函数的定义域及求法讲解

合集下载

函数的定义域和求法讲解

函数的定义域和求法讲解

函数一、函数的定义域及求法1、分式的分母≠0;偶次方根的被开方数≥0;2、对数函数的真数>0;对数函数的底数>0且≠1;3、正切函数:x ≠kπ+ π/2 ,k∈Z;余切函数:x ≠kπ,k∈Z ;4、一次函数、二次函数、指数函数的定义域为R;5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法;6、复合函数定义域的求法:推理、取交集及分类讨论.[例题]:1、求下列函数的定义域3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论]当m=0时,则mx2-4mx+m+3=3,→ 原函数的定义域为R;当m≠0时,则mx2-4mx+m+3>0,①m<0时,显然原函数定义域不为R;②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R,所以当m∈[0,1) 时,原函数定义域为R.4、求函数y=log2x + 1 (x≥4) 的反函数的定义域.[解析]:[求原函数的值域]由题意可知,即求原函数的值域,∵x≥4,∴log2x≥2∴y≥3所以函数y=log2x + 1 (x≥4) 的反函数的定义域是[3,+∞).5、函数f(2x)的定义域是[-1,1],求f(log2x)的定义域.[解析]:由题意可知2-1≤2x≤21→f(x)定义域为[1/2,2] → 1/2≤log2x≤2→ √ ̄2≤x≤4.所以f(log2x)的定义域是[√ ̄2,4].二、函数的值域及求法1、一次函数y=kx+b(k≠0)的值域为R;2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时,y≤-△/4a ;3、反比例函数的值域:y≠0 ;4、指数函数的值域为(0,+∞);对数函数的值域为R;5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R;6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法.[例题]::求下列函数的值域[解析]:1、[利用求反函数的定义域求值域]先求其反函数:f-1(x)=(3x+1)/(x-2) ,其中x≠2,由其反函数的定义域,可得原函数的值域是y∈{y∈R|y≠2} 2、[利用反比例函数的值域不等于0]由题意可得,因此,原函数的值域为[1/2,+∞)4、[利用分离变量法和换元法]设法2x=t,其中t>0,则原函数可化为y=(t+1)/(t-1) → t=(y+1)/(y-1) >0∴y>1或y<-15、[利用零点讨论法]由题意可知函数有3个零点-3,1,2,①当x<-3 时,y=-(x-1)-(x+3)-(x-2)=-3x ∴y>9②当-3≤x<1 时,y=-(x-1)+(x+3)-(x-2)=-x+6 ∴5<y≤9③当1≤x<2 时,y=(x-1)+(x+3)-(x-2)=x+4 ∴5≤y<6④当x ≥2时,y=(x-1)+(x+3)+(x-2)=3x ∴y≥6综合前面四种情况可得,原函数的值域是[5,+∞)6、[利用函数的有界性]三、函数的单调性及应用1、A为函数f(x)定义域内某一区间,2、单调性的判定:作差f(x1)-f(x2)判定;根据函数图象判定;3、复合函数的单调性的判定:f(x),g(x) 同增、同减,f(g(x)) 为增函数,f(x),g(x)一增、一减,f(g(x)) 为减函数.[例题]:2、设a>0且a≠1,试求函数y=log a(4+3x-x2)的单调递增区间.[解析]:[利用复合函数的单调性的判定]由题意可得原函数的定义域是(-1,4),设u=4+3x-x2,其对称轴是x=3/2 ,所以函数u=4+3x-x2,在区间(-1,3/2 ]上单调递增;在区间[3/2 ,4)上单调递减.①a>1时,y=log a u 在其定义域内为增函数,由x↑→u↑→y↑ ,得函数u=4+3x-x2的单调递增区间(-1,3/2 ],即为函数y=log a(4+3x-x2) 的单调递增区间.②0<a<1时,y=log a u 在其定义域内为减函数,由x↑→u↓→y↑ ,得函数u=4+3x-x2的单调递减区间[3/2 ,4),即为函数y=log a(4+3x-x2)的单调递增区间.3、已知y=log a(2-ax) 在[0,1]上是x 的减函数,求a的取值范围。

函数的定义域及其求法(知识点)(教师版)

函数的定义域及其求法(知识点)(教师版)

函数的定义域及其求法(知识点)一.定义域定义域、值域、对应法则合称为函数的三要素.本词条主要介绍函数定义域的概念及其求法.二.函数定义域的概念函数的定义域就是指自变量x 的取值范围,它是构成函数的重要组成部分.定义域必须是非空数集,且必须写成区间或集合的形式.例如:一次函数()(0)f x kx b k =+≠的定义域为(或写成(,)-∞+∞).三.函数定义域的求法在处理函数的相关问题时,首先应明确函数的定义域是什么,求函数定义域主要包括具体函数的定义域、抽象函数的定义域以及实际问题中函数的定义域三种.四.具体函数的定义域对于已知解析式的具体函数,如果未加特殊说明,函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合.常见情形如下:1. 若函数()f x 为整式,则其定义域为实数集. 例如,二次函数2()1f x x x =++的定义域为. 2. 若函数()f x 是分式,则其定义域是使分母不为零的全体实数的集合. 例如,函数1()1f x x =-的定义域为{1}x x ≠. 3. 若函数()f x 是偶次根式,则其定义域是使得根号内的式子大于或等于零的全体实数构成的集合.例如,函数()f x =[1,)-+∞.4. 若函数()f x 是由几个部分的数学式子构成的,则函数的定义域是使是使各部分都有意义的实数的集合, 即交集.例如,函数1()1f x x =-[1,1)(1,)-+∞. 5. 若函数0()f x x =,则其定义域是{0}x x ∈≠. 注:除了上述情形,还应注意指数函数和对数函数均需满足底数大于零且不等于1,对数函数的真数必须大于零,以及三角函数的定义域,如正切函数的定义域为ππ,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭例:求下列函数的定义域:①y =2310x y x x --;③()f x =. 解:①由80,30,x x +⎧⎨-⎩≥≥得83x -≤≤.所以原函数的定义域为[]8,3-. ②由220,3100,x x x +⎧⎪⎨--≠⎪⎩≥解得()() 2250x x x -⎧⎪⎨+-≠⎪⎩≥所以2,2,5,x x x -⎧⎨≠-≠⎩≥即25x -<<或5x >.所以原函数的定义域为()()2,55,-+∞.③由函数的解析式有意义,得240,210,x x x +>⎧⎪⎨-->⎪⎩即()()4,2110,x x x >-⎧⎪⎨+->⎪⎩∴4,11,2x x x >-⎧⎪⎨<->⎪⎩或∴142x -<<-或1x >.∴所求函数的定义域为()14,1,2⎛⎫--+∞ ⎪⎝⎭.五.抽象函数的定义域求抽象函数的定义域时,应充分理解定义域的含义,即:函数()f x 的定义域是指x 的取值范围,具体如下:1. 若已知函数()f x 的定义域为[,]a b ,则其复合函数(())f g x 的定义域由()a g x b ≤≤求出.例如:已知函数()f x 的定义域为[1,2],则函数(1)f x +的定义域为[0,1].2. 若已知函数(())f g x 的定义域为[,]a b ,则()f x 的定义域为()g x 在[,]x a b ∈上的值域.例如:已知函数(1)f x +的定义域为[1,2],则函数()f x 的定义域为[2,3].六.实际问题中函数的定义域在实际问题中求函数()f x 的定义域,除了考虑解析式本身有意义外,还应该考虑自变量x 所代表的具体量的实际取值范围.例如:圆的面积S 与圆的半径r 之间的函数关系式为2πS r =,其定义域为{0}r r >.。

