2019成人高考专升本数学复习(高等数学二)复习题

合集下载

2019年成人高考-专升本-数学真题及答案解析

2019年成人高考-专升本-数学真题及答案解析

2019年成人高考-专升本-数学真题及答案解析第Ⅰ卷(选择题,共40分)得分评卷人一选择题:1-10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的1[.单选题]当x→0时,x+x2+x3+x4为x的()。

A.等价无穷小B.2价无穷小C.3价无穷小D.4价无穷小[答案]A[解析],故x+x2+x3+x4是x的等价无穷小。

2[.单选题]=()。

A.-e2B.-eC.eD.e2[答案]D[解析]。

3[.单选题]设函数y=cos2x,则y’=()。

A.y=2sin2xB.y=-2sin2xC.y=sin2xD.y=-sin2x[答案]B[解析]y’=(cos2x)’=-sin2x·(2x)’=-2sin2x。

4[.单选题]设函数f(x)在[a,b]上连续,在(a,b)内可导,f’(x)>0,f (a)f(b)<0则f(x)在(a,b)内零点的个数为()。

A.3B.2C.1D.0[答案]C[解析]由零点存在定理可知,f(x)在(a,b)上必有零点,且函数是单调函数,故其在(a,b)上只有一个零点。

5[.单选题]设2x为f(x)的一个原函数,则f(x)=()。

A.0B.2C.x2D.x2+C[答案]B[解析]2x为f(x)的一个原函数,对f(x)积分后为2x,则f(x)=2。

6[.单选题]设函数(x)=arctanx,则=()。

A.-arctanx+CB.C.arctanx+CD.[答案]C[解析]7[.单选题]设,则()。

A.I1>I2>I3B.I2>I3>I1C.I3>I2>I1D.I1>I3>I2[答案]A[解析]在区间(0,1)内,有x2>x3>x4,由积分的性质可知,即I1>I2>I3。

8[.单选题]设函数z=x2e y,则=()。

A.0B.C.1D.2[答案]D[解析],带入数值结果为2。

2019年成人高考全国统一考试专升本高等数学(二)试题及答案

2019年成人高考全国统一考试专升本高等数学(二)试题及答案

2019年成人高等学校招生全国统一考试高等数学(二)第一部分 选择题(共40分)一、选择题:1~10小题,每小题4分,共40分。

1. lim x→+∞(1+2x )x=( ) A. −e 2 B. −e C. e D. e 22. 设函数y =arcsinx ,则y ‘=( )A. √1−x 2B. √1−x 2C. −11+x 2D. 11+x 23. 设函数f(x)在[a,b]上连续,在(a,b)可导,f ‘(x )>0,f (a )f (b )<0,则f(x)在 (a,b)零点的个数为( )A. 3B. 2C. 1D. 04. 设函数y =x 3+e x ,则y (4)=( )A. 0B. e xC. 2+e xD. 6+e x 5. d dx ∫11+x 2dx =( ) A. arctanx B. arccotx C.11+x 2 D. 06. ∫cos2x dx =( ) A. 12sin2x +C B. −12sin2x +C C. 12cos2x +C D. −12cos2x +C7. ∫(2x +1)3dx =10( )A. −10B. −8C. 8D. 108. 设函数z =(x −y)10,则 ∂z ∂x =( )A. (x −y)10B. −(x −y)10C. 10(x −y)9D. −10(x −y)99. 设函数z =2(x,y )−x 2−y 2,则其极值点为( )A. (0,0)B. (−1,1)C. (1,1)D. (1,−1)10. 设离散型随机变量X 的概率分布为则a =( )A. 0.1B. 0.2C. 0.3D. 0.4第二部分 非选择题(共110分)二、填空题:11~20小题,每小题4分,共40分。

11. 当x →0时,f(x)与3x 是等价无穷小,则limx→0f(x)x = . 12. lim x→0e 2x −1x = .13. 设函数f (x )=2则f ’(1)= .14. 设x 2为f(x)的一个原函数,则f (x )= .15. 设函数y =lnsinx , 则dy = .16. ∫1x 2dx = . 17. √x√x= . 18. ∫(xcos 2x +2)dx =1−1 .19. 设函数z =e yx ,ð2zðxðy = . 20. 设函数z =sinx ∙lny ,则dz = .三、解答题21~28题,共70分21. 计算limx→∞x 2−x 2x 2+1.22. 设函数f (x )=x 1+x 2,则f ’(x ).23. 计算23.24. 计算∫1xln 3x +∞edx .25. 一个袋中有10个乒乓球,其中7个橙色,3个白色,从中任取2个,设事件A 为“所取的2个乒乓球颜色不同”,求事件A 发生的概率P (A ).26. 设函数f (x )=ax 3+bx 2+cx 在x =2处取得极值,点(1.−1)为曲线的拐点,求a,b,c .27. 已知函数f (x ) 的导函数连续,且f (1)=0,∫xf (x )dx =410,求∫x 2f ‘(x )dx 10.28. 设函数z =1x −1y ,证明:x 2ðz ðx +y 2ðz ðy =0.参考答案:一、选择题:1~10小题,每小题4分,共40分。

