初三数学知识点:古典概型
古典概型的概率公式
古典概型的概率公式古典概型是概率学中最基础也是最重要的概念。
它定义了概率学的基本理论,提出了许多有趣的假设和结论,也服务于数学和计算机科学的发展。
简而言之,古典概型就是通过观察事件是否发生来计算概率的方法,即在一定条件下某事件发生的条件概率,用数学形式来表达就是古典概率公式。
古典概型的概率公式是:P(A)=n(A)/n(S),其中P为概率,A为某事件,S为试验空间,n(A)/n(S)为该事件发生的概率。
其中,n(A)表示满足A条件的结果的数目,n(S)表示满足S条件的结果的总数。
古典概型的概率公式提出的基本概念是:若实验开展了n次,其中A事件发生m次,则A事件发生的概率等于m除以n:P (A)=m/n。
古代概率公式比较简单,却蕴含着丰富的数学内涵。
在概率论的基本原理分布定理的框架下,古典概型的概率公式可以用来计算试验空间中某事件发生的期望值、方差、及独立事件之间的关系。
古典概型概率公式也为基于古典概型的相关概率学的理论发展提供了基础,形成了一套完整的概率学理论体系,为后来新兴的概率学分支研究提供了基础。
古典概型概率公式也为其他科学领域提供了参考和指导,特别是在计算机技术和信息处理方面更是如此。
古典概型概率公式可以用来建立合理的评估模型,用来估计某事件发生的可能性,也可以用来估计系统中各个组件的可靠度,以及各个系统模型的可信度。
这些估计的结果可以用来衡量分析系统的性能,基于此可以设计出更高效,稳定,可靠的系统。
此外,古典概型的概率公式还可以应用于更多的领域,比如统计、金融学、决策理论、运筹学、社会科学等。
在这些领域,古典概型概率公式通常被用于研究不确定风险及结果,以做出明智的抉择,帮助采取最佳决策。
总之,古典概型的概率公式和它所涵盖的概率学理论,是目前所有概率学的基础。
它有助于更好地理解不确定事件的发展趋势,也为更加明智的决策提供了指导。
古典概型的概率公式也可以用于许多领域,从数学建模到计算机技术等,都有其重要作用,它已成为概率学及其相关领域的重要理论和工具支持。
2015初中概率知识点-古典概型
2015初中概率知识点-古典概型
学好数学就需要平时的积累。
知识积累越多,掌握越熟练,小编编辑了概率知识点-古典概型,欢迎参考!
1、古典概型的定义
某个试验若具有①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为上面就是为大家准备的概率知识点-古典概型,希望同学们认真浏览,希望同学们在考试中取得优异成绩。
古典概型的知识点
第五节古典概型[备考方向要明了]考什么怎么考1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件及事件发生的概率.高考对本节内容的考查多为选择题或填空题,难度中低档,如2012年广东T7,上海T11等.[归纳·知识整合]1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.[探究] 1.在一次试验中,其基本事件的发生一定是等可能的吗?提示:不一定.如试验一粒种子是否发芽,其发芽和不发芽的可能性是不相等的.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.[探究] 2.如何判断一个试验是否为古典概型?提示:关键看这个实验是否具有古典概型的两个特征:有限性和等可能性.3.古典概型的概率公式P(A)=A包含的基本事件的个数基本事件的总数[自测·牛刀小试]1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为()A.12 B.13C.23D.1解析:选C 基本事件总数为(甲,乙),(甲,丙),(乙,丙)共3种.甲被选中共2种,所以甲被选中的概率为23.2.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,在选出的两人中有中国人的概率为( )A.14B.13C.12D .1解析:选C 用列举法可知,共6个基本事件,有中国人的基本事件有3个. 3.5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为奇数的概率为( )A.35B.25C.34D.23解析:选A 由题意得基本事件共有10种,2张卡片之和为奇数须一奇一偶,共有6种,故所求概率为610=35.4.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线x +y =5的下方的概率为________.解析:点P 在直线x +y =5下方的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)六种可能,故P =66×6=16.答案:165.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.解析:点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6种情况,只有(2,1),(2,2),这两种情况满足在圆x 2+y 2=9内部,所以所求概率为26=13.答案:13简单古典概型的求法[例1] 编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 得分 15 35 21 28 25 36 18 34 运动员编号A 9 A 10 A 11 A 12 A 13 A 14 A 15 A 16 得分1726253322123138(1)区间 [10,20) [20,30) [30,40] 人数(2)①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. [自主解答] (1)4,6,6.(2)①得分在区间[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽取2人,所有可能的抽取结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 10},{A 5,A 11},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13}共15种.②“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11}共5种.所以P (B )=515=13.本例条件不变,从得分在区间[20,30)内的运动员中随机抽取2人,求这2人得分之和小于50的概率.解:得分之和小于50的所有可能结果有:{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13},{A 5,A 13},{A 10,A 13},{A 11,A 13}.故这2人得分之和小于50的概率为P =815.———————————————————应用古典概型求概率的步骤(1)仔细阅读题目,分析试验包含的基本事件的特点; (2)设出所求事件A ;(3)分别列举事件A 包含的基本事件,求出总事件数n 和所求事件A 包含的基本事件数m ;(4)利用公式求出事件A 的概率.1.