西交《线性代数》在线作业.8E68134B-45D0-4954-8C99-D39AB4B169BE(总7页)

合集下载

奥鹏西安交通大学2020年3月课程考试《线性代数》参考资料答案

奥鹏西安交通大学2020年3月课程考试《线性代数》参考资料答案

西安交通大学课程考试复习资料单选题1.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案: A2.若三阶行列式D的第三行的元素依次为3,1,-1它们的余子式分别为4,2,2则D=( )A.-8B.8C.-20D.20答案: B3.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ).A.3B.15C.-10D.8答案: C4.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为( )B.-7C.3D.7答案: A5.设A3*2,B2*3,C3*3,则下列( )运算有意义A.ACB.BCC.A+BD.AB-BC答案: B6.如果矩阵A满足A^2=A,则( )A.A=0B.A=EC.A=0或A=ED.A不可逆或A-E不可逆答案: D7.设三阶实对称矩阵的特征值为3,3,0,则A的秩r(A)= ( )A.2B.3C.4D.5答案: A8.设A为三阶方阵,|A|=2,则 |2A-1| = ( )A.1B.2C.3D.4答案: D9.设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=B.-2C.1D.2答案: B10.设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ).A.31B.32C.33D.34答案: B11.设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A.A=EB.B=OC.A=BD.AB=BA答案: D12.设A,B,C均为n阶非零方阵,下列选项正确的是( ).A.若AB=AC,则B=CB.(A-C)^2 = A^2-2AC+C^2C.ABC= BCAD.|ABC| = |A| |B| |C|答案: D13.n阶对称矩阵A为正定矩阵的充分必要条件是( ).A.∣A∣>0B.存在n阶矩阵P,使得A=PTPC.负惯性指数为0D.各阶顺序主子式均为正数答案: D14.设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为( ).B.1,2C.1,1,2D.3,3,5答案: D15.设A,B均为n阶非零方阵,下列选项正确的是( ).A.(A+B)(A-B) = A^2-B^2B.(AB)^-1 = B^-1A^-1C.若AB= O, 则A=O或B=OD.|AB| = |A| |B|答案: D16.设u1, u2是非齐次线性方程组Ax=b的两个解, 若c1u1-c2u2是其导出组Ax=o的解, 则有( ).A.c1+c2=1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案: B17.n阶对称矩阵A正定的充分必要条件是( ).A.|A|>0B.存在n阶方阵C使A=CTCC.负惯性指标为零D.各阶顺序主子式均为正数答案: D18.设A,B均为n阶方阵,则( )A.若|A+AB|=0,则|A|=0或|E+B|=0B.(A+B)^2=A^2+2AB+B^2C.当AB=O时,有A=O或B=OD.(AB)^-1=B^-1A^-1答案: A19.设 A、B、C为同阶方阵,若由AB = AC必能推出 B = C,则A应满足( ).A.A≠OB.A=OC.|A|=0D.|A|≠0答案: D20.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( )A.Ax=0只有零解B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量D.Ax=0没有解答案: C21.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案: A22.设a1,a2,a3,a4,a5是四维向量,则( )A.a1,a2,a3,a4,a5一定线性无关B.a1,a2,a3,a4,a5一定线性相关C.a5一定可以由a1,a2,a3,a4线性表示D.a1一定可以由a2,a3,a4,a5线性表出答案: B23.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )A.A^-1CB^-1B.CA^-1B^-1C.B^-1A^-1CD.CB^-1A^-1答案: A24.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )A.A与B相似B.A≠B,但|A-B|=0C.A=BD.A与B不一定相似,但|A|=|B|答案: A25.设A为m*n矩阵,则有( )A.若m<n,则有Ax=b无穷多解B.若m<n,则有Ax=0非零解,且基础解系含有n-m个线性无关解向量C.若A有n阶子式不为零,则Ax=b有唯一解D.若A有n阶子式不为零,则Ax=0仅有零解。

(2021年整理)线性代数习题集(带答案)

(2021年整理)线性代数习题集(带答案)

线性代数习题集(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(线性代数习题集(带答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为线性代数习题集(带答案)的全部内容。

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A ) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。

(A)k (B )k n - (C)k n -2! (D )k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。

(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( )。

(A) 0 (B )1- (C) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A ) 0 (B )1- (C) 1 (D ) 27. 若21 333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( )。

(A) 4 (B) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B )ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