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。

则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。

12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。

成考专升本高等数学(二)重点及解析(精简版)

成考专升本高等数学(二)重点及解析(精简版)

解: ∂z = 2x sin 2 y , ∂z = 2x2 cos 2 y
∂x
∂y
三、全微分
1、全微分公式:函数 z = f (x, y) 在点 (x, y) 处全微分公式为: dz = ∂z dx + ∂z dy ∂x ∂y
2、全微分求法:(1)、先求出两个一阶偏导数 ∂z 和 ∂z . (2)、然后代入上述公式即可. ∂x ∂y
一、多元函数的定义:由两个或两个以上的自变量所构成的函数,称为多.元.函.数.。其自 变量的变化范围称为定.义.域.,通常记作 D 。 例如:二元函数通常记作: z = f (x, y) , (x, y) ∈ D
二、二元函数的偏导数 1、偏导数的表示方法: (1)设二元函数 z = f (x, y) ,则函数 z 在区域 D 内对 x 和对 y 的偏导数记为:
或 dy
x= x0
dx
x = x0
(2)函数 f (x) 在区间(a,b)内的导数记作:
f '(x ) , y' 或 dy dx
二、求导公式(必须熟记) (1) (c)' = 0 (C 为常数) (3) (ex )' = ex (5) (sin x)' = cos x
(2) (xα )' = α xα −1 (4) (ln x)' = 1
x2
− 2x + x2 −1
1
.
……… 0未定式,提取公因式 0
解:原式=
lim
x→1
(
x
( x −1)2 −1)( x +1)
=
lim
x→1
( (
x x
−1) +1)
=

2019年成人高等考试《数学二》(专升本)试题(网友回忆版)

2019年成人高等考试《数学二》(专升本)试题(网友回忆版)

2019年成人高等考试《数学二》(专升本)试题(网友回忆版)[单选题]1.=()。

A.-e2B.-eC.eD.e2参考答案:D参考解析:[单选题]2.设函数y=arcsinx,则y’=()。

A.B.C.D.参考答案:B参考解析:[单选题]3.设函数f(x)在[a,b]上连续,在(a,b)内可导,f'(x)>0,f (a)f(b)<0则f(x)在(a,b)内零点的个数为()。

A.3B.2C.1D.0参考答案:C参考解析:本题考查零点存在定理,f(x)在(a,b)上必有零点,又因为函数单调,必然只存在一个零点。

[单选题]4.设函数y=x3+ex,则y(4)=()。

A.0B.exC.2+exD.6+ex参考答案:B参考解析:[单选题]5.=()。

A.arctanxB.arccotxC.D.0参考答案:C参考解析:[单选题]6.=()。

A.B.C.D.参考答案:A参考解析:[单选题]7.=()。

A.-10B.-8C.8D.10参考答案:D参考解析:[单选题]8.设函数z=(x-y)10,则=()。

A.(x-y)10B.-(x-y)10C.10(x-y)9D.-10(x-y)9参考答案:C参考解析:[单选题]9.设函数z=2(x-y)-x2-y2,则其极值点为()。

A.(0,0)B.(-1,1)C.(1,1)D.(1,-1)参考答案:D参考解析:,可得驻点为(1,-1),而=-2,,故Δ=0-(-2)·(-2)=-4<0,因此(1,-1)是函数的极值点。

[单选题]10.设离散型随机变量X的概率分布为则a=()。

A.0.1B.0.2C.0.3D.0.4参考答案:A参考解析:由概率分布的性质可知2a+a+3a+4a=10a=1,得a=0.1。

[问答题]1.计算参考答案:无参考解析:[问答题]2.设函数参考答案:无参考解析:[问答题]3.计算参考答案:无参考解析:[问答题]4.计算参考答案:无参考解析:[问答题]5.个袋中有10个乒乓球,其中7个橙色,3个白色,从中任取2个,设事件A为“所取的2个乒乓球颜色不同”,求事件A发生的概率P(A)。

(建议下载)专升本高等数学(二)

(建议下载)专升本高等数学(二)