从某小组的2名女生和3名男生中任选2人去参加一项公益活动. (1)求所选2人中恰有一名男生的概率; (2)求所选2人中至少有一名女生的概率.解:设2名女生为a 1,a 2,3名男生为b 1,b 2,b 3,从中选出2人的基本事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3)共10种.(1)设“所选2人中恰有一名男生”的事件为A ,则A 包含的事件有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3)共6种,则P (A )=610=35,故所选2人中恰有一名男生的概率为35.(2)设“所选2人中至少有一名女生”的事件为B ,则B 包含的事件有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3)共7种,则P (B )=710,故所选2人中至少有一名女生的概率为710.较复杂的古典概型的概率[例2] 为振兴旅游业,四川省2012年面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.[自主解答](1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件A为“采访该团2人,恰有1人持银卡”,则P(A)=C16C130C236=2 7,所以采访该团2人,恰有1人持银卡的概率是27.(2)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况.则P(B)=P(B1)+P(B2)=C221C236+C19C16C236=44105,所以采访该团2人,持金卡与持银卡人数相等的概率是44105.———————————————————计算较复杂的古典概型的概率时应注意的两点(1)解题的关键点是理解题目的实际含义,把实际问题转化为概率模型;(2)必要时将所求事件转化为彼此互斥的事件的和,或先求其对立事件的概率,进而利用互斥事件的概率加法公式或对立事件的概率公式求解.2.(2012·新课标全国卷)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14151617181920频数10201616151310①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.解:(1)当日需求量n ≥17时,利润y =85. 当日需求量n <17时,利润y =10n -85. 所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -85,n <17,85,n ≥17 (n ∈N ). (2)①这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100×(55×10+65×20+75×16+85×54)=76.4. ②利润不低于75元当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为p =0.16+0.16+0.15+0.13+0.1=0.7.4种方法——基本事件个数的确定方法(1)列举法:此法适用于基本事件较少的古典概型;(2)列表法:此法适合于从多个元素中选定一两个元素的试验,也可看成是坐标法; (3)树状图法:树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件个数的探求;(4)计数原理法:如果基本事件的个数较多,列举有一定困难时,可借助于两个计数原理及排列组合知识直接计算出m ,n ,再运用公式求概率.1个技巧——求解古典概型问题概率的技巧 (1)较为简单问题可直接使用古典概型公式计算;(2)较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接法,先求事件A 的对立事件A 的概率,再由P (A )=1-P (A )求事件A 的概率.1个构建——构建不同的概率模型解决问题(1)原则:建立概率模型的一般原则是“结果越少越好”,这就要求选择恰当的观察角度,把问题转化为易解决的古典概型问题;(2)作用:一方面,对于同一个实际问题,我们有时可以通过建立不同“模型”来解决,即“一题多解”,在这“多解”的方法中,再寻求较为“简捷”的解法;另一面,我们又可以用同一种“模型”去解决很多“不同”的问题,即“多题一解”.答题模板——求古典概型概率[典例] (2012山东高考·满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:五张卡片,红色三张,标号1,2,3.蓝色2张,标号为1,2,从中取两张――――→用列举法所有可能的结果n2.审结论,明解题方向观察所求结论:求两张卡片颜色不同且标号之和小于4的概率――――――→利用列举的结果分析得出满足这两个条件的结果m3.建联系,找解题突破口 利用古典概型概率公式求解:P =m n第(2)问1.审条件,挖解题信息观察条件:红色卡片三张、蓝色卡片二张、绿色卡片一张,从中取两张――――→用列举法得所有的可能的结果数n2.审结论,明解题方向观察所求结论:观察所求结论求两种卡片颜色不同且标号之和小于4的概率――――――――→利用列举的结果分析得出满足这两个条件的结果m 3.建联系,找解题突破口利用古典概型概率公式求解:P =mn[准确规范答题](1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.⇨(3分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A ,D ),(A ,E ),(B ,D )共3种.⇨(5分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.⇨(6分)(2)记F 是标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种.⇨(9分)由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F )共8种.⇨(11分)所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.⇨(12分)[答题模板速成]求古典概型概率的一般步骤:⇒⇒⇒计算基本事件总数的个数程是否有误一、选择题(本大题共6小题,每小题5分,共30分)1.高三(4)班有4个学习小组,从中抽出2个小组进行作业检查.在这个试验中,基本事件的个数为()A.2B.4C.6 D.8解析:选C设这4个学习小组为A、B、C、D,“从中任抽取两个小组”的基本事件有AB、AC、AD、BC、BD、CD,共6个.2.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是() A.35 B.25C.13 D.15解析:选D取出的三个数是连续自然数有4种情况,则取出的三个数是连续自然数的概率P=420=15.3.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是() A.112 B.110C.325 D.1125解析:选D小正方体三面涂有油漆的有8种情况,故所求其概率为81 000=1125.4.