西南大学22春[0044]《线性代数》在线作业答案

西南大学22春[0044]《线性代数》在线作业答案

0044 20221单项选择题1、()1.2.3.4.2、()1.2.3.4.3、(1. 42. 13. 34. 24、()1.2.3.4.5、()1.A的列向量组线性无关2.A的列向量组线性相关3.A的行向量组线性无关4.A的行向量组线性相关6、()1.2.3.4.7、1.2,4,62.1, 2, 33.1/2, 1, 3/24.2, 1, 2/38、()1.必有一列元素全为02.必有两列元素对应成比例3.必有一列向量可有其余列向量线性表示4.任一列向量是其余列向量的线性组合9、()1.有无穷多个解2.以上选项都不对3.存在唯一解4.无解10、(1.2.3.4.11、在下列矩阵中,可逆的矩阵是()1.2.3.4.12、()1.2.3.4.13、下列关于未知量x,y,z的方程是线性方程的是()1.2.3.4.14、()1. A. 0,1,22.1,2,33.1,2,3,44.0,1,2,315、()1.2.3.4.16、()1.-22. 13. 24.-117、()1.162.483.-164.-4818、()1.-102.103. 54.-519、()1.2.3.4.20、()1.2.3.4.21、()1.162. 23.84. 422、设A为n阶方阵, 且秩R(A) = r< n, 那么A的列向量组的秩()1. F. 小于r2.等于n3.等于r4.大于r23、()1.2.3.4.24、()1.将B矩阵的第二行加到第一行2.将B矩阵的第二列加到第一列3.AB=BA4.r(AB)=225、以123456为标准排列,则排列253146的逆序数是()1. 42. 33. 54. 226、设A, B均为n阶方阵, E为n阶单位矩阵, 则有()1.2.3.4.27、()1. E.2.3.4.28、()1.存在非零解2.无解3.以上选项都不对4.只有零解29、设3阶矩阵A与B相似,且已知A的特征值为-1,1,-7. 则|B| =()1.122.1/123.1/74.730、设n阶方阵A秩为n,下式不正确的是()1.2.3.4.31、()1.-32.-23. 24. 332、()1.2.3.4.33、(1.2.3.4.34、()1.2.3.4.35、()1.无解2.以上选项都不对3.有无穷多个解4.存在唯一解36、()1.2.3.4.37、如果n阶矩阵A的一个特征值为3, 那么必有()1.2.3.4.38、()1.-22. 33. 24.039、()1. 32. 23. 14.040、()1.2.3.4.以上选项都不对41、()1.(1,1,0)2.(-3,0,2)3.(0,-1,0)4.(2,1,1)42、以123456为标准排列,则排列154236的逆序数是()1. 52. 33. 24. 443、()1.2.3.4.44、()1.2.3.4.45、()1. 42. 23. 34. 146、()1. 22. 13.0,14.1,247、()1. B.2.A3.4.48、()1.2.3.4.49、()1. 12. 33. 24. 450、()1. 32.3.4.判断题51、齐次线性方程组的基础解系是该方程组的所有解向量构成的向量组的极大无关组。

线性代数 课后作业及参考答案

线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。

线性代数试题和答案(精选版)

线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解D.2η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值C.Aの2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1C.A-1=A TD.Aの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。

【西大2017版】[0343 ]《线性代数 》网上作业及课程考试复习资料(有答案]

【西大2017版】[0343 ]《线性代数 》网上作业及课程考试复习资料(有答案]

1:[论述题]行列式部分主观题参考答案:主观题答案2:[单选题]8.已知四阶行列式D中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D的值等于A:5B:-10C:-15参考答案:C3:[单选题]7.行列式A的第一行元素是(-3,0,4),第二行元素是(2,a,1),第三行元素是(5,0,3),则其中元素a的代数余子式是:A:29B:-29C:0参考答案:B4:[单选题]6.排列3721456的逆序数是:A:6B:7C:8参考答案:C5:[单选题]5.行列式A的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A的值等于0,则k的取值应是:A:k=3B:k=1C:k=3或k=1参考答案:C6:[单选题]3.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:A:4B:2C:5参考答案:C7:[单选题]4.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:A:9B:-1C:1参考答案:B8:[单选题]2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11B:7C:3参考答案:A9:[单选题]1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是:A:-1B:1C:7参考答案:B10:[单选题]9.下列n阶(n>2)行列式的值必为0的有:A:行列式主对角线上的元素全为零。

B:行列式非零元素的个数小于n个。

C:行列式零元素的个数多于n.参考答案:B1:[论述题]关于线性方程组的主观题参考答案:主观题答案2:[判断题]2 若矩阵A的列数等于矩阵B的行数,则矩阵A乘以B有意义。

参考答案:正确3:[多选题]1 向量组a1,a2,...,as线性无关的必要条件是:A:a1,a2,…,as都不是零向量。

西安交通大学14春学期《线性代数》离线作业

西安交通大学14春学期《线性代数》离线作业

.
8.设相似于,则
.
.
9.矩阵的线性无关的特征向量的个数为
.
10.设和是3阶实对称矩阵的两个不同特征值,和依次是属于和的特征向
量,则
.
三、判断题
11.判断下列命题或说法是否正确:
(1) 若同阶矩阵与相似,则对任何常数与相似.
(2) 若方阵与对角矩阵相似,则也与对角矩阵相似.
23.求矩阵的秩.
五、证明题
24.设、为阶矩阵,且为对称矩阵,证明也是对称矩阵.
25.设阶矩阵满足.证明矩阵可逆,并求.
26.证明:矩阵与行等价的充分必要条件,是存在阶可逆矩阵,使.
第三章 向量
本章要点
1.维向量及其线性运算; 2.线性组合与线性表示; 3.线性相关与线性无关; 4.向量组的极大无关组与秩; 5.实向量的内积、长度、夹角、正交,正交矩阵与施密特正交化方法.
第四章 线性方程组
本章要点
线性方程组解的情况的判定、解的性质、解的结构及求解方法.
本章目标
1.理解齐次线性方程组有非零解的充要条件、解的性质、基础解系与 通解等概念;
2.理解非齐次线性方程组解的判定定理、解的性质、解的结构与通解 等概念;
3.掌握用初等变换法求解线性方程组的方法.
本章重点
1.齐次线性方程组基础解系的概念与计算; 2.非齐次线性方程组解的判定以及在有无穷多解时通解的计算.
.
9.设阶可逆方阵的伴随矩阵为,已知则
.
10.若矩阵的秩为2,则
.
三、判断题
11.判断下列命题或说法是否正确:
(1) 矩阵乘法满足交换律,但不满足结合律;
(2) 方阵的伴随矩阵的元素为,其中是的代数余子式;
(3) 同阶可逆矩阵的乘积仍是可逆矩阵; (4) 同阶对称矩阵的乘积必是对称矩阵; (5) 设、均为可逆矩阵,则有.