成人高考(专升本)高等数学二第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。

2.会求函数的间断点。

3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题。

4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。

第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

2.会求曲线上一点处的切线方程与法线方程。

3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。

4.掌握隐函数的求导法与对数求导法。

会求分段函数的导数。

5.了解高阶导数的概念。

会求简单函数的高阶导数。

6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。

第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法则求“0·∞”、“∞-∞”型未定式的极限的方法。

2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。

会利用函数的单调性证明简单的不等式。

3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。

4.会判断曲线的凹凸性,会求曲线的拐点。

5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。

2019年成人高考-专升本-数学真题及答案解析

2019年成人高考-专升本-数学真题及答案解析
[答案]cotxdx
[解析]
16[.问答题] =______。
[答案]
[解析]
17[.问答题] =______。
[答案]
[解析]
18[.问答题] =______。
[答案]4
[解析]
19[.问答题]设函数 ,则 =______。
[答案]
[解析]
20[.问答题]设函数z=sinx·lny,dz=______。
[答案]3
[解析]由题可知
12[.问答题] =()。
[答案]2
[解析]
13[.问答题]设函数f(x)= ,则f’(1)=______。
[答案]
[解析]
14[.问答题]设x2为f(x)的一个原函数,则f(x)=______。
[答案]2x
[解析]
由题意可知
15[.问答题]设函数y= Insinx,则dy=______。
27[.问答题]已知函数f(x)的导函数连续,且f(1)=0, ,求
[答案]
28[.问答题]设函数 ,证明:
[答案]
[答案]
[解析]
三、解答题:21~28题,共70分解答应写出推理、演算步骤
21[.问答题]计算
[答案]
22[.问答题]设函数
[答案]
23[.问答题]计算
[答案]
24[.问答题]计算
[答案]
25[.问答题]个袋中有10个乒乓球,其中7个橙色,3个白色,从中任取2个,设事件A为“所取的2个乒乓球颜色不同”,求事件A发生的概率P(A)。
[答案]
26[.问答题]设函数f(x)=ax3+bx2+cx在x=2处取得极值,点(1,-1)为曲线y=f(x)的拐点,求a,b,c。

成人高考高数(二)复习题(1)

成人高考高数(二)复习题(1)

高等数学(二)命题预测试卷(一)一、选择题(本大题共5个小题,每小题4分,共20分。

在每个小题给出的选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内) 1.在区间(0,+∞)内,下列函数中是无界函数的为(D ) A .2x e y -= B .211x y +=C .x y sin =D .x x y sin = 2.函数a x x f +=)((a 为常数)在点0=x 处( C ) A .连续且可导 B .不连续且不可导 C .连续但不可导 D .可导但不连续 3.下列函数在区间[0,3]上不满足拉格朗日定理条件的是(C ) A .12)(2++=x x x f B .)1cos()(+=x x fC .221)(xx x f -= D .)1ln()(x x f += 4.下列定积分中,其值为零的是( D )A .⎰-22sin xdx x B .⎰2cos xdx xC .⎰-+22)(dx x e x D .⎰-+22)sin (dx x x5.二次积分=⎰⎰-dy y x f dx x1010),((D )A .dx y x f dy ⎰⎰11),( B .dx y x f dy x⎰⎰-101),(C .dx y x f dy x⎰⎰-110),( D .dx y x f dy y⎰⎰-1010),(二、填空题:本大题共10个小题,10个空,每空4分,共40分,把答案填在题中横线上。

6.设函数⎪⎩⎪⎨⎧=≠+=-0)1()(2x k x x x f x 在0=x 处连续,则参数=k 2-e . 7.设)3sin(x y =,则y '=3ln 3)3cos(x x ⋅. 8.函数22)(2--=x x x f 的间断点是2=x .9.已知方程e y x =+22确定函数)(x y y =,则=dydx y x-.10.设[]22)()(14x f dx d x f x =-,且0)0(=f ,则=)(x f xx -+11ln . 11.函数⎰=xtdt y 0sin 在2π=x 处的导数值为1.12.不定积分=+⎰dx xx 2)1(C x x x +++25232152342.13.若⎰+='C x dx xx f 2)(ln ,则=)(x f x e 2. 14.设)(22y x e z y +=,则z 的全微分=dz ])3(2[22)22(dy y x xydx e y x y +++.15.设D 为矩形,01,10≤≤-≤≤y x ,则二重积分=⎰⎰Dxy dxdy ye e1-. 三、解答题:本大题共13小题,共90分,解答应写出推理、演算步骤。

