化成分母为 1 的分数形式.1113311, 0.333140.3, 3.11, 0.2666.10100315有限小数和无穷循环小数都能够化为分数,它们都是有理数.引义,并按数、分数过将有循环小数说明有循环小数为有理铺垫.通是否是全部的数都是有理数呢?学生感1 的小正方形,沿中剪开,从头拼成分数的,它的面 2.个无穷方形的 a,那么 a2=2. a 是有理数?进而得.通m明无理数不能写成分数形式n( m、n 是整数, n≠0),a小数,它的是 1.414 213 562 373⋯.据无理数能够小数叫做无理数.001 000的周率π 是无穷不循小数,它的是 3.141001 000,π 是无理数.理数.0.101 0 01 000 1 ⋯、- 0.101 001 000 1⋯小数也是无理数.分合有理数的两种不一样分,领会分思想.渗数的定,有理数包含整数和分数,即深有理正整数正整数步领会数零正有理数正分数程.负整数,或有理数零正分数负整数数负有理数负分数负分数:数填入相括号内: 6 ,9.3 ,1,42 ,60.333, 1.414 213 56 ,-2π,00 3, -3.141 592 6.:{⋯ } ;:{⋯ } ;会合:{⋯ } ;会合:{⋯ } .一有哪些收.独立达成,堂沟通.正数会合: { 9.3,42,0.333, 1.414 213 56,3.303 003 000 3,⋯ } ;数会合: {16 ,, -0.33 ,-2π,-3.141 592 6,6⋯ } ;正有理数会合: { 9.3,42,0.333,,⋯ } ;1.414 213 56有理数会合: {6,1, -0.33, -3.141 592 6,⋯ } .6回本的教课内容,从知和方法两个面行.当.思想和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课笔记
备课时间:2019年月日课题 2.2有理数与无理数课型新授课
教学设想目标
1、理解有理数的意义;
2、知道无理数是客观存在的,了解无理数的概念;
3、会判断一个数是有理数还是无理数;
4、经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展
数感.
重点无理数的概念
难点正确识别一个数是有理数还是无理数
教学内容三次备课
教学过程一



情境:1、指出下列各数中的正数与负数;整数与分数.
—3,
34
3
,—2005,+2,0,—
3
7

15
4

9
2
从形式上来看,我们学过的一部分数可以分为整数和分
数.我们能够把整数写成分数的形式吗?
我们把的数
叫做有理数.
由此可见和数是有理数.
2、小学里我们还学过有限小数和循环小数,它们是有理数吗?
(1)有限小数如0.3,-3.11能化成分数吗?它们是有理数
吗?
请将
3
1

15
4

9
2
写成小数的形式,这些是什么小数?
反之循环小数也能化为分数的形式?看课本P17读一读
我们发现有限小数和无限循环小数都能化成分数,所以说
它们是有理数!
教学内容三次备课。

相关文档
最新文档