概率与数理统计第3章多维随机变量及其分布习题测验及答案
概率论与数理统计(浙大) 习题答案 第3章
第三章 多维随机变量及其分布1. 在一箱子中装有12只开关, 其中2只是次品, 在其中取两次, 每次任取一只, 考虑两种试验: (1)放回抽样, (2)不放回抽样. 我们定义随机变量X , Y 如下:⎩⎨⎧=若第一次取出的是次品若第一次取出的是正品10X ,⎩⎨⎧=若第二次取出的是次品若第二次取出的是正品10Y .试分别就(1), (2)两种情况, 写出X 和Y 的联合分布律.解: (1)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有362512101210)0 ,0(=⋅===Y X P ,3651221210)1 ,0(=⋅===Y X P ,3651210122)0 ,1(=⋅===Y X P ,361122122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律(2)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有66451191210)0 ,0(=⋅===Y X P ,66101121210)1 ,0(=⋅===Y X P ,66101110122)0 ,1(=⋅===Y X P ,661111122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律2. 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以X 表示取到黑球的只数, 以Y 表示取到白球的只数, 求X , Y 的联合分布律.解: (X , Y )的可能取值为(i , j ), i =0, 1, 2, 3, j =0, 1, 2, i +j ≥2, 联合分布律为P (X =0, Y =2)=351472222=C C C ,P (X =1, Y =1)=35647221213=C C C C , P (X =1, Y =2)=35647122213=C C C C , P (X =2, Y =0)=351472222=C C C ,P (X =2, Y =1)=351247121223=C C C C ,P (X =2, Y =2)=353472223=C C C ,P (X =3, Y =0)=352471233=C CC ,P (X =3, Y =1)=352471233=C CC ,列成表格便得X 和Y 的联合分布律3. 设随机变量(X , Y )概率密度为⎩⎨⎧<<<<--=其它042 ,20)6(),(y x y x k y x f . (1)确定常数k ; (2)求P (X <1, Y <3); (3)求P (X <1.5); (4)求P (X +Y ≤4). 解: (1)因为 k dydx y x k dy dx y x f 8)6(),(1242=--==⎰⎰⎰⎰+∞∞-+∞∞-,所以81=k .(2)83)6(81)3 ,1(3210⎰⎰=--=<<dy y x dx Y X P .(3)3227)6(81) ,5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P .(4)32)6(81}4{4020=--=≤+⎰⎰-dy y x dx Y X P x .4. 将一枚硬币掷3次, 以X 表示前2次中出现H 的次数, 以Y 表示3次中出现H 的次数, 求(X , Y )的联合分布律及边缘分布律.故(X , Y )的联合分布律为(X , Y )关于X 的边缘分布律为即)21 ,2(~b X .(X , Y )关于Y 的边缘分布律为即)21 ,3(~b Y .5. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤≤≤-=其它00,10)2(8.4),(xy x x y y x f , 求边缘概率密度. 解: ⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.40x dy x y x⎩⎨⎧≤≤-=其它010)2(4.22x x x ,⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.41y dx x y y⎩⎨⎧≤≤+-=其它010)43(4.22y y y y . 6. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧<<=-其它00),(y x e y x f y , 求边缘概率密度.解:⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤>=⎰+∞-000x x dy e x y⎩⎨⎧≤>=-000x x e x . ⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤>=⎰-000y y dx e y y⎩⎨⎧≤>=-000y y ye y . 7. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤=其它01),(22y x y cx y x f . (1)试确定常数c ; (2)求边缘概率密度. 解: (1)因为l =⎰⎰⎰⎰⎰∞+∞-+-∞+∞-===c dy y c ydx cx dy dxdy y x f yy 21432),(1025210,所以421=c .(2)X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤-=⎰其它011421)(~122x ydy x x f X x X⎪⎩⎪⎨⎧≤≤--=其它011)1(82142x x x .X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤=⎰+-其它010421)(~2y ydx d y f Y y y Y⎪⎩⎪⎨⎧≤≤=其它0102725y y .8. 将某一医公司9月份和8月份收到的青霉素针剂的订货单数分别记为X 和Y , 据以往积累的资料知X 和Y 联合分布律为:(1)求边缘分布律;(2)求8月份的订单数为51时, 9月份订单数的条件人布律.解: 在表中运算得(2)因为j ijj j i i i p p y Y P y Y x X P y Y x X P ⋅=======)() ,()|(, 并且P (Y =51)=0.28=p ⋅j , 所以28628.006.0)51|51(====Y X P ,28728.007.0)51|52(====Y X P ,28528.005.0)51|53(====Y X P ,28528.005.0)51|54(====Y X P ,28528.005.0)51|55(====Y X P ,故当8月份的订单数为51时, 9月份订单数的条件分布律为9. 以X 记某一医院一天出生的婴儿的个数, Y 记男婴的个数, 记X 和Y 的联合分布律为)!(!)86.6()14.7() ,(14m n m e m Y n X P mn m -===--(m =0, 1, 2, ⋅⋅⋅, n ;n =0, 1, 2, ⋅⋅⋅ ).(1)求边缘分布律; (2)求条件分布律;(3)特别写出当X =20时, Y 的条件分布律. 解: (1)边缘分布律:∑∑=--=-=====nm mn m n m m n m e m Y n X P n X P 0140)!(!)86.6()14.7() ,()(∑=--⋅⋅⋅⋅=nm m n m m ne n C 014)86.6()14.7(!1 ∑=--⋅⋅=n m m n m mn C n e 014)86.6()14.7(! !14)86.614.7(!1414n e n e n n --⋅=+=(n =0, 1, 2, ⋅⋅⋅ ). ∑∑∞=--∞=-=====0140)!(!)86.6()14.7() ,()(n mn m n m n m e m Y n X P m Y P∑∞=---=014)!()86.6(!)14.7(n mn m m n m e m m m e e m e )14.7(!!)14.7(14.786.614--==(m =0, 1, 2, ⋅⋅⋅ ).(2)条件分布律:m mn m m e m n m e m Y P m Y n X P m Y n X P )14.7(!)!(!)86.6()14.7()() ,()|(14.714----======= )!()86.6(86.6m n e mn -⋅=--(n =m , m +1, ⋅⋅⋅ ).当m =0, 1, 2, ⋅⋅⋅ 时1414!14)!(!)86.6()14.7()() ,()|(----=======e n m n m e n X P m Y n X P n X m Y P nmn m m n m m n m n -⋅⋅-=)1486.6()1414.7()!(!! m m mn C -⋅⋅=20)49.0()51.0((m =0, 1, ⋅⋅⋅ , n ). (3)当X =20时, Y 的条件分布为m m mC X m Y P -⋅===2020)49.0()51.0()20|((m =0, 1, ⋅⋅⋅ , 20).10. 求§1例1中的条件分布律: P (Y =k |X =i )=?解: 由于)(),()|(i X P i X k Y P i X k Y P ======, 而411) ,(⋅===i i X k Y P (i =1, 2, 3, 4, k ≤i ),41)(==i X P ,所以ii X k Y P 1)|(===(i =1, 2, 3, 4, k ≤i ),即11. 在第7题中(1)求条件概率f X |Y (x |y ), 特别, 写出当21=Y 时X 的条件概率密度; (2)求条件概率密度f Y |X (y |x ), 特别, 分别写出当31=X , 21=X 时Y 的条件概率密度; (3)求条件概率P (Y ≥1/4|X =1/2), P (Y ≥3|X =1/2). 解: (1)当0<y ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他027421)(),()|(252|y x y y yx y f y x f y x f Y Y X ⎪⎩⎪⎨⎧<<-=-其他023232y x y y x ,特别, ⎪⎩⎪⎨⎧<<-==-其他02121)21(23)21|(232|x x y x f Y X ⎪⎩⎪⎨⎧<<-=其他02121232x x .(2)当-1<x ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他01)1(821421)(),()|(2422|y x x x y x x f y x f x y f X X Y ⎪⎩⎪⎨⎧<<-=其他01)1(222y x x y ,特别, ⎪⎩⎪⎨⎧<<-==其他0191))3/1(1(2)31|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01914081y y ,⎪⎩⎪⎨⎧<<-==其他0141))2/1(1(2)21|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01411532y y .