西电线性代数大作业

西电线性代数大作业

线性代数大作业学院:电子工程学院班级:021131姓名:XXX学号:02113XXX一、编程求逆程序代码如下:举例如下:1)输入矩阵为非方阵请输入矩阵A=[1 2 5 4;4 5 6 8;7 2 5 9]A =1 2 5 44 5 6 87 2 5 9输入不正确,要求A是n阶矩阵2)输入矩阵为方阵,但矩阵行列式值为0请输入矩阵A=[1 2 5 4;4 5 6 8;1 2 5 4;7 2 5 9]A =1 2 5 44 5 6 81 2 5 47 2 5 9|A|=0,矩阵A不可逆3)输入矩阵为方阵,矩阵行列式值不为0请输入矩阵A=[0 1 1 3;1 -1 0 2;1 -2 3 0;2 1 1 0]A =0 1 1 31 -1 0 21 -23 02 1 1 0矩阵A的行列式值为:a =50矩阵A的逆为:C =-0.2000 0.3000 -0.0600 0.38000.2000 -0.3000 -0.1400 0.22000.2000 -0.3000 0.2600 0.02000.2000 0.2000 -0.0400 -0.0800二、编程将二次型转化为标准型程序代码如下:举例如下:1)请输入二次型的矩阵A=[0 1 1 -1;1 0 -1 1;1 -1 0 1;-1 1 1 0]A =0 1 1 -11 0 -1 11 -1 0 1-1 1 1 0 二次型的标准型为:f =-3*y1^2+y2^2+y3^2+y4^22)请输入二次型的矩阵A=[5 -1 3;-1 5 -3;3 -3 3]A =5 -1 3-1 5 -33 -3 3二次型的标准型为:f =9*y2^2+4*y3^2三、编程实现以下流程:任意输入一个矩阵A→判断是否为方阵程序代码如下:举例如下:1)输入矩阵为非方阵请任意输入一个矩阵A=[1 4 5 6;7 5 3 1;1 4 5 7]A =1 4 5 67 5 3 11 4 5 7矩阵A不是方阵矩阵A的秩为k =32)输入矩阵为方阵,其行列式值不为0请任意输入一个矩阵A=[1 1 1 1;1 1 -1 -1;1 -1 1 -1;1 -1 -1 1]A =1 1 1 11 1 -1 -11 -1 1 -11 -1 -1 1矩阵A的行列式值为a =-16矩阵A的逆矩阵为:C =0.2500 0.2500 0.2500 0.25000.2500 0.2500 -0.2500 -0.25000.2500 -0.2500 0.2500 -0.25000.2500 -0.2500 -0.2500 0.25003)输入矩阵为方阵,其行列式值为0,矩阵不对称请任意输入一个矩阵A=[1 -1 2 -2;2 0 4 4;3 2 -1 0;-1 2 -4 2]A =1 -12 -22 0 4 43 2 -1 0-1 2 -4 2矩阵A的行列式值为|A|=0矩阵A不可逆矩阵A不对称4)输入矩阵为方阵,其行列式值为0,矩阵对称请任意输入一个矩阵A=[-8 2 -2;2 -5 -4;-2 -4 -5]A =-8 2 -22 -5 -4-2 -4 -5矩阵A的行列式值为|A|=0矩阵A不可逆矩阵A对称,是某个二次型的矩阵二次型的标准型为:f =-9*y2^2-9*y3^2。

2013秋西南交通大学《线性代数》在线作业三参考答案-最新

2013秋西南交通大学《线性代数》在线作业三参考答案-最新

2013秋西南交通大学《线性代数》在线作业三参考答案一、单项选择题(只有一个选项正确,共8道小题)1. 设A为n阶方阵,且A2+A−5E=0,则(A+2E)−1=( )。

(A) A−E(B) A+E(C) 1 3 ( A−E )(D) 1 3 ( A+E )你选择的答案: C [正确]正确答案:C解答参考:A 2 +A−5E=0 ⇒ A 2 +A−2E=3E⇒( A+2E )(A−E)=3E ⇒( A+2E ) −1 = 1 3 (A−E)2. 若n维向量α 1 ,α 2 ,⋯, α n 线性相关,β为任一n维向量,则( )。

