《大学物理》习题册题目及答案第3单元 角动量守恒定律
《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案
《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。
(B) 其动量一定守恒,角动量不一定为零。
(C) 其动量不一定守恒,角动量一定为零。
(D) 其动量不一定守恒,角动量不一定为零。
答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。
本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。
故(B)是正确答案。
[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。
[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。
大学物理练习册习题及答案4
习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C)刚体所受的合外力和合外力矩均为零。
(D)刚体的转动惯量和角速度均保持不变。
答:(B )。
3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。
A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。
3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。
3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
答:(C )。
3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。
《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)
为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动
量
L
r
mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。
m
解:(1) J
J1
J2
ml 2
1 ml 2 3
4 ml 2 3
(2)根据转动定理: M
J
d dt
J
d d
d dt
J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
大学物理练习题3((角)动量与能量守恒定律)
大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为0.02s 时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
大学物理第三章 角动量守恒定律
d 解 令 ct,即 ct ,积分 dt t 1 2 0 d c0 tdt 得 2 ct
第三章 角动量守恒定律
大学物理 课件
1 2 ct 2
当 t =300 s 时
3-3
刚体的定轴转动
18 000 r min
1
600 π rad s
第三章 角动量守恒定律
3.1、质点的角动量
力矩
为了更准确地反映物体的运动效果和力的 作用效果,引入了物体的角动量和力矩概念。
3.1、质点的角动量
3.1.1 质点的角动量
定义:质点相对于空间某点的角动量
力矩
o
或 角动量是矢量 大小: 方向: 用右手螺旋法则确定。 角动量的单位: kgm2s-1 质点角动量与参考点的位置选择有关
1
2 2 600 π π 3 c 2 rad s 2 t 300 75 1 2 π 2 ct t 2 150
第三章 角动量守恒定律
大学物理 课件
3-3
刚体的定轴转动
d π 2 t 由 dt 150 π t 2 t dt 得 d 0 150 0 π 3 t rad 450
设质点受到力F的作用,绕给定
o
F v m
在M作用下,质点的角动量L将发生变化。
L r mv =0 dL d dr d (mv ) (r mv ) mv r r F M dt dt dt dt
d dt d d 2 dt dt 2
1 2 0 0 t t 2
0 t
0 2 ( 0 )
2 2
v r
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
(完整版)大学物理学(课后答案)第3章