(3))21|41()21|1()21|41(=<-=<==≥X Y P X Y P X Y P1153215324141141=-=⎰⎰ydy ydy ,)21|43()21|1()21|43(=<-=<==≥X Y P X Y P X Y P157153214341=-=⎰ydy .12. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=其他010 ,||1),(x x y y x f , 求条件概率密度f Y |X (y |x ),f X |Y (x |y ). 解: f (x ,y )的边缘密度为⎪⎩⎪⎨⎧<<=⎰-其他0101)(x dy x f x x X ⎩⎨⎧<<=其他0102y x ,⎪⎩⎪⎨⎧<<-=⎰其他0111)(1||y dx x f y Y ⎩⎨⎧<<--=其他011||1y y ,所以当0<x <1时,⎪⎩⎪⎨⎧<==其他0||21)(),()|(|x y xx f y x f x y f X X Y , 当|y |<1时,⎪⎩⎪⎨⎧<-==其他0||||11)(),()|(|x y y x f y x f x y f Y Y X , 13. (1)问第1题中的随机变量X 和Y 是否相互独立?(2)问第12题中的随机变量X 和Y 是否相互独立?(需说明理由) 解: (1)有放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 独立. 不放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 不独立.(2)由于当|y |<x , 0<x <1时, f X (x )⋅f Y (y )=2x (1-|y |)≠f (x , y )=1, 故X 和Y 不独立.14. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y .(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0, 试求a 有实根的概率.解: (1)按已知X 的概率密度为⎩⎨⎧<<=其他0101)(x x f X .由于X 和Y 相互独立, 故(X , Y )的概率密度为⎪⎩⎪⎨⎧><<=⋅=-其他0,1021)()(),(2y x e y f x f y x f y Y X .(2)要使a 有实根, 必须方程a 2+2Xa +Y =0的判别式∆=X 2-Y ≥0,⎰⎰⎰---==≥-10202102)1(21)0(22dx e dy e dx Y X P x x y⎰⎰⎰∞--∞-----=-=02121022222121[211dx e dx e dx e x x x πππ 1445.0)]0()1([21=Φ-Φ-=π.15. 第1题中的随机变量X 和Y 是否相互独立. 解: 放回抽样的情况P (X =0, Y =0)=P (X =0)⋅P (Y =0)3625=P (X =0, Y =1)=P (X =0)⋅P (Y =1)365=P (X =1, Y =0)=P (X =1)⋅P (Y =0)3651210122=⋅=P (X =1, Y =1)=P (X =1)⋅P (Y =1)361122122=⋅=.在放回抽样的情况下, X 和Y 是独立的. 不放回抽样的情况:P (X =0, Y =0)66451191210=⋅=,P (X =0)651210==,P (X =0)=P (X =0, Y =0)+P (Y =0, X =1) 6511101121191210=⋅+⋅=,P (X =0)⋅P (Y =0)36256565=⨯=,P (X =0, Y =0)≠P (X =0)P (Y =0), 所以X 和Y 不独立.14. 设X , Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布. Y 的概率密度为⎪⎩⎪⎨⎧≤>=00021)(2y y e y f y Y .(1)求X 和Y 的联合密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求有实根的概率. 解: (1)X 的概率密度为⎩⎨⎧∈=其它0)1 ,0(1)(x x f X ,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y ,可见且知X , Y 相互独立, 于是(X , Y )的联合密度为⎪⎩⎪⎨⎧><<==-其它0,1021)()(),(2y x e y f x f y x f y Y X .(2)由于a 有实根, 从而判别式∆=4X 2-4Y ≥0, 即Y ≤X 2. 记}0,10|),{(2x y x y x D <<<<=, ⎰⎰=≤Ddxdy y x f X Y P ),(}{2⎰⎰⎰⎰⎰----=-==10010102022222121x xx y y dx e de dx dy e dxdx e x ⎰-⋅-=00222121ππ)5.08413.0(21)]2()1([21--=Φ-Φ-=ππ 1445.08555.013413.05066312.21=-=⨯-=.15. 进行打靶, 设弹着眯A (X , Y )的坐标X 和Y 相互独立, 且都服从N (0, 1)分布, 规定点A 落在区域D 1={(x , y )|x 2+y 2≤1}得2分; 点A 落在D 2={(x , y )|1≤x 2+y 2≤4}得1分; 点A 落在D 3={(x , y )|x 2+y 2>4}得0分, 以Z 记打靶的得分, 写出X , Y 的联合概率密度, 并求Z 的分布律.解: (1)因为X ~N (0, 1), Y ~N (0, 1), X 与Y 独立, 故(X , Y )的联合概率密度为22221),(y x e y x f +-=π(-∞<x <+∞, -∞<y <+∞).(2)Z 的可能取值为0, 1, 2.⎰⎰>++-=∈==421222221)),(()0(x x y x dxdy e D Y X A P Z P π⎰⎰≤++--=422222211x x y x dxdy e π2202022211--=-=⎰⎰e rdr e d r ππθ,⎰⎰≤+≤+-=∈==4122222221)),(()1(x x y x dxdy e D Y X A P Z P π22120212221----==⎰⎰e e rdr e d r ππθ,⎰⎰≤++-=∈==121222221)),(()2(x x y x dxdy e D Y X A P Z P π21201021212---==⎰⎰e rdr e d r ππθ,故得Z 的分布律为16. 设X 和Y 是相互独立的随机变量, 其概率密度分别为⎩⎨⎧≤>=-000)(x x e x f x X λλ, ⎩⎨⎧≤>=-000)(y y e y f y Y μμ, 其中λ>0, μ>0是常数, 引入随机变量⎩⎨⎧>≤=Y X YX Z 当当01.(1)求条件概率密度f X |Y (x |y ); (2)求Z 的分布律和分布函数. 解: (1)由X 和Y 相互独立, 故⎩⎨⎧>>=⋅=+-其他00 ,0)()(),()(y x e y f x f y x f y x Y X μλλμ.当y >0时,⎩⎨⎧≤>===-000)()(),()|(|x x e y f y f y x f y x f x X Y Y X λλ. (2)由于⎩⎨⎧>≤=Y X YX Z 当当01,且 μλλλλμμλμλ+===≤⎰⎰⎰+∞+-+∞+∞+-0)(0)()(dx e dydx eY X P x xy x ,μλμμλλ+=+-=≤-=>1)(1)(Y X P Y X P ,故Z 的分布律为Z 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=111000)(z z z z F Z μλμ. 17. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为⎩⎨⎧<≤=其他0101)(x x f X , ⎩⎨⎧>=-其他00)(y e y f y Y , 求随机变量Z =X +Y 的概率密度.解: 由于X 和Y 是相互独立的, 故⎩⎨⎧><≤=⋅=-其他00 ,10)()(),(y x e y f x f y x f y Y X , 于是Z =X +Y 的概率密度为⎰+∞∞--⋅=dx x z f x f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧>-≤≤-=⎰⎰其他01)()(10)()(100z dxx z f x f z dx x z f x f Y X x YX ⎪⎪⎩⎪⎪⎨⎧>≤≤=⎰⎰----其他011010)(0)(z dxe z dx e x z x x z ⎪⎩⎪⎨⎧>-≤≤-=--其他01)1(101z e e z e zz .18. 设某种商品一周的需要量是一个随机变量, 其概率密度为⎩⎨⎧≤>=-000)(t t te t f t , 设各周的需要量是相互独立的, 试求: (1)两周需要量的概率密度; (2)三周需要量的概率密度.解: (1)设第一周需要量为X , 它是随机变量; 设第二周需要量为Y , 它是随机变量且与X 同分布, 其分布密度为⎩⎨⎧≤>=-000)(t t te t f t . Z =X +Y 表示两周需要的商品量, 由X 和Y 的独立性可知:⎩⎨⎧>>=--其它00,0),(y x ye xe y x f y x .因为z ≥0, 所以当z <0时, f z (z )=0; 当z >0时, 由和的概率公式知 ⎰∞+∞--=dy y f y z f z f Y X Z )()()(z yzy z e z dy ye ey z ----=⋅-=⎰6)(30)(, 所以 ⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z .(2)设Z 表示前两周需要量, 其概率密度为⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z ,设ξ表示第三周需要量, 其概率密度为:⎩⎨⎧≤>=-000)(x x xe x f x ξ,Z 与ξ相互独立, η=Z +ξ表示前三周需要量, 则因为η≥0, 所以u <0, f η(u )=0. 当u >0时 ⎰∞+∞--=dy y f y u f u f )()()(ξηdy ye e y u y uy u ---⋅-=⎰0)(3)(61u e u -=1205, 所以η的概率密度为⎪⎩⎪⎨⎧≤>=-00120)(5u u e u u f u η.19. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-其他00,0)(21),()(y x e y x y x f y x .(1)问X 和Y 是否相互独立? (2)求Z =X +Y 的概率密度. 解: (1)X 的边缘密度为⎪⎩⎪⎨⎧<>+=⎰∞++-000)(21)(0)(x x dy e y x x f y x X⎪⎩⎪⎨⎧<>+=-000)1(21x x e x x ,同理Y 的边缘密度为⎪⎩⎪⎨⎧<>+=-000)1(21)(y y e y y f y Y .因为当x >0, y >0时,)()()1)(1(41)(21),()()(y f x f e y x e y x y x f Y X y x y x =++≠+=+-+-,所以X 与Y 不独立. (2)Z 的概率密度为z z x Z e z dx e x z x dx x z x f z f --+∞∞-=-+=-=⎰⎰2021)(21),()((z >0).