电介质习题思考题
第十章 静电场中的导体和电介质习题解讲解
第十章静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S,两板分别带正电Qa和Qb,每板表面电荷面密度σ1σ2,σ3= σ4解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。
由电荷守恒定律得σ1Qa Qbσ2 σ3 σ4σ1S+σ2S=Qa (1)σ3S+σ4S=Qb (2)设P,Q是分别位于二导体板内的两点,如图10-2所示,由于P,Q位于导板内,由静电平衡条件知,其场强为零,即图10-1QQσσσσEP=---=0 (3)2ε02ε02ε02ε0EQ=σ1σ2σ3σ4++-=0 (4)2ε02ε02ε02ε0σ2 σ4Q由方程(1)~(4)式得Q+Qb(5)σ1=σ4=a2SQ-Q (6)σ2=-σ3=2S1,4),带等量同号电荷。
图10-2由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面10–2 如图10-3所示,在半径为R的金属球外距球心为a的D处放置点电荷+Q,球内一点P到球心的距离为r,OP与OD夹角为θ,感应电荷在P点产生的场强大小为,方向;P点的电势为。
图10-3图10–4解:(1)由于点电荷+Q的存在,在金属球外表面将感应出等量的正负电荷,距+Q的近端金属球外表面带负电,远端带正电,如图10-4所示。
P点的场强是点电荷+Q 在P点产生的场强E1,与感应电荷在P点产生的场强E2的叠加,即EP=E1+E2,当静电平衡时,EP=E1+E2=0,由此可得E2=-E1=-Q4πε0(a+r-2arcosθ)22er其中er是由D指向P点。
因此,感应电荷在P点产生的场强E2的大小为101E2=Q4πε0(a+r-2arcosθ)22方向是从P点指向D点。
(2)静电平衡时,导体是等势体。
P点的电势VP等于球心O点的电势VO。
而由电势叠加原理,球心O点的电势VO是由点电荷+Q在该点的电势V1和感应电荷在该点的电势V2的叠加,即VP=VO=V1+V2其中,点电荷+Q在O点的电势V1为V1=Q 4πε0a由于感应电荷是非均匀地分布在导体球外表面,设球面上面积元dS处的面电荷密度为σ,则它在球心的电势为O点产生的电势为σdS,考虑球的半径是一常量,故整个球面上的感应电荷在球心4πε0RV2= ⎰⎰σdS1=S4πε0R4πε0R ⎰⎰SσdS由电荷守恒可知,感应电荷的代数和V2= ⎰⎰SσdS=0。
大学物理(第四版)课后习题及答案_电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
第十章 静电场中的导体和电介质习题解答
10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。
试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。
习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。
试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。
习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。
静电场中的导体与电介质一章习题解答讲解
静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。
A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) SQ01ε (D) S Q Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。
习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。
把它们串联起来在两端加上1000V 的电压,则[ ](A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有231221==C C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。
所以,应该选择答案(C)。
习题8—3 三个电容器联接如图。
已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。
则此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。
第三章--静电场中的电介质习题及答案
第三章 静电场中的电介质 一、判断题1、当同一电容器部充满同一种均匀电介质后,介质电容器的电容为真空电容器的r ε1倍。
×2、对有极分子组成的介质,它的介电常数将随温度而改变。
√3、在均匀介质中一定没有体分布的极化电荷。
(有自由电荷时,有体分布) ×4、均匀介质的极化与均匀极化的介质是等效的。
×5、在无限大电介质中一定有自由电荷存在。
√6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。
√7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。
√8、在均匀电介质中,只有P为恒矢量时,才没有体分布的极化电荷。