第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案第三章动量守恒定律和能量守恒定律3-1 力)SI (12i F t =作用在质量kg 2=m 的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为:(A )m/s kg 54?-i (B )m/s kg 54?i(C )m/s kg 27?-i (D )m/s kg 27?i [B] 解:以该物体为研究对象,由质点动量定理=?==-=?30300354d 12d i i F p p p t t t又00=p 故()-13s m kg 54??=i p3-2 一个质点同时在几个力作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953kj i F +--=,则此力在该位移过程中所作的功为(A )67J (B )91J(C )17J (D )-67J [A] 解:()()k j i k j i r F 654953+-?+--=??=A(J) 675425-12=++=3-3 对质点组有以下几种说法:①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中:(A )只有①是正确的(B )①、③是正确的(C )①、②是正确的(D )②、③是正确的 [B] 解:由于质点组内力冲量的矢量和为零,所以质点组总动量的改变与内力无关。
由于质点组内力功的代数和不一定为零,由动能定理K E A A ?=+内外,质点组总动能的改变可能与内力相关。
,由功能原理E A A ?=+非保内外,质点系机械能的改变与保守内力无关。
3-4 质点系的内力可以改变(A )系统的总质量(B )系统的总动量(C )系统的总动能(D )系统的总角动量 [C] 解:由质点系动量定理、角动量定理和动能定理k t t t t E A A t t ?=+?=??=??内外外外2121d d LM p F可知质点系内力只能改变系统总动能而不影响其总动量和总角动量。
《大学物理AI》作业 No.03 角动量、角动量守恒定律
lv 12
(B)
2v 3l
(C)
3v 4l
(D)
3v l
解:小球与细杆碰撞过程中对 o 点的合外力矩为零,根据角动量守恒定律有:
⎛1 ⎞ mvl = ⎜ ml 2 + ml 2 ⎟ω ⎝3 ⎠ 3v ω = 碰撞后的转动角速度为 4l
选C
3. 质量为 m 的小孩站在转动,转动惯量为 J。平台和小孩开始时静止。当小孩突然以相对于地面为 v 的速率在台边缘沿逆时针转向走动时,此平台相对地面旋转的角速度和旋转方向分别为 2 2 v⎞ v ⎞ [ ] (A) ω = mR ⎛ (B) ω = mR ⎛ ⎜ ⎟ ,顺时针 ⎜ ⎟ ,逆时针 J ⎝R⎠ J ⎝R⎠
2r
2m r m
m
β
m
mg − T2 = ma 2 T1 − mg = ma1
T 2 × 2 r − T1 × r =
绳和圆盘间无相对滑动有
9 mr 2 β 2
v a2
v T2
v T1
a 2 = 2rβ a1 = rβ
β=
2g 19r
v a1
v mg v mg
联立以上方程,可以解出盘的角加速度的大小:
选A
v
R
m
O
J
4.一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处 于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统 [ ] (A) 动量守恒 (B) 机械能守恒 (C) 对转轴的角动量守恒 (D) 动量、机械能和角动量都守恒 (E) 动量、机械能和角动量都不守恒 解:此系统所受的合外力矩为零,故对转轴的角动量守恒。 选C 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量 (2) 作用力和反作用力对同一轴的力矩之和必为零 (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一 定相等 在上述说法中, [ ] (A) 只有(2)是正确的 (B) (1)、(2)是正确的 (C) (2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的 解:内力成对出现,对同一轴,一对内力的力矩大小相等,方向相反,内力矩之和为零, 不会改变刚体的角动量。质量相等,形状和大小不同的两个物体,转动惯量不同,在相 同力矩作用下,角加速度大小不等。 选B 二、填空题 1.如图所示,一轻绳绕于半径为 r 的飞轮边缘,并以质量为 m 的物体
大学物理课后习题详解(第三章)中国石油大学
3-1 以速度0v 前进的炮车,向后发射一炮弹,已知炮车的仰角为θ,炮弹和炮车的质习题3-1图量分别为m 和M ,炮弹相对炮车的出口速率为v ,如图所示。
求炮车的反冲速率是多大?[解] 以大地为参照系,取炮弹与炮弹组成的系统为研究对象,系统水平方向的动量守恒。
由图可知炮弹相对于地面的速度的水平分量为v v '-θcos ,根据动量守恒定律()()v M v v m v m M '-'-=+-θcos 0所以 ()mM mv v m M v +++='θcos 0此即为炮车的反冲速率。
3-2 质量为M 的平板车,在水平地面上无摩擦地运动。
若有N 个人,质量均为m ,站在车上。
开始时车以速度0v 向右运动,后来人相对于车以速度u 向左快跑。