当z <0时, f Z (z )=0, 所以⎪⎩⎪⎨⎧<>=-0021)(2z z e z z f z Z .20. 设X , Y 是相互独立的随机变量, 它们都服从正态分布N (0, σ 2), 试验证随机变量22Y X z +=具有概率密度⎪⎩⎪⎨⎧>≥=-其他0,0)(2222σσσz e z z f z Z ,称Z 服从参数为σ(σ>0)的瑞利(Rayleigh 分布.解: 因为X , Y 相互独立且均服从正态分布N (0, σ 2), 它们的概率密度分别为22221)(σσπx e x f -=, 22221)(σσπy e y f -= , σ>0,故X 和Y 的联合密度为2222221)()(),(σπσy x e y f x f y x f +-=⋅=.22Y X z +=的分布函数为⎰⎰≤+=≤+=≤=222),()()((z)22z y x Z dxdy y x f z Y X P z Z P F⎰⎰-=zd e d 022202221ρρπσθσρπ2222202211σσρρρσz z ed e---==⎰(z >0),当z ≤0时, F Z (z )=0.于是随机变量22Y X z +=的概率密度为⎪⎩⎪⎨⎧>≥==-其他00 ,0)()(2222σσσz e z dz z dF z f z Z Z .21. 设随机变量(X , Y )的概率密度为⎩⎨⎧+∞<<<<=+-其他00 ,10),()(y x be y x f y x . (1)试确定义常数b ;(2)求边缘概率密度f X (x ), f Y (y );(3)求函数U =max(X , Y )的分布函数. 解: (1)由10)(1=⎰⎰+∞+-dy be dx y x , 即1)1(1010=-=⎰⎰+∞--e b dy e dx e b y x ,得1111-=-=-e e e b .(2)⎪⎩⎪⎨⎧<<-=⎰∞++-其他0101)(0)(x dy e e e x f y x X⎪⎩⎪⎨⎧<<-=-其他0101x e e e x ,⎩⎨⎧≤>==-∞+∞-⎰000),()(y y e dx y x f x f y X . 显然X 与Y 独立.(3)⎪⎩⎪⎨⎧≥<≤--<=-1110)1(100)(x x e e e x x F x X⎩⎨⎧≤>-=-0001)(y y e x F y Y , 故U =max(X , Y )的分布函数为F U (u )=P (U ≤u )=P (max(X , Y )≤u ) =P (X ≤u , Y ≤u )=P (X ≤u )P (Y ≤u )⎪⎩⎪⎨⎧≥-<≤--<==--1110)1(100)()(2u eu e e e u u F u F uu Y X .22. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.解: 设X 1, X 2, X 3, X 4为4只电子管的寿命, 它们相互独立, 同分布, 其概率密度为:22202)160(2021)(⨯--⋅=t T et f π,⎰∞-⨯-==<18022202)160(20121)180(}180{dt t F X f X π ⎰∞--=-======1220160221du e u ut π令 8413.0)2060180(=-Φ=.设N =min{X 1, X 2, X 3, X 4}, 则P {N >180}=P {X 1>180, X 2>180, X 3>180, X 4>180} =P {X >180}4={1-p [X <180]}4 =(0.1587)4=0.00063.23. 对某种电子装置的输出测量了5次, 得到观察值X 1,X 2, X 3, X 4, X 5, 设它们是相互独立的随机变量且都服从参数σ=2的瑞种分布.(1)求Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数; (2)求P (Z >4).解: 由20题知, X i (i =1, 2, ⋅⋅⋅ , 5)的概率密度均为⎪⎩⎪⎨⎧≥=-其他004)(82x e x x f x X ,分布函数为821)(x X e x F --=(x >0).(1) Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数为 585m ax )1()]([)(2z e z F z F --== (z ≥0), 当z <0时, F max (z )=0.所以Z 的分布函数为⎩⎨⎧<≥-=-000)1()(58m ax 2z z e z F z .(2)P (Z >4)=1-P (Z ≤4)=1-F Z (4)5167.0)1(1)1(1525842=--=--=--e e .24. 设随机变量X , Y 相互独立, 且服从同一分布, 试证明 P (a <min{X , Y }≤b )=[P (X >a )]2-[P (X >b )]2 . 解: 因为X 与Y 相互独立且同分布, 故P (a <min{X , Y }≤b )=P (min{X , Y }≤b )-P (min{X , Y }≤a ) =1-P (min{X , Y }>b )-[1-P (min{X , Y }>a )] =P (min{X , Y }>a )-P (min{X , Y }>b ) =P (X >a , Y >a )-P (X >b , Y >b ) =P (X >a )P (Y >a )-P (X >b )P (Y >b ) =[P (X >a )]2-[P (Y >b )]2 .25. 设X , Y 是相互独立随机变量, 其分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ). 证明随机变量Z =X +Y 的分布律为∑=-==ik k i q k p i Z P 0)()()( (i =0, 1, 2, ⋅⋅⋅ ),证明: 因为X 与Y 独立, 且X 与Y 的分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ), 故Z =X +Y 的分布律为∑==+===ik i Y X k X P i Z P 0) ,()( ∑=-===i k k i Y k X P 0) ,( ∑=-===i k k i Y P k X P 0)()( ∑=-=i k k i q k p 0)()( (i =0, 1, 2, ⋅⋅⋅ ).26. 设X , Y 是相互独立的随机变量, X ~π(λ1), Y ~π(λ2), 证明Z =X +Y ~π(λ1+λ2).证明: 因为X , Y 分别服从参数为λ1, λ2的泊松分布, 故X , Y 的分布律分别为 1!)(1λλ-==e k k X P k (λ1>0),2!)(2λλ-==e r r Y P r (λ2>0),由25题结论知, Z =X +Y 的分布律为 ∑=-====ik k i Y P k X P i Z P 0)()()(∑=----⋅=ik ki k e k i e k 02121)!(!λλλλ∑=-+-⋅-=i k k i k k i k i i e 021)()!(!!!21λλλλ i i e )(!21)(21λλλλ+=+-(i =0, 1, 2, ⋅⋅⋅ ), 即Z =X +Y 服从参数为λ1+λ2的泊松分布.27. 设X , Y 是相互独立的随机变量, X ~b (n 1, p ), Y ~b (n 2, p ), 证明Z =X +Y ~b (n 1+n 2, p ).证明: Z 的可能取值为0, 1, 2, ⋅⋅⋅ , 2n , 因为 {Z =i }={X +Y =i }={X =0, Y =0}⋃{X =1, Y =i -1}⋃ ⋅⋅⋅ ⋃{X =i , Y =0}, 由于上述并中各事件互不相容, 且X , Y 独立, 则∑=-====ik k i Y k X P i Z P 0) ,()(∑=-===ik k i Y P k X P 0)()(∑=+-----⋅-=ik k i n ki k i n k n k k n p p C p p C 02211)1()1( ∑=--+⋅-=ik ki n k n k n n i C C p p 02121)1( in i i n n p p C -+-=2)1(21(i =0, 1, 2, ⋅⋅⋅ , n 1+n 2), 所以 Z =X +Y ~b (n 1+n 2, p ),即Z =X +Y 服从参数为2n , p 的二项分布.提示:上述计算过程中用到了公式i n n ik k i n k n C C C21210+=-=⋅∑,这可由比较恒等式2121)1()1()1(n n n n x x x ++=++两边x i 的系数得到.28. 设随机变量(X , Y )的分布律为(1)求P {X =2|Y =2), P (Y =3|X =0); (2)求V =max{X , Y }的分布律; (3)求U =min{X , Y }的分布律; (4)求W =V +U 的分布律. 解: (1)由条件概率公式)2()2,2()2|2(======Y P Y X P Y X P08.005.005.005.003.001.005.0+++++=2.025.005.0==.同理 31)0|3(===X Y P .(2)变量V =max{X , Y }.显然V 是一随机变量, 其取值为V : 0, 1, 2, 3, 4, 5. P (V =0)=P (X =0, Y =0)=0,P (V =1)=P (X =1, Y =0)+P (X =1, Y =1)+P (X =0, Y =1) =0.01+0.02+0.01=0.04,P (V =2)=P (X =2, Y =0)+P (X =2, Y =1)+P (X =2, Y =2) +P (Y =2, X =0)+P (Y =2, X =1)=0.03+0.04+0.05+0.01+0.03=0.16, P (V =3)=P (X =3, Y =0)+P (X =3, Y =1) +P (X =3, Y =2)+P (X =3, Y =3)+P (Y =3, X =0)+P (Y =3, X =1)+P (Y =3, X =2), =0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28 P (V =4)=P (X =4, Y =0)+P (X =4, Y =1) +P (X =4, Y =2)+P (X =4, Y =3) =0.07+0.06+0.05+0.06=0.24, P (V =5)=P (X =5, Y =0)+ ⋅⋅⋅ +P (X =5, Y =3) =0.09+0.08+0.06+0.05=0.28. (3)显然U 的取值为0, 1, 2, 3.P (U =0)=P (X =0, Y =0)+ ⋅⋅⋅ +P (X =0, Y =3)+P (Y =0, X =1)+ ⋅⋅⋅ +P (Y =0, X =5)=0.28. 同理 P (U =1)=0.30, P (U =2)=0.25, P (U =3)=0.17. (4)W =V +U 的取值为0, 1, ⋅⋅⋅ , 8. P (W =0)=P (V =0, U =0)=0,P (W =1)=P (V =0, U =1)+P (V =1, U =0). 因为V =max{X , Y }=0又U =min{X , Y }=1 不可能上式中的P (V =0, U =1)=0,又 P (V =1, U =0)=P (X =1, Y =0)+P (X =0, Y =1)=0.2, 故 P (W =1)=P (V =0, U =1)+P (V =1, U =0)=0.2,P(W=2)=P(V+U=2)=P(V=2, U=0)+P(V=1,U=1) =P(X=2 Y=0)+P(X=0,Y=2)+P(X=1,Y=1)=0.03+0.01+0.02=0.06,P(W=3)=P(V+U=3)=P(V=3, U=0)+P(V=2,U=1) = P(X=3,Y=0)+P(X=0,Y=3)+P(X=2,Y=1)+P(X=1,Y=2)=0.05+0.01+0.04+0.03=0.13, P(W=4)=P(V=4, U=0)+P(V=3,U=1)+P(V=2,U=2) =P(X=4,Y=0)+ P(X=3,Y=1)+P(X=1,Y=3)+P(X=2,Y=2 =0.19,P(W=5)=P(V+U=5)=P(V=5, U=0)+P(V=5,U=1)+P(V=3,U=2=P(X=5 Y=0)+P(X=5,Y=1)+P(X=3,Y=2)+P(X=2,Y=3) =0.24,P(W=6)=P(V+U=6)=P(V=5, U=1)+P(V=4,U=2) +P(V=3,U=3)=P(X=5,Y=1)+P(X=4,Y=2)+P(X=3,Y=3)=0.19,P(W=7)=P(V+U=7)=P(V=5, U=2)+P(V=4,U=3) =P(V=5,U=2)+P(X=4,Y=3)=0.6+0.6=0.12, P(W=8)=P(V+U=8)=P(V=5, U=3)+P(X=5,Y=3)=0.05.。
