中考数学重点精选:必备公式大全(一)
初中数学知识点中考必背公式
初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。
中考数学必用公式整理归纳
中考数学必用公式整理归纳中考数学中常常使用的公式有很多,为了方便记忆和应用,可以对这些公式进行整理归纳。
以下是一些中考数学常用的公式:1.等差数列求和公式:若等差数列的首项为a₁,公差为d,共有n项,则它的和S为:S=(a₁+aₙ)×n/22.等比数列求和公式:若等比数列的首项为a₁,公比为q,且,q,<1,共有n项,则它的和S为:S=a₁×(1-qⁿ)/(1-q)3.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²4.立方差公式:(a + b)³ = a³ + 3a²b + 3ab² + b³(a - b)³ = a³ - 3a²b + 3ab² - b³5.二次方程求根公式:对于一元二次方程ax² + bx + c = 0,其中a ≠ 0,它的解为:x₁ = (-b + √(b² - 4ac)) / (2a)x₂ = (-b - √(b² - 4ac)) / (2a)6.围长公式:正方形的周长为4s,其中s为边长。
长方形的周长为2(l+w),其中l为长,w为宽。
三角形的周长为a+b+c,其中a、b、c为三条边的长度。
7.三角函数公式:sin(a ± b) = sin a cos b ± cos a sin bcos(a ± b) = cos a cos b ∓ sin a sin btan(a ± b) = (tan a ± tan b) / (1 ∓ tan a tan b)8.三角函数和勾股定理的关系:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = 1 / tanθsecθ = 1 / cosθcscθ = 1 / sinθsin²θ / cos²θ = tan²θ1 + tan²θ = sec²θ1 + cot²θ = csc²θ9.平方根公式:√(a±b)=√a±√b10.解直角三角形的三角函数值:对于已知直角三角形的两个直角边a和b,斜边为c,可得以下三角函数值:sinθ = a / ccosθ = b / ctanθ = a / b。
中考数学重要公式全归纳
中考数学重要公式全归纳1.一元二次方程公式:对于一元二次方程ax²+bx+c=0,其中a≠0,它的解可以通过以下公式求得:x = (-b±√(b²-4ac))/(2a)2.相似三角形的边比公式:如果两个三角形ABC和DEF相似,且对应边的长度比为a:b,那么它们的任意边之间的长度比也为a:b。
3.集合的基本运算公式:并集的运算公式:A∪B={x,x∈A或x∈B}交集的运算公式:A∩B={x,x∈A且x∈B}差集的运算公式:A-B={x,x∈A且x∉B}4.三角函数的基本关系式:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a² = b² + c² - 2bc*cosA正切定理:tanA = sinA/cosA5.直角三角形的勾股定理:在直角三角形ABC中,设∠C=90°,边长分别为a、b和c,则有a²+b²=c²。
6.平行四边形的性质:对于平行四边形ABCD,我们有以下公式:对角线的长度:AC²+BD²=2(AB²+BC²)对角线互为平行四边形的中点连线:AC=BD对角线互相垂直:AB²+BC²=AD²+DC²7.等腰三角形的性质:对于等腰三角形ABC,我们有以下公式:等腰边的长度:AC=BC底角:∠A=∠B8.任意三角形的面积公式:对于任意三角形ABC,设边长分别为a、b和c,它的面积S可以通过以下公式求得:S=√[s(s-a)(s-b)(s-c)]其中s=(a+b+c)/2称为半周长。
9.相似三角形的面积比公式:如果两个三角形ABC和DEF相似,且对应边的长度比为a:b,那么它们的面积之比也为a²:b²。
10.二次函数的顶点公式:对于二次函数y = ax²+bx+c(a ≠ 0),它的顶点坐标可以通过以下公式求得:顶点的x坐标:x=-b/(2a)顶点的y坐标:y = -(b²-4ac)/(4a)。
中考数学必背公式大全
中考数学必背公式大全1.平均数的计算公式:平均数=总和/个数2.绝对值的计算公式:a,=a(a≥0)a,=-a(a<0)3.两点间距离的计算公式:AB的距离=√[(x2-x1)²+(y2-y1)²]4.一次函数的表示公式:y = kx + b5.表示面积公式:长方形面积=长×宽正方形面积=边长²三角形面积=底×高/2圆面积=π×半径²6.三角函数的定义:正弦函数(sin):sinθ = 对边 / 斜边余弦函数(cos):cosθ = 邻边 / 斜边正切函数(tan):tanθ = 对边 / 邻边7.代数开方法则:√(a×b)=√a×√b√(a÷b)=√a÷√b√(a²)=a√(a×a)=a8.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²9.二次根式的展开公式:√(a±b)=√a±√b10.百分数与小数之间的转换:百分数转小数:百分数除以100小数转百分数:小数乘以10011.利息的计算公式:利息=本金×利率×时间12.杨辉三角形的计算公式:C(n,m)=C(n-1,m-1)+C(n-1,m)其中C(n,m)表示从n个中选择m个的组合数。
以上是一些中考数学常用的公式,掌握这些公式可以有效地帮助你解决中考数学问题。
在备考过程中,多进行公式的运用和练习,加深对公式的理解,提高解题能力。
祝你取得优异的成绩!。
初中数学必背公式大全初中数学重要公式定律汇总
初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。
中考数学必用公式整理归纳
中考数学必用公式整理归纳数学是一门需要不断运用公式和定理的学科,而在中考数学中,更是需要掌握并熟练运用一些必用公式,下面就是一些中考数学必用公式的整理归纳。