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。

定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。

在解析式中,定义域和值域可以通过不同的方法进行求解。

下面是常见的函数解析式定义域和值域求解方法总结。

一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。

2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。

3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。

4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。

5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。

6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。

7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。

二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。

2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。

例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。

3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。

4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。

5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。

函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。

定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。

常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。

下面将逐个介绍这些函数解析式的定义域和值域的求法。

1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。

线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。

2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。

对于一般的二次函数,定义域是实数集,即(-∞, +∞)。

值域则取决于二次函数的开口方向和开口点的位置。

-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。

-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。

3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。

指数函数的定义域是实数集,即(-∞,+∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,指数函数的值域为(0,+∞)。

-当a>1时,指数函数的值域为(0,+∞)。

-当a=1时,指数函数的值域为{1}。

4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。

对数函数的定义域是正实数集,即(0, +∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,对数函数的值域为(-∞,+∞)。

-当a>1时,对数函数的值域为(-∞,+∞)。

5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的定义域是实数集,即(-∞,+∞)。

值域则取决于具体的三角函数类型。

-正弦函数的值域为[-1,1]。

-余弦函数的值域为[-1,1]。

函数的定义域及求法讲解

函数的定义域及求法讲解

函数一、函数的定义域及求法1、分式的分母≠0;偶次方根的被开方数≥0;2、对数函数的真数>0;对数函数的底数>0且≠1;3、正切函数:x ≠ kπ + π/2 ,k∈Z;余切函数:x ≠ kπ ,k∈Z ;4、一次函数、二次函数、指数函数的定义域为R;5、定义域的相关求法:利用函数的图象或数轴法;利用其反函数的值域法;6、复合函数定义域的求法:推理、取交集及分类讨论.例题:1、求下列函数的定义域3、已知函数y=lgmx2-4mx+m+3的定义域为R,求实数m的取值范围.解析:利用复合函数的定义域进行分类讨论当m=0时,则mx2-4mx+m+3=3,→ 原函数的定义域为R;当m≠0时,则 mx2-4mx+m+3>0,①m<0时,显然原函数定义域不为R;②m>0,且△=-4m2-4mm+3<0 时,即0<m<1,原函数定义域为R, 所以当m∈0,1 时,原函数定义域为R.4、求函数y=logx + 1 x≥4 的反函数的定义域.2解析:求原函数的值域由题意可知,即求原函数的值域,x≥2∴y≥3∵x≥4,∴log2所以函数y=logx + 1 x≥4 的反函数的定义域是3,+∞.2x的定义域.5、函数f2x的定义域是-1,1,求flog2解析:由题意可知2-1≤2x≤21→ fx定义域为1/2,2→ 1/2≤logx≤2→ √ ̄2≤x≤4.2x的定义域是√ ̄2,4.所以flog2二、函数的值域及求法1、一次函数y=kx+bk≠0的值域为R;2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时,y≤-△/4a ;3、反比例函数的值域:y≠0 ;4、指数函数的值域为0,+∞;对数函数的值域为R;5、正弦、余弦函数的值域为-1,1即有界性;正切余切函数的值域为R;6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法.例题::求下列函数的值域解析:1、利用求反函数的定义域求值域先求其反函数:f-1x=3x+1/x-2 ,其中x≠2,由其反函数的定义域,可得原函数的值域是y∈{y∈R|y≠2}2、利用反比例函数的值域不等于0由题意可得,因此,原函数的值域为1/2,+∞4、利用分离变量法和换元法设法2x=t,其中t>0,则原函数可化为y=t+1/t-1 → t=y+1/y-1 >0∴y>1或y<-1 5、利用零点讨论法由题意可知函数有3个零点-3,1,2, ①当x<-3时,y=-x-1-x+3-x-2=-3x ∴y>9 ②当-3≤x<1时,y=-x-1+x+3-x-2=-x+6 ∴5<y≤9 ③当1≤x<2时,y=x-1+x+3-x-2=x+4 ∴5≤y<6 ④当x ≥2时,y=x-1+x+3+x-2=3x ∴y≥6 综合前面四种情况可得,原函数的值域是5,+∞6、利用函数的有界性三、函数的单调性及应用1、 A为函数fx定义域内某一区间,2、单调性的判定:作差fx1-fx2判定;根据函数图象判定;3、复合函数的单调性的判定:fx,gx 同增、同减,fgx 为增函数,fx,gx一增、一减,fgx 为减函数.