(A) α 1 , α 2 ,⋯, α n ,β线性相关;(B) α 1 , α 2 ,⋯, α n ,β线性无关;(C) β一定能由α 1 , α 2 ,⋯, α n 线性表示;(D) α 1 , α 2 ,⋯, α n ,β的相关性无法确定。

你选择的答案: A [正确]正确答案:A解答参考:3. 设线性方程组{ 3 x 1 + x 2 =1, 3 x 1 +3 x 2 +3 x 3 =0 ,5 x 1 −3 x 2 −2 x 3 =1 }则此方程组。

(A) 有唯一解(B) 有无穷多解(C) 无解(D) 有基础解系你选择的答案: A [正确]正确答案:A解答参考:4. 设n维向量组α1,α2,⋯,αs,若任一维向量都可由这个向量组线性表出,必须有。

(A) s= n(B) s< n(C) s> n(D) s≥n你选择的答案: D [正确]正确答案:D解答参考:5. 设α 1 , α 2 , α 3 ,β,γ都是4维列向量,且4阶行列式| α 1 , α 2 , α 3 ,β|=a ,| γ, α 1 , α 2 , α 3 |=b ,则4阶行列式| α 1 , α 2 , α3 ,β+γ|=(A) a+b(B) −a−b(C) a−b(D) b−a你选择的答案: C [正确]正确答案:C解答参考:6. 设B,C 为4阶矩阵,A=BC , R(B)=4 , R(C)=2 ,且α 1 , α 2 , α 3 是线性方程组Ax=0 的解,则它们是(A) 基础解系(B) 线性相关的(C) 线性无关的(D) A,B,C都不对你选择的答案: B [正确]正确答案:B解答参考:7. 设n维列向量α= ( 1 2 ,0,⋯,0, 1 2 ) T ,矩阵A=I−α α T ,B=I+2α α T ,则AB=(A) 0(B) −I(C) I(D) I+α α T你选择的答案: C [正确]正确答案:C解答参考:8. 设矩阵A m×n 的秩r(A)=m< ,下述结论中正确的是>(A) A的任意m个列向量必线性无关(B) A的任意一个m阶子式不等于零(C) 齐次方程组Ax=0只有零解(D) 齐次方程组Ax=0只有零解你选择的答案: D [正确]正确答案:D解答参考:二、判断题(判断正误,共5道小题)9. 设A ,B 是同阶方阵,则AB=BA 。

西安交大网院《线性代数》作业集答案(魏战线)

西安交大网院《线性代数》作业集答案(魏战线)