P =恒矢量 0=∂∂+∂∂+∂∂z P y P x P zy x⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=zP y P x P z y x p ρ×9、电介质可以带上自由电荷,但导体不能带上极化电荷。
√10、电位移矢量D 仅决定于自由电荷。
×11、电位移线仅从正自由电荷发出,终止于负自由电荷。
√12、在无自由电荷的两种介质交界面上,Pf E E 线连续,线不连续。
(其中,fE 为自由电荷产生的电场,pE为极化电荷产生的电场) √13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。
√14、在两种介质的交界面上,电场强度的法向分量是连续的。
× 15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。
× 16、当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的r ε分之一。
√二、选择题1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。
则下列说法中不正确的是:(A ) 介质中的场强为真空中场强的r ε1倍。
大学物理(第四版)课后习题及答案_电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
电介质物理课后答案
答:在电场作用下平板电介质电容器的介质表面上的束缚电荷所产
的、与外电场方向相反的电场,起削弱外电场的作用,所以称为
退极化电场。
退极化电场:
平均宏观电场:
充电电荷所产生的电场:
1-3氧离子的半径为 ,计算氧的电子位移极化率。
提示:按公式 ,代入相应的数据进行计算。
1-4在标准状态下,氖的电子位移极化率为 。试求出氖的
解:在交变电场的作用下,由于电场的频率不同,介质的种类、所处
的温度不同,介质在电场作用下的介电行为也不同。
当介质中存在弛豫极化时,介质中的电感应强度D与电场强度E
在时间上有一个显著的相位差,D将滞后于E。 的简单表示式
不再适用了。并且电容器两个极板的电位于真实的电荷之间产生相位
差,对正弦交变电场来说,电容器的充电电流超前电压的相角小于
因素有关?关系如何?如何提高固体电介质的热击穿电压?
答:答案参考课本有关的章节。
3-14根据瓦格纳的热击穿电压的计算公式,解释能否利用增加固体电介质
的厚度来增加固体电介质的热击穿电压,为什么?
答:答案参考课本有关的章节。
3-15简要叙述瓦格纳的热击穿理论;瓦格纳的热击穿理论的实用性如何?
答:答案参考课本有关的章节。
少?
解:真空时:
介质中:
1-19一平行板介质电容器,其板间距离 , ,介电系数 =
2,外界 的恒压电源。求电容器的电容量C;极板上的自由电荷q;
束缚电荷 ;极化强度P;总电矩 ;真空时的电场 以及有效电场
。
解:
1-20边长为10mm、厚度为1mm的方形平板介质电容器,其电介质的相对
介电系数为2000,计算相应的电容量。若电容器外接 的电压,
(整理)静电场中的导体和电介质习题详解
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
第三章静电场中的电介质习题及答案解析
r 分之一。 √
二、选择题
1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为 介质充满电容器。则下列说法中不正确的是:
r 的均匀电
( A ) 介质中的场强为真空中场强的
1
r 倍。
( B) 介质中的场强为自由电荷单独产生的场强的
1
r 倍。
1
( C) 介质中的场强为原来场强的
r 倍。
P;P 的方向平行于球壳直
径,壳内空腔中任一点的电场强度是:
P
E
(A )
30
(B) E 0
E
P
(C)
30
B
E 2P
(D)
30
9. 半径为 R 相对介电常数为 r 的均匀电介质球的中心放置一点电荷
q,则球内电势 的
分布规律是:
q
(A )
4 0r
q
(B)
4 0 rr
q (1 1) q
(C)
4 0 r r R 4 0R
6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中 场强相等。
√
7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。 √
1 r 倍。
8、在均匀电介质中,只有 P 为恒矢量时,才没有体分布的极化电荷。
P =恒矢量
×
Px
Py
Pz 0
p
xy z
Px
Py
Pz
W
(C)
q2 (1 8 0r a
r 1) b 1) b
W
(D)
q2 1 r( 1 1) 80 r ab
B
三、填空题
1、如图,有一均匀极化的介质球,半径为
大学物理(第四版)课后习题及答案电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差 1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R VR =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
导体和电介质2习题解答
1. 关于极化强度,下列陈述错误的是( ) A. 极化强度用来表示电介质的极化程度
B. 若 p 为体积V 内电偶极矩的矢量和,则极化强度 P lim p
V 0 V C. 极化强度的单位为C/m3 D.极化强度是电介质极化后形成的每单位体积内的电偶极矩 解析:本题考查极化强度的概念,基本知识点
C.
P
K R
D.