试证明:(1)N 个人一同跳离车以后,车速为NmM Nmuv v ++=0(2)车上N 个人均以相对于车的速度u 向左相继跳离,N 个人均跳离后,车速为()mM mum N M mu Nm M mu v v +++-++++=' 10[证明] (1) 取车和人组成的系统为研究对象,以地面为参照系,系统的水平方向的动量守恒。
人相对于地面的速度为u v -,则()()Mv u v Nm v Nm M +-=+0所以 NmM Nmuv v ++=0(2) 设第1-x 个人跳离车后,车的速度为1-x v ,第x 个人跳离车后,车的速度为x v ,根据动量守恒定律得()[]()()[]x x 1x 1v m x N M u v m v m x N M -++-=+-+-所以 ()Mm x N muv v ++-+=-11x x此即车速的递推关系式,取N x ,,2,1 =得Mm muv v ++=-1N NMm muv v ++=--22N 1N……………………()M m N muv v +-+=112 MNm muv v ++=01将上面所有的式子相加得()Mm muM m mu M m N mu M Nm mu v v ++++++-+++=210N 此即为第N 个人跳离车后的速度,即()mM mum N M mu Nm M mu v v +++-++++=' 103-3 质量为m =0.002kg 的弹丸,其出口速率为300m ,设弹丸在枪筒中前进所受到的合力800400x F -=。
大学物理上册第3章习题解答
大学物理上册第3章习题解答第3章角动量定理和刚体的转动一、内容提要1、质点的角动量定理⑴质点对于某一定点的角动量和角动量定理:角动量L r mv =? 角动量定理 dL M dt=⑵质点对于z 轴的角动量和角动量定理:角动量z L r mv τ⊥=? 角动量定理 zz dL M dt=2、质点系的角动量定理刚体的转动惯量和定轴转动定理⑴质点系的角动量定理 i i iidM L dt =∑∑ ⑵刚体的转动惯量 2z iiiI r m =∑ 或2zI r dm =?⑶刚体的定轴转动定理 z z zd M I I dtωβ== 3、刚体的定轴转动动能定理⑴力矩的功z A M d θ=?⑵刚体的转动动能 212k z E I ω=⑶刚体的定轴转动动能定理 22211122z z z A M d I I θωω==-?4、角动量守恒定律⑴质点的角动量守恒定律:若0M =,则21L L = ⑵刚体的对轴角动量守恒定律:刚体对轴的角动量也可写为2z izizL r m I ωω=?=∑,若0iziM =∑,则0z z I I ωω=,即有0ωω=二、习题解答3.1 一发动机的转轴在7s 内由200/min r 匀速增加到3000/min r . 求:(1)这段时间内的初末角速度和角加速度. (2)这段时间内转过的角度和圈数. (3)轴上有一半径为2.0=r m 的飞轮, 求它边缘上一点在7s 末的切向加速度、法向加速度和总加速度.解:(1)初的角速度1200220.9/60rad s πω?=≈ 末的角速度230002314/60rad s πω?=≈角加速度231420.941.9/7rad s t ωβ?-==≈?(2)转过的角度为2211120.9741.97117622t t rad θωβ=+=?+??=117618622 3.14n r θπ===? (3)切向加速度241.90.28.38/a r m s τβ==?=法向加速度为:22423140.2 1.9710/n a r m s ω==?=?总的加速度为:421.9710/a m s ===?3.3 地球在1987年完成365次自转比1900年长14.1s. 求在1900年到1987年间, 地球自转的平均角加速度.解:平均角加速度为0003652365287T t T a t T ππωω??--+?==212373036523652 1.140.9610/8787(3.1510)t rad s T ππ-≈=-=-3.4一人手握哑铃站在转盘上, 两臂伸开时整个系统的转动惯量为22kgm . 推动后, 系统以15/min r 的转速转动. 当人的手臂收回时, 系统的转动惯量为20.8kgm . 求此时的转速.解:由刚体定轴转动的角动量守恒定律,1122I I ωω=121221537.5/min 0.8I r I ωω==?=3.5 质量为60kg , 半径为0.25m 的匀质圆盘, 绕其中心轴以900/min r 的转速转动. 现用一个闸杆和一个外力F 对盘进行制动(如图所示), 设闸与盘之间的摩擦系数为4.0. 求:(1)当100F N =, 圆盘可在多长时间内停止, 此时已经转了多少转?(2)如果在2s 内盘转速减少一半, F 需多大?图3-5 习题1.4图解:(1)设杆与轮间的正压力为N ,10.5l m =,20.75l m =,由杠杆平衡原理得121()F l l Nl +=121()F l l N l +=闸瓦与杆间的摩擦力为: 121()F l l f N l μμ+== 匀质圆盘对转轴的转动惯量为212I mR =,由定轴转动定律,M I β=,有 ()122112F l l R mR l μβ+-= 21212()40/3F l l rad s mRl μβ+=-=-停止转动所需的时间: 0900200607.06403t s πωβ--===- 转过的角度201532332.762t t rad rad θωβπ?