一、代数部分的公式1.加减法:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b)=a^2-b^22.同底数幂运算:a^m×a^n=a^(m+n)(a^m)^n=a^(m×n)a^(-m)=1/a^m3.分式运算:a/b×c/d=(a×c)/(b×d)a/b÷c/d=(a×d)/(b×c)(a/b)^n=a^n/b^n4.特殊平方差公式:a^2-b^2=(a+b)(a-b)5.二次方程的解法:根据二次方程ax^2+bx+c=0的解的公式,解为:x = (-b±√(b^2-4ac))/2a二、几何部分的公式1.面积公式矩形的面积:长×宽正方形的面积:边长^2三角形的面积:底×高/2梯形的面积:(上底+下底)×高/2圆的面积:πr^2(π取3.14或取近似值)扇形的面积:θ/360°×πr^22.周长和周角公式矩形的周长:(长+宽)×2正方形的周长:边长×4圆的周长:2πr扇形的周长:弧长+半径×23.三角形的余弦定理a^2 = b^2 + c^2 - 2bc×cosAb^2 = a^2 + c^2 - 2ac×cosBc^2 = a^2 + b^2 - 2ab×cosC4.三角形的正弦定理a/sinA = b/sinB = c/sinC5.相似三角形的边比公式两个相似三角形的对应边的长的比例是相等的。
三、概率与统计部分的公式1.事件发生的概率事件发生的概率=发生的可能性数/总的可能性数2.互斥事件的概率两个互斥事件的概率之和等于各自事件的概率之和。
最新初中必背数学公式
最新初中必背数学公式(1)平面直角坐标系的公式:1)直线的一般式:Ax+By+C=02)圆的一般式:(x-a)²+(y-b)²=r²3)椭圆的一般式:(x-a)²/a²+(y-b)²/b²=14)双曲线的一般式:(x-a)²/a²-(y-b)²/b²=15)圆的方程:x²+y²+2gx+2fy+c=0(2)几何公式:1)直角三角形的勾股定理:a²+b²=c²2)正多边形的外接圆半径:R=a/2tan(180°/n) 3)正多边形的内接圆半径:r=a/2sin(180°/n) 4)正多边形的每个内角的度数:180°-360°/n 5)正n边形的面积:S=a²n/4tan(180°/n)(3)三角函数公式:1)正弦定理:a/sinA=b/sinB=c/sinC2)余弦定理:a²=b²+c²-2bc*cosA3)正弦求角公式:sin A = a/b4)余弦求角公式:cos A = a/b5)正切求角公式:tan A = a/b(4)立体几何公式:1)棱锥体的表面积:S=πrs+πr²2)棱柱的表面积:S=2πrh+2πr²3)球的表面积:S=4πr²4)球的体积:V=4/3πr³5)三棱柱的体积:V=h(a²+b²+c²)/3(5)微积分公式:1)求积公式:∫abf(x)dx=F(b)-F(a)2)极限定义:limx→a f(x) = L3)泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+f(n)(a)(x-a)n/n!+…4)导数性质:[f(x)+g(x)]‘=f'(x)+g'(x)。
初中数学-中考数学必背公式大全
中考数学必背公式大全(1)1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
中考数学重点精选必备公式大全
中考数学重点精选必备公式大全1.代数公式-平方差公式:$(a+b)(a-b)=a^2-b^2$- 二次方程求解公式:对于二次方程$ax^2+bx+c=0$,解为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 一次方程的解法:对于一次方程$ax+b=0$,解为$x=-\frac{b}{a}$ -等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)$-等比数列前n项和公式:当$,r,<1$时,$S_n=\frac{a_1(1-r^n)}{1-r}$2.几何公式-勾股定理:直角三角形的斜边的平方等于其他两条边的平方和。
$a^2+b^2=c^2$- 三角形的面积公式:对于三角形,面积$S=\frac{1}{2}bh$,其中b为底边长,h为对应的高- 圆的面积公式:对于半径为r的圆,面积$S=\pi r^2$- 圆的周长公式:对于半径为r的圆,周长$C=2\pi r$- 平行四边形的面积公式:$S=ab\sin\theta$,其中a、b为两边的长度,$\theta$为两边的夹角3.概率公式- 事件概率:对于任意一个事件A,概率$P(A)=\frac{n(A)}{n(S)}$,其中n(A)为事件A发生的次数,n(S)为样本空间S中元素的个数- 互斥事件概率:对于互斥事件A和B,概率$P(A\cupB)=P(A)+P(B)$,其中$P(A\cup B)$表示事件A和B中至少发生一个的概率- 独立事件概率:对于独立事件A和B,概率$P(A\capB)=P(A)\cdot P(B)$,其中$P(A\cap B)$表示事件A和B同时发生的概率4.成比例公式- 两个比例相等:若$\frac{a}{b}=\frac{c}{d}$,则称a、b和c、d成比例,可以写成$a:b=c:d$- 三个比例相等:若$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$,则称a、b、c和c、d、e成比例,可以写成$a:b:c=d:e:f$- 分项相等:若$\frac{a}{b}=\frac{c}{d}$,则称a与b成比例,c与d成比例,可以写成$a:b=c:d$。
中考数学必背公式大全
中考数学必背公式大全(1)1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
中考数学必背公式大全
中考数学必背公式大全1.数学符号:-±表示正负两个数都可能-√表示开方-Π表示乘积-∑表示求和-∈表示属于-∝表示成正比-≠表示不等于-≈表示约等于-∠表示角度-△表示三角形2.基本运算:-加法:a+b=b+a-乘法:a×b=b×a-减法:a-b≠b-a-除法:a÷b≠b÷a3.平均数:- 算术平均数:A = (a1 + a2 + ... + an) ÷ n- 加权平均数:A = (a1 × w1 + a2 × w2 + ... + an × wn) ÷ (w1 + w2 + ... + wn)4.百分数:-百分数与小数的转换:百分数=小数×100-百分数与分数的转换:百分数=分子÷分母×1005.比例:-比例的四种关系:-同比例:a∶b=c∶d-反比例:a×b=c×d-合比例:a∶b=c∶d+e-代比例:a:b=(c+d):e- 比例函数关系:y = kx (k为常数)6.百分数、比例与利润关系:-利润率:利润率=利润÷成本×100-售价:售价=成本×(1+利润率÷100)-原价:原价=售价×(100÷(100+折扣))7.两线段关系:-平行线与定比分点:假设AB∥CD,E为AB上的一点,则CE:DE=AC:BD-相似三角形:三角形ABC与三角形DEF相似,有AB∶DE=BC∶EF=AC∶DF8.三角形关系:-三角形内角和:三角形内角和=180°-直角三角形:-毕达哥拉斯定理:a²+b²=c²- 正弦定理:sinA = a ÷ c, sinB = b ÷ c, sinC = a ÷ b (c 为斜边)- 余弦定理:a² = b² + c² - 2bc × cosA (A为对应的角,a为对应的边)9.面积与体积:-矩形面积:面积=长×宽-圆面积:面积=π×半径²-三角形面积:面积=½×底×高-平行四边形面积:面积=底×高-梯形面积:面积=½×(上底+下底)×高-圆柱体体积:体积=π×半径²×高-圆锥体体积:体积=⅓×π×半径²×高-球体体积:体积=⅔×π×半径³10.几何关系:-同位角关系:同位角相等-内错角关系:互补角和为180°、余角和为90°、补角和为90°-外错角关系:互补角和为180°、余角和为90°-平行线与角关系:同旁内角、同旁外角相等、对顶内角互补以上是中考数学必背公式的大致总结,掌握这些公式对于数学考试至关重要。