例题:2、设a>0且a≠1,试求函数y=loga4+3x-x2的单调递增区间.解析:利用复合函数的单调性的判定由题意可得原函数的定义域是-1,4,设u=4+3x-x2 ,其对称轴是 x=3/2 ,所以函数u=4+3x-x2 ,在区间-1,3/2 上单调递增;在区间3/2 ,4上单调递减.u 在其定义域内为增函数,由x↑→u↑→y↑ ,得函数①a>1时,y=loga4+3x-x2的单调递增区间.u=4+3x-x2的单调递增区间-1,3/2 ,即为函数y=loga②0<a<1时,y=logu 在其定义域内为减函数,由x↑→u↓→y↑ ,得a4+3x-x2的单调递增区间.函数u=4+3x-x2的单调递减区间3/2 ,4,即为函数y=loga2-ax 在0,1上是x 的减函数,求a的取值范围;3、已知y=loga解析:利用复合函数的单调性的判定由题意可知,a>0.设u=gx=2-ax,则gx在0,1上是减函数,且x=1时, =2-a .gx有最小值umin=2-a>0则可,得a<2.又因为u=gx=2-ax>0,所以, 只要 umin又y=log2-ax 在0,1上是x 减函数,u=gx在0,1上是减函数,au是增函数,故a>1.即x↑→u↓→y↓ ,所以y=loga综上所述,得1<a<2.4、已知fx的定义域为0,+∞,且在其上为增函数,满足fxy=fx+fy,f2=1 ,试解不等式fx+fx-2<3 .解析:此题的关键是求函数值3所对应的自变量的值由题意可得,f4=f2+f2=2 ,3=2+1=f4+f2=f4×2=f8又fx+fx-2=fx2-2x所以原不等式可化成fx2-2x<f8所以原不等式的解集为{x|2<x<4}四、函数的奇偶性及应用1、函数fx的定义域为D,x∈D ,f-x=fx → fx是偶函数;f-x=-fx→是奇函数2、奇偶性的判定:作和差f-x± fx=0 判定;作商fx/f-x= ±1,fx≠0 判定3、奇、偶函数的必要条件是:函数的定义域关于原点对称;4、函数的图象关于原点对称奇函数;函数的图象关y轴对称偶函数5、函数既为奇函数又为偶函数 fx=0,且定义域关于原点对称;6、复合函数的奇偶性:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.例题:解析:①利用作和差判断由题意可知,函数的定义域是R,设x为R内任意实数,即,fx = -fx ,∴原函数是奇函数.②利用作商法判断由题意可知,函数的定义域是R,设x为R内任意实数,2∵fx 的图象关于直线x=1对称,∴ f1-1-x=f1+1-x ,x∈R ,即fx =f2-x ,又∵ fx在R上为偶函数,→ f-x=fx=f2-x=f2+x∴ fx是周期的函数,且2是它的一个周期.五、函数的周期性及应用1、设函数y=fx的定义域为D,x∈D,存在非0常数T,有fx+T=fx → fx为周期函数,T为fx的一个周期;2、正弦、余弦函数的最小正周期为2π,函数y=Asinωx+φ和y=Acosωx+φ的最小正周期是T = 2π/|ω| ;3、正切、余切函数的最小正周期为π,函数y=Atanωx+φ和y=Acotωx+φ的周期是T=π/|ω| ;4、周期的求法:定义域法;公式法;最小公倍数法;利用函数的图象法;5、一般地,sinωx 和cosωx类函数加绝对值或平方后周期减半,tanωx 和cotωx类函数加绝对值或平方后周期不变如:y=|cos2x| 的周期是π/2 ,y=|cotx|的周期是π.例题:1、求函数 y = |sinx|+|cosx|的最小正周期.解析:利用周期函数的定义y = |sinx|+|cosx|=|-sinx|+|cosx|=|cosx + π/2|+|sinx + π/2|即对于定义域内的每一个x,当x 增加到x + π/2时,函数值重复出现,因此函数的最小正周期是π/2 .3、 求函数y=sin3x+tan2x/5 的最小正周期.解析:最小公倍数法和公式法,设fx 、gx 是定义在公共集合上的两上三角周期函数,T 1、、T 2分别是它们的周期,且T 1≠T 2,则fx± gx 的最小正周期等于T 1、、T 2的最小公倍数.注:分数的最小公倍数 = 分子的最小公倍数/分母的最大公约数.由题意可知,sin3x的周期是T1= 2π/3,tan2x/5的周期是T2=5π/2,∴原函数的周期是T=10π/1 =10π .4、求函数y=|tanx|的最小正周期.解析:利用函数的图象求函数的周期函数y=|tanx|的简图如图:由函数y=|tanx|的简图可知,其最小正周期是π.5、设fx是-∞,+∞上周期为2的奇函数,当0≤x≤1时,fx=x,求f解析:利用周期函数的定义由题意可知,f2+x = fx∴ f =f =f =-f =-0.5。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

这些解题思想与方法贯穿了高中数学的始终。

常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:①21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为[1,1],求函数)41(+=x f y )41(-⋅x f 的定义域第一页解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

函数的概念及定义域与解析的求法

函数的概念及定义域与解析的求法

知识点:函数的概设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A,其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),x∈A}叫函数的值域.注意:①函数是非空数集到非空数集上的一种对应.②符号“f:A→B”表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.③集合A中数的任意性,集合B中数的惟一性.2、映射的概念设A、B是非空的集合,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个映射.3、函数的表示法⑴解析法⑵列表法⑶图象法4、函数的三要素是、、1)求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知求或已知求:换元法、配凑法;(3)已知函数图像,求函数解析式;(4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.2)求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知的定义域求的定义域或已知的定义域求的定义域:①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;②若已知的定义域,其复合函数的定义域应由解出.典型例题:例1、(函数的概念)下列一些式子能否表示函数?(1)(2)变式:下列式子中不能表示函数的是()A B C D例2、(同一函数问题)下列各题中两个函数是否表示同一个函数(1)(2)(3)变式:下列各组函数中,表示同一函数的是()A、f(x)=|x|,g(t)=B、f(x)=,g(x)=()2C、f(x)=,g(x)=x+1D、f(x)=,g(x)=例3、(的意义)已知求的值变式1:已知为何值变式2、若f(x)=ax2-,a为一个正的常数,且f[f()]=-,求a的值反馈练习:1、设是集合A到集合B的映射,如果,则等于()A. B. C. 或 D. 或2、已知,,则映射的个数为。