=+=?≈532n θπ==圈(2)030ωπ=,在2s 内角速度减小一半,知0227.5/23.55/rad s rad s tωωβπ-=-=-=-()1222112F l l R mR l μβ+-= 112600.250.5(23.55)1772()20.4 1.25mRl F N l l βμ-=-=-≈+??3.6 发动机带动一个转动惯量为250kgm 的系统做定轴转动. 在0.5s 内由静止开始匀速增加到120/min r 的转速. 求发动机对系统施加的力矩.解:由题意,250I kgm =,00ω=,120/min 4/r rad s ωπ==系统角加速度为:20825.12/rad s t tωωωβπ-?====?? 由刚体定轴转动的转动定理,可知M I β=5025.121256M Nm =?=3.7一轻绳绕于半径为R 的圆盘边缘, 在绳端施以mg F =的拉力, 圆盘可绕水平固定光滑轴在竖直平面内转动. 圆盘质量为M , 并从静止开始转动. 求:(1)圆盘的角加速度及转动的角度和时间的关系. (2)如以质量为m 的物体挂在绳端, 圆盘的角加速度及转动的角度和时间的关系又如何?解:(1)由刚体转动定理可知:M I β= 上题可知: M FR mgR ==212I MR =代入上式得2mgMRβ=, 2212mg t t MRθβ==(2)对物体受力分析'mg F ma -= 'F R I β= a R β=,212I MR =由上式解得22mgMR mR β=+22122mg t t MR mRθβ==+3.8某冲床飞轮的转动惯量为32410kgm ?. 当转速为30/min r 时, 它的转动动能是多少?每冲一次, 其转速下降10/min r . 求每冲一次对外所做的功.解:由题意,转速为:()030/min /r rad s ωπ== 飞轮的转动动能为:232411410 1.9721022E I J ωπ===? 第一次对外做功为:22011122A I I ωω=- 1220/min 3r πω==()2422222301011111515410 3.14 1.0910*******A I I I I J ωωωωπ=-=-=?==?3.9半径为R , 质量为M 的水平圆盘可以绕中心轴无摩擦地转动. 在圆盘上有一人沿着与圆盘同心, 半径为R r <的圆周匀速行走, 行走速度相对于圆盘为v . 设起始时, 圆盘静止不动, 求圆盘的转动角速度.解:设圆盘的转动角速度为2ω,则人的角速度为12vrωω=-,圆盘的转动惯量为212MR ,人的转动惯量为2mr ,由角动量守恒定律, 222212v mr MR r ωω??-=即22222mrvmr MRω=+3.10 两滑冰运动员, 质量分别为60kg 和70kg , 他们的速率分别为7/m s 和6/m s , 在相距1.5m 的两平行线上相向滑行. 当两者最接近时, 互相拉手并开始绕质心做圆周运动. 运动中, 两者间距离保持m 5.1不变. 求该瞬时:(1)系统的总角动量. (2)系统的角速度.(3)两人拉手前后的总动能.解:⑴ 设1m 在原心,质心为c r70 1.50.87060c r m ?=≈+120.8, 1.50.810.7c r r m r m ===-=21112226070.870607630./J m v r m v r kg m s =+=??+??=⑵ 系统的转动惯量为: 222221122600.8700.772.7I m r m r kgm =+=?+?=6308.66/72.7J rad s I ω==≈ 222201122111160770627302222E m v m v J =+=??+??=221172.78.66272622E I J ω==??≈3.11半径为R 的光滑半球形碗, 固定在水平面上. 一均质棒斜靠在碗缘, 一端在碗内, 一端在碗外. 在碗内的长度为c , 求棒的全长.解:棒的受力如图所示本题属于刚体平衡问题,由于碗为光滑半球形,A 端的支持力沿半径方向,而碗缘B 点处的支持力方向不能确定,两个支持力和重力三者在竖直平面内。
《大学物理》习题册题目及答案第3单元 角动量守恒定律
第3单元 角动量守恒定律序号 学号 姓名专业、班级一 选择题[ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为(A) GMR m (B) R GMm (C) R G Mm (D) RGMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C) 取决于刚体的质量、质量的空间分布和轴的位置(D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。
[ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。