概率论与数理统计第三章习题及答案
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论——多维随机变量与分布答案
概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(一)一、填空题:1、设二维随机变量(,)X Y 的联合密度函数为2,01,01(,)0,A xy x y f x y ⎧<<<<=⎨⎩其他,则常数A =6 。
2、设二维随机变量(,)X Y 的联合分布函数为arctan arctan ,0,0(,)0,A x y x y F x y ⋅>>⎧=⎨⎩其他,则常数A =24π。
二、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验: (1)放回抽样;(2)不放回抽样。
我们定义随机变量X ,Y 如下:1X ⎧=⎨⎩若第一次出的是正品若第一次出的是次品 , 01Y ⎧=⎨⎩若第二次出的是正品若第二次出的是次品试分别就(1),(2)两种情况,写出X 和Y 的联合分布律。
(1)放回抽样(2)不放回抽样2.设二维离散型随机变量的联合分布见表:试求(1)13{,04}22P X Y <<<<, (2){12,34}P X Y ≤≤≤≤(1)1/4(2)5/163.设随机变量(,)X Y 的联合分布律如表:求:(1)a 值; (2)(,)X Y 的联合分布函数(,)F x y (3)(,)X Y 关于X ,Y 的边缘分布函数()X F x 和()Y F y (1)a=1/3(2)0x <1y<-1112,1045(,)2,10121120212,0⎧⎪⎪≤<-≤<⎪⎪⎪=≥-≤<⎨⎪⎪≤<≥⎪⎪≥≥⎪⎩x y F x y x y x y x y 或,(3)010115()12()10.2121210XY x y F x x F y y x y <<-⎧⎧⎪⎪⎪⎪=≤<=-≤<⎨⎨⎪⎪≥≥⎪⎪⎩⎩;4.设随机变量(,)X Y 的概率密度为(6)0<x <2,2<y<4(,)0k x y f x y --⎧=⎨⎩其他,求:(1)常数k ; (2)求{1,3}P X Y <<; (3){ 1.5}P X <; (4){4}P X Y +≤(1)24021(6)1;8k x y d y d x k --=⇒=⎰⎰(2)130213(1,3)(6);88PX Y x y d y d x <<=--=⎰⎰(3) 1.5402127( 1.5)( 1.5,24)(6);832P X P X Yx y d y d x <=<<<=--=⎰⎰(4)(4)P X Y +≤240212(6).83x x y d y d x -=--=⎰⎰概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(二)一、选择题:1、设随机变量X 与Y 独立,且221122(,),(,)X N Y N μσμσ ,则Z X Y =-仍服从正态分布,且有 [ D ] (A )221212(,)Z N μμσσ++ (B) 221212(,)Z N μμσσ+- (C) 221212(,)Z N μμσσ-- (D) 221212(,)Z N μμσσ-+ 2、若(,)X Y 服从二维均匀分布,则 [ B ] (A )随机变量,X Y 都服从均匀分布 (B )随机变量,X Y 不一定服从均匀分布 (C )随机变量,X Y 一定不服从均匀分布 (D )随机变量X Y +服从均匀分布 二、填空题:1、设二维随机变量(,)X Y 的密度函数为2,01,02(,)30,.xy x x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他, 则(1)P X Y +≥=6572。
最新概率论与数理统计第三章习题及答案
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计第三章习题及答案
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计 多维随机变量及其分布习题答案
A e2xdx e3y dy
0
0
A(
1
e2x
)
(
1
e3 y
)
2 03 0
=A/6 =1
所以, A=6
P{ X<2, Y<1} f(x, y)dxdy {X2,Y1}
2
dx
1 6e(2x3 y)dy
0
0
6 2 e2xdx 1e3ydy
0
0
Y
1
{X<2, Y<1} 0
(1 e4 )(1 e3 )
令:从表中的每一种情况出现的次数计算出
它们的频率,就产生了二维随机向量(X,Y)的 概率分布:
P{X=0,Y=0}≈3/23000=0.00013,
P{X=1,Y=0}≈1/23000=0.00004,
P{X=0,Y=1}≈4597/23000=0.19987, P{X=1,Y=1}≈18399/23000=0.79996.
所以( X ,Y ) 的分布函数为
0, x 1 或 y 1,
F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
例3 二维随机向量(X,Y)的联合概率分布为:
XY 0 1
2
-1 0.05 0.1 0.1
0
0.1 0.2 0.1
1
a 0.2 0.05
1, 3
故 ( X , Y ) 的分布律为
YX
12
1
0 13
2
13 13
下面求分布函数.
(1)当 x 1 或 y 1 时, y
F ( x, y) P{X x,Y y} 2(1,2)
概率论与数理统计浙大四版习题答案第三章
第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。
考虑两种试验:(1)放回抽样,(2)不放回抽样。
我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样情况由于每次取物是独立的。
由独立性定义知。
P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。
解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。
第三章-多维随机变量及其分布测试题答案
第三章 多维随机变量及其分布答案 一、填空题(每空3分)1.设二维随机变量(X,Y)的联合分布函数为22213,0,0(1)(1)(1)(,)0,A x y x y x y F x y ⎧+-≥≥⎪++++=⎨⎪⎩其他,则A=_____1____. 2.若二维随机变量(X,Y)的分布函数为F(x,y)则随机点落在矩形区域[x 1《<x<x 2,y 1<y<y 2]内的概率为___ ____ _(,)(,)(,)(,)22211112F x y F x y F x y F x y -+-.3.(X,Y)的联合分布率由下表给出,则α,β应满足的条件是13αβ+=;当=α 29 ,=β 19 时X 与Y 相互独立.4.设二维随机变量的密度函数2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他,则(1)P X Y +≥=__6572____. 5.设随机变量X,Y 同分布,X 的密度函数为23,02(,)80,x x f x y ⎧≤≤⎪=⎨⎪⎩其他,设A=(X>b )与B =(Y>b )相互独立,且3()4P A B ⋃=,则6.在区间(0,1)内随机取两个数,则事件“两数之积大于14”的概率为__ 31ln 444- .7. 设X 和Y 为两个随机变量,且34(0,0),(0)(0)77P X Y P X P Y ≥≥=≥=≥=,则(max{,}0)P X Y ≥=_57. 8.随机变量(,)(0,0,1,1,0)X Y N ,则D(3X-2Y)= _ 13 .9.设()25,()36,0.4XY D X D Y ρ===,则()D X Y += 85 ,()D X Y -= 37 .10.设随机变量2(3),()()0,()4,()16,Z aX Y E X E Y D X D Y =+====0.5XY ρ=-,则min ()E Z = 108 . 二、单项选择题(每题4分)1.下列函数可以作为二维分布函数的是( B ).A .⎩⎨⎧>+=.,0,8.0,1),(其他y x y x FB .⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt ey x F y x t s C . ⎰⎰=∞-∞---y x ts dsdt ey x F ),( D .⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x2.设平面区域D 由曲线1y x=及直线20,1,x y y e ===围成,二维随机变量在区域D 上服从均匀分布,则(X,Y)关于Y 的边缘密度函数在y=2处的值为(C ).A .12B .13C .14D .12-3.若(X,Y)服从二维均匀分布,则( B ).A .随机变量X,Y 都服从一维均匀分布B .随机变量X,Y 不一定服从一维均匀分布C .随机变量X,Y 一定都服从一维均匀分布D .随机变量X+Y 服从一维均匀分布 4.若D(X+Y)=D(X)+D(Y),则( A ).A .X 与Y 不相关B .(,)()()X Y F x y F x F y =⋅C .X 与Y 相互独立D .1XY ρ=-5.在[0,]π上均匀地任取两数X 和Y ,则{cos()0}P X Y +<=( D ).A .1B .12C . 23D .34三、计算题(第一题20分,第二题24分)1.已知2(),(),(1,2,3),a bP X k P Y k k X Y k k ===-==与相互独立.(1)确定a,b 的值; (2)求(X,Y)的联合分布列; (3)求X-Y 的概率分布.