函数的定义域常见求法

函数的定义域常见求法

函数的定义域常见求法一、函数的定义域的定义函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥奇次方根(21,)n k k N *=+∈其中中,x R ∈.3、指数函数xy a =的底数a 必须满足01,a a x R >≠∈且.4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且.5、零次幂的底数不能为零,即0x 中0x ≠.6、正切函数tan y x =的定义域是{|,}2x x k k z ππ≠+∈.7、复合函数的定义域的求法(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.8、求函数()()y f x g x =+的定义域一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的定义域.9、求实际问题中函数的定义域不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上是集合的一种特殊表示形式.四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法.五、函数的问题,必须遵循“定义域优先”的原则.研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】方法一 直接法使用情景 函数的结构比较简单.解题步骤直接列出不等式解答,不等式的解集就是函数的定义域.【例1】求函数2253y x x =+-的定义域.【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数21x y x +=+. 方法二 求交法使用情景函数是由一些函数四则运算得到的,即函数的形式为()()()f x g x h x =+型.解题步骤一般先分别求函数()g x 和()h x 的定义域A 和B ,再求AB ,A B 就是函数()f x 的定义域.【例2】求函数225y x =-3log cos x 的定义域.【解析】由题得⎪⎩⎪⎨⎧∈+<<-≤≤-∴⎩⎨⎧>≥-zk k x k x x x 2222550cos 0252ππππ∴}52322235|{≤<<<--<≤-x x x x ππππ或或所以函数的定义域为}52322235|{≤<<<--<≤-x x x x ππππ或或【点评】(1)求函数()()y f x g x =+的定义域,一般先求()y f x =和函数()y g x =的定义域A 和B ,再求AB ,则A B 就是所求函数的定义域.(2)该题中要考虑偶次方根的被开方数是非负数,对数函数的真数大于零,列不等式求函数的定义域时,必须考虑全面,不能漏掉限制条件.(3)解不等式cos 0x >时,主要是利用余弦函数的图像解答.(4)求552222x k x k k zππππ-≤≤⎧⎪⎨-<<+∈⎪⎩的解集时,只需给参数k 赋几个整数值,再通过数轴求交集.(5)注意等号的问题,其中只要有一个错误,整个解集就是错误的,所以要仔细认真. 学科#网【例3】求函数 02)23(3|3|)lg(-+-+-=x x x x y 的定义域.【点评】(1)该题中要考虑真数大于零,分式的分母不能为零,零次幂的底数不能为零,考虑要全面,不要遗漏.(2)求不等式的交集一般通过数轴完成.【例4】求函数log (1)(01)xa y a a a =->≠且的定义域.【解析】由题得 0101=xxa a a ->∴>1a >当时,x>0;当0<a<1时,x<0.1{a ∴>当时,函数的定义域为x|x>0}, 1{a <当0<时,函数的定义域为x|x<0}.【点评】(1)求含有参数的函数的定义域时,注意在适当的地方分类讨论.(2)对于指数函数和对数函数,如果已知条件中,没有给定底数a 的取值范围,一般要分类讨论.【反馈检测2】求函数2ln1)23xy a x x =---+(的定义域.方法三 抽象复合法 使用情景涉及到抽象复合函数.解题步骤利用抽象复合函数的性质解答:(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.【例5】求下列函数的定义域:(1)已知函数f (x)的定义域为[2,2]-,求函数2(1)y f x =-的定义域; (2)已知函数(24)y f x =+的定义域为[0,1],求函数f (x)的定义域; (3)已知函数f (x)的定义域为[1,2]-,求函数2(1)(1)y f x f x =+--的定义域.【点评】(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.第1小题就是典型的例子.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.第2小题就是典型的例子.(3)求函数()()y f x g x =+的定义域,一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求AB ,则A B 就是所求函数的定义域.【反馈检测3】已知函数(tan 2)y f x =的定义域为[0,]8π,求函数()f x 的定义域.【反馈检测4】 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,求函数)(log 2x f 的定义域.方法四 实际法使用情景 数学问题是实际问题.解题步骤先求函数的自变量的取值范围,再考虑自变量的实际限制条件,最后把前面两者的范围求交集,即得函数的定义域.【例6】用长为L 的铁丝编成下部为矩形,上部为半圆形的框架(如图所示).若矩形底边长为2x ,求此框架围成的面积y 与关于x 的函数解析式,并求出它的定义域. 【解析】如图,【点评】(1)求实际问题中函数的定义域,不仅要考虑解析式本身有意义,还要保证满足实际意义.(2)该题中在考虑实际意义时,必须保证解答过程中的每一个变量都有意义,即2x 02x 02x π⎧⎪⎨⎪⎩>L -->,不能遗漏.【反馈检测5】 一个圆柱形容器的底部直径是dcm ,高是hcm .现在以3/vcm s 的速度向容器内注入某种溶液.求容器内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.参考答案【反馈检测1答案】{|12}x x x >-≤-或【反馈检测1详细解析】由题得(2)(1)012201011x x x x x x x x ++≥≥-≤-⎧⎧+≥∴∴⎨⎨+≠+≠-⎩⎩或所以12{|12}x x x x x >-≤-∴>-≤-或函数的定义域为或.【反馈检测2答案】当1a >时,函数的定义域为{|01}x x <<;当01a <<时,函数的定义域为{|30}x x -<<.【反馈检测3答案】[0,1]【反馈检测3详细解析】由题得0020tan 2184x x x ππ≤≤∴≤≤∴≤≤,所以函数的定义域为[0,1].【反馈检测4答案】{}42|≤≤x x【反馈检测4详细解析】依题意知:2log 212≤≤x 解之得 42≤≤x ∴ )(log 2x f 的定义域为{}42|≤≤x x【反馈检测5答案】函数解析式为24vtx dπ=,函数的定义域为{t |0≤t ≤2hd 4v π},值域为{x |0≤x ≤h }. 【反馈检测5详细解析】向容器内注入溶液经历时间为t 秒后,容器中溶液的高度为xcm .故t 秒后溶液的体积为=底面积×高=π⎪⎭⎫⎝⎛2d 2x =vt 解之得:x =24vt d π又因为0≤x ≤h 即0≤24vt d π≤h ⇒ 0≤t ≤2hd 4v π,故函数的定义域为{t |0≤t ≤2hd 4vπ},值域为{x |0≤x ≤h }.。