(B)动量不变,动能改变。
(C)角动量不变,动量不变。
(D)角动量改变,动量改变。
(E)角动量不变,动能、动量都改变。
[ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小 ;(B) 角速度从小到大,角加速度从小到大 ;(C) 角速度从大到小,角加速度从大到小 ;(D) 角速度从大到小,角加速度从小到大 。
[ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相A •同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则(A) A J >B J(B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定[ A ]6.有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
大学物理动量与角动量练习题与答案
第三章 动量与角动量一、选择题[ A ] 1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动.(C) 向右匀速运动. (D) 向左加速运动.提示:假设斜面以V 向右运动。
由水平方向动量守恒得0(cos )0m V m V v θ+-= ,而0v =,得0V =[C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π.(D) 0.提示:2T mg I G ⨯= , vRT π2=[ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s .提示:对摆线顶部所在点角动量守恒。
2sin 30()mv l M m lV ︒=+;其中m 为子弹质量,M 为摆球质量,l 为 摆线长度。
[D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断.提示:下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。
对重物用动量定理:0'''=--⎰⎰⎰++dt T mgdt dt T t t t t t 下上't 为下拉力作用时间,由于't t >>,因此,上面的细线也不断。
大学物理课后习题答案第三章
第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22= (3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。
大学物理练习题第三章 动量守恒定律和能量守恒定律
大学物理练习题第三章动量守恒定律和能量守恒定律一、选择题1. 质量m=2kg的质点在力F⃗=12ti⃗ (SI)的作用下,从静止出发沿X轴正方向作直线运动,求它在3秒末的动量( )A. −54i⃗ kg∙m/sB. 54i⃗ kg∙m/sC.−27i⃗ kg∙m/sD. 27i⃗ kg∙m/s2. 一个质点同时在几个力作用下的位移为:∆r⃗=4i⃗−5j⃗+6k⃗⃗ (SI)其中一个力为恒力F⃗=−3i⃗−5j⃗+9k⃗⃗,则此力在该位移过程中所作的功为( )A. 67JB. 91JC. 17JD. -67J3. 对质点组有以下几种说法①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中( )A. 只有①是正确的B. ①、③是正确的C. ①、②是正确的D. ②、是正确的4. 质点系的内力可以改变( )A. 系统的总质量B. 系统的总动量C. 系统的总动能D. 系统的总角动量5. 质量为m的质点在外力作用下,其运动方程为r⃗=Acosωti⃗+bsinωtj⃗其中A,B,ω都是正的常数,则在t1=0到t2=π(2ω)⁄这段时间内所作的功( )A.mω2(A2+B2)2⁄B. mω2(A2+B2)C. mω2(A2−B2)2⁄D.mω2(B2−A2)2⁄6. 如图,一劲度系数为k的轻弹簧水平放置,左端固定,右端与桌面上一质量为m的木块相连,用一水平力F向右拉木块而使其处于静止状态。
若木块与桌面间的静摩擦系数为μ,弹簧的弹性势能为E,则下列关系中正确的是( )A. E=(F−μmg)22kB.E=(F+μmg)22kC. E=F22kD. (F−μmg)22k ≤E≤(F+μmg)22k二、填空题1. 设作用在质量为M=1kg的物体上的力F=6t+3 (SI)。
如果物体在这个力的作用下,由静止开始沿直线运动,在0到2.0s的时间间隔内,这个力作用在物体上的冲量大小I= 。
大学物理第3章第2节-角动量定理及其守恒定律
用角动量定理和守恒定律处理问题 (i) 确定研究对象 (单一刚体、刚体系、刚 体+质点); (ii) 确定是对点还是对轴; (iii) 受力分析 (外力) 并求各力的力矩; (iv) 求初、末状态的角动量; (v) 用角动量定理和角动量守恒定律 (对 点或对轴) 列方程求解.