中考数学必背公式大全
中考数学必背公式大全1 同角或等角的补角相等 2 同角或等角的余角相等 3 过两点有且只有一条直线 4 两点之间线段最短 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS)有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 定理线段垂直平分线上的点和这条线段两个端点的距离相等 38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 40 直角三角形斜边上的中线等于斜边上的一半 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48 定理四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理n边形的内角的和等于(n-2)×180° 51 推论任意多边的外角和等于360° 52 平行四边形性质定理1 平行四边形的对角相等 53 平行四边形性质定理2 平行四边形的对边相等 54 推论夹在两条平行线间的平行线段相等 55 平行四边形性质定理3 平行四边形的对角线互相平分 56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理1 矩形的四个角都是直角 61 矩形性质定理2 矩形的对角线相等 62 矩形判定定理1 有三个角是直角的四边形是矩形 63 矩形判定定理2 对角线相等的平行四边形是矩形 64 菱形性质定理1 菱形的四条边都相等 65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即S=(a×b)÷2 67 菱形判定定理1 四边都相等的四边形是菱形 68 菱形判定定理2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理1 关于中心对称的两个图形是全等的 72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 对角线相等的梯形是等腰梯形 75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 78 等腰梯形性质定理等腰梯形在同一底上的两个角相等 79 等腰梯形的两条对角线相等 80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS) 95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109 定理不在同一直线上的三点确定一个圆。
中考数学重点必备公式大全
中考数学重点必备公式大全1.代数公式- 平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$,$(a-b)^2 = a^2 - 2ab + b^2$。
- 二次根式乘法公式:$(\sqrt{a} + \sqrt{b}) (\sqrt{a} -\sqrt{b}) = a - b$。
- 一元二次方程求根公式:$x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$,其中,方程为$ax^2 + bx + c = 0$。
- 相似三角形比例公式:$\frac{a}{a'} = \frac{b}{b'} =\frac{c}{c'}$。
2.几何公式- 单位圆的周长公式:$L = 2\pi r$。
- 圆的面积公式:$S = \pi r^2$。
-直角三角形勾股定理:$c^2=a^2+b^2$。
- 三角形面积公式:$S = \frac{1}{2}bh$,其中,$b$为底边长,$h$为对应高。
- 平行四边形面积公式:$S = bh$,其中,$b$为底边长,$h$为高。
- 梯形面积公式:$S = \frac{1}{2}(a + b)h$,其中,$a$和$b$为上底和下底的长度,$h$为高。
- 圆锥体积公式:$V = \frac{1}{3}\pi r^2 h$,其中,$r$为底圆半径,$h$为高。
- 球体积公式:$V = \frac{4}{3}\pi r^3$。
3.概率与统计公式- 事件的概率:$P(A) = \frac{n(A)}{n(S)}$,其中,$P(A)$为事件$A$的概率,$n(A)$为事件$A$的样本空间中有利情况的数目,$n(S)$为样本空间中总情况的数目。
- 随机事件的加法公式:$P(A \cup B) = P(A) + P(B) - P(A \cap B)$,其中,$P(A \cup B)$表示事件$A$和事件$B$的和事件的概率,$P(A \cap B)$表示事件$A$和事件$B$的交事件的概率。
数学中考必考知识点公式
数学中考的必考知识点包括整数、小数、分数、百分数、代数式与方程、数列、图形与变换、几何运动、三角函数等内容。
以下是这些知识点的相关公式和参考内容。