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

②∵顶点横坐标23,4],当x=3时 ,y=-2,x =4时 ,y=1
∴在[3,4]上,Ymin =-2,Ymax=1; 值域为[-2,1].
解③略:
解④∵顶点横坐标2 ∈[0,5]当x=0时 ,y=1,x=2 时 ,y=-3, x=5时 ,y=6,∴ 在[0,1]上, Ymin =-3,ymax =6
② y=x²-4x+1 x∈[3,4]
③ y=x²-4x+1 ,x∈[0,1]④y=x²-4x+1 x ∈[0,5]
图 像
解:∵y=x²-4x+1 =(x-2)²-3

∴顶点为(2,-3),顶点横坐标为2 . (对称轴x=2)
①∵抛物线的开口向上,函数的定义域R
∴x=2时,Ymin=-3 ,无最大值;函数的值域是{yly≥-3 }.
1.2.函数定义域和值域的求法
函数
y=f(x )
因变量
对应法则
自变量
自变量的取值范围为
因变量的取值范围为
定义域
值域
对应法则一般为
函数的解析式
1:在初中我们学习了哪几种函数?函数表达式是 什么?它们的定义域值域各是什么?
一次函数: y=ax+b(a≠0) 定义域为R
反比例函数:
≠0) 定义域为{x|x≠0}
当 - 1<x≤1 时 ,y=(x+1)+(x-1)=2x
当 x>1 时 ,y=(x+1) 一(x-1)=2




由图知: -2≤y≤2

故函数的值域为
[-2,3]
课堂小结
求函数的值域的方法:
(1) 视察法; (2) 图象法;

求函数定义域的类型及方法

求函数定义域的类型及方法

求函数定义域的类型及方法
函数定义域是指函数的可取值范围,它是一个集合,由函数的参数可以取到的所有值组成。

函数定义域的类型可以分为实数域、整数域、有理数域、复数域等。

实数域是指函数的参数可以取到的所有实数值,它是一个无限集合,包括所有的实数,包
括正数、负数、零、无穷大和无穷小。

整数域是指函数的参数可以取到的所有整数值,它是一个有限集合,包括所有的整数,包
括正数、负数和零。

有理数域是指函数的参数可以取到的所有有理数值,它是一个有限集合,包括所有的有理数,包括正数、负数、零、有理数分数和有理数分式。

复数域是指函数的参数可以取到的所有复数值,它是一个无限集合,包括所有的复数,包
括实数、虚数和复数。

求函数定义域的方法有两种:一种是直接求解法,即根据函数的表达式,直接求出函数定
义域;另一种是间接求解法,即根据函数的图像,求出函数定义域。

直接求解法是指根据函数的表达式,直接求出函数定义域。

首先,要分析函数的表达式,
把函数的表达式分解成函数的参数和函数的取值,然后根据函数的参数和函数的取值,求
出函数定义域。

间接求解法是指根据函数的图像,求出函数定义域。

首先,要分析函数的图像,把函数的
图像分解成函数的参数和函数的取值,然后根据函数的参数和函数的取值,求出函数定义域。

总之,函数定义域是指函数的可取值范围,它是一个集合,由函数的参数可以取到的所有
值组成,它的类型可以分为实数域、整数域、有理数域、复数域等,求函数定义域的方法
有两种:一种是直接求解法,一种是间接求解法。

函数定义域及值域的求法

函数定义域及值域的求法
2
对应练习2
1 y 2 x 5, x 1,3 2 y 3 x 1, x [2,5)
1 3 y , x (0,4) x 1 4 y , x ,1 1, x
小结:其他函数在给定区间求值域,都可以通过数形结 合的方式解决。
叫做这个函数的值域(用区间或集合表示)
区间表示:
开区间:(a,b) 闭区间:[ a,b ] 半开半闭区间:(a,b] 实数集R用区间表示:
,
一、求函数定义域:
例1.根据解析式求定义域
① 解:要使函数有意义, 则必须满足
x 2 0 x 4 0 解得:x 2且x 4
总结:
(1)求函数定义域: 对于具体函数求定义域,要保证式子有意义
(2)求函数值域:
求基本函数在R上或某一区间上的值域,通常数形结合
对应练习1:
1 f ( x) x 5 x 6, x R 2 2 f x 2 x 4 x 5, x 2,5 2 3 f x 2 x 3x 1, x 1,2 2 4 f x x 3x 4, x (0,3]
x 2 x 4且x 4
x2 1y x 4
x x 2且x 4 定义域为
小结:对于二次根号下的式子必须保证大于等于零 对于分式要保证分母不等于零
对应练习:
1y
x 1
1 x2
x2 2y x 3 8
3 f ) x 1 x 2
二、求函数值域:
例2.
函数f x x 3 x 4,
2
1x R, 求函数值域 2x 1,5, 求函数值域 3x 3,5, 求函数值域
小结:对于二次函数 在R上求值域,需要考虑顶点的纵坐标和开口方向; 对于在某一区间求值域,要考虑对称轴在区间内还 是在区间外,数形结合。