例3.9 一半径为 R 、质量为 m 的匀质圆 R 盘平放在粗糙的水平面 上. 设盘与桌面的摩擦因 数为 , 令圆盘最初以角 速度0 绕过其中心且垂直于盘面的轴旋转, 问它经过多少时间才停止转动? 解 圆盘与桌面间有摩擦, 在转动过程 中受到摩擦力矩的作用, 对圆盘上半径为 r 宽度为 d r 的圆环, 受到的阻力矩为
解 受力分析 N N 人: m M 重力 mg R 支持力 N1 mg 转台: 重力 Mg 支持力 N 2 Mg 合外力为零, 不产生力矩, 角动量守恒.
2 1
设转台沿逆时 M 针转动, 对地的角速 度为 , 人沿顺时针运 动, 人对转台的角速度为 , 则人对地的角速度为 . 转动惯量 2 I MR 2 转台: 2 I mR 人:
dM f rd f
f ( d m) g d r (d m) g m d S d r ( d S ) g
m
R
m r (2 rd r ) g 2 R
m R 2 , d S 2 rd r
m
R
角动量守恒
I I ( ) 0
M
R
m
MR mR2 ( ) 0 2
2
解得
2m M , M 2m M 2m
当人在转台上跑一周时
大学物理练习题3((角)动量与能量守恒定律)
大学物理练习题3((角)动量与能量守恒定律)大学物理练习题3:“力学―(角)动量与能量守恒定律”一、填空一、一个质量为10kg的物体以4m/s的速度落到砂地后经0.1s停下来,则在这一过程中物体对砂地的平均作用力大小为。
2、外汇?30? 4T的组合外力(其中FX以N为单位,t以s为单位)作用在M的质量上?在10kg物体上,则:(1)在前2S内,力FX的冲量为:;(2)如果物体的初始速度V1?10米?s1.如果方向与FX相同,力FX的冲量I?300n?S、对象的速度为:。
3.一根质量为1kg、长度为1.0m的均匀细杆,支点位于杆的上端,杆在开始时自由悬挂。
现在用100N的力撞击其下端,撞击时间为0.02s。
如果杆在撞击前是静止的,杆的角动量变为,撞击后杆的角速度为。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是4.00kg?m?s?1,同时间内该力作功4.00j,则该质点的质量是,力撤走后其速率为。
5、设一质量为1kg的小球,沿x轴正向运动,其运动方程为x?2t2?1,则在时间t1?1s到t2?3s内,合外力对小球的功为;合外力对小球作用的冲量大小为。
? 6.力F作用在质量为1.0kg的粒子上,使其沿x轴移动。
粒子在这个力下的运动是已知的?学方程为x?3t?4t?t(si)。
则在0到4s的时间间隔内,力f的冲量大小i=,23? 力F对质点w=所做的功。
7、设作用在质量为2kg上的物体上的力fx?6x(式中fx的单位为n,x的单位为m)。
若物体由静止出发沿直线运动,则物体从x?0运动到x?2m过程中该力作的功W十、物体在2m v?下的速度?。
8、已知质量m?2kg物体在一光滑路面上作直线运动,且t?0时,x?0,ν?0。
若该物体受力为f?3?4x(式中f的单位为n,x的单位为m),则该物体速率ν随x的函数关系ν(x)来自x的物体?0比x?该力在2MW?过程中所做的功?。
??9、一质量为10kg的物体,在t=0时,物体静止于原点,在作用力f?(3?4x)i作用下,无摩第1页,共7页?擦地运动,则物体运动到3米处,在这段路程中力f所做的功为。
西南交大大学物理作业参考解答 No 角动量 角动量守恒定律
©西南交大物理系_2013_02《大学物理AI 》作业No.03角动量角动量守恒定律班级________学号________姓名_________成绩_______一、判断题:(用“T ”和“F ”表示)[F ]1.如果一个刚体所受合外力为零,其合力矩一定为零。
解:合力为零,合力矩不一定为零。
反之亦然。
[F]2.一个系统的动量守恒,角动量一定守恒。
解:动量守恒的条件是合外力为零,角动量守恒的条件是合外力矩为零。
理由同上题一样。
[T]3.一个质点的角动量与参考点的选择有关。
解:p r L ⨯=,其中r与参考点的选择密切相关,所以角动量与参考点的选择有关。
[F]4.刚体的转动惯量反映了刚体转动的惯性大小,对确定的刚体,其转动惯量是一定值。
解:转动惯量还与轴的位置有关系,该题目只说了刚体确定,但没有说是定轴。
该题题意有些含混。
[F ]5.如果作用于质点的合力矩垂直于质点的角动量,则质点的角动量将不发生变化。
解:根据,,L L d L M dtL d M⊥⊥=,即是如果只要一个物理量的增量垂直于它本身,那么这个增量就只改变它的方向,不改变它的大小。
比如旋进。