1.整数:•整数的加法和减法公式:a + b = b + a,a - b = a + (-b)•整数的乘法和除法公式:a × b = b × a,a ÷ b = a/b•整数的乘方公式:a^m × a^n = a^(m + n),a^m ÷ a^n = a^(m - n)2.小数:•小数的加法和减法公式:a + b = b + a,a - b = a + (-b)•小数的乘法和除法公式:a × b = b × a,a ÷ b = a/b•小数的乘方公式:a^m × a^n = a^(m + n),a^m ÷ a^n = a^(m - n)3.分数:•分数的加法和减法公式:a/b + c/d = (ad + bc) / bd,a/b - c/d = (ad - bc) / bd•分数的乘法和除法公式:a/b × c/d = ac/bd,a/b ÷ c/d = ad/bc•分数的乘方公式:(a/b)^n = a n/b n4.百分数:•百分数的转化公式:百分数 = 小数 × 100%,百分数 = 分数 × 100%•百分数的加法和减法公式:a% + b% = (a + b)%,a% - b% = (a - b)%•百分数的乘法和除法公式:a% × b% = (a × b)%,a% ÷ b% = (a ÷ b)%5.代数式与方程:•一元一次方程:ax + b = 0,解为x = -b/a•一元一次方程组:ax + by = c,dx + ey = f,解为x = (ce - fb) / (ae - bd),y = (af - cd) / (ae - bd)•一元二次方程:ax^2 + bx + c = 0,解为x = (-b ± √(b^2 - 4ac)) / (2a)6.数列:•等差数列的公差公式:an = a1 + (n - 1)d•等差数列的前n项和公式:Sn = n(a1 + an) / 2•等比数列的公比公式:an = a1 × r^(n - 1)•等比数列的前n项和公式(r ≠ 1):Sn = a1(1 - r^n) / (1 - r)7.图形与变换:•长方形的面积公式:面积 = 长 × 宽•正方形的面积和周长公式:面积 = 边长^2,周长 = 4 × 边长•三角形的面积公式:面积 = 底边 × 高 / 2•圆的面积和周长公式:面积= π × 半径^2,周长= 2 × π × 半径•旋转变换的坐标公式:顺时针旋转θ°后的新坐标(x’, y’) = (x × cosθ - y × sinθ, x × sinθ + y × cosθ)8.几何运动:•平均速度的公式:平均速度 = 总位移 / 总时间•加速度的公式:加速度 = (末速度 - 初始速度)/ 时间9.三角函数:•正弦函数的定义:sinθ = 对边 / 斜边•余弦函数的定义:cosθ = 邻边 / 斜边•正切函数的定义:tanθ = 对边 / 邻边•三角函数的基本关系:sin^2θ + cos^2θ = 1,tanθ = sinθ / cosθ以上是数学中考必考知识点的一部分公式和参考内容,希望能帮助到你备考数学中考。
中考数学公式大全总结
中考数学公式大全总结一.基本运算公式:1.加法和减法公式:a+b=b+aa+(b+c)=(a+b)+ca-b=a+(-b)2.乘法和除法公式:a×b=b×aa×(b×c)=(a×b)×ca÷b=a×(1/b)3.乘法分配律:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c二.整数运算公式:1.整数乘法公式:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c2.整数除法公式:a÷b=a×(1/b)3.整数的幂:a^m×a^n=a^(m+n)(a^m)^n=a^(m×n)a^m÷a^n=a^(m-n)a^0=1三.分数运算公式:1.分数乘法公式:a/b×c/d=(a×c)/(b×d)2.分数除法公式:(a/b)÷(c/d)=(a×d)/(b×c) 3.分数的加减法公式:a/b+c/d=(a×d+b×c)/(b×d)a/b-c/d=(a×d-b×c)/(b×d)四.代数式公式:1.公式展开:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22.公式因式分解:a^2-b^2=(a+b)(a-b)a^3 - b^3 = (a - b)(a^2 + ab + b^2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)五.平方根公式:1.平方根的乘除法:√(a×b)=√a×√b√(a÷b)=√a÷√b2.平方根的加减法:√(a+b)≠√a+√b√(a-b)≠√a-√b六.平方根的化简公式:1.合并根式:√a×√b=√(a×b)√a÷√b=√(a÷b)√(√a)=√a2.倍数根:n√(a^m)=a^(m/n)七.图形的周长和面积公式:1.长方形:周长:P=2×(长+宽)面积:S=长×宽2.正方形:周长:P=4×边长面积:S=边长×边长3.三角形:周长:P=边1+边2+边3面积:S=(底×高)/24.圆形:周长:C=2×π×半径面积:S=π×半径^2八.百分数和比例公式:1.百分数与小数和分数的关系:百分数×0.01=小数百分数×1/100=分数2.百分数的增减法:原数±原数×百分数3.比例的计算:已知比例a:b,可以得出:a:b=a/x:b/x=a/(a+b):b/(a+b)九.坐标系中的公式:1.坐标之间的距离:AB=√((x2-x1)^2+(y2-y1)^2) 2.点斜式方程:y-y1=k(x-x1),其中k为斜率。
中考数学必背公式大全
初中数学总复习资料(条理清晰)中考数学必背公式大全(1)1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
中考数学必背公式大全
中考数学必背公式大全数学是中考中的重要科目,而掌握好各种公式是取得好成绩的关键。
下面为大家整理了一份中考数学必背公式大全,希望能对同学们有所帮助。
一、代数部分1、实数运算(1)加法交换律:a + b = b + a(2)加法结合律:(a + b) + c = a +(b + c)(3)乘法交换律:ab = ba(4)乘法结合律:(ab)c = a(bc)(5)乘法分配律:a(b + c) = ab + ac2、幂运算(1)同底数幂相乘:a^m × a^n = a^(m + n)(2)同底数幂相除:a^m ÷ a^n = a^(m n) (a ≠ 0)(3)幂的乘方:(a^m)^n = a^(mn)(4)积的乘方:(ab)^n = a^n b^n3、二次根式(1)√a × √b =√(ab) (a ≥ 0,b ≥ 0)(2)√a ÷ √b =√(a / b) (a ≥ 0,b > 0)4、一元二次方程(1)一般形式:ax^2 + bx + c = 0 (a ≠ 0)(2)求根公式:x =b ± √(b^2 4ac) /(2a)5、不等式(1)若 a > b,b > c,则 a > c(2)不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(3)不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变。
二、函数部分1、一次函数(1)一般式:y = kx + b (k、b 为常数,k ≠ 0)(2)当 k > 0 时,y 随 x 的增大而增大;当 k < 0 时,y 随 x 的增大而减小。