函数定义域、值域、解析式求法

函数定义域、值域、解析式求法
2
可用判别式法
9月25日作业:
1.设等差数列{an}的前n项和为Sn,若a1=-11,
a4+a6=-6,求当Sn取最小值时,n的值 2.已知 ABC 的三边长成公比为 2 的等比数列,
求三角形ABC最大角的余弦值。
五、解析式求法
(一)待定系数法 例1:f(x)是一个一次函数,已知f(0)=1, f(-1)=6,求 f(x)。 例2:一次函数f(x)满足f[f(x)]=4x+6, 求 f(x)。 例3:二次函数f(x),有f(x+1)+f(x-1)= 2 2x -4x,求f (x)。
g ( x) g ( x) 0
0
3、 g(x) g ( x) 0
4、真数大于零,底数大于零且不等于1
例 题:
1 : 求函数f ( x)
解: 依题有:
x 2 5x 6 的定义域 x2
x2 5x 6 0 x2 0
解得:
x 3或x 2
x 2 5x 6 的定义域是 : {x x 3或x 2} x2
f ( x)
练 习:
1 : 求函数f ( x) log x
解: 依题有
(1 x )
(1 x) 的定义域
x 1 x 0且x 1 x 1
1 2
x 1 0 x 0且x 1 1 x 0
1 2
f ( x) log x
(1 x )
的 取 值 范 围
分离常数法(或反函数法)
ax b y cx d
例.求下列函数值域
函数值域为 y y
a c
3x 1 y x2
1 3x y x6

(完整版)求函数定义域及值域方法及典型题归纳

(完整版)求函数定义域及值域方法及典型题归纳

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

函数定义域、值域的求法

函数定义域、值域的求法

函数定义域的求法
1、求函数定义域的一般原则
(1)如果f x为整式,其定义域为实数集R.
(2)若f x是分式,则其定义域是使分母不等于0的实数的集合. (3)若f x是偶次根式,则其定义域是使根号内的式子大于或等于0的实数的集合.
(4)f x=x0的定义域是{x∈R∣x≠0}.
(5)若f x是由几部分的数学式子构成,那么函数的定义域是使各部分都有意义的实数的集合,即交集.
2、抽象函数的定义域
(1)函数f x的定义域是指x的取值范围所组成的集合.
(2)函数f[ψx]的定义域还是指x的取值范围而不是ψx 的取值范围.
函数值域的求法
(1)直接法:从自变量x的范围入手,逐步推出y=f x的取值范围.
(2)换元法:运用代数或三角代换,将所给的函数转化为值域容易求出的另外一个函数,从而得到原函数的值域.
(3)反解法:通过反解,用y表示x,再由x的取值范围,通过解不等式,得出y的取值范围.。

求函数的定义域的方法

求函数的定义域的方法

求函数的定义域的方法求函数的定义域的方法,是研究函数的一个重要内容,它也是函数表达式、函数图形及其他函数性质的基础。

本文将从定义域、方法及具体例子三个方面阐述求函数定义域的方法。

一、定义域在数学中,函数定义域(domain)是指函数的可能输入值集合;而函数值域(range)是指函数的可能输出值集合。

函数的定义域是由它的定义条件决定的,即给定的自变量的取值范围。

可以这样理解:一个函数的定义域是指函数定义时所指定的自变量的取值范围。

二、求函数定义域的方法1. 可以通过观察函数的定义公式,找出函数的定义条件,然后求出函数的定义域。

2. 在复杂的情况下,可以使用不等式或者不等式组来求函数定义域。

例如,对于幂函数,可以使用判别式来求出定义域:如果某个数字x满足判别式D>0,则x属于函数的定义域;如果D<0,则x不属于函数的定义域。

3. 对于复杂的函数,可以使用图形法来求函数定义域。

通过把函数的定义公式绘制成图形,我们可以看出函数定义域的范围。

三、具体例子1. 例如,设函数f(x) = x² + 1,定义域就是所有实数集合。

2. 设y = sin x,定义域就是所有实数集合。

3. 设函数f(x) = 1/x,定义域就是x≠0的所有实数集合。

4. 设函数f(x) = √x,定义域就是x≥0的所有实数集合。

5. 设函数f(x) = ln x,定义域就是x>0的所有实数集合。

6. 设函数f(x) = |x|,定义域就是所有实数集合。

以上便是求函数定义域的方法,求函数定义域的方法也是函数表达式、函数图形及其他函数性质的基础,也可以利用定义域求函数的极值点,从而得出函数的极大值和极小值,从而得出函数的极值问题。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

1.1函数的定义域、值域的求法

1.1函数的定义域、值域的求法

函数的定义域、值域的求法第一讲:函数的定义域(一)基础知识回顾:1.自变量的取值范围叫做函数的定义域;函数值的集合叫做函数的值域.2.求定义域的主要依据是:整式函数实全体;分式分母 不为0_;偶次根式被开方数为 大于等于0;对数的真数 大于0;实际问题具体分析,要符合_题意. 3.复合函数的定义域:已知f(x)的定义域是]b ,a [x ∈,求f[g(x)]的定义域,就是求满足不等式a<g (x )<b 的 x 的集合。

(二)例题分析: 1.求下列函数的定义域(1))1(log log 225.0+=xy (2)y=log a [log a (log a x)](3)x x y sin lg 162+-=2.设f(x)是定义在[-3,2]上的函数,求下列函数的定义域(1))2(-=x f y(2))0)((≠=a axf y(3)y=f(2x)+f(x+m) (m>0)3.若函数3412++-=ax axax y 的定义域为R ,求实数a 的取值范围.4.已知扇形的周长为10,求此扇形的半径r 与面积S 之间的函数关系式及其定义域. 【备用题】 5函数315coslog+=x y π的定义域是( )A .(-3,+∞)B .),2[+∞-C .(-3,-2)D .]2,(--∞ 6若函数f(x)的定义域是[-1,1],则函数)(log 21x f 的定义域是( )A .]2,21[B .]2,0(C .),2[+∞D .]21,0(7函数1122---=x x y 的定义域是___________,函数y=(1+x)的定义域是____________.8函数y=log 2x -1(32-4x)的定义域是____________.9若函数y=f(x)的定义域是[0,2],则函数y=f(x+1)+f(x -1)的定义域为____________. 10函数11)(+-=xx ee xf 的反函数f -1(x)的定义域是_____________.【拓展练习】 11函数⎪⎩⎪⎨⎧≤≤-<≤<-=)41()10(2)0()(2x x x x x x f 的定义域为____________.12函数|)|lg(42x x xy+-=的定义域为__________________,2|1|42-+-=x xy的定义域为____________.13已知函数f(x)的定义域为[a,b],其中0<-a<b ,则F(x)=f(x)-f(-x)的定义域为___________,若y=log 2(x 2-2)的值域为[1,log 214],则其定义域为_____________. 14已知f(x)的定义域为[0,1],则]2[lg2x xf +的定义域为______________.15若x 为三角形内角,x 取何值时,xxtan 12sin-无意义___________________.16若函数aax axy12+-=的定义域为R ,则实数a 的取值范围为______________.17求函数y=log a (a x-1) (a>0,a ≠1)的定义域.18求函数)4lg(3sin 1x x xy-+-+=的定义域.19在△ABC 中,BC=2,AB+AC=3.中线AD 的长为y ,若以AB关系,指出其定义域.20在边长为4的正方形ABCD 的边上有一动点P ,从点B 开始,沿折线BCD 向点A 运动,设 点P 移动的中程为x ,△ABP 的面积为y ,求函数y=f(x)及其定义域.21求函数2))(1(lg+--=x a x x y 的定义域.第二讲 函数的值域的求法1.求函数值域主要的方法与技巧: (1)分析观察法;(2)配方法;(3)数形结合法;(4)最大(最小)值法;(5)利用函数的单调性;(6)换元法 (7)反函数法注:由于值域取决于定义域和对应法则,所以不论采取什么方法求值域,都要考虑定义域。