K PR
解析:本题考查极化电荷与极化强度的关系
习题难度:中
o
er
K R
C/m2
2
习题难度:中
已知极化强度
P
(K
/
r)
,是球坐标系中的表达式,因此需要使用球坐标系 er
中的散度表达式计算。
P
P
1 r 2r
r2
K r
K r2
C/m3
5. 一个半径为 R 的介质球,球内的极化强度 P (K / r)er ,其中 K 为常数。则束缚电
荷面密度 P 为( )
A.
P
K r
B.
K Pr
习题难度:中 由 P P可知, P 的矢量线从负束缚电荷出发,终止于正束缚电荷
4. 一个半径为 R 的介质球,球内的极化强度 P (K / r)er ,其中 K 为常数。则束缚电
荷体密度 P 为( )
A. P rK2
B.
K P r2
C. P K r
D.
K Pr
解析:本题考查极化电荷与极化强度的关系
习题难度:易 极化强度的单位为C/m2 ,所以 C 错
2. 下列陈述错误的是( ) A. 电介质对电场的影响,可归结为极化后极化电荷或电偶极子在真空中所产生的作
10导体和电介质习题解答
第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。
设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aqV 0π4ε=据电势叠加原理,球心处的电势aqV V V 00π4ε='+=。
所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )0002 . D . C 2 . B 2 .A εdE=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。
所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。
用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q11π4 D. 4πq C.π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d+q . 选择题3图选择题2图荷为零,所以有)π4π4000Rqdq V εε-+=。
所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rRq Q = Rrr q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。
大学物理第7章 静电场中的导体和电介质 课后习题及答案
第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。
2013-2014电介质习题解答-推荐下载
2
s s
2 ������������������∞ ������������ ‒ ������∞
������������������∞。因而 B 点其坐标为(������������ + ������∞, ������������ + ������∞
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
静电场中的电介质习题及答案
6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中 场强相等。
V
7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。
V
8、在均匀电介质中,只有为恒矢量时,才没有体分布的极化电荷。
=恒矢量
X
9、电介质可以带上自由电荷,但导体不能带上极化电荷。
V
10、电位移矢量仅决定于自由电荷。
11、无限长的圆柱形导体,半径为R沿轴线单位长度上带电量入,将此圆柱形导体放在无
限大的均匀电介质中,则电介质表面的束缚电荷面密度是()。
半径为a的长直导线,外面套有共轴导体圆筒,筒的内半径为 电常数为的均匀介质,沿轴线单位长度上导线带电为入,圆筒带电为
13、一圆柱形的电介质截面积为S,长为L,被沿着轴线方向极化,已知极化强度沿X方向,
X
15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场
中原有位置的过程中外力作的功。
X
16、当均匀电介质充满电场存在的整个空间时,介质中的场强为自由电荷单独产生的场强的
分之一。
V
二、选择题
1.一平行板真空电容器, 充电到一定电压后与电源切断, 把相对介质常数为的均匀电介质 充满电容器。则下列说法中不正确的是:
A
3.在图中,A是电量的点电荷,B是一小块均匀的电介质,都是封闭曲面,下列说法中不
正确的是:
(A)
(B)
(C)
(D)
D
4.在均匀极化的电介质中,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极
化强度垂直,当h?r时,则空腔中心的关系为:
A)
B
(D)
C
5.在均匀极化的,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极化强度垂
大学物理-静电场中的导体和电介质习题课和答案解析
一、基本概念:
1、电容
定义:C q U
C q U1 U2
2、电极化强度矢量:
P
pe
V
P 0eE
3、电位移矢量: D o E P
各 向 同 性 介 质D 0 r E E
C孤 立 球 4 0R
C平 板
0S
d
C球 形
4 0 R1R2
R2 R1
C柱 形
2 0 L
ln R2
与A 同心的球壳导体。三者带电量分别为QA、QB、 QC,求从内到外五个导体面上的电量分布?
q1 QA
q2 QA
q3 QB QA q4 (QB QA )
C B A QA QB
QC
q5 QC QB QA
2、关于导体的接地问题:
★ 没有掌握接地的根本意义,认为只要接地,导体的 接地面一定没有电荷。
A) W W0
√C)W rW0
B) W (1 r )W0 D) W W0 / r
2、一平行板电容器充电后,与电源断开,然后再充满相对
电容率为 r 的各向同性均匀电介质.则其电容C、两极板
间电势差U12及电场能量We将如何变化:
√A) C U12 We
B) C U12 We
[例2] 接地导体球附近有一个带电体时,接地端是否一定 没有电荷?