解:(1)由正则性()1kP X k ==∑有,612311a a a a ++=⇒= ()1kP Y k =-=∑有,3614949b b b b ++=⇒=(2)(X,Y)的联合分布律为(3) X-Y 的概率分布为2. 设随机变量(X,Y)的密度函数为(34),0,0(,)0,x y ke x y p x y -+⎧>>=⎨⎩其他(1)确定常数k ; (2)求(X,Y)的分布函数;(3)求(01,02)P X Y <≤<≤.解:(1)∵0(34)01x y ke dx dy ∞∞-+⎰=⎰∴400011433()()43||112y y x x e dx k e e dy k k e ∞-∞∞∞---=--⎰⋅==⎰∴k=12(2)143(34)(,)1212(1)(1)1200y x y xu v F x y e dudv ee ---+==⋅--⎰⎰ 43(1)(1)0,0yxeex y --=-->>∴34(1)(1),0,00,(,)x y ee x y F x y ⎧--⎪-->>⎨⎪⎩=其他(3)(01,02)(1,2)(0,0)(1,0)(0,2)P X Y F F F F <≤<≤=+--38(1)(1)ee --=--3.设随机变量X,Y 相互独立,且各自的密度函数为121,0()20,0x X e x p x x ⎧≥⎪=⎨⎪<⎩,131,0()30,0x Y e y p y y ⎧≥⎪=⎨⎪<⎩,求Z=X+Y 的密度函数 解:Z=X+Y 的密度函数()()()Z XY p z px p z x dx ∞-∞=-⎰∵()X p x 在x ≥0时有非零值,()Y p z x -在z-x ≥0即x ≤z 时有非零值 ∴()()X Y p x p z x -在0≤x ≤z 时有非零值336362000111()[]|236z zz x z x z x xzZ p z e e dx e e dx e e -------=⋅==-⎰⎰36(1)z z e e --=--当z<0时,()0Z p z =所以Z=X+Y 的密度函数为36(1),0()0,0z z Z e e z p z z --⎧⎪--≥=⎨⎪<⎩4.设随机变量X,Y 的联合密度函数为3412,0,0(,)0,x y e x y p x y --⎧>>=⎨⎩其他,分别求下列概率密度函数.(1) {,}M Max X Y =; (2) {,}N Min X Y =.解:(1)因为3430()(,)123x y x X p x p x y dy e dy e ∞∞----∞===⎰⎰3440()(,)124x y y Y p y p x y dx e dy e ∞∞----∞===⎰⎰所以(,)()()X Y p x y p x p y =即X 与Y 独立. 所以当z<0时,()0M F z =当z ≥0时,()()(,)()()M F z P M z P X z Y z P X z P Y z =≤=≤≤=≤≤34()()(1)(1)z z X Y F z F z e e --==--所以34430,0()3(1)4(1),0M z z z z z p z e e e e z ----<⎧=⎨-+-≥⎩3470,0347,0z z zz e e e z ---<⎧=⎨+-≥⎩ (2) 当z<0时,()0N F z =当z ≥0时,()()(,)1()()N F z P N z P X z Y z P X z P Y z =>=>>=->>7z e -=所以70,0()7,0M z z p z e z -<⎧=⎨≥⎩3470,0347,0zz zz e e e z ---<⎧=⎨+-≥⎩5.设随机变量X,Y 相互独立,其密度函数分别为2,01()0,X x x p x ≤≤⎧=⎨⎩其他,(5),5()0,y Y e y p y --⎧>=⎨⎩其他,求XY ρ.解:因为X,Y 相互独立,则Cov(X,Y)=E(XY)-E(X)E(Y)=0 所以0XY ρ=6.设随机变量(X,Y)的联合密度函数分别为3,01,0(,)0,x x y xp x y <<<<⎧=⎨⎩其他,求X和Y 的边际密度函数.解:20()(,)33,01xX p x p x y dy xdy x x ∞-∞===<<⎰⎰1223()(,)3(1),012Y yp y p x y dx xdx y x y ∞-∞===-<<⎰⎰ 四、证明题.1.已知二维随机变量(X,Y)的联合密度函数分布列如下表,试验证X 与Y 不相关,但X 与Y 不独立.证明:因为E(X)=-1×0.375+0×0.25+1×0.375=0 E(Y)=-1×0.375+0×0.25+1×0.375=0E(XY)=-1×0.25+0×0. 5+1×0.25=0所以E(XY)= E(X) E(Y) 即X 与Y 不相关.又因为P(X=1,Y=1)=0.125,P(X=1)=0.375,P(Y=1)=0.375 P(X=1,Y=1)≠P(X=1) P(Y=1) 所以X 与Y 不独立.2.设随机变量(X,Y)满足()()0,()()1,(,)E X E Y D X D Y Cov X Y ρ=====,证明22(max{,})1E X Y ≤证明:因为()()0,()()1,(,)E X E Y D X D Y Cov X Y ρ===== 所以2222()()()1,()()()1E X D X E X E Y D Y E Y =+==+= ()(,)()()E XY Cov X Y E X E Y ρ=+=2222221max(,)[||]2X Y X Y X Y =++-因所以2222222211(max(,))[()()(||)1(||)22E X Y E X E Y E X Y E X Y =++-=+-由柯西施瓦兹不等式有222()()()E XY E X E Y ≤所以22221(max(,))1(||)12E X Y E X Y =+-≤+又因为22222(||)(2)()()2()22E X Y E X Y XY E X E Y E XY ρ+=++=++=+ 22222(||)(2)()()2()22E X Y E X Y XY E X E Y E XY ρ-=+-=+-=-所以22(max(,))11E X Y =≤=+ 3.设二维随机变量),Y X (的联合概率密度为:1(1),1,1(,)40,xy x y p x y ⎧+<<⎪=⎨⎪⎩其他证明X 与Y 不独立,而2X 与2Y 相互独立.证明:因为1111()(,)(1),1142X p x p x y dy xy dy x ∞-∞-==+=-<<⎰⎰ 1111()(,)(1),1142Y p y p x y dx xy dx y ∞-∞-==+=-<<⎰⎰ 所以(,)()()X Y p x y p x p y ≠ 即X 与Y 不独立. 设22,U X V Y ==则22(,)(,)(F u v P X u Y v P X Y =≤≤=≤≤≤≤所以当0,0(,)0u v F u v <<=时,;当111111,1(,)(1)14u v F u v xy dxdy --≥≥=+=⎰⎰时,;当1111,01(,)(1)u v F u v xy dxdy -><<=+=⎰时,;当11101,1(,)(1)4u v F u v xy dxdy <<>=+=⎰时,当01,01(,)(1)u v F u v xy dxdy ≤<≤<=+=时,;所以1,0101,1(,)01,011,1,10,0,0u v u v F u v u v u v u v ⎧><<⎪<<>⎪=≤<≤<≥≥⎪⎪<<⎩所以0,(,)1,01p u v u v ⎧⎪=≤<≤<其他所以10()1U p u v ==≤<10()1V p v du u ==≤<故()()(,)U V p u p v p u v =所以U 与V 独立,即2X 与2Y 相互独立.。
第三章 多维随机变量及其分布答案
第三章 多维随机变量及其分布答案一 选择题1. 设随机变量X 的密度函数为()x ϕ,且()()x x ϕϕ-=,F(x)为X 的分布函数,则对任意实数a ,有 【 】(A) ()0()1aF a x dx ϕ-=-⎰. (B) ()01()2aF a x dx ϕ-=-⎰. (C ) ()()F a F a -=.(D) ()2()1F a F a -=-. 【答案】应选 (B) .【详解】因()()01()2aaF a x dx x dx ϕϕ--∞--==-⎰⎰,而()()00a a x dx x dx ϕϕ-=⎰⎰,所以()01()2aF a x dx ϕ-=-⎰画图容易理解。
2. 设随机变量(X,Y)服从二维正态分布,且X与Y不相关,)()(y f x f Y X 分别表示X,Y的概率密度,则在Y=y 的条件下,X的密度)|(|y x f Y X 为 【 】 (A) )(x f X . (B) )(y f Y . (C ) )()(y f x f Y X . (D))()(y f x f Y X . 【答案】应选 (A) .【详解】因(X,Y)服从二维正态分布,且X与Y不相关,故X与Y相互独立,于是)|(|y x f Y X =)(x f X . 因此选(A) .3. 设两个相互独立的随机变量X 和Y 分别服从正态分布N(0,1)和N(1,1),则 【 】 (A) {}01/2P X Y +≤=. (B) {}11/2P X Y +≤=. (C ) {}01/2P X Y -≤=. (D) {}11/2P X Y -≤=. 【答案】应选 (B) .【详解】由~(0,1)~(1,1)X N Y N X Y 与以及与相互独立,得X ~(1,2)Y N + ,X-~(1,2)Y N - 因为,若2Z~N(,)μσ,则必有{}12P Z μ≤=,比较四个选项,只有(B)正确。
4. 设随机变量X 和随机变量Y 都服从正态分布,且它们不相关,则 【 】 (A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布. (C ) X 和Y 未必独立. (D) X+Y 服从一维正态分布. 【答案】应选 (B) .【详解】由于只有当(X,Y)服从二维正态分布时,X 与Y 不相关X 和Y 相互独立。
《概率论与数理统计》习题三参考答案 多维随机变量及其分布(熊万民、杨波版)
~
f
Z
z
2ez
1
0
e
z
z0
.
其他
19.5 个相互独立工作的电子元器件,它们的寿命 Xk(k=1,2,3,4,5)服从同一指数分布,其
概率密度为: X k ~ f x 0.0010e0.001x
x x
0 0
,分布函数为
F
x
1
e0.001x 0
x0
.
x0
Z Ma xX1, X 2 , X3, X 4 , X5 的概率密度函数为: Z ~ FZ z F z5 ,
P X 2,Y 2 P X 2,Y 3 P X 3,Y 1 P X 3,Y 2 0 ,
PX
0,Y
3
PX
0
C30
1 2
3
1 8
,
PX
3,Y
3
PX
3
1 8
,
PX
1, Y
1
PX
1
3 8
,
PX
2,Y
1
PX
2
C32
1 2
3
3 8
.
2.盒子里边装有 3 个白球,3 个黑球,2 个红球,从中任取 4 个球, X 为取到的白球个数, Y 为
0
2
e2 ydy 1 ez
z
2
z0
.
z0
(2)因为 X ,Y ~ f x, y e0xy
x 0,
y0
,则
X
~
E 1 ,Y
~
E 1,且
X
、Y
相互
其他
独立,则 Z
Max X ,Y 的概率分布函数为:Z
三多维随机变量及其分布(参考答案).