函数定义域的求法

函数定义域的求法

函数定义域的求法函数定义域是描述函数图像值与变量取值范围之间关系的术语,它定义了函数的变量可取的值集合。

在数学中,函数定义域是一个非常重要的概念,它的定义能帮助我们更好地理解和解决函数的问题。

本文将讨论函数定义域的求法以及定义域的特殊情况。

一、定义域的求法1、定义域的求法主要有三种:(1)式定义域。

即函数的变量可取的值集合是函数定义中定义明确的,在这种情况下,定义域就是函数定义中列出的取值范围。

例如:函数 f(x)=2x+3定义域为全体实数。

(2)式定义域。

此时函数的变量可取的值集合不能从函数定义中直接获取,它是由函数的不等式约束所决定的,即需要将函数的不等式解出取值范围,这就是函数的定义域。

例如:函数 f(x)=2x-3>0定义域为x>3/2。

(3)合定义域。

当函数中既有显式定义域又有隐式定义域时,这种定义域叫做混合定义域。

例如:函数 f(x)=2x-3,其定义域为x>3/2 且 x∈R,即混合定义域。

2、定义域特殊情况特殊情况一:当函数定义域为全体实数时,即f(x):R→R,其定义域为R。

特殊情况二:当函数定义域为实数正部分时,即f(x):R+→R+,其定义域为R+。

特殊情况三:当函数定义域为实数负部分时,即f(x):R-→R-,其定义域为R-。

二、定义域的示例下面给出三个定义域的示例:例1:f(x)=x+1,其定义域为R;例2:f(x)=2x+2,其定义域为R;例3:f(x)=√(x-1),其定义域为x≥1。

三、结论从上面的内容可以看出,定义域是描述函数图像值与变量取值范围之间关系的术语,它定义了函数的变量可取的值集合。

定义域的求法主要有显式定义域、隐式定义域和混合定义域,它们对理解和解决函数的问题有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数
一、函数的定义域及求法
1、分式的分母≠0;偶次方根的被开方数≥0;
2、对数函数的真数>0;对数函数的底数>0且≠1;
3、正切函数:x ≠kπ+ π/2 ,k∈Z;余切函数:x ≠kπ,k ∈Z ;
4、一次函数、二次函数、指数函数的定义域为R;
5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法;
6、复合函数定义域的求法:推理、取交集及分类讨论.
[例题]:
1、求下列函数的定义域
3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论]
当m=0时,则mx2-4mx+m+3=3,→原函数的定义域为R;
当m≠0时,则mx2-4mx+m+3>0,
①m<0时,显然原函数定义域不为R;
②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R,
所以当m∈[0,1) 时,原函数定义域为R.
4、求函数y=log
x + 1 (x≥4) 的反函数的定义域.
2
[解析]:[求原函数的值域]
由题意可知,即求原函数的值域,
∵x≥4,∴log2x≥2∴y≥3
所以函数y=log2x + 1 (x≥4) 的反函数的定义域是[3,+∞).
5、函数f(2x)的定义域是[-1,1],求f(log
x)的定义域.
2
[解析]:由题意可知2-1≤2x≤21→f(x)定义域为[1/2,2] → 1/2≤log2x≤2→√ ̄2≤x≤4.
x)的定义域是[√ ̄2,4].
所以f(log
2
二、函数的值域及求法
1、一次函数y=kx+b(k≠0)的值域为R;
2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时,
y≤-△/4a ;
3、反比例函数的值域:y≠0 ;
4、指数函数的值域为(0,+∞);对数函数的值域为R;
5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R;
6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法.
[例题]::求下列函数的值域
[解析]:
1、[利用求反函数的定义域求值域]
先求其反函数:f-1(x)=(3x+1)/(x-2) ,其中x≠2,
由其反函数的定义域,可得原函数的值域是y∈{y∈R|y≠2} 2、[利用反比例函数的值域不等于0]
由题意可得,
因此,原函数的值域为[1/2,+∞)
4、[利用分离变量法和换元法]
设法2x=t,其中t>0,则原函数可化为y=(t+1)/(t-1)→ t=(y+1)/(y-1) >0
∴y>1或y<-1
5、[利用零点讨论法]
由题意可知函数有3个零点-3,1,2,
①当x<-3 时,y=-(x-1)-(x+3)-(x-2)=-3x∴y>9
②当-3≤x<1 时,y=-(x-1)+(x+3)-(x-2)=-x+6∴5<y≤9
③当1≤x<2 时,
y=(x-1)+(x+3)-(x-2)=x+4∴5≤y<6
④当x ≥2时,y=(x-1)+(x+3)+(x-2)=3x∴y≥6
综合前面四种情况可得,原函数的值域是[5,+∞)
6、[利用函数的有界性]
三、函数的单调性及应用
1、A为函数f(x)定义域内某一区间,
2、单调性的判定:作差f(x
1)-f(x
2
)判定;根据函数图象判定;
3、复合函数的单调性的判定:f(x),g(x) 同增、同减,f(g(x)) 为增函数,f(x),g(x)一增、一减,f(g(x)) 为减函数.
[例题]:
(4+3x-x2)的单调递增区间.
2、设a>0且a≠1,试求函数y=log
a
[解析]:[利用复合函数的单调性的判定]
由题意可得原函数的定义域是(-1,4),
设u=4+3x-x2,其对称轴是x=3/2 ,
所以函数u=4+3x-x2,在区间(-1,3/2 ]上单调递增;在区间[3/2 ,4)上单调递减.
①a>1时,y=log a u 在其定义域内为增函数,由x↑→u↑→y↑,
(4+3x-x2) 得函数u=4+3x-x2的单调递增区间(-1,3/2 ],即为函数y=log
a
的单调递增区间.
②0<a<1时,y=log a u 在其定义域内为减函数,由
x↑→u↓→y↑,得函数u=4+3x-x2的单调递减区间[3/2 ,4),即为函数(4+3x-x2)的单调递增区间.
y=log
a
(2-ax) 在[0,1]上是x 的减函数,求a的取值范围。