2、反比例函数(1)一般式:y = k / x (k 为常数,k ≠ 0)(2)当 k > 0 时,图象在一、三象限,在每一象限内 y 随 x 的增大而减小;当 k < 0 时,图象在二、四象限,在每一象限内 y 随 x 的增大而增大。
中考数学重要公式
中考数学重要公式1.直角三角形的勾股定理:凡是直角三角形都满足勾股定理,即直角三角形斜边的平方等于两腰的平方和。
勾股定理公式:c²=a²+b²2.等腰三角形:等腰三角形两边相等,两底角相等。
等腰三角形底角公式:a=b3.等边三角形:等边三角形三条边相等,三个内角也相等,每个角都是60度。
等边三角形内角公式:a=b=c=60度4.平行四边形:对角线互相平分。
平行四边形对角线公式:对角线相等,且互相平分5.矩形:矩形对角线相等,且互相平分。
矩形对角线公式:对角线相等,且互相平分6.正方形:正方形对角线相等,且互相平分。
正方形对角线公式:对角线相等,且互相平分7.圆的周长和面积:圆的周长公式:C=2πr圆的面积公式:S=πr²8.扇形的周长和面积:扇形周长公式:C=2πr*(θ/360)扇形面积公式:S=πr²*(θ/360)9.椭圆的周长和面积:椭圆周长公式:C=2π*√((a²+b²)/2)椭圆面积公式:S=π*a*b10.球体的体积和表面积:球体体积公式:V=(4/3)*πr³球体表面积公式:S=4πr²11.直角三角形的正弦定理:正弦定理公式:a/sinA = b/sinB = c/sinC12.直角三角形的余弦定理:余弦定理公式:c² = a² + b² - 2ab * cosC13.直角三角形的正切定理:正切定理公式:tanA = a/b14.等腰三角形的高公式:等腰三角形高公式:h=√(a²-b²/4)15.相交弦的行程定理:行程定理公式:PA*PB=PC*PD16.相交弦幂的定理:幂的定理公式:PA*PB=PC*PD17.逆时针偏角的角平分线公式:角平分线公式:eⁱᵐᵖᵃʳᵍ^ɑ=z₀18.二次函数的顶点坐标:二次函数顶点公式:(h,k)19.等差数列的通项公式:通项公式:an = a₁ + (n-1)d20.等比数列的通项公式:通项公式:an = a₁ * q^(n-1)以上是中考数学中常用的一些公式,掌握这些公式可以帮助我们更好地解题。
中考数学必备公式大全
中考数学必备公式大全一、代数公式1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^n−1b^1+C(n,2)a^n−2b^2+…+C(n,n−1)a^1b^(n −1)+C(n,n)a^0b^n2.因式分解公式:a^2−b^2=(a+b)(a−b)a^2+2ab+b^2=(a+b)^2a^2−2ab+b^2=(a−b)^2a^3+b^3=(a+b)(a^2−ab+b^2)a^3−b^3=(a−b)(a^2+ab+b^2)3.分式相关公式:倒数的倒数=本身 eg. a/b 的倒数的倒数 = b/a分式相乘,分子与分母相乘eg. (a/b) × (c/d) = (a×c) / (b×d)分式相除,分子与分母互换并相乘eg. (a/b) ÷ (c/d) = (a×d) / (b×c)相等分式的分子与分母对应相等,且不为0 eg. (a/b) = (c/d),a:c=b:d,ab≠0,cd≠04.求根公式:一元二次方程 ax^2 + bx + c = 0 的根公式为 x = (−b ±√(b^2−4ac)) / 2a二、几何公式1.三角形公式:(1)三角形的面积公式:S=1/2×底×高(2)三角形的海伦公式:c=a+b+c/2,S=√(c×(c−a)×(c−b)×(c−c))(3)三角形内角和公式:三角形内角之和等于180°(4)三角形的斜边关系:a^2+b^2=c^2(直角三角形)(5)正弦定理:a/sinA = b/sinB = c/sinC = 2R(R为外接圆半径)(6)余弦定理:c^2 = a^2 + b^2 - 2abcosC2.平面图形面积公式:(1)矩形的面积公式:S=长×宽(2)正方形的面积公式:S=边长×边长(3)平行四边形的面积公式:S=底×高(4)梯形的面积公式:S=(上底+下底)×高/2(5)圆的面积公式:S=πr^2(r为半径)3.立体图形体积公式:(1)长方体的体积公式:V=长×宽×高(2)正方体的体积公式:V=边长×边长×边长(3)圆柱体的体积公式:V=πr^2×h(r为底面半径,h为高)(4)圆锥体的体积公式:V=1/3×πr^2×h(r为底面半径,h为高)三、概率与统计公式1.事件概率公式:(1)事件的概率:P(A)=n(A)/n(S)(A为事件,n(A)为事件A包含的样本点数,n(S)为样本空间中的样本点数)2.统计指标公式:(1)平均数:平均值=总和/样本个数(2)中位数:奇数个数字的中位数为中间那个数,偶数个数字的中位数为中间两个数之和的一半(3)众数:出现频率最高的数(4)范围:样本最大值减去样本最小值(5)方差:每个数与平均数之差的平方和除以样本个数(6)标准差:方差的平方根(7)百分位数:P%的百分位数是这样一个数值,它将数据分成两部分,较小部分中至少有P%的数据以上是中考数学必备公式的大致集合,希望对你的备考有所帮助。
中考数学知识点及公式归纳大全
中考数学知识点及公式归纳大全初三数学必背知识三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=初三数学重要的公式知识圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
初三数学知识重点1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学重点精选:必备公式大全(一)乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c‘*h正棱锥侧面积S=1/2c*h’正棱台侧面积S=1/2(c+c‘)h’圆台侧面积S=1/2(c+c‘)l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S’L注:其中,S‘是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h2019-2020学年数学中考模拟试卷一、选择题1.长为10米的木杆斜靠在墙壁上,且与地面的夹角∠OBA =60°,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆AB 的中点P 也随之下落,则点P 下落的路线及路线长为( ) A.线段,5 B.线段,C.