[例3] 设导体空腔A,带有电荷+Q,空腔内有带电+q 的导体B。 求下列情况下接地的导体面是否都 没有电荷?
Q
Q
AB
q
A
B
q
[思考与练习]
1、一空气平行板电容器,接电源充电后电容器中储存的能
量为W0 。在保持电源接通的条件下,在两极板间充满相 对电容率为 εr 的各向同性均匀电介质,则该电容器中储 存的能量W为:
9静电场中的电介质习题与解答
静电场中的电介质1、在一半径为R 1的长直导线外,套有氯丁橡胶绝缘护套,护套外半径为R 2,相对电容率为εr 。
设沿轴线单位长度上,导线的电荷密度为λ。
试求介质层内的D 、E 和P 。
分析:将长直带电导线视作无限长,自由电荷均匀分布在导线表面。
在绝缘介质层的内、外表面分别出现极化电荷,这些电荷在内外表面呈均匀分布。
取同轴柱面为高斯面,由介质中的高斯定理可得电位移矢量D 的分布。
在介质中E D r εε0=,E D P 0ε-=,可进一步求得电场强度E 和电极化强度矢量P 的分布。
解:由介质中的高斯定理,有⎰=⋅=⋅L rL D d λπ2S D 得 r re D πλ2=在均匀各向同性介质中 r r rre DE επελεε002==rr re E D P πλεε2)11(0-=-=2、一扁平电介质板(εr =4)垂直放在一均匀电场里,如果电介质表面上的极化电荷面密度为σ=0.5C/m 2,求:(1)电介质里的电极化强度和电位移;(2)介质板外的电位移;(3)介质板内外的场强。
分析:根据均匀、各向同性电介质极化的极化规律求解。
解:(1)2/5.0m C P n ==σ,2/667.01m C P D r r =-=εε(2)2/667.0m C D D ==' (3)m V DE r /1088.1100⨯==εε,m V DE /1053.7100⨯==ε3、如图所示,平板电容器极板面积为S ,间距为d ,中间有两层厚度各为d 1和d 2(d=d 1+d 2)、电容率各为ε1和ε2的电介质,试计算其电容。
分析:电容器带电时两极板都是等势体。
两层均匀、各向同性介质的介面平行于极板,也是等势面。
不考虑边缘效应时,极板上的自由电荷以及介质各界面的极化电荷均呈均匀分布状态。
因此,两层介质内部各自都是均匀电场,即D 线连续,E 线不连续。
解:设极板所带自由电荷为q ,D 和E 方向都与极板垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1313-1.如图为半径为R 的介质球,试分别计算下列两种情况下球表面上的极化面电荷密度和极化电荷的总和,已知极化强度为P (沿x 轴)。
(1)0P P =;(2)R xP P 0=。
解:可利用公式'cos SSq P d S P d S θ=-⋅=-⎰⎰⎰⎰vv 乙算出极化电荷。
首先考虑一个球的环形面元,有:2sin ()d S R Rd πθθ=, (1)0P P =时,由'cos P σθ=知10'cos P σθ=,220100'cos 2sin sin 2202R P q P R d d πππθπθθθθ=-⋅=-=⎰⎰;(2)R x P P 0=时,22000cos 'cos cos cos x R P P P R Rθσθθθ===2222200'cos 2sin 2cos cos q PR d RPd ππθπθθπθθ=-⋅=⎰⎰22300024cos 33R P R P πππθ==-。
13-2.平行板电容器,板面积为2cm 100,带电量C 109.87-⨯±,在两板间充满电介质后,其场强为V/m 104.16⨯,试求:(1)介质的相对介电常数r ε;(2)介质表面上的极化电荷密度。