概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(一)一、填空题:1、设二维随机变量(,)X Y 的联合密度函数为2,01,01(,)0,Axy x y f x y ⎧<<<<=⎨⎩其他,则常数A = 6 。
2、设二维随机变量(,)X Y 的联合分布函数为arctan arctan ,0,0(,)0,A x y x y F x y ⋅>>⎧=⎨⎩其他,则常数A =24π。
二、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验: (1)放回抽样;(2)不放回抽样。
我们定义随机变量X ,Y 如下:01X ⎧=⎨⎩若第一次出的是正品若第一次出的是次品 , 01Y ⎧=⎨⎩若第二次出的是正品若第二次出的是次品 试分别就(1),(2)两种情况,写出X 和Y 的联合分布律。
解:(1)放回抽样 (2)不放回抽样2.设二维离散型随机变量的联合分布见表:试求(1)13{,04}22P X Y <<<<,(2){12,34}P X Y ≤≤≤≤解:(1)13{,04}22P X Y <<<< 111213(,)(,)(,)P X Y P X Y P X Y ===+==+== 14=(2){12,34}P X Y ≤≤≤≤13142324(,)(,)(,)(,)P X Y P X Y P X Y P X Y ===+==+==+== 11516416=+=3.设随机变量(,)X Y 的联合分布律如表:求:(1)a 值; (2)(,)X Y 的联合分布函数(,)F x y (3)(,)X Y 关于X ,Y 的边缘分布函数()X F x 和()Y F y 解:(1) 由归一性1111446iji jp a =+++=∑∑ 解得 13a =(2)(,)X Y 的联合分布函数为00111210452101211202120,(,),,,x y x y F x y x y x y x y <<-⎧⎪⎪≤<-≤<⎪⎪⎪=≥-≤<⎨⎪⎪≤<≥⎪⎪≥≥⎪⎩或(3)(,)X Y 关于X ,Y 的边缘分布函数为:01112212()X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩ 01510121()y y F y y y <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩4.设随机变量(,)X Y 的概率密度为(6)0<x<2,2<y<4(,)0k x y f x y --⎧=⎨⎩其他,求:(1)常数k ; (2)求{1,3}P X Y <<; (3){ 1.5}P X <; (4){4}P X Y +≤ 解:(1)由归一性 242266281(,)()()F dx k x y dy k x dx k -∞+∞=--=-==⎰⎰⎰所以 1k =(2) {1,3}P X Y <<131020117368828()()dx x y dy x dx =--=-=⎰⎰⎰ (3){ 1.5}P X <1541502011276628832..()()dx x y dy x dx =--=-=⎰⎰⎰(4){4}P X Y +≤4168()x y x y dxdy +≤=--⎰⎰ 2402168()x dx x y dy -=--⎰⎰ 220112816()x x dx =-+⎰23=概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(二)一、选择题:1、设随机变量X 与Y 独立,且221122(,),(,)XN Y N μσμσ,则Z X Y =-仍服从正态分布,且有 [ D ] (A )221212(,)Z N μμσσ++ (B) 221212(,)Z N μμσσ+- (C) 221212(,)ZN μμσσ-- (D) 221212(,)ZN μμσσ-+2、若(,)X Y 服从二维均匀分布,则 [ B ] (A )随机变量,X Y 都服从均匀分布 (B )随机变量,X Y 不一定服从均匀分布 (C )随机变量,X Y 一定不服从均匀分布 (D )随机变量X Y +服从均匀分布 二、填空题:1、设二维随机变量(,)X Y 的密度函数为2,01,02(,)30,.xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他, 则(1)P X Y +≥=3136。
概率论与数理统计第三章多维随机变量及其分布习题解答
习题3-11、设(,)X Y 的分布律为求a 。
解:由分布律的性质,得1,0iji jp a =>∑∑,即111111691839a +++++=,0a >, 解得,29a =。
注:考察分布律的完备性和非负性。
2、设(,)X Y 的分布函数为(,)F x y ,试用(,)F x y 表示:(1){,}P a X b Y c ≤≤<;(2){0}P Y b <<;(3){,}P X a Y b ≥<。
解:根据分布函数的定义(,){,}F x y P X x Y y =≤≤,得(1){,}{,}{,}(,)(,)P a X b Y c P X b Y c P X a Y c F b c F a c ---≤≤<=≤<-<<=-; (2){0}{,}{,0}(,)(,0)P Y b P X Y b P X Y F b F -<<=≤+∞<-≤+∞≤=+∞-+∞; (3){,}{,}{,}(,)(,)P X a Y b P X Y b P X a Y b F b F a b ---≥<=≤+∞<-<<=+∞-。
3、设二维随机变量(,)X Y 的分布函数为(,)F x y ,分布律如下:试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤;(3)(2,3)F 。
解:由(,)X Y 的分布律,得 (1)1311{,04}{1,1}{1,2}{1,3}002244P X Y P X Y P X Y P X Y <<<<===+==+===++=; (2){12,34}{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y P X Y ≤≤≤≤===+==+==+==1150016416=+++=;(3)(2,3){2,3}{1,1}{1,2}{1,3}F P X Y P X Y P X Y P X Y =≤≤===+==+==1119{2,1}{2,2}{2,3}000416416P X Y P X Y P X Y +==+==+===+++++=。
天津理工大学概率论与数理统计第三章习题答案详解
第三章多维随机变量及其分布一、填空题1、随机点(x,y )落在矩形域[%] < X ≤乙,y ∣ < y ≤ y 2]的概率为F(X 2 ,J 2)- F(X 2 ,必)+ F(x 1,必)一厂(XQ2)・2、(X,V )的分布函数为 ∕7(x, y ),则 F (-∞∖ y ) = O .3、(X,y )的分布函数为尸(x,y ),则尸& + O,y ) = FV,y )4、(X,y )的分布函数为尸(x,y ),则尸(国+8)= FX (%)5、设随机变量(X,Y )的概率密度为 k(6 -X- y) 0<x<2, 2<y<41…」 ,则& 二 一0 其它^8^÷x/ (X ) = 一 °0X∫f(χ, y)= <6、随机变量(x,y )的分布如下,写出其边缘分布.8、二维正态随机变量(x,y), X和y相互独立的充要条件是参数夕=Q.9、假如随机变量(x,y )的联合概率分布为二、证明和计算题1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球上标的数字为X,其次次取的球上标的数字丫,求(x,y )的联合分布律. P{X =2y Y = 1} = --- = - 3 2 3 P{X=2,y = 2} = -∙- = -3 2 32、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,y 为投入2 号信箱的信数,求(x,y )的联合分布律.则a,β应满意的条件是_a +β 1 8 1111 -6184 2 ;若X 与y 相互独立,则α= —,〃=— ^18^^18" 10、设x,y 相互独立,x~N (o,i ),y~N (θ∙i ),则(x,y )的联合概率密度241 尸+厂 f(x.y)=-e 224z = x+y 的概率密度f z (Z) =12、设(ξ、η)的联合分布函数为FD = V λ +1 1 15777;F 所—核x≥O,y≥O则A=_l解:p{x = ι,y = i} = l∙oP{x = ι,y = 2} = (∙ι = ! 解:X 的可能取值为(),123Y 的可能取值为(),1,2,3p{x=o,y = o} = *3 C 2 3P{X=O,Y = ∖} = -^ P{X=0y Y = 2} = ^- = -^2=-"Γ°牛力=『g ⑺勿=1符合概率密度函数的性质,可以是二维连续型随机变量的概率密度函数。
第三章 多维随机变量及其分布考研试题及答案
第三章 多维随机变量及其分布 一、填空题1.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .【解题分析】首先要根据Z 的定义确定Z 的取值范围,然后求Z 取值的概率即可.解: 由于,X Y 仅取0、1两个数值,故Z 也仅取0和1两个数值,因,X Y 相互独立,故 {0}{max(,)0}{0,0}P Z P X Y P X Y ======111{0}{0},224P X P Y ====⨯=3{1}1{0}.4P Z P Z ==-==Z 的分布律为Z 01P14342.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它. 则{1}P x y +≤= . 【解题分析】利用(){}()DP X Y D f x y dxdy ∈=⎰⎰,,求解.解: 如图10-5所示X 01P1212图10-511201(1)664x xDP x y xdxy dx dxdy -+≤===⎰⎰⎰⎰. 二、选择题1.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( ).A .;X Y =B .{}0;P X Y ==C .{}12;P X Y ==D .{} 1.P X Y ==【解题分析】乍看似乎答案是A ,理由是X 和Y 同分布,但这是错误的,因为,若X Y =,说明X 取什么值时, Y 也一定取相同的值,而这是不可能的,所以只能从剩下的三个答案中选一个,这时只要直接计算{}P X Y =即可.解: 由X 和Y 相互独立知{}{1,1}{1,1}P X Y P X Y P X Y ===-=-+=={1}{1}{1}{1}P X P Y P X P Y ==-=-+==11111.22222=⨯+⨯= 所以,正确答案是C .2.(1999年数学三)设随机变量101(1,2)111424iX i -⎡⎤⎢⎥=⎢⎥⎣⎦,且满足{}1201,P X X ==则12{}P X X =等于( ).A .0;B .14;C .12; D .1.【解题分析】本题应从所给条件{}1201P X X ==出发,找出随机变量12,X X 的联合分布.解: 设随机变量12,X X 的联合分布为 由121212{0}{0,1}{0,1}P X X P X X P X X ====-+==121212{1,0}{1,0}{0,0}P X X P X X P X X +=-=+==+==21231232221p p p p p =++++=知 111331330,p p p p ====从而有 2111311144p p p =--=, 类似地 231232111,,.444p p p ===进一步可知 22123210.2p p p =--=即 1122330.p p p ===因此有12{}0.P X X ==正确答案是A .3.(1999年数学四)假设随机变量X 服从指数分布,则随机变量min{,2}Y X =的分布函数( ).A .是连续函数;B .至少有两个间断点;C .是阶梯函数;D .恰好有一个间断点.【解题分析】从公式(){}{}{}{}min 1min z F z P X z P X Y z =≤=->,Y ,{}{}{}1,1P X z Y z P X z P Y z =->>=->> ()()()()111X Y F z F z =---出发求解即可.解: 由题设,0,()0,0.x e x X e x λλλ-⎧>=⎨≤⎩ 令12,2,X ξξ==则120,0,0,2,()()1,0,1, 2.xx x F x F x e x x ξξλ-≤<⎧⎧==⎨⎨->≥⎩⎩ 于是12min{,2}min{,}Y X ξξ==的分布函数为120,0,()1(1())(1())1,02,1, 2.x x F x F x F x e x x λξξ-≤⎧⎪=---=-<<⎨⎪≥⎩可见其仅有一个间断点 2.x =正确答案是D .4.