二、选择题:1.有两个半径相同、质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则[C ](A)A J >B J (B)A J <BJ (C)A J =BJ (D)不能确定A J 、BJ 哪个大解:对于圆环,转动惯量为⎰⎰==m R m r J d d 22,设细圆环总质量为M ,无论质量分布均匀与否,都有M m =⎰d ,所以MR J JB A2==选CRO2.绕定轴转动的刚体转动时,如果它的角速度很大,则[D ](A)作用在刚体上的力一定很大(B)作用在刚体上的外力矩一定很大(C)作用在刚体上的力和力矩都很大(D)难以判断外力和力矩的大小3.一个可绕定轴转动的刚体,若受到两个大小相等、方向相反但不在一条直线上的恒力作用,而且力所在的平面不与转轴平行,刚体将怎样运动?[C ](A)静止(B)匀速转动(C)匀加速转动(D)变加速转动解:对轴的力矩的代数和不为0,并且为恒定值,根据转动定律:恒量恒量=⇒==ββJ M Z ,所以是匀加速的转动,选C 。
大学物理题库-第3章-动量守恒定律和能量守恒定律试题(含答案解析)
大学物理题库 第三章 动量守恒定律和能量守恒定律一、选择题: 1、水中有一只静止的小船,船头与船尾各站有一个质量不相同的人。
若两人以不同的速率相向而行,不计水的阻力,则小船的运动方向为: (A)与质量大的人运动方向一致 (B)与动量值小的人运动方向一致 (C)与速率大的人运动方向一致 (D)与动能大的人运动方向一致[ ]2、关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是: (A )不受外力作用的系统,其动量和机械能必然同时守恒;(B )所受合外力为零,内力都是保守力的系统,其机械能必然守恒;(C )不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒; (D )外力对一个系统所作的功为零,则该系统的动量和机械能必然同时守恒。
[ ]3、一质点在外力作用下运动时,下述哪种说法是正确的?(A )质点的动量改变时,质点的动能也一定改变; (B )质点的动能不变时,质点的动量也一定不变; (C )外力的冲量为零,外力的功一定为零; (D )外力的功为零,外力的冲量一定为零。
[ ]4、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s .[ ]5、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122([ ]6、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同. (C) 动量不同,动能也不同. (D) 动量不同,动能相同.[ ]7、一个质点同时在几个力作用下的位移为k j i r654+-=∆ (SI ),其中一个恒力为k j i F953+--=(SI ),则此力在该位移过程中所作的功为: (A )67J (B )91J (C ) 17J (D ) -67J[ ]8、如图3-12所示,劲度系数为k 的轻质弹簧水平放置,一端固定,另一端接一质量为m 的物体,物体与水平桌面间的摩擦系数为μ,现以恒力F 将物体自平衡位置开始向右拉动,则系统的最大势能为:(A ) ()22mg F k μ- (B ) ()221mg F k μ- (C ) 22F k(D )221F k[ ]9、质量为m 的一艘宇宙飞船关闭发动机返回地面时,可认为该飞船只在地球的引力场中运动。
大学物理学(课后答案)第3章
第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3单元 角动量守恒定律
序号 学号 姓名
专业、班级
一 选择题
[ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为
(A) GMR m (B) R GMm (C) R G Mm (D) R
GMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是
(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C) 取决于刚体的质量、质量的空间分布和轴的位置
(D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。
[ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体
(A)动能不变,动量改变。
(B)动量不变,动能改变。
(C)角动量不变,动量不变。
(D)角动量改变,动量改变。
(E)角动量不变,动能、动量都改变。
[ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正
确的? (A) 角速度从小到大,角加速度从大到小 ;
(B) 角速度从小到大,角加速度从小到大 ;
(C) 角速度从大到小,角加速度从大到小 ;
(D) 角速度从大到小,角加速度从小到大 。
[ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相