线性代数作业集参考答案 第一章1.C .2.B .3.C .4. D .5. D .6.)(2b a -.7. 5.8. 1=λ或0=μ.9. 48. 10. 0. 11. (1)和(3)不正确,其余正确. 12. (1) );2()1(2+---a a λλ (2) ;)1)(3(3-+x x (3) 31; (4) 40; (5) ;142- (6) ).)((22221111c b d a c b d a --13. 3,2,4321-===x x x . 14. 1=k 或2=k . 16. 注意1D 与2D 的第4行对应元素有相同的余子式.第二章1. D.2. C.3. D.4. C.5. D.6. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--3100013025. 7. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10042032121. 8. 24. 9. 1-n a . 10. 2-. 11. (1)和(4)不正确,其余正确. 12. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3351371088. 13. O A A A A A A A =-=-=--)2(2,2212n n n . 14. 6. 15. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1161042211. 16. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-201032126)2(1I A A B . 17. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=-011321330)2(1A I AB . 18. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020003. 19. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=-10111001141)2(211A IB .20.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+=-200040002)(41I A B . 21. ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡----++68468327322731242124213111111313.22. 2716-. 23. 3. 25. )(51I A +-. 26. 利用:方阵P 可逆P ⇔可以写成若干个初等矩阵的乘积.第三章1. D.2. C.3. D.4. B.5. B.6. 3≠t .7. 8-=t .8. 3.9. 1. 10. 3. 11. (1)和(5)不正确,其余正确. 12. 2. 13. 32123021αααβ++-= 14. 当1≠a 时, 3211113212αααβ-++---+---=a b a b a a a b ;当1=a 且1-≠b 时,β不能由321,,ααα线性表示;当1=a 且1-=b 时,321)21()1(αααβc c c +-++-= (c 为任意常数). 15. (1)4321212432,2ααααβ--++--+=≠p pp p p ; (2) ,2=p 秩为3,321,,ααα是一个极大无关组. 16. 1-=a 时线性相关,1-≠a 时线性无关. 17. 秩为3,421,,ααα为一个极大无关组,且有2152132,3αααααα+=+=. 19.利用定义,及0A α0b A β=≠=j ,)3,2,1(=j . 20. 利用整体组与部分组线性相关性的关系.第四章1. A.2. D.3. B.4. B.5. C.6. 2.7.8. 8.415. 9. 1. 10. 0. 11. (5)不正确,其余正确. 12. (1) T T )1002(,)0,7,1,19(21,,,==ξξ,通解2211ξξx c c +=;(2) ,)0,1,6,8(1T -=ξT )1,0,5,7(2-=ξ,通解2211ξξx c c +=. 13. (1) 当8-=a 时,基础解系为T T )1,0,2,1(,)0,1,2,4(21--=-=ξξ,通解2211ξξx c c +=; 当8-≠a 时,基础解系为T )1,0,2,1(1--=ξ,通解ξx c =. (2) 当且仅当0=a 或6-=a 时有非零解,当0=a 时基础解系为T T )1,0,1(,)0,1,1(21-=-=ξξ,通解;2211ξξx c c +=当6-=a 时基础解系为T )3,2,1(=ξ,2通解ξx c =. 14. .)1,0,1,0()0,1,1,1(,121T T c c a -+-==x15. (1) TT T c c )1,0,7,5()0,1,2,1()0,0,5,2(21-+-+-=x ; (2) TTTc c )1,27,0,4()0,7,1,9()0,14,0,17(21-+-+-=x . 16.(1) 当1-≠a 且3≠a 时有唯一解:;11,11,12321+=+-=++=a x a x a a x 当1-=a 时无解;当3=a 时通解为T T c )1,3,7()0,1,3(-+-=x ;(2) 当4-≠a 时有唯一解:,151+=b x,441042++++-=a b a ab x ;433+-=a bx 当4-=a 且0≠b 时无解;当4-=a 且0=b 时,通解T T c )1,2,0()0,1,1(-+-=x . 17. T T c )2,1,0,1()4,3,2,1(--+. 19. 利用定义及齐次线性方程组向量形式与矩阵形式的转化.第五章1. B.2. A.3. B.4. C.5. C.6.43. 7. 6. 8. 2,1=-=b a . 9. 1. 10. 3-. 11. (3)和(4)不正确,其余正确. 12. (1).)5,4(,2;)1,1(,721T T --==λλ(2).)0,1,1(,3;)1,2,0(,)0,1,1(,2321T T T =-==λλλ (3) ,2;)1,1,1(,121==λλT ;)3,3,2(T.)4,3,1(,33T =λ 13. (2) ;322,111231011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (3) ;121,227211113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (4).332,010100021⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 14..62225020731⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---- 15..110110001,1,0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-===P y x16. .3- 17..34 18. ;1,2==λk 或.41,1==λk 19. (1) ;105,122151⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡- (2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--421,61213162031612131;(3) ;511,31620316121316121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-- (4) .422,11011000221⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 20..11112)(,51,1111211⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=-A AP P P ϕ22. 首先由正交矩阵定义得1-=A A T,两端取行列式并利用0)det(>A ,得1)det(=A ,再利用**1)det(1A A A A A ===-T(*A 为A 的伴随矩阵),比较两端对应元素.第六章1. A.2. C.3. C.4. A.5. D.6. 2.7. 22213y y +. 8. 2>a . 9. 3. 10. 32212322214252x x x x x x x -+++. 11. (3)和(4)不正确,其余正确.12. .11011000221,,52232221⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==++P Py x y y y 13. ,3,2==b a ⎥⎦⎤⎢⎣⎡-=111121P . 14. .21212222131⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=P 15. 6||<t . 16. 证明二次型x A A x )(T T 为正定的.模拟试题(一)参考答案与提示一、(1)、(2)、(4)、(7)、(8)不对,其余正确. 二、.111022135⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---- 三、.10- 四、.53147⎥⎦⎤⎢⎣⎡-- 五、,)1,1,1(T -=ξ通解,ξk x =其中k 为任意常数. 六、1≠λ且2-≠λ时有唯一解,2-≠λ时无解,1=λ时通解为T T T k k x )1,0,1()0,1,1()0,0,1(21-+-+=,其中21,k k 为任意常数. 七、,121==λλ.)1,1,1(,2;)1,0,0()0,1,2(3321T T T k k k --=+-λ 八、⎥⎦⎤⎢⎣⎡-=-433451,5202221P y y ,所求正交变换为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121y y x x P . 九、设x 满足0Bx =,两端左乘A ,得0x =,即齐次线性方程组0Bx =只有零解.模拟试题(二)参考答案与提示一、(1) (A). (2) (C). (3) (C). (4) (C). (5) (D). 二、(1) 6-. (2) .2-n (3) 2. (4) ⎥⎦⎤⎢⎣⎡18104941. (5) 2. 三、(1) 30. (2) 1. (3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----132122121. (4) ⎥⎦⎤⎢⎣⎡--51023. (5) T )0,1,2,3(1-=ξ, .,)1,30,4(22112ξξx ξc c T +=-= (6) 321,,ααα为一个极大无关组,秩为3,.23214αααα+-= (7) );0()1,0,0(,1111≠=k k T λ );0()0,1,1(,2222≠-=k k T λ).0()0,2,1(,3333≠-=k k T λA 可对角化.四、.)1,0,1,0()0,1,0,1()0,0,1,0(,321T T T c c a -+-+==x五、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-===11011000221,1,0P b a . 六、只要证明321,,βββ是0Ax =的3个线性无关解即可.。