成人高考专升本《高等数学(二)》考点精讲及题目练习极限与连续【圣才出品】

成人高考专升本《高等数学(二)》考点精讲及题目练习极限与连续【圣才出品】

如果当 x 无限地趋于 x0 时,函数 f(x)无限地趋于一个确定的常数 A,则称当 x x0
时,函数 f(x)的极限(值)为 A,记作
lim
x x0
f
(x)
A

f
(x)
A
(当
x
x0 时)
②当 x x0 (或x x0 ) 时函数 f(x)的极限
如果当 x 从 x0 的左边(或右边)无限地趋于 x0 时,函数 f(x)无限地趋于一个确定的
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 1 章 极限与连续
1.1 考点精讲
一、极限
1.数列的极限
(1)数列的定义
按一定顺序排列的一列数 x1,x2 ,,xn , 称为无穷数列,简称数列,记作{xn}. 数列中的每一个数叫做数列的项,第 n 项 xn 叫做数列的一般项或通项.
数列{xn}可看作自变量为正整数 n 的函数:xn=f(n),它的定义域是全体正整数,当
自变量 n 依次取 1,2,3 等一切正整数时,对应的函数值就排成数列{xn}.
(2)数列的极限
①定义
设{ xn }为一数列,如果存在常数 a,对于任意给定的正数ε(不论它多么小),总存在正
整数 N,使得当 n>N 时,不等式 |xn-a|< 都成立,那么就称常数 a 是数列{ xn }的极限,
③设函数 y=f[g(x)]是由函数 u=g(x)与函数 y=f(u)复合而成,f[g(x)]在点
x0
的某去心邻域内有定义,若
lim
xx0
g(x)
u0
,
lim
u u0
f (u)
A
,且存在
0

专升本高等数学二真题2019附解析

专升本高等数学二真题2019附解析

专升本高等数学(二)真题2019年第[卷(选择题)一・选择題在每小登给出的四个选顶中•只有一顶是符合题目要求的・• A.-e2• B.-e• C.e]1 + %23•设函数 f(x)在[a ,b]上连续,≡(a ,b)内可导zf,(x) > 0 ,f(a)f(b)< 0则f(x)≡(ar b)内李点的个数为 __ ■Iirn ( 1 十一)二X >≈XD[解Iiln(I+-)X = Iim(U-)2 2 = ι⅛(i+-)∣2=e2 .χ→a X2•设函数 y=arcsinx ,则 y,≡≡_ [解析]arcsine•A3• B.2•Cl• D.04•设函数y=×3+eκf则 y r4,≡___ • A.0• B.e x• C.2+eκ• D.6+e x⅛∕-f⅛dX=A ・ arctanxB ・ arccotx1厂1 +%2D . 06・ JCOS2xdx= _____Sin2 尤÷ C1-sin2jc + C-~cos2τ + C c. 2- 4-COS 2X + C• A.-10 • B.-8 • C.8 • D.10 D -[解⅛ flj ⅛ 4 (⅛+l)⅛(⅛H) 4 ∙⅛⅛M f析]丿 O 2 4 i 4“∂z8•设函数z=(x-y)1° f 则B 兀= ___• A.(x-y)iθ • B.-(x-y)1° • C.10(x-y)9 • D.-10(x-y)9 C [解析]9•设函数z=2(x ∙y)-χRy 2 ,则其极值点为 ___ • A.(0 i 0) • B.(-l f 1) • C.(l, 1) • D.(l, -1) D -(2咒 + 1 )3d l r∣2∂Z[解析]曲I=0^=010 •设韶散型随机变量X 的概率分布为X -1 0 1 2 P 2a a 3a4a• A.0.1 • B.0.2 • C.0.3 • D.0.4 A[解析]由概率分布的性质可知2a+a + 3a+4a = 10a=l ,得a=0.1・第II 卷QE 选择题) 二填空题1. 当X→O 时f(x)与3x 是等价无穷小,则=x-→0 X ------- ~~3[解析]由题可知-2 -2y,令,可得驻点为(1. -1),而故厶=0-(-2)∙(-2)=-4<0f 因此(「・1)星函数的极值点・ZX 1. e -11IlnI --- 2.x→O XCly= d(InSinX)COSΛ:ClX = cottcLx.si n%2x 11. C — 1 Ilm= Iim^= =2. %→o 14•设χ2为f(χ)的一个原函数,则Kx)= __ ・ 2x^昭析]由题意可知Jf(x)dx=χ2+C ,因而f(x)=(∫ f(x)dx) =(χ2+C)'=2x .5.设函数 y=lnsinx f 则 dy= _____COtXdX[解 析]1 +2Y∕,ω=⅛w ,(∣)≡[解析]1+2x1 30■ ― ■■ .1•则F ⑴二 ____J (%cos2x +2)<⅛二_______________________ [解析]Z ■■9・设函数X ,贝P尤'I*10.设函数 Z=SinX lny , dz= _____CoSXlnyfk ÷ SinX —dyy嚴析]dz=d(sinx∙lny)=lnyd(sinx)+si nxd(lny)=cosxlnyd×+三.解答题共70分•鮮答应写出推湮、漓算步骤・1. 计算(XCOS4χ +2)(IX =Jxcos-=0+4=4.Oz_ XΣ ^Xdy ~2Λ XSInX1- Iim-mαo X2+ Iimg;TroQ 久•2•设函数」,求f(x)∙Zf、 1 +/ — % • 2兀八宀(F1 -/(1 *)2X.专升本商等数学真题2019第11页共9页12 (In%)2J_25. 一个袋中有10个乒乓球,其中7个橙色r 3个白色I 从中任 取2个,设事件A 为"所取的2个乒乓球颜色不同"•求事件A 发生的概率P(A).6•设函数f(x)=aG+bχ2+cx 在x=2处取得极值,点(1 ,・1)为曲 线y=f(x)的拐点,求a , b r c . 解:f(x)=3ax 2+2bx+c Z f(x)=6ax÷2b r由于f(x≡×=2处取得极值,则f(2)=12a+4b+c=0 r 点(1 • -1)是 y=f(x)的拐点■故有 f(l)=-l, f"(D=O r(IibiC- -1,I 3即 / A J Λ Wft=y 5⅛≡ -γ,c=0. 6« +2i=01 - 27.已知函数f(x)的导函数连续,且f(l)=0 ,P(Q专升本商等数学真题2019X.第12页共9页。