A •
同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则
(A) A J >B J
(B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定
[ A ]6.有两个力作用在一个有固定转轴的刚体上:
(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
(2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;
(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
在上述说法中:
(A) 只有(1)是正确的。
(B) (1)、(2)正确,(3)、(4)错误。
(C) (1)、(2)、(3)都正确,(4)错误。
(D) (1)、(2)、(3)、(4)都正确。
[ C ]7.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω
(A) 增大 (B) 不变 (C) 减小 (D) 不能确定
二 填空题
1.质量为m 的质点以速度 v 沿一直线运动,则它对直线上任一点的角动量为 ___0_。
2.飞轮作匀减速转动,在5s 内角速度由40πrad·s 1-减到10πrad·s 1-,则飞轮在这5s 内总共转过了___62.5_____圈,飞轮再经_______1.67S_____的时间才能停止转动。
3. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小
球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动。
开始杆与水平方向成某一角度θ,处于静止状态,如图所示。
释放后,杆
绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = mgl 21 ,此时该系统角加速度的大小β= l g 32 。
4.可绕水平轴转动的飞轮,直径为1.0m ,一条绳子绕在飞轮的外周边缘上,如果从静 止开始作匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为2
/5.2s rad 。
5.决定刚体转动惯量的因素是 ___刚体的质量____ __;__刚体的质量分布____ O •M m m r m 2•θ
m o
________;_____转轴的位置_______。
6.一根质量为m ,长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动。
已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为
mgl μ21。
7.转动着的飞轮的转动惯量为J ,在t=0时角速度为ω0,此后飞轮经历制动过程,阻力矩M 的大小与角速度ω的平方成正比,比例系数为k(k 为大于0的常数)。
当ω=031ω时,
飞轮的角加速度β= J k 920ϖ-。
从开始制动到ω=031ω所经过的时间t= 02ϖk J 。
8. 在力矩作用下,一个绕轴转动的物体作 ______变角速_______________运动,系统所受的合外力矩为零,则系统的__________________角动量__________________________________守恒。
三 计算题
1.一半径为R 的圆形平板放在水平桌面上,平板与水平桌面的摩擦系数为u ,若平板绕通过其中心且垂直板面的固定轴以角速度0ω开始旋转,它将在旋转几圈后停止? 解:设圆板面密度为⎪⎭⎫ ⎝⎛=
2R m πσσ,则转动时受到的摩擦阻力矩大小为 ⎰⎰=⋅==R gR r r g M M 0323
2d 2d πμσπμσ 由转动定律βJ M =可得角加速度大小
2
243132
m gR M g J R mR σμβ=== 设圆板转过n 转后停止,则转过的角度为n πθ2=。
由运动学关系
()0,02202<==-βωβθ
ωω 可得旋转圈数 22003416223R n g
g R ωωμπμπ
=
=⨯⨯
2.半径为R 具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m 的物体,绳的质量可以忽略,绳与定滑轮之间无相对滑动,若物体下落的加速度为a ,求定滑轮对轴的转动惯量。
解:分别以定滑轮和物体为研究对象,对物体应用牛顿运动定律,对定滑轮
应用转动定律列方程:
ma T mg =- (1) βJ R T =' (2
由牛顿第三定律有 T T =' (3由角量和线量的关系有 βR a = (4由以上四式联解可得
()a R a g m J /2-=
a '。