解:(1)由0r E σεε=,有:18.710100104.11085.8109.8461270=⨯⨯⨯⨯⨯⨯==---ES Q r εε(2)520'(1)7.6610r P E C m σεε-==-=⨯13-3.面积为S 的平行板电容器,两板间距为d ,求:(1)插入厚度为3d,相对介电常数为r ε的电介质,其电容量变为原来的多少倍?(2)插入厚度为3d的导电板,其电容量又变为原来的多少倍?解:(1)电介质外的场强为:00E σε=, 而电介质内的场强为:0r rE σεε=, 所以,两板间电势差为:00233r d U d σσεεε=⋅+⋅, 那么,03(21)r r S Q S C U U d εεσε===+,而00S C dε=,∴0321r r CC εε=+; (2)插入厚度为3d的导电板,可看成是两个电容的串联,有:00123/3S SC C d d εε===,∴0021212323C dS C C C C C ==+=ε⇒032C C =。
Pv θ3d 3d 3d13-4.在两个带等量异号电荷的平行金属板间充满均匀介质后,若已知自由电荷与极化电荷的面电荷密度分别为0σ与σ'(绝对值),试求:(1)电介质内的场强E ;(2)相对介电常数r ε。
解:(1)由:1(')SE d S q q ε⋅=+∑⎰⎰v v Ò,有:00'E σσε-=(∵'σ给出的是绝对值)(2)又由00r E σεε=,有:00000000''r E σσεσεεεσσσσ==⋅=--。
13-5.在导体和电介质的分界面上分别存在着自由电荷和极化电荷。
若导体内表面的自由电荷面密度为σ,则电介质表面的极化电荷面密度为多少?(已知电介质的相对介电常数为r ε) 解:由'Sq P d S =-⋅⎰⎰vv Ò,考虑到0(1)rP E εε=-v v , 有:0'(1)Sr q E d S εε⋅=--⎰⎰vv Ò,与'Sq q E d S ε+⋅=⎰⎰vv Ò联立,有:00''(1)r q q q εεε+-=-,得:(1)'r rqq εε-=-,∴1'r rεσσε-=-。
13-6.如图所示,半径为0R 的导体球带有电荷Q ,球外有一层均匀介质同心球壳,其内、外半径分别为1R 和2R ,相对电容率为r ε,求:介质内、外的电场强度大小和电位移矢量大小。
解:利用介质中的高斯定理i SS D d S q ⋅=∑⎰⎰vv Ò内。
(1)导体内外的电位移为:0r R >,24QD r π=;0r R <,0D =。
(2)由于0rDE εε=,所以介质内外的电场强度为:0r R <时,10E =;10R r R >>时,2204DQ E rεπε==;21R r R >>时,3204r r DQ E rεεπεε==;2r R >时,4204DQ E rεπε==。
13-7.一圆柱形电容器,外柱的直径为cm 4,内柱的直径可以适当 选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度 大小为0200/E kV m =,试求该电容器可能承受的最高电压。
解:由介质中的高斯定理,有:02r E rλπεε=,∴00ln 22R R r r r rr R U E d r d r r r λλπεεπεε=⋅==⎰⎰v v, ∵击穿场强为0E ,∴002r r E λπεε=,则0ln r RU rE r=, rεσ+σ-•rR令0r r r dU d r==,有:000ln0R E E r -=,∴0ln 1R r =⇒eR r =0, ∴0max 000ln147R E R U r E KV r e===。
13-8.一平行板电容器,中间有两层厚度分别为1d 和2d 的电介质,它们的相对介电常数为1r ε和2r ε,极板面积为S ,求电容量。
解:∵12D D σ==,∴101r E σεε=,202r E σεε=, 而:1211220102r r d d U E d E d σσεεεε=+=+, 有:001212211212r r r r r r S S Q C d d U d d εεεεεεεε===++。
13-9.利用电场能量密度212e w E ε=计算均匀带电球体的静电能,设球体半径为R ,带电量为Q 。
解:首先求出场强分布:13022044Q r E r R E R Q E r R r πεπε⎧=<⎪⎪⎨⎪=>⎩=⎪∴2222200032000()4()422424R RQ r Q W E dV r d r r d r R rεεεπππεπε∞==+⎰⎰⎰⎰⎰20320Q Rπε=。