成人高考高等数学二复习资料汇总

成人高考高等数学二复习资料汇总

成考专升本高数(二)复习资料汇总第一部分考点⅛解第一章极限和连续一.常见的考试知识点L ftffi(1)√Λtt的左扱阳与右极用以決函数在一点处极限"在的允分必箜茶件.(2)根浪的性JliM的四則运算+(3)无穷小啟的槪念、性质从无穷小秋阶的比较.辛价无穷小故代除及Jt应用・(4)MtIStt限及其应用.2» ⅛⅛(1)⅛JSft-AttS续与间断的槪念及连续的fl⅛+(2)闭KfHl I:连续甯故的性厳.3.试卷内容比例本就内容约占试总总分的∣5%t ft计22分左右・二、常用的解题方法与技巧(_) IftlKj R⅛ft(或數列)极限的席用方½1⅛⅛:(1)H用极限的四則运WffiNl(2)利用函数的违续性:«/(*)在*处O t MlInlΛt)√(χj.• ■苇⑶帖瑞r他式•町加呗"解消左讪子法无穷小【唯快⑷故利Jeit奥极限lim—^=I等方法*∙→fl X(4)⅛τ-"tt⅛不定式•可考Igifi去Je穷因子比对于4∙∣"9⅛i****11的不定式•还可以用洛必½ifeW∣求解.V ∞0 X(5)叶…”叭…为的不定式■应先化叫r或的梯式血泌方法求悴(6)利用两个Mft限:IinI 1 Jim( I+—) ≡c( ⅛lim( l+x)τ≡e) t∙∙∙o X ∙-*∙∖ XI∙-∙o注盘関个亀要极限的结构式分别为:Iim 迦口≡≡∣∙Iim(I÷□)r^c to∙*t O OY其中方块“口”内可以为*•也可以为*的甬数・只要涡足上述结构形式•公式都止堀• 特別菱记住下列常用的公式:lim( 1÷αx其中的a.b.d为4数・(7)利用无穷小■的性质•主刻r无穷小*与有界变■之积为无穷小Ir以及*无穷大It 的倒数为无穷小ιr∙(8)利用等价无穷小缺代换•利用等价无穷小備代换常能简化运算•但是等价无穷小:It 代换能在秦除法中便FlLRiTnliH面的廉因不聽在加减法中使用•常用的等价无穷小肚代换幻:当*->0时.Bin 1 * X t tan X -X t arCMIl X ^X t arCtan X -X t In( l+x) -XJ -COb X上述各式也应该理解为:当χ→χ0( × )时•口→0∙則有SinC□ J O ■ IanO * 口等■其中口内可以为Z •也可以为*的由败•(9)求分段师在分段点处的极IR时.•定要分别求左段限与右极限•然后押判定极限是否IimzU)=M的允分必要条件是Iim /(x)≡ Hm /(χ)≡ Λ.—6 ∙→∙∣(二)连续1.判定/(#)在点*•处连续性的方法先考察/(*)是否为初第⅞tt.χφ点是否为/("的宦义区间内的点•如果给定魚数为分段函ft.IL>∙又是分段点•则需利用连续性定义来判定•特别是在分段点两制甬数衣达式不同的时候,应该用左连续•右连续判定.2.n r s,f{×)何斯点的方法连续性的三个耍素之Ty不到満足的点•即为两数的间断点•因此押定两敌间斯点的步驟通tft:(1)⅝⅛∕(χ)在点*•处科无定义.ft∕(χβ)X定义•则"为“的间断点.(2)to∣jβ∕(x.)存在.再⅛Λlim∕(Jr)⅛⅛存在.如果Iim/(x)不存在•則*■必为/("的何∙∙∙∙ f ∙→∙⅜断点.第二章一元函数微分学一、常见的考试知识点1.导数与微分(1)导数的槪念及几何恿义•用定义求隕数在一点处的导数值.(2)曲线上一点的切线方程和法线方程.(3)导数的四则运算及复合隕数的求导.(4)隐丙数的求导及对数求导法.(5)高阶导数的求法.(6)微分法则.2.洛必达法则及导数的应用(1)用洛必达法则求各类不定式的极限•(2)用导数求函数的单调区间.(3)函数的极值、最fit(4)曲线的凹凸性、拐点及曲线的水平渐近线与铅直渐近线.(5)证明不等式.3.试卷内容比例本腹内容约占试卷总分的30% •共计45分左右.二、常用的解题方法与技巧(-)⅛tt⅛at分L#數的定义/≡∕(χ)在点X。