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则A .12()()f x f x +必为某一随机变量的分布密度;B .12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;D .12()()f x f x 必为某一随机变量的分布密度.解: 由于若随机变量X 与Y 相互独立,它们的分布函数分别为1()F x 与2()F y ,则max{,}Z X Y =的分布函数为12()()()z F z F x F y =,可知12()()F x F x 必为某一随机变量的分布函数.故选择B .注:本题与2002年高数一中的选择题类同.本题也可以用赋值法求解. 三、计算与证明题1.(1994年数学三)假设随机变量1234,,,X X X X 相互独立,且同分布,{0}0.6,{1}0.4(1,2,3,4,)i i P X P X i =====求行列式1234X X X X X =的概率分布.【解题分析】X 由22⨯阶行列式表示,仍是一随机变量,且1423X X X X X =-,由于1234,,,X X X X 独立同分布, 故14X X 与23X X 也是独立同分布的,因此可先求出14X X 和23X X 的分布律,再求X 的分布律.解: 记114Y X X =,223Y X X =,则12X Y Y =-.随机变量1Y 和2Y 独立同分布:1223{1}{1}{1,1}P Y P Y P X X ====== {}{}23110.16P X P X ====.12{0}{0}10.160.84P Y P Y ====-=.随机变量12X Y Y =-有三个可能值-1,0,1.易见12{1}{0,1}0.840.160.1344,P X P Y Y =-====⨯= 12{1}{1,0}0.160.840.1344,P X P Y Y =====⨯={0}120.13440.7312.P X ==-⨯=于是12341010.13440.73120.1344X X X X X -⎡⎤=⎢⎥⎣⎦. 2.(2003年数学三)设随机变量X 与Y 独立,其中X 的概率分布律为120.30.7X⎡⎤⎢⎥⎣⎦,而Y 的分布密度为()f y ,求随机变量U X Y =+的分布密度()g u .【解题分析】本题是求随机变量函数的分布,这里的两随机变量一个是离散型,一个是连续型,我们仍然从求分布函数出发,根据X 的不同取值,利用全概率公式来求解.解: 设()F y 为y 分布函数,则由全概率公式及X 与Y 的独立性可知,U X Y =+的分布函数为()()()G u P U u P X Y u =≤=+≤()()()()1|12|2P X P X Y u X P X P X Y u X ==+≤=+=+≤=0.3(|1)0.7(|2)P X Y u X P X Y u X =+≤=++≤=0.3(1|1)0.7(2|2)P Y u X P Y u X =≤-=+≤-=0.3(1)0.7(2)0.3(1)0.7(2)P Y u P Y u F u F u =≤-+≤-=-+-,由此得 ()0.3(1)0.7(2).g u f u f u =-+-3.(2006年数学四) 设二维随机变量()X Y ,的概率分布律为其中a b c ,,为常数,且X 的数学期望0.2EX =-,{}000.5P Y X ≤≤=,记Z X Y =+.求(1) a b c ,,的值;(2)Z 的概率分布;(3){}P X Z =【解题分析】要求a b c ,,的值,只需要找到三个含有a b c ,,的等式即可,这可以由分布函数的性质及题设中所给的两个条件得到;求Z 的概率分布,首先要弄清楚Z 的可能取值,由X Y ,的取值可知,Z 的可能取值为-2,-1,0,1,2,然后再求Z 取值的概率;要求{}P X Z =,只需要转化为求关于X Y ,的概率,由{}{}{}0P X Z P X X Y P Y ===+==,既可得出结论. 解: (1)由概率分布的性质知,0.61a b c +++=, 即 0.4a b c ++=.由 0.2EX =-,可得 0.1a c -+=-.再由{}{}{}000.1000.50.50P Y X a b P Y X a b P X ≤≤++≤≤===++≤,,得 0.3a b +=.解以上关于a b c ,,的三个方程得 0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{}{}21,10.2P Z P X Y =-==-=-=,{}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-=,{}{}{}{}01,10,0 1,10.3P Z P X Y P X Y P X Y ===-=+==+==-={}{}{}11,00,10.3P Z P X Y P X Y ====+===, {}{}21,10.1P Z P X Y =====. 即Z 的概率分布律为(3) {}{}{}0P X Z P X X Y P Y ===+===00.10.2b ++=.4.(1987年数学一)设随机变量,X Y 相互独立,其概率密度函数分别为1,01,0()()0,0,y X Y x e y f x f y y -≤≤⎧>⎧==⎨⎨≤⎩⎩其它, 求2Z X Y =+的概率密度函数.【解题分析】此类问题,一般有两种解法:一种是先写出二维随机变量(,X Y )的联合概率分布密度函数,再计算2Z X Y =+的概率分布密度函数,另一种是直接利用两独立随机变量和的分布密度计算公式(即卷积公式)求解.解: 方法1 由于随机变量,X Y 相互独立,所以二维随机变量(,X Y )的概率分布密度函数为(,),01,0,(,)()()0,y X Y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其它. 因此,随机变量Z 的分布函数为2(){2}()()Z X Y x y zF z P X Y z f x f y dxdy +<=+<=⎰⎰2222000121200000,0,0,(1),02,(1), 2.zz z x yx z z xy x z z z dx e dy e dx z dx e dye dx z ------⎧⎧≤≤⎪⎪⎪⎪⎪==-<≤⎨⎨⎪⎪⎪⎪->⎩⎪⎩⎰⎰⎰⎰⎰⎰,所以,随机变量Z 的分布密度函数为()()Z Z f z F z '==20,0,1(1),02,21(1), 2.2z zz e z e e z --⎧⎪≤⎪⎪-<≤⎨⎪⎪->⎪⎩ 方法2 由于随机变量,X Y 相互独立,所以,由卷积公式知,随机变量Z 的密度函数为1()()(2)(2)Z X Y Y f z f x f z x dx f z x dx +∞-∞=-=-⎰⎰=(2)201(2)00,0,,02,, 2.z z x z x z e dx z e dx z ----⎧≤⎪⎪⎪<≤⎨⎪⎪>⎪⎩⎰⎰=20,0,1(1),02,21(1), 2.2z zz e z e e z --⎧⎪≤⎪⎪-<≤⎨⎪⎪->⎪⎩5.(1999年数学四)设二维随机变量(,X Y )在矩形{(,)|02,01}G x y x y =≤≤≤≤上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率分布密度函数()f s .【解题分析】由题设容易得出随机变量(,X Y )的分布密度,本题相当于求随机变量,X Y 的函数S XY =的分布密度.可先求出其分布函数,再求导得分布密度.在求分布函数时,一定要注意对S 的取值范围进行讨论.解: 由于二维随机变量(,X Y )服从均匀分布,所以,它的概率分布密度函数为1,(,),2(,)0,(,).x y G f x y x y G ⎧∈⎪=⎨⎪∈⎩若若 设(){}F s P S s =≤为S XY =的分布函数,则 当0s ≤时, ()0;F s = 当2s ≥时, () 1.F s =现在,设02,s <<如图10-6所示, 曲线xy s =与矩形G 的上边交于点(,1)s ;图10-6位于曲线xy s =上方的点满足xy s >,位于下方的点满足xy s <,于是(){}{}1{}F s P S s P XY s P XY s =≤=≤=->211111(1ln 2ln ).222s s x xy ssdxdy dx dy s >=-=-=+-⎰⎰⎰⎰ 于是,1(ln 2ln ),02()20,0 2.s s f s s s ⎧-<<⎪=⎨⎪≤≥⎩若若或6.(2001年数学一)设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客中途下车的概率为(01)p p <<,且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.【解题分析】显然,第一问求的是条件概率, 发车时有n 个乘客, 中途有m 人下车的概率,为n 重伯努利概型,可以依此求解.其次,要求二维随机变量(,)X Y 的概率分布,首先确定X Y ,的取值,然后按乘法公式求解.解: (1)设事件A ={发车时有n 个乘客},B ={中途有m 个人下车},则在发车时有n 个乘客的条件下,中途有m 个人下车的概率是一个条件概率,即(|)(|).P B A P Y m X n ===根据n 重伯努利概型,有()(|)1n mm mn P B A C p p -=-,其中0,0,1,2,m n n ≤≤=.(2)由于(,)()(|)(),P X n Y m P AB P B A P A ====而上车人数服从()P λ,因此 (),!nP A e n λλ-=于是(,)X Y 的概率分布律为()()(,)(1),!nmmn mnP X n Y m P Y m X n P X n C p p e n λλ--=======-其中0,0,1,2,m n n ≤≤=.7.(2001年数学三)设随机变量X 和Y 的联合分布在正方形{(,):13,13}G x y x y =≤≤≤≤(如图10-7)上服从均匀分布,试求随机变量||U X Y =-的概率分布密度函数().p u图10-7【解题分析】本题主要考查随机变量函数的分布,可从分布函数出发求解.但是,这里要注意的是随机变量函数带有绝对值.解: 由条件知X 和Y 联合密度为 13,13,(,)40,x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩若1其它.以()()()F u P U u u =≤-∞<<∞表示随机变量U 的分布函数,显然,当0u ≤时, ()0F u =;当2u ≥时,()1F u =.设02,u <<则||{||}1()(,)4x y u x y u GF u f x y dxdy dxdy -≤-≤==⎰⎰⎰⎰ 2211[4(2)]1(2)44u u =--=--, 于是,随机变量U 的分布密度为()1(2)2,()20,U u <u <f u F u ⎧-⎪'==⎨⎪⎩若0其它.8.(2002年数学三、四)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间(()E X )为5小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数().F y【解题分析】本题主要考查随机变量函数的分布.首先要找到Y 与X 的关系,然后分情况进行讨论.解: 设X 的分布参数为λ,由于1()5,E X λ==可见15λ=.显然,{}min 2Y X =,.对于0,()0;y F y <=对于2,() 1.y F y ≥=设02,y ≤<有(){}{min{,2}}F y P Y y P X y =≤=≤=5{}1y P X y e-≤=- 于是,Y 的分布函数为50,0,()12,1, 2.y y F y ey y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩若若0若 求随机变量函数的分布,是概率论中考试的重点,对于求连续型随机变量函数的分布密度,一般从求分布函数出发,结合图形对自变量的取值范围进行讨论,求出分布函数,然后求导即得分布密度.。
概率论与数理统计课程第三章练习题及解答
第三章 多维随机变量及其分布一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若X ,Y 均服从正态分布,则(X ,Y )服从二维正态分布 ( × )2、随机变量(X ,Y )的概率密度为22,1(,)0,k x y f x y ⎧+≤=⎨⎩其它,则π1=k (√ )3、有限个相互独立的正态随机变量的线性组合仍然服从正态分布。
(√) 二、单选题1、随机变量X ,Y 相互独立且~(0,1)X N ,~(1,1)Y N ,则下列各式成立的是( B )A .21}0{=≤+Y X P ; B .21}1{=+≤Y X P ; C .21}0{=≥+Y X P ; D .-≤=1{1}2P X Y 。