线性代数 20年 西交大考试题库及答案

线性代数 20年 西交大考试题库及答案
答案
正确 正确 正确 错误 正确 正确 正确
错误 正确 正确 正确 错误 错误 正确
错误 正确 正确 正确 正确
()
47、设λ=2是非奇异矩阵A的一个特征值,则矩阵
有一个特征值等于()
48、设某三阶行列式|A|的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式 |A|的值为()
49、设是对称矩阵
,则与矩阵A相似的对角阵为()。
50、设A为m*n矩阵,则齐次线性方程组AX=0仅有零解的充分条件是:()
A、 B、-3 D、0 B、bde-bcf A、(x+3a)(x-a)² A、5 B、
A、 A、k≤3 C、 B、 D、 A、A与B相似 A、1
C、A1,A2都可逆 A、 B、a1.a2。a3.a4.a5一定线性相关 A、Ax=0有无穷多解 D、X1-X2,X2-X3,X3-X1 B、可逆矩阵 C、
51、下面结论正确的是()

52、
()
53、设A为三阶方阵且
()
54、设多项式
,则f(x)的常数项为()
55、
()
判断
56、已知矩阵A3*2 B2*3 C3*3,则A.B为3*3矩阵 57、已知A为3*3矩阵,且|A|=3,则|2A|=24 58、向量 59、如果向量组a1,a2....as线性相关,则每一个向量都能由其余向量线性表示。 60、若矩阵A可逆,则AB与BA相似。 61、向量组a1,a2....as线性无关的充分必要条件是其中任一部分向量组都线性无关。 62、阵A与其转置 具有相同的行列式和特征值。
63、设A为n阶方阵,k为常数,则
64、若n阶矩阵A、B、C满足ABC=E(其中E为n阶可逆阵),则BCA=E()

19秋西交《线性代数》在线作业【答案】

19秋西交《线性代数》在线作业【答案】

【奥鹏】19秋西交《线性代数》在线作业
试卷总分:100 得分:100
第1题,设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )
[A、]A^-1CB^-1
[B、]CA^-1B^-1
[C、]B^-1A^-1C
[D、]CB^-1A^-1
[提示:分析阅读上述试题,并作答]
正确的答案:A
第2题,设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )
[A、]A=0
[B、]A=E
[C、]r(A)=n
[D、]0r(A)(n)
[提示:分析阅读上述试题,并作答]
正确的答案:A
第3题,n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的( )。

[A、]充分必要条件;
[B、]必要而非充分条件;
[C、]充分而非必要条件;
[D、]既非充分也非必要条件
[提示:分析阅读上述试题,并作答]
正确的答案:C
第4题,设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )。

[A、]a1-a2,a2-a3,a3-a1
[B、]a1,a2,a3+a1
[C、]a1,a2,2a1-3a2
[D、]a2,a3,2a2+a3
[提示:分析阅读上述试题,并作答]
正确的答案:B
第5题,设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ).
[A、]31
[B、]32
[C、]33
[D、]34
[提示:分析阅读上述试题,并作答]
正确的答案:B
第6题,设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).。

其他系统西安交通大学线性代数所有答案

其他系统西安交通大学线性代数所有答案

其他系统西安交通大学线性代数所有答案74、n阶单位矩阵的特征值都是1答案是:正确69、矩阵A是m*n矩阵,齐次线性方程组AX=0只有零解的充要条件是A的列向量线性相关。

答案是:正确68、如果r(A)=r,A中有秩等于零的r1阶子式答案是:错误67、如果r(A)=r,A中有秩等于零的r-1阶子式答案是:错误66、如果r(A)=r,A中有秩等于零的r阶子式答案是:正确64、若n阶矩阵A、B、C满足ABC=E(其中E为n阶可逆阵),则BCA=E)答案是:正确61、向量组a1,a2as线性无关的充分必要条件是其中任一部分向量组都线性无关。

答案是:正确60、若矩阵A可逆,则AB与BA相似。

答案是:正确59、如果向量组a1,a2as线性相关,则每一个向量都能由其余向量线性表示。

答案是:错误57、已知A为3*3矩阵,且|A|=3,则|2A|=24答案是:正确56、已知矩阵A3*2 B2*3 C3*3,则AB为3*3矩阵答案是:正确51、下面结论正确的是()答案是:C、所有元素都是0的矩阵是零矩阵50、设A为m*n矩阵,则齐次线性方程组AX=0仅有零解的充分条件是:()答案是:A、A的列向量线性无关48、设某三阶行列式|A|的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式|A|的值为()答案是:C、-1038、已知矩阵满足A2=3A、则A的特征值是()答案是:C、λ=3或λ=037、已知A2=A、则A的特征值是()答案是:C、λ=0或λ=129、下列各式中()的值为0答案是:D、D中有一行与另一行元素对应成比例27、若A为)则A必为方阵答案是:B、可逆矩阵32、如果有一个线性方程组有解,则只有唯一解的充要条件是它的导出组()答案是:C、只有0解33、如果矩阵A满足A2=A,则()答案是:D、A不可逆或A-E不可逆35、设A是n阶方阵,则A能与n阶对角阵相似的充要条件是()答案是:C、A有n个线性无关的特征向量。