成人高考专升本高等数学(二)复习资料

成人高考专升本高等数学(二)复习资料

第一阶段(3月初)主要任务是全面复习,夯实基础。

这个阶段,要按照考试大纲所列复习考试内容,全面系统地复习基础知识,对基本概念与基本原理狠下功夫,对两者的理解要深、透、不留死角。

复习基础知识时要讲究方法,注意各种知识点的归纳与类比、分析与综合,注意各知识点之间纵向与横向的联系,建立基础知识框架,总体把握基础知识的脉络。

第二阶段(8月初)主要任务是重点复习,强化练习。

这个阶段,要抓住复习重点,加强考试热点、常考知识点的复习,同时强化练习,掌握基本方法、基本技能,提高解题能力。

第三阶段(9月底10月初) 主要任务是冲刺复习,模拟测试。

这个阶段,在重点复习的同时,要进行模拟测试。

通过模拟测试能发现自己的薄弱环节,从而拾遗补缺,针对薄弱环节重点复习。

同时,通过模拟测试,有利于熟悉考试情景,合理安排答题时间,调整应考心里,从而提高应试能力。

第一节、函数(不单独考,了解即可)一、复合函数:要会判断一个复合函数是由哪几个简单函数复合而成的。

2ln sin y x =是由ln y u =,2u v =和sin v x =这三个简单函数复合而成.3arctan x y e =是由arctan y u =,v u e =和3v x =这三个简单函数复合而成. 该部分是后面求导的关键! 二、基本初等函数:(1)常值函数:y c = (2)幂函数:y x μ= (3)指数函数:x y a =(a 〉0,1)a ≠且 (4)对数函数:log a y x =(a 〉0,1)a ≠且(5)三角函数:sin y x =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =(6)反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x = 其中: (正割函数)1sec cos x x =, (余割函数)1csc sin x x= 三、初等函数:由基本初等函数经过有限次的四则运算和复合运算,并能用一个解析式表示的函数称为初等函数。

2019年成人高考高数二真题及答案

2019年成人高考高数二真题及答案

+∞
= ∫
1
3
()
1
1
|+∞
=

2
2()
2
25.A 为所取的 2 个乒乓球颜色不同,即 A 表示所取的 2 个球中 1 个球是橙色,
一个球是白色,故P(A) =
∁17 ∙∁13
∁210
7
= 15
26.易知f ′ () = 3ax 2 + 2x + c,f ′′ () = 6 + 2



6
19. 设函数z =


2
, =
20. 设函数z = sin ∙ ,则 =
三、解答题(21-28 题,共 70 分)
2 −
21.计算limx→∞ 2 2 +1
22.设函数f(x) =
23.计算∫

1+ 2
1
√(1− 2 )3
,求f ′ ()

2
f(x)
12. limx→0
2 −1
=

13.设函数f(x) = √ + 2 ,则 ′ (1) =
14.设 2 为f(x)的一个原函数,则() =
15.设函数y = ln sin ,则dy =
1
16.∫ 2 =
17. ∫
cos √