13-10.半径为cm 0.2的导体外套有一个与它同心的导体球壳,球壳的内外半径分别为cm 0.4和cm 0.5,当内球带电量为C 100.38-⨯时,求:(1)系统储存了多少电能?(2)用导线把壳与球连在一起后电能变化了多少?解:(1)先求场强分布:112122032333200404E r R q E R r R r E R r R q E r E r R πεπε=<⎧⎪⎪=<<⎪⎨=<<⎪⎪=⎩=>⎪考虑到电场能量密度212e w E ε=,有:球与球壳之间的电能: 2122220012001211()4()2248R R q q W E dV r dr r R R εεππεπε===-⎰⎰⎰⎰41.0110J -=⨯ 球壳外部空间的电能:3222222003()42248R q q W E dV r dr rR εεππεπε∞===⎰⎰⎰⎰58.110J -=⨯,∴系统储存的电能:412 1.8210W W W J -=+=⨯;(2)如用导线把壳与球连在一起,球与球壳内表面所带电荷为0,所以1'0W =而外表面所带电荷不变,那么:52'8.110W W J -==⨯。
13-11.球形电容器内外半径分别为1R 和2R ,充有电量Q 。
(1)求电容器内电场的总能量;(2)证明此结果与按CQ W 2e 21=算得的电容器所储电能值相等。
解:(1)由高斯定理可知,球内空间的场强为:204QE r πε=,(12R r R <<)利用电场能量密度212e w E ε=,有电容器内电场的能量:2122222002120012012()11()4()22488R R Q R R Q Q W E dV r d r r R R R R εεππεπεπε-===-=⎰⎰⎰⎰; (2)由21212120012012()11()444R R R R Q R R Q Q U dr rR R R R πεπεπε-==-=⎰, 则球形电容器的电容为:12120214R R R R QC U R R πε==-,那么,2221012()128e Q R R Q W C R R πε-==。
(与前面结果一样)13-12.一平行板电容器的板面积为S ,两板间距离为d ,板间充满相对介电常数为r ε的均匀介质,分别求出下述两种情况下外力所做的功:(1)维持两板上面电荷密度0σ不变而把介质取出;(2)维持两板上电压U 不变而把介质取出。
解:(1)维持两板上面电荷密度0σ不变,有介质时:2201001122r rSd W E Sd σεεεε==,(0r D E εε=,0D σ=)取出介质后:2202001122Sd W E Sd σεε==,外力所做的功等于静电场能量的增加:2021011(1)2rSd W W W σεε∆=-=-;(2)维持两板上电压U 不变,有介质时:20212121U dS CU W r εε==, 取出介质后:20222121U dS CU W ε==,∴02211(1)2r S W W W U d εε∆=-=-。
考虑外力对电源做功:)1(0221-=∆-=∆-=r dS U C U q U A εε所以外力所做的功为:)1(21021r dSU W A A εε-=∆+=13-13.在边长为a 的等边三角形的三个顶点上各有一电荷为+q 的点电荷,而在三角形中心处有一电荷为3/q -的点电荷,如图所示.求此点电荷系的电势能.解:三角形三个顶点上的电荷间的电势能为a q W 021π43ε⋅=三角形中心上的电荷与三个顶点的电荷间的电势能为()()()a q a qq W 0202π433/π43/3εε-=⋅-⋅= 总电势能 W = W 1 + W 20π43π430202=-=aq a q εε答案:0。
思考题1313-1.介质的极化强度与介质表面的极化面电荷是什么关系? 答:θP σcos ='。
13-2.不同介质交界面处的极化电荷分布如何?答:1σ'=⋅11n P e ,2σ'=⋅22n P e ()P σ=-⋅12n P P e 即在两种介质的交界面上,极化电荷的面密度等于两种介质的极化强度的法向分量之差。
13-3.介质边界两侧的静电场中D 及E 的关系如何?答:在两种介质的交界面上,若无自由电荷电位移矢量在垂直界面的分量是连续的,平行于界面的分量发生突变。