以点O 为圆心,以AB 为半径的一段弧,弧长为D.以点O 为圆心,以OP 为半径的一段弧,弧长为 2.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-3.如图,在菱形ABCD 中,AB =4,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的长为半径画弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则BE 的值为( )A.7B.27C.37D.474.据统计,2018年中国粮食总产量达到657900 000吨,数657900 000用科学记数法表示为( ) A .6.579×107B .6.579×108C .6.579×109D .6.579×10105.在实数范围内把二次三项式x 2+x ﹣1分解因式正确的是( ) A .(x ﹣152-)(x ﹣152+) B .(x ﹣152-)(x+152+) C .(x+152-)(x ﹣152+) D .(x+152-)(x+152+) 6.阅读材料:设一元二次方程ax 2+bx+c =0(a≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x1+x2=﹣ba,x1•x2=ca.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则2112x xx x的值为()A.4 B.6 C.8 D.107.如图,在平行四边形ABCD中,AC、BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=3,则下列结论:①1=2AFFD;②S△BCE=30;③S△ABE=9;④△AEF∽△ACD,其中一定正确的是()A.①②③④B.①③C.②③④D.①②③8.如图,这是健健同学的小测试卷,他应该得到的分数是()A.40 B.60 C.80 D.1009.如图,AB是⊙O直径,若∠AOC=130°,则∠D的度数是( )A.20°B.25°C.40°D.50°10.如图,A是半径为1的⊙O上两点,且OA⊥OB.点P从A点出发,在⊙O上以每秒一个的速度匀速单位运动:回A点运动结束.设运动时间为x,弦BP长为y,那么图象中可能表示数关y与x的函数关系的是()A .①B .②C .①或④D .③或④11.下列尺规作图中,能确定圆心的是( )①如图1,在圆上任取三个点A ,B ,C ,分别作弦AB ,BC 的垂直平分线,交点O 即为圆心②如图2,在圆上任取一点B ,以B 为圆心,小于直径长为半径画弧交圆于A ,C 两点连结AB ,BC ,作∠ABC 的平分线交圆于点D ,作弦BD 的垂直平分线交BD 于点O ,点O 即为圆心③如图3,在圆上截取弦AB =CD ,连结AB ,BC ,CD ,分别作∠ABC 与∠DCB 的平分线,交点O 即为圆心A .①②B .①③C .②④D .①②③12.从五个数510152,,,.π-- 中任意抽取一个作为x ,则x 满足不等式2x ﹣1≥3的概率是( ) A .15 B .25C .35D .45二、填空题13.如图,在矩形ABCD 中,AB =23,AD =2,点E 为线段CD 的中点,动点F 从点C 出发,沿C→B→A 的方向在CB 和BA 上运动,将矩形沿EF 折叠,点C 的对应点为C’,当点C’恰好落在矩形的对角线上时(不与矩形顶点重合),点F 运动的距离为_____.14.使分式有意义的x 的取值范围是_____.15.在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色,从袋中随机摸出个,则摸到的是蓝色小球的概率为______ 16.函数15x y x -=+中,自变量x 的取值范围是________. 17.若关于x 的分式方程33x a x x+--=2a 无解,则a 的值为_____. 18.如图,直线L 1∥L 2,AB ⊥CD ,∠1=34°,那么∠2的度数是___度.三、解答题19.(1)计算:(﹣2)2﹣(π﹣3.14)0+8; (2)化简:(x ﹣3)(x+3)+x (2﹣x ). 20.101112322260()tan -+----21.在一块直角三角形的废料上,要裁下一个半圆形的材料,并且要半圆的直径在斜边AB 上,且充分利用原三角形废料.(1)试画出你的设计(用圆规、直尺作图,不写作法,但要保留作图痕迹.) (2)若AC=4,BC=3,试计算出该半圆形材料的半径.22.包头市第二届互联网大会于2017年12月26日在石拐区召开,大会以“智慧包头 共享未来”为主题,为反映我市作为全国首批信息化建设的试点城市的成果,我市某调查公司按大会主办方要求对我市青山区居民使用互联网时间情况进行统计,现将调查结果分成五类:A.平均一天使用时间不超过1小时;B.平均一天使用1~4小时;C.平均一天使用4~6小时;D.平均一天使用6~10小时(每个时间段不包括前一个数值,包括后一个数值);E.平均一天使用超过10小时.并将得到的数据绘制成了如图所示两幅不完整的统计图,请根据相关信息,解答下列问题:(1)将扇形统计图和条形统计图补充完整;(2)若一天中互联网使用时间超过6小时,则称为“网络达人”.包头市青山区共有居民55万人,试估计青山区可称为“网络达人”的人数;(3)在被调查的平均一天使用时间不超过1小时的4位我市青山区居民中有2男2女,现要从中随机选出两位居民去参加此次大会的座谈,请你用列表法或树状图法求出所选两位居民中至少有一位女士的概率.23.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是直角三角形,其直角顶点P 1(4,4),P 2,P 3……P n 均在反比例函数y =kx(k >0)的图象上 (1)求k 的值;(2)分别求出P 2、P 3的坐标;(3)试用含n 的式子表示P n 的坐标(直接写出).24.2019年3月30日,四川省凉山州木里县境内发生森林火灾,30名左右的扑火英雄牺牲,让人感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完整的统计图表:组别成绩x/分组中值A 50≤x<60 55B 60≤x<70 65C 70≤x<80 75D 80≤x<90 85E 90≤x<100 95请根据图表提供的信息,解答下列各题:(1)补全频数分布直方图和扇形统计图;(2)分数段80≤x<90对应扇形的圆心角的度数是°,所抽取的学生竞赛成绩的中位数落在区间内;(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.25.