=
1
18. ∫−1( cos2 + 2) =
1—10.DBCBC
ADCDA
二、填空题(11-20 小题,每小题 4 分,共 40 分)
3√2
11.3
12.2
13.
14.2x
15.cot
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年成人高考专升本高等数学二复习试卷构成分析一、题型分布:试卷分选择、填空、解答三部分,分别占40分、40分、70分二、内容分布极限与连续(20分)、一元函数微分(45分)、一元函数积分(50分)、多元函数微分(20分)、概率论(10分)选择题10道:1-极限、2-3导数(或微分)、4-7 积分、8-9偏导、10概率填空10道:极限2题,连续(或分段函数)1题,拐点或驻点或极值点或极值1题,二阶导数或隐函数1道,积分3道(不定积分、定积分、广义积分),导数应用(切线方程或单调区间)1-2道,全微分1道解答题:求极限、导数、不定积分、定积分、概率各1题,导数应用单调区间(极值、凹凸)1题,用积分求围成面积与旋转体积1道,二元函数无条件极值(条件极值)1道难点:隐函数求导、全微分、多元函数极值第一部分 极限与连续题型一:求极限方法一:直接代入法(代入后分母不为0都可以用) 练习:1. 2limπ→x xx sin 12-=_______ 2. x x x sin lim 1→=______方法二:约去为零公因子法练习1. 12lim 221--+→x x x x =______方法三:分子分母同时除以最高次项(∞∞) 练习1. ∞→x lim 1132-+x x =_______ 2. 112lim 55-+-∞→x x x x =______方法四:等价代换法(x →0时,sinx~x tanx~x arcsinx~x arctanx~x ln(1+x)~x ) (等价代换只能用于乘除,不能用于加减)练习1. 1lim →x 1)1sin(2--x x =练习2. 0lim →x x x x sin cos 1-=___ ____ 3. 1)1arcsin(lim 31--→x x x =______方法五:洛必达法则(分子分母求导) (∞∞)型 或(00)型 或 其他变形形式练习1. ∞→x lim 353-+x x =_______ 2. 112lim 22-+-∞→n n n n =______练习:3. 1lim →x 1ln --+x e e x x =_______ 4. 12lim 221--+→x x x x =______两个重要极限(背2个重要极限)练习1.1lim→x 22)22sin(--x x =__ ____ 2. xxx 42sin lim 0→=____ __练习3.0lim →x x x 4sin 2sin =__ _ 4. xxx 2tan lim 0→=____ __(练习1-4也可以用等价无穷小法)练习5.∞→x lim x x 2)11(+=__ ____ 6.∞→x lim x x )211(+=__ ____练习7.∞→x lim x x )231(+=__ ____ 8. ∞→x lim x x3)211(-=__ ____练习9.0lim →x xx 1)21(+ =__ ____ 10. 0lim →x xx 21)1(-=__ ____无穷小量乘以有界函数 = 无穷小量 练习1. 0lim →x xsinx1=________ 2. ∞→x lim x 1sinx=________(什么是无穷小量?高阶无穷小,低阶无穷小,等阶无穷小,等价无穷小?)题型二:连续性问题(可导/练习1. 函数⎩⎨⎧<+≥+=1,1,1ln )(2x x ax x x x f 在x=1处连续,则a=______练习2. 函数⎪⎩⎪⎨⎧<+≥+=0,0,)1()(1x x a x x x f x 在x=0处有极限,则a=______练习3. 函数⎩⎨⎧<+≥+=2,2,1)(2x x b x ax x f 在x=2处可导,则a=______, b=______第二部分 一元函数微分学题型三:求导(背导数公式、导数的四则运算,复合函数求导公式)(y ’=f ’(x)=dxdy这三种是一个意思, 如果求微分dy ,就是dy= y ’dx) 练习1. f(x)=sinx+2cosx , 则f ’(2π)=__ ____练习2. y=xlnx , 则dy=___ ___练习3. y=x x cos 12+ , 则dxdy=___ ___练习4. y=x 4cosx +x1+ e x, 则y ’=__ ____ 练习5. y=cos 4x, 则y ’=___ 6. y=sin (x 3+1), 则dy=___ ___ 练习7. y=x x +2, 则y ’=__ ____ 8. y=)ln(x x +, 则dy=___ ___题型三中,一定要注意运算率 (uv)’=______ (kv)’=______ )'(vu=_____ f(g)’=_____ 一定要背好导数公式,在考试中占40分左右题型四:高阶导数与隐函数的求导练习1. y=x 3+lnx, 则y ”=______ 2. y=cos2x, 则y (4)=______ 练习3. y=ln (2x+1), 则y ”=______ 4. y=xe 2x , 则y ”(1)=______ 练习5. 2x 3+xy++y+y 2=0, 则dx dy =______ 6. e x +y=sinxy, 则dxdy =______题型五. 在某点处的切线或法线(斜率或方程)练习1.曲线y=2x 3在点(1,2)处的切线的斜率为_______, 切线方程为___________ 练习2. 曲线y=sin(x+1)在x=-1处的切线方程为___________ 练习3. 若y=ax 2+2x 在x=1处的切线与y=4x+3平行,则a=________题型六:求驻点、极值点(极值)、拐点、单调区间、凹凸区间 1.