3、已知y=log
a
[解析]:[利用复合函数的单调性的判定]
由题意可知,a>0.设u=g(x)=2-ax,则g(x)在[0,1]上是减函数,且x=1时,
g(x)有最小值u
=2-a .
min
=2-a>0则可,得a 又因为u=g(x)=2-ax>0,所以,只要u
min
<2.
又y=log
(2-ax) 在[0,1]上是x 减函数,u=g(x)在[0,1]上是
a
减函数,
u是增函数,故a>1.
即x↑→u↓→y↓,所以y=log
a
综上所述,得1<a<2.
4、已知f(x)的定义域为(0,+∞),且在其上为增函数,满足f(xy)=f(x)+f(y),f(2)=1 ,试解不等式f(x)+f(x-2)<3 .
[解析]:[此题的关键是求函数值3所对应的自变量的值]
由题意可得,f(4)=f(2)+f(2)=2 ,3=2+1=f(4)+f(2)=f(4×2)=f(8)
又f(x)+f(x-2)=f(x2-2x)
所以原不等式可化成f(x2-2x)<f(8)
所以原不等式的解集为{x|2<x<4}
四、函数的奇偶性及应用
1、函数f(x)的定义域为D,x∈D ,f(-x)=f(x) → f(x)是偶函数;f(-x)=-f(x)→是奇函数
2、奇偶性的判定:作和差f(-x)± f(x)=0 判定;作商f(x)/f(-x)= ±1,f(x)≠0 判定
3、奇、偶函数的必要条件是:函数的定义域关于原点对称;
4、函数的图象关于原点对称奇函数;
函数的图象关y轴对称偶函数
5、函数既为奇函数又为偶函数f(x)=0,且定义域关于原点对称;
6、复合函数的奇偶性:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.
[例题]:
[解析]:①[利用作和差判断]
由题意可知,函数的定义域是R,设x为R内任意实数,
即,f(x) = -f(x) ,∴原函数是奇函数.
②[利用作商法判断]
由题意可知,函数的定义域是R,设x为R内任意实数,
(2)∵f(x) 的图象关于直线x=1对称,
∴ f[1-(1-x)]=f[1+(1-x)] ,x∈R ,即f(x) =f(2-x) ,
又∵ f(x)在R上为偶函数,→ f(-x)=f(x)=f(2-x)=f(2+x)
∴ f(x)是周期的函数,且2是它的一个周期.
五、函数的周期性及应用
1、设函数y=f(x)的定义域为D,x∈D,存在非0常数T,有f(x+T)=f(x)→f(x)为周期函数,T为f(x)的一个周期;
2、正弦、余弦函数的最小正周期为2π,函数y=Asin(ωx+φ)和
y=Acos(ωx+φ)的最小正周期是T = 2π/|ω| ;
3、正切、余切函数的最小正周期为π,函数y=Atan(ωx+φ)和
y=Acot(ωx+φ)的周期是T=π/|ω| ;
4、周期的求法:定义域法;公式法;最小公倍数法;利用函数的图象法;
5、一般地,sinωx 和cosωx类函数加绝对值或平方后周期减半,tanωx 和cotωx类函数加绝对值或平方后周期不变(如:y=|cos2x| 的周期是
π/2 ,y=|cotx|的周期是π.
[例题]:
1、求函数y = |sinx|+|cosx|的最小正周期.
[解析]:[利用周期函数的定义]
y = |sinx|+|cosx|=|-sinx|+|cosx|
=|cos(x + π/2)|+|sin(x + π/2)|
即对于定义域内的每一个x,当x增加到(x + π/2)时,函数值重复
出现,因此函数的最小正周期是π/2 .
3、求函数y=sin3x+tan(2x/5) 的最小正周期.
[解析]:[最小公倍数法和公式法],
(设f(x)、g(x) 是定义在公共集合上的两上三角周期函数,T1、、
T 2分别是它们的周期,且T
1
≠T
2
,则f(x)± g(x) 的最小正周期等于T
1
、、
T
2
的最小公倍数.)
(注:分数的最小公倍数= 分子的最小公倍数/分母的最大公约数).
由题意可知,sin3x的周期是T
1= 2π/3,tan(2x/5)的周期是T
2
=5π/2,
∴原函数的周期是T=10π/1 =10π.4、求函数y=|tanx|的最小正周期.[解析]:[利用函数的图象求函数的周期] 函数y=|tanx|的简图如图:
由函数y=|tanx|的简图可知,
其最小正周期是π.
5、设f(x)是(-∞,+∞)上周期为2的奇函数,当0≤x≤1时,f(x)=x,求f(7.5)
[解析]:[利用周期函数的定义]
由题意可知,f(2+x) = f(x)
∴f(7.5) =f(8-0.5) =f(-0.5) =-f(0.5) =-0.5。

相关文档
最新文档