奥鹏西安交通大学课程考试《线性代数》参考资料答案.doc

奥鹏西安交通大学课程考试《线性代数》参考资料答案.doc

西安交通大学课程考试复习资料单选题1.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案: A2.若三阶行列式D的第三行的元素依次为3,1,-1它们的余子式分别为4,2,2则D=( )A.-8B.8C.-20D.20答案: B3.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ).A.3B.15C.-10D.8答案: C4.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为( )B.-7C.3D.7答案: A5.设A3*2,B2*3,C3*3,则下列( )运算有意义A.ACB.BCC.A+BD.AB-BC答案: B6.如果矩阵A满足A^2=A,则( )A.A=0B.A=EC.A=0或A=ED.A不可逆或A-E不可逆答案: D7.设三阶实对称矩阵的特征值为3,3,0,则A的秩r(A)= ( )A.2B.3C.4D.5答案: A8.设A为三阶方阵,|A|=2,则 |2A-1| = ( )A.1B.2C.3D.4答案: D9.设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=B.-2C.1D.2答案: B10.设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ).A.31B.32C.33D.34答案: B11.设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A.A=EB.B=OC.A=BD.AB=BA答案: D12.设A,B,C均为n阶非零方阵,下列选项正确的是( ).A.若AB=AC,则B=CB.(A-C)^2 = A^2-2AC+C^2C.ABC= BCAD.|ABC| = |A| |B| |C|答案: D13.n阶对称矩阵A为正定矩阵的充分必要条件是( ).A.∣A∣>0B.存在n阶矩阵P,使得A=PTPC.负惯性指数为0D.各阶顺序主子式均为正数答案: D14.设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为( ).B.1,2C.1,1,2D.3,3,5答案: D15.设A,B均为n阶非零方阵,下列选项正确的是( ).A.(A+B)(A-B) = A^2-B^2B.(AB)^-1 = B^-1A^-1C.若AB= O, 则A=O或B=OD.|AB| = |A| |B|答案: D16.设u1, u2是非齐次线性方程组Ax=b的两个解, 若c1u1-c2u2是其导出组Ax=o的解, 则有( ).A.c1+c2=1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案: B17.n阶对称矩阵A正定的充分必要条件是( ).A.|A|>0B.存在n阶方阵C使A=CTCC.负惯性指标为零D.各阶顺序主子式均为正数答案: D18.设A,B均为n阶方阵,则( )A.若|A+AB|=0,则|A|=0或|E+B|=0B.(A+B)^2=A^2+2AB+B^2C.当AB=O时,有A=O或B=OD.(AB)^-1=B^-1A^-1答案: A19.设 A、B、C为同阶方阵,若由AB = AC必能推出 B = C,则A应满足( ).A.A≠OB.A=OC.|A|=0D.|A|≠0答案: D20.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( )A.Ax=0只有零解B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量D.Ax=0没有解答案: C21.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案: A22.设a1,a2,a3,a4,a5是四维向量,则( )A.a1,a2,a3,a4,a5一定线性无关B.a1,a2,a3,a4,a5一定线性相关C.a5一定可以由a1,a2,a3,a4线性表示D.a1一定可以由a2,a3,a4,a5线性表出答案: B23.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )A.A^-1CB^-1B.CA^-1B^-1C.B^-1A^-1CD.CB^-1A^-1答案: A24.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )A.A与B相似B.A≠B,但|A-B|=0C.A=BD.A与B不一定相似,但|A|=|B|答案: A25.设A为m*n矩阵,则有( )A.若m<n,则有Ax=b无穷多解B.若m<n,则有Ax=0非零解,且基础解系含有n-m个线性无关解向量C.若A有n阶子式不为零,则Ax=b有唯一解D.若A有n阶子式不为零,则Ax=0仅有零解。

西交《线性代数》在线作业(资料答案)

西交《线性代数》在线作业(资料答案)

西交《线性代数》在线作业-0001
试卷总分:100 得分:100
一、单选题 (共 35 道试题,共 70 分)
1.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )
A.A^-1CB^-1
B.CA^-1B^-1
C.B^-1A^-1C
D.CB^-1A^-1
答案:A
2.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )
A.A=0
B.A=E
C.r(A)=n
D.0<r(A)<(n)
答案:A
3.n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的( )。

A.充分必要条件;
B.必要而非充分条件;
C.充分而非必要条件;
D.既非充分也非必要条件
答案:C
4.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )。

A.a1-a2,a2-a3,a3-a1
B.a1,a2,a3+a1
C.a1,a2,2a1-3a2
D.a2,a3,2a2+a3
答案:B
5.设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ).
A.31
B.32
C.33
D.34
答案:B
6.设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).
A.A=E
B.B=O
C.A=B
D.AB=BA
答案:D。

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)第一章【1】填空题(1) 二阶行列式2a abbb=___________。