求驻点、拐点、极值点练习1. 曲线 y=x 3-3x 的驻点为___________ 极值点为__________ 拐点为_______2.求单调区间与极值(大题) 练习2.求1431)(3+-=x x x f 的单调区间、极值、凹凸区间和拐点(答案见11年高考)练习3. 若f(x)=ax 3+bx 2+x 在x=1处取得极大值5,求a,b第三部分 一元函数积分学题型七:求不定积分基础计算(背好公式:原函数、不定积分的性质、基本积分公式 ) 练习1:f(x)=3e 2x 则⎰dx x f)('=___ ___练习2:f(x) 的一个原函数是x 3,则f ’(x)=_ __ 练习3:x 2是f(x)的一个原函数,则f(x)=__ ___ 练习4:⎰+)21(dx d x dx=__ 练习5:⎰+dx x x )(=______练习6:⎰dx x )1(2=______练习7:⎰++++dx e xx x x)11cos 2(=______题型八:凑微分法求积分 练习1:⎰2x xe dx=_ __ 练习2:⎰+12x e dx=_ __ 练习3:⎰+x 321dx=__ 练习4:⎰+22x xdx=__ 练习5:⎰+)2cos(2x x dx=___ 练习6:⎰xxln dx=___ 练习7:⎰xx )sin(ln dx=___ 练习8:⎰+12x x dx=__ _题型九:分部积分法求积分 公式:______________________ 练习1:⎰x ln dx=___ 练习2:⎰x x ln dx=___练习3:⎰x e x 2dx=___ 练习4:⎰x x sin dx=___练习5:⎰x x sin 2dx=___题型十 求定积分基础计算练习1:⎰-22sin ππx dx=_ __ 练习2:⎰+121()x dx=__ _练习3:⎰+1021(dxd )x dx=__ _ 练习4:⎰e dx x11=_ __练习5:=则⎰⎩⎨⎧≤<≤≤=202f(x)dy ,21,210,)(x x x x x f _________练习6:⎰ex x 1ln dx=___题型十一.广义积分 练习1:⎰+∞12xedx=___ 练习2:⎰∞-+0211x dx=___题型十二 平面图形的面积与旋转体的体积(有可能大题)练习1. 设D 为曲线y=1-x 2, 直线y=x+1及x 轴所围成的平面区域,如图 (1)求平面图形的面积(2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V x还有一道2013年26题见课本第四部分 多元函数微分学题型十三 偏导数 练习1 z=x 3+x 2y+3y 4,=∂∂y z ___________ =∂∂xz ____________ =∂∂22x z ___________ =∂∂∂y x z 2___________=∂∂22yz_________ 练习2 z=ln(2x+3y)+tan(xy), =∂∂)2,1(xz____________题型十四 全微分练习3 z=x 2e y+3, dz =____________题型十五 隐函数练习1 (一元)1=x 3+x 2y+3y 4, dx dy=____________ 练习2 (二元)0=x 3+y 3-e z +z 2+z, xz∂∂=____________题型十六 二元函数(有条件,无条件)极值练习1 求二元函数f(x,y)=x 2+y 2+2y 的极值(2012年)练习2 求二元函数f(x,y)=x 2+y 2在条件2x+3y=1的极值(2013年)第五部分 概率论初步题型十七 概率基本概念:并(和)(B A B A +⋃,) 交(积)(AB B A ,⋂) 互不相容 独立事件 差事件 加法公式:P (A+B )=P (A )+P (B )-P (AB )P (A-B )=P (A )-P (AB )AB 相互独立,P (AB )=P (A )P (B )练习1、5人排成一行,甲乙排在两端的概率为__________; 甲乙排在一起的概率为______;甲乙不能排在一起的概率为_________练习 2、P (A )=0.3,P (B )=0.2 , A 不发生的概率)(A P 为________若A 、B 是独立事件,则P (AB )=______, P (A+B )=_ _____,P (A -B )=__ _ 若A 、B 是互不相容事件,则P (AB )=______ P (A+B )=______练习3、袋里有8个球,其中5个白球,3个黄球,一次从中取2个,若取出的2个均为白色的概率为______, 若取出的2个均为黄的概率为______, 若取出的至少有1个白球的概率为______(本题也可以是8个产品,3个为次品….)练习4、有10件产品,其中8件是正品,2件是次品,甲乙两人各抽1件,(1) 若甲先抽到正品的条件下,求乙抽到正品的概率 (2) 若两人抽个正品的件数为X, 求X 的数学期望习题答案第一部分题型一1、π-12、sin 11、11、32、21、212、213、31 1、3 2、2 3、1+e 4、1两个重要极限1、12、213、21 4、2 5、e 2 6、e 7、23e 8、23-e9、e 2 10、21-e无穷小量1、02、0题型二1、02、e3、4,5第二部分题型三 1、-2 2、(lnx+1)dx 3、 xx x x x 22cos sin )1(cos 2++ 4、x e x x x x x +--2431sin cos 45、-4cos 3x sinx6、3x 2cos(x 3+1) dx7、)12()(21212++-x x x 8、 dx x x x )211(121-++题型四第三部分题型一题型一第四部分题型一题型一题型一第五部分题型一题型一。

相关文档
最新文档