已知关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0.(1)当t=3时,解这个方程;(2)若m,n是方程的两个实数根,设Q=(m﹣2)(n﹣2),试求Q的最小值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A B B D D B B B C A A 二、填空题13.1或2+33.14.x≠1.15.1 416.5x>-17.1或1 218.三、解答题19.(1)3+22;(2)2x﹣9.【解析】【分析】(1)先计算负整数指数幂,零指数幂,化简二次根式,然后计算加减法;(2)先利用平方差公式和单项式乘多项式去括号,然后计算加减法.【详解】(1)原式=4﹣1+22=3+22.(2)原式=x2﹣9+2x﹣x2=2x﹣9.【点睛】考查了平方差公式,实数的运算,单项式乘多项式,零指数幂等知识点,熟记计算法则即可解答,属于基础题.20.232-【解析】【分析】原式利用平方根、负指数幂,以及三角函数,绝对值的定义计算即可得到结果.【详解】解:原式1232(23)23=+----232(23)23 =+-+-+ 2322323 =+---+ 232=-.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.(1)答案见解析;(2)127.【解析】【分析】(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.图中半圆即为所求.(2)作OH⊥BC于H.首先证明OE=OH,设OE=OH=r,利用面积法构建方程求出r即可.【详解】解:(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.(2)∵OC平分∠ACB,OE⊥AC,OH⊥BC,∴OE=OH,设OE=OH=r,∵S△ABC=12•AC•BC=12•AC•r+12•BC•r,∴r=127.【点睛】本题考查作图-应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用面积法构建方程解决问题.22.(1)补全统计图,如图所示.见解析;(2)青山区可称为“网络达人”的人数为15.4万人;(3) 所选两位居民中至少有一位女士的概率为56.【解析】【分析】(1)先根据C类求出总人数,再由条形统计图计算出B类人数,然后计算B所占百分比,根据数据补全扇形统计图和条形统计图即可;.(2)先计算超过6小时的比例,再乘以求出55万即可;(3)用列表法或树状图法列出所有可能的情况,按概率公式计算即可.【详解】(1)根据题意得:20÷40%=50(人),则B类的人数为50-(4+20+9+5)=12(人),B类的人数所占百分比:12÷50×100%=24%,补全统计图,如图所示.(2)根据题意得:5950+×55=15.4(万人), 答:青山区可称为“网络达人”的人数为15.4万人. (3)树状图如下:或列表如下: 男1男2 女1 女2 男1 ——(男2,男1)(女1,男1) (女2,男1) 男2 (男1,男2) ——(女1,男2)(女2,男2) 女 1 (男1,女1) (男2,女1) ——(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)——所有等可能的情况有12种,其中所选两位居民中至少有一位女士共有10种, 则P(至少有一位女士)=1012=56. 答:所选两位居民中至少有一位女士的概率为56. 【点睛】本题考查了条形统计图、扇形统计图,两图结合是解题的关键.23.(1)16(2)(42+43,﹣42+43)(3)(4n +41n -,4n ﹣41n -) 【解析】 【详解】(1)把点P 1(4,4)代入反比例函数y =kx(k >0),求出k =16即可; (2)作P 1A ⊥OA 1于A ,P 2B ⊥A 1A 2于B ,P 3⊥A 2A 3于C ,证出AA 1=OA =4,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是等腰直角三角形,得出OA 1=8,设P 2(8+b ,b ),则b (8+b )=16,解得b =﹣4+42,得出OB =8﹣4+42=4+42,因此P 2(4+42,﹣4+42),A 2A 1=2b =﹣8+82,同理得出P 3(42+43,﹣42+43);(3)由(2)得出规律,即可得出结果. 【解答】解:(1)∵点P 1(4,4)在反比例函数y =kx(k >0)的图象上, ∴k =4×4=16;(2)作P 1A ⊥OA 1于A ,P 2B ⊥A 1A 2于B ,P 3⊥A 2A 3于C ,如图所示: ∵P 1(4,4),∴OA =P 1A ,△OAP 1时等腰直角三角形, ∴∠OP 1A =45°, ∴∠A 1P 1A =45°, ∵P 1A ⊥OA 1,∴△AA 1P 1是等腰直角三角形,∴AA 1=OA =4,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是等腰直角三角形, ∴OA 1=8,设P 2(8+b ,b ),则b (8+b )=16,解得:b 1=﹣4﹣42(舍去),b 2=﹣4+42, ∴OB =8﹣4+42=4+42,∴P 2(4+42,﹣4+42),A 2A 1=2b =﹣8+82, ∴OA 2=8﹣8+82=82,设P 3(82+c ,c ),则c (82+c )=16,解得:c 1=﹣42﹣43(舍去),c 2=﹣42+43, ∴OC =82﹣42+4=42+43, ∴P 3(42+43,﹣42+43);(3)由(2)得:P n 的坐标为(4n +41n -,4n ﹣41n -).【点睛】本题考查了反比例函数解析式的应用、坐标与图形性质、等腰直角三角形的判定与性质、解方程等知识;证明各个三角形是等腰直角三角形是解题的关键.24.(1)详见解析;(2)144,80≤x<90;(3)估计该校参赛学生的平均成绩是83分.【解析】【分析】(1)用A组的人数除以所占的百分比得出抽取的学生总数,再用数据总数减去A、B、C、E四个组的人数可得D组人数,补全频数分布直方图;用D组人数除以数据总数得出D组所占百分比,同理求出E组所占百分比,补全扇形统计图;(2)用360°乘以D组所占百分比即可求出分数段80≤x<90对应扇形的圆心角的度数;根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(3)先利用加权平均数的计算公式求出样本平均数,再利用样本估计总体的思想解决问题即可.