分析 因X ,Y 相互独立,它们又都服从正态分布,因此X +Y 与X -Y 也都服从正态分布,且(1,2)X Y N + ,(1,2)X Y N --,由于1{1}(0)2P X Y +≤=Φ=Φ=,选B2、设随机变量21,X X 的分布律为:101111424iX p- i =1,2且满足1}0{21==X X P ,则==}{21X X P ( A )A .0;B .41;C .21; D .1。
分析 从1}0{21==X X P ,可知12{0}0P X X ≠=,即12121212{1,1}{1,1}{1,1}{1,1}0P X X P X X P X X P X X =-=-==-====-==== 根据联合分布与边缘分布的关系,求出21,X X 的联合概率分布12121212{}{1,1}{0,0}{1,1}0P X X P X X P X X P X X ===-=-+==+===,选A 3、设随机变量X ,Y 相互独立且同分布:1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,则下列各式成立的是( A )A .1{}2P X Y ==; B .{}1P X Y ==; C .1{0}4P X Y +==; D .1{1}4P XY ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 多维随机变量及其分布一、填空题1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-.2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 .3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X5、设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它042,20)6(),(y x y x k y x f ,则=k81. 6、随机变量),(Y X 的分布如下,写出其边缘分布.7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则=⎰∞+∞-)(x f X1 .8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 .XY0 1 2 3 j P ⋅ 1 083 83 086 381 081 82 ⋅i P81 83 83 819、如果随机变量),(Y X 的联合概率分布为Y X12 31 61 91 181 231α β 则βα,应满足的条件是 186=+βα ;若X 与Y 相互独立,则=α 184 ,=β 182 .10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度=),(y x f 22221y x e+-π,Y X Z +=的概率密度=)(Z f Z42221x e-π .12、 设 ( ξ 、 η ) 的 联 合 分 布 函 数 为()()()()⎪⎩⎪⎨⎧≥≥+-+-+++= y x y x y x A y x F 00,0111111,222则 A =__1___。
二、证明和计算题1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球 上标的数字为X ,第二次取的球上标的数字Y ,求),(Y X 的联合分布律.解:031}1,1{⋅===Y X P 31131}2,1{=⋅===Y X P312132}1,2{=⋅===Y X P312132}2,2{=⋅===Y X P2、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,Y 为投入2 号信箱的信数,求),(Y X 的联合分布律.X Y 1 21 031 231 31解:X 的可能取值为0,1,2,3Y 的可能取值为0,1,2,3331}0,0{===Y X P333}1,0{===Y X P 3323333}2,0{====C Y X P331}3,0{===Y X P 333}0,1{===Y X P 3323}1,1{⨯===Y X P 3313}2,1{⨯===Y X P 0}3,1{===Y X P 3233}0,2{C Y X P ===333}1,2{===Y X P 0}2,2{===Y X P 0}3,2{===Y X P 331}0,3{===Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X PX Y1 2 3271 273 273 271 1 273 276 273 0 2 273 273 0 0 3 271 0 0 0 3、设 函 数 F(x , y) = ⎩⎨⎧≤+>+120121y x y x ;问 F(x , y) 是 不 是 某 二 维 随 机 变 量 的联 合 分 布 函 数 ? 并 说 明 理 由 。
解: F(x , y) 不 可 能 是 某 二 维 随 机 变 量 的 联 合 分 布 函 数因 P{0 < ξ ≤ 2, 0 < η ≤1}= F(2 , 1) - F(0 , 1) - F(2 , 0) + F(0 , 0)= 1- 1- 1 + 0 =-1 < 0 故 F(x , y) 不 可 能 是 某 二 维 随 机 变 量 的 联 合 分 布 函 数 。
4、设⎰+∞=≥01)(,0)(dx x g x g 且,有⎪⎩⎪⎨⎧+∞<≤++=其它,0,0,][)(2),(2222y x y x y x g y x f π 证明:),(y x f 可作为二维连续型随机变量的概率密度函数。
证明:易验证),(y x f 0≥,又=⎰⎰+∞∞-+∞∞-dxdy y x f ),(dxdy yx y x g ⎰⎰∞+∞+++02222)(2π=⎰⎰⎰∞+∞+==0201)()(2dr r g rdr rr g d πθπ符合概率密度函数的性质,可以是二维连续型随机变量的概率密度函数。
5、在[ 0,π] 上 均 匀 地 任 取 两 数 X 与 Y ,求0){cos(<+Y X P }的值。
解:⎪⎩⎪⎨⎧≤≤=其它,0,0,1),(2ππy x y x f ,0){cos(<+Y X P =43)232{=<+<ππY X P6、设随机变量),(Y X 的密度函数为⎩⎨⎧>>=+-其它0,0),()43(y x ke y x f y x(1)确定常数k (2)求),(Y X 的分布函数(3)求}20,10{≤<≤<Y X P解:(1)⎰⎰∞∞+-=0)43(1dx e k dy y x⎰⎰∞∞∞-∞---=-⋅-=0003043412]31[]41[k e e k dx e dy e k x y x y12=∴k (2)⎰⎰--+---⋅==y x y x v u e e dudv e y x F 0043)43()1)(1(1211212),()1)(1(43y x e e ----= 0,0>>y x0),(=y x F(3))2,0()0,1()0,0()2,1(}20,10{F F F F Y X P --+=≤<≤<95021.00)1)(1(83=+--=--e e7、设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其它20,103/),(2y x xy x y x f 求}1{≥+Y X P解:⎰⎰⎰⎰≥+-+==≥+110212)3(),(}1{y x xdy xy x dx dxdy y x f Y X P ⎰=++=10327265)65342(dx x x x8、设随机变量),(Y X 在矩形区域},|),{(d y c b x a y x D <<<<=内服从均匀分布, (1)求联合概率密度及边缘概率密度. (2)问随机变量Y X ,是否独立? 解:(1)根据题意可设),(Y X 的概率密度为⎩⎨⎧<<<<=其它,),(dy c b x a My x f⎰⎰⎰⎰∞+∞-∞+∞---===badcc d a b M dy dx M dxdy y x f ))((),(1于是))((1c d a b M --=,故⎩⎨⎧<<<<--=其它0,))(/(1),(dy c b x a c d a b y x f⎰⎰∞+∞--=--==d cX ab c d a b dy dy y x f x f 1))((),()(即⎪⎩⎪⎨⎧<<-=其它1)(b x a ab x f X⎰⎰∞+∞--=--==ba Y cd c d a b dx dx y x f y f 1))((),()(即⎩⎨⎧<<-=其它)/(1)(d y c c d y f Y(2)因为)()(),(y f x f y x f Y X ⋅=,故X 与Y 是相互独立的.9、随机变量),(Y X 的分布函数为⎩⎨⎧≥≥+--=----其它,00,0,3331),(y x y x F y x y x 求:(1)边缘密度;(2)验证X,Y 是否独立。
解:(1))33(3ln ),(y x xx y x F ----⨯=∂∂,,33ln ),(22yx y x y x F --⨯=∂∂∂ 0,0>>y x .⎩⎨⎧<>⨯=--其它00,033ln ),(2yx y x f y x⎪⎩⎪⎨⎧>⨯=⨯=---+∞⎰其它0033ln 33ln )(20x dy x f x y x X ,⎪⎩⎪⎨⎧>⨯=⨯=---+∞⎰其它00,33ln 33ln )(20y dx x f y y x Y(2) 因为)()(),(y f x f y x f Y X ⋅=,故X 与Y 是相互独立的.10、一电子器件包含两部分,分别以Y X ,记这两部分的寿命(以小时记),设),(Y X 的分布函数为⎩⎨⎧≥≥+--=+---其它00,01),()(01.001.001.0y x e e e y x F y x y x(1)问X 和Y 是否相互独立? (2)并求}120,120{>>Y X P解:(1)⎩⎨⎧<≥-=+∞=-0001),()(01.0x x e x F x F x X⎩⎨⎧<≥-=+∞=-0001),()(01.0y y e y F y F yY 易证),()()(y x F y F x F Y X =,故Y X ,相互独立. (2)由(1)Y X ,相互独立}]120{1[}]120{1[}120{}120{}120,120{≤-⋅≤-=>⋅>=>>Y P X P Y P X P Y X P 091.0)]120(1)][120(1[42==--=⋅-e F F Y X11、设 随 机 变 量 (ξ , η)的 分 布 函 数 为 F x y A B arctg x C arctg y (,)()()=++23求:( 1 ) 系 数 A , B 及 C 的 值 , ( 2 ) (ξ , η)的 联 合 概 率 密 度 ϕ(x , y)。
解:( 1 )F A B C (,)()()+∞+∞=++=ππ221F A B C (,)()()-∞+∞=-+=ππ220F A B C (,)()()+∞-∞=+-=ππ220由 此 解 得 A B C ===122ππ,,( 2 ) ϕπ(,)()()x y x y =++64922212、设),(Y X 相互独立且分别具有下列表格所定的分布律试写出),(Y X 的联合分布律. 解:XY2-1-21 21- 81 61 241 61 1 161 121 481 121 3161 121 481 121 13、设Y X ,相互独立,且各自的分布律如下:Y21-1 3k P21 41 41 X2-1-21 k P41 31 121 31 X1 2k P1 1 Y1 2k P1 1求Y X Z +=的分布律. 解:Λ,2,1,0}{===k P k X P kΛ,2,1,0}{===γγγq Y PY X Z +=的分布律为Λ,2,1,0}{===-i q P i Z P k i kZ 的全部取值为2,3,4412121}1{}1{}1,1{}2{=⋅========Y P X P Y X P Z P }1,2{}2,1{}3{==+====Y X P Y X P Z P2121212121}1{}2{}2{}1{=⋅+⋅===+===Y P X P Y P X P 412121}2{}2{}2,2{}4{=⋅========Y P X P Y X P Z P14、 X,Y 相互独立,其分布密度函数各自为⎪⎩⎪⎨⎧<≥=00021)(21x x e x f x X⎪⎩⎪⎨⎧<≥=00031)(3y y ey f yY求Y X Z +=的密度函数.解:Y X Z +=的密度函数为⎰∞+∞--=dx x Z f x f Z f Y X Z )()()(,由于)(x f X 在0≥x 时有非零值,)(x Z f Y -在0≥-x Z 即Z x ≤时有非零值, 故)()(x Z f x f Y X -在Z x ≤≤0时有非零值⎰⎰-----=⋅=Z Z xZ x Z xZ dx e edx e e Z f 06332613121)( )1(][6363Z ZZ x Z ee e e -----=-=当0≤Z 时,0)(=Z f故⎪⎩⎪⎨⎧≤>-=--000)1()(63Z Z e e Z f Z Z Z。