(2) 二阶行列式cos sin sin cos αααα-=___________。

(3) 二阶行列式2a bi b aa bi+-=___________。

(4) 三阶行列式xy zzx y yzx =___________。

(5) 三阶行列式a bc c a b c a bbc a+++=___________。

答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。

【2】选择题(1)若行列式12513225x-=0,则x=()。

A -3;B -2;C 2;D 3。

(2)若行列式1111011x x x=,则x=()。

A -1,; B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。

A -70;B -63;C 70;D 82。

(4)行列式00000000a ba b b a ba=()。

A 44a b -;B ()222a b-;C 44b a -;D 44a b 。

(5)n 阶行列式0100002000100n n -=()。

A 0;B n !;C (-1)·n !;D ()11!n n +-∙。

答案:1.D ;2.C ;3.A ;4.B ;5.D 。

【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。

【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。

答案:(1)τ(134782695)=10,此排列为偶排列。

西南交大线性代数习题参考答案

西南交大线性代数习题参考答案

西南交⼤线性代数习题参考答案第⼀章⾏列式§1⾏列式的概念1. 填空(1) 排列6427531的逆序数为—,该排列为—排列。

(2) / =_,⼃° _时,排列1274 i 56 j 9为偶排列。

(3)"阶⾏列式由—项的代数和组成,英中每⼀项为⾏列式中位于不同⾏不同列的"个元素的乘枳,若将每⼀项的各元素所在⾏标按⾃然顺序排列,那么列标构成⼀个"元排列。

若该排列为奇排列,则该项的符号为 ________ 号:若为偶排列,该项的符号为—号。

⑷在6阶⾏列式中,含a x5a 23a 32a^a 5}a^的项的符号为 ______________________ ,含^32a 43a \4a 5i a 66a 25 的项的符号为⼀。

2. ⽤⾏列式的⽴义计算下列⾏列式的值q i 0 0(1)0。

22。

23°a32 a 33解:该⾏列式的3!项展开式中,有_项不为零,它们分别为,所以⾏列式的值为解:该⾏列式展开式中唯⼀不可能为0的项是 ________ ,⽽它的逆序数是 ______ ,故⾏列式值为 _________ ‘3?证明:在全部刃元排列中,奇排列数与偶排列数相等。

证明:"元排列共有川个,设其中奇排列数有⼭个,偶排列数为⼼个。

对于任意奇排列,交换其任意两个元的位宜,就变成偶排列,故⼀个奇排列与许多偶排列对应,所以有n }_n 2,同理得n 2_n A ,所以n x _n 2^5-1.2a2.n-\■ ? ■a2n■ ?an-Ln5⼼%4.若⼀个"阶⾏列式中等于0的元素个数⽐多,则此⾏列式为0,为什么?5.〃阶⾏列式中,若负项的个数为偶数,则”⾄少为多少?(提⽰:利⽤3题的结果)6.利⽤对⾓线法则计算下列三阶⾏列式20 1(1) 1 -4 -1-18 3a h a2(2)b2§2⾏列式的性质I.利⽤⾏列式的性质计算系列⾏列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西交《线性代数》在线作业 A:A B:B C:C D:D 答案:C A:A=0 B:A=E C:A=0或A=E D:A不可逆或A-E不可逆 答案:D A:A B:B C:C D:D 答案:A A:A B:B C:C D:D 答案:D A:AB:B C:C D:D 答案:C A:A B:B C:C D:D 答案:B A:A B:B C:C D:D 答案:C A:A B:B C:C D:D 答案:A 设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ). A:3 B:15 C:-10 D:8 答案:C 设A为m*n矩阵,则有( )。 A:若m<n,则有Ax=b无穷多解 B:若m<n,则有Ax=0非零解,且基础解系含有n-m个线性无关解向量 C:若A有n阶子式不为零,则Ax=b有唯一解 D:若A有n阶子式不为零,则Ax=0仅有零解。 答案:D A:A B:B C:C D:D 答案:C A:A B:B C:C D:D 答案:C 设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )。 A:a1-a2,a2-a3,a3-a1 B:a1,a2,a3+a1 C:a1,a2,2a1-3a2 D:a2,a3,2a2+a3 答案:B A:A B:B C:C D:D 答案:A A:A B:B C:C D:D 答案:C 设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ). A:31 B:32 C:33 D:34 答案:B A:A B:B C:C D:D 答案:A A:A B:B C:C D:D 答案:D A:A B:B C:C D:D 答案:D A:A B:B C:C D:D 答案:C n阶矩阵A相似于对角矩阵的充分必要条件是( ) A:A有n个互不相同的特征向量. B:A有n个线性无关的特征向量. C:A有n个两两正交的特征向量. D:A有n个互不相同的特征值. 答案:B A:A B:B C:C D:D 答案:C A:A B:B C:C D:D 答案:D A:A B:B C:C D:D 答案:D 线性方程组Ax=o只有零解的充分必要条件是( ) A:A的行向量组线性无关 B:A的行向量组线性相关 C:A的列向量组线性无关 D:A的列向量组线性相关 答案:C A:A B:B C:C D:D 答案:A A:A B:B C:C D:D 答案:C A:A B:B C:C D:D 答案:C A:A B:B C:C D:D 答案:B A:A B:B C:C D:D 答案:A A:A B:B C:C D:D 答案:C A:A B:B C:C D:D 答案:D A:A B:B C:C D:D 答案:D A:A B:B C:C D:D 答案:B A:错误 B:正确 答案:B A:错误 B:正确 答案:B A:错误 B:正确 答案:A A:错误 B:正确 答案:A A:错误 B:正确 答案:A A:错误 B:正确 答案:B A:错误 B:正确 答案:A A:错误 B:正确 答案:B A:错误 B:正确 答案:B A:错误 B:正确 答案:A A:错误 B:正确 答案:B A:错误 B:正确 答案:B A:错误 B:正确 答案:A A:错误 B:正确 答案:B A:错误 B:正确 答案:A
相关文档
最新文档