【详解】解:(1)样本容量是:10÷5%=200,D组人数是:200﹣(10+20+30+60)=80(人),D组所占百分比是:80200×100%=40%,E组所占百分比是:60200×100%=30%.补全频数分布直方图和扇形统计图如图所示:(2)分数段80≤x<90对应扇形的圆心角的度数是:360°×0.40=144°;一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在D组,所以所抽取的学生竞赛成绩的中位数落在80≤x<90区间内.故答案为144,80≤x<90;(3)(55×10+65×20+75×30+85×80+95×60)÷200=83(分).所以估计该校参赛学生的平均成绩是83分. 【点睛】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数、平均数以及利用样本估计总体.25.(1)x 1=3﹣2,x 2=3+2;(2)Q 的最小值是﹣1. 【解析】 【分析】(1)把t =3代入x 2﹣2tx+t 2﹣2t+4=0,再利用公式法即可求出答案;(2)由根与系数的关系可得出m+n =2t 、mn =t 2﹣2t+4,将其代入(m ﹣2)(n ﹣2)=mn ﹣2(m+n )+4中可得出(m ﹣2)(n ﹣2)=(t ﹣3)2﹣1,由方程有两个实数根结合根的判别式可求出t 的取值范围,再根据二次函数的性质即可得出(m ﹣2)(n ﹣2)的最小值. 【详解】(1)当t =3时,原方程即为x 2﹣6x+7=0,63628322x ±-==±,解得132x =-,232x =+;(2)∵m ,n 是关于x 的一元二次方程x 2﹣2tx+t 2﹣2t+4=0的两实数根, ∴m+n =2t ,mn =t 2﹣2t+4,∴(m ﹣2)(n ﹣2)=mn ﹣2(m+n )+4=t 2﹣6t+8=(t ﹣3)2﹣1. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t+4)=8t ﹣16≥0, ∴t≥2,∴(t ﹣3)2﹣1≥(3﹣3)2﹣1=﹣1. 故Q 的最小值是﹣1. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.也考查了一元二次方程的解法.2019-2020学年数学中考模拟试卷一、选择题1.下列一元二次方程有两个不相等的实数根的是( ) A.2(1)20x ++= B.2251010x x -+= C.230x x -=D.22230x x -+=2.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =4,b =5,则该矩形的面积为( )A.50B.40C.30D.203.将2001×1999变形正确的是( ) A .20002﹣1B .20002+1C .20002+2×2000+1D .20002﹣2×2000+14.下列算式中,正确的是( ). A .221a a a a÷⨯= B .2323a a a -=- C .3262()a b a b =D .()236a a --=5.民间剪纸是中国古老的传统民间艺术,它历史悠久,风格独特,深受国内外人士所喜爱,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .6.若一次函数y ax b =+(,a b 为常数且0a ≠)满足如表,则方程0ax b +=的解是( )x2- 1- 0123 y6 422-4-A .1x =B .1x =-C .2x =D .3x =7.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,若∠BAC =20°,则∠ADC 的度数是( )A .90°B .100°C .110°D .130°8.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD ,则矩形ABCD 的最大面积是( )平方米.A .16B .18C .20D .249.tan60︒的值为( ) A .33B .23C .3D .210.如图,已知点E 是矩形ABCD 的对角线AC 上的一个动点,正方形EFGH 的顶点G 、H 都在边AD 上,若2AB =,5BC =,则tan AFE ∠的值( )A .等于25 B .等于27C .等于57D .不确定,随点E 位置的变化而变化11.若关于x 的一元二次方程x 2﹣x+a =0没有实数根,则a 的取值范围是( ) A .a >14B .a <14C .a≥14D .a =1412.如图,经过直线l 外一点A 作l 的垂线,能画出( )A.4条B.3条C.2条D.1条二、填空题13.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AB =4,△BCD 为等边三角形,点E 为△BCD 围成的区域(包括各边)内的一点,过点E 作EM ∥AB ,交直线AC 于点M ,作EN ∥AC ,交直线AB 于点N ,则12AN+AM 的最大值为_____.14.如图,菱形ABCD 的边长为12cm ,∠A =60°,点P 从点A 出发沿线路AB→BD 做匀速运动,点Q 从点D 同时出发沿线路DC→CB→BA 做匀速运动.已知点P ,Q 运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P 、Q 分别到达M 、N 两点时,点P 、Q 再分别从M 、N 同时沿原路返回,点P 的速度不变,点Q 的速度改为vcm/秒,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 与△AMN 相似,则v 的值为____.15.已知反比例函数y=﹣2x,若y≤1,则自变量x 的取值范围是_____. 16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____. 17.若23x =,25y =,则2x y +=_____.18.已知关于x 的方程2(1)20x k x k --+=的一个根是–4,则它的另一个根是_____. 三、解答题19.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为_____ ; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为_____ ;(3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长。