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是() A.136 B.19C.536 D.16解析:选D对本题我们只看甲乙二人游览的最后一个景点,最后一个景点的选法有C16×C16=36种,若两个人最后选同一个景点共有C16=6种选法,所以最后一小时他们在同一个景点游览的概率为P =C 16C 16×C 16=16.5.(2012·广东高考)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49 B.13 C.29D.19解析:选D 由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C 15C 14=20个;若个位数为偶数时,这样的两位数共有C 15C 15=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C 15×1=5个.于是,所求概率为545=19. 6.如图,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取⎝ ⎛⎭⎪⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31 a 32 a 33三个数,则至少有两个数位于同行或同列的概率是( )A.37B.47C.114D.1314解析:选D 从九个数中任取三个数的不同取法共有C 39=9×8×71×2×3=84种,因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6,所以至少有两个数位于同行或同列的概率为1-684=1314.二、填空题(本大题共3小题,每小题5分,共15分)7.(2012·上海高考)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).解析:所有的可能情况有C 23C 23C 23,满足条件有且仅有两人选择的项目完全相同的情况有C 23C 23C 12,由古典概率公式得P =C 23C 23C 12C 23C 23C 23=23.答案:238.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是________.解析:从边长为1的正方形的中心和顶点这五点中,随机选取两点,共有10种取法,该两点间的距离为22的有4种,所求事件的概率为P =410=25. 答案:259.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答).解析:6节课共有A 66=720种排法,相邻两节文化课之间至少间隔1节艺术课的排法有A 33A 34=144种排法,所以相邻两节文化课之间至少间隔1节艺术课的概率为144720=15. 答案:15三、解答题(本大题共3小题,每小题12分,共36分)10.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率.解:将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件.(1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P (A )=436=19.所以两数之和为5的概率为19. (2)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件.所以P (B )=1-936=34.所以两数中至少有一个奇数的概率为34. 11.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b ”.设复数为z =a +b i.(1)若集合A ={z |z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的概率.解:(1)A ={6i,7i,8i,9i}.(2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的事件为B .当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9;当a =1时,b =6,7,8满足a 2+(b -6)2≤9;当a =2时,b =6,7,8满足a 2+(b -6)2≤9;当a =3时,b =6满足a 2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个.所以所求概率P =1124. 12.(2012·江西高考)如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O 共面的概率.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2共4种;y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2共4种;z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2共8种.因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110. (2)选取的这3个点与原点O 共面的所有可能结果有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.1.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为13. 答案:132.(2012·江苏高考)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35. 答案:353.(2012·福建高考)在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2).故所求的概率P =29.。
1.3古典概型与几何概型
所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放
古典概型知识点总结
古典概型知识点总结古典概型是概率论中的一个重要内容,它是指在相同的条件下,可能的结果均等可能的情况下,通过计算各种结果出现的可能性的概率。
在古典概型中主要涉及排列、组合、二项式定理、排列组合概率等基础知识。
下面就各个知识点做详细介绍。
一、排列排列是指从n个不同元素中取出m个进行排列,如果这m个元素的顺序不同则视为不同的排列。
排列数用P(n,m)表示,表示n中取m的排列数。
公式为P(n,m) = n!/(n-m)!例如,从5个不同的元素中取出3个元素进行排列,那么排列数就是P(5,3) = 5!/(5-3)! = 5*4*3 = 60。
二、组合组合是指从n个不同元素中取出m个进行组合,不考虑元素的排列顺序。
组合数用C(n,m)表示,表示n中取m的组合数。
公式为C(n,m) = n!/(m!*(n-m)!)例如,从5个不同的元素中取出3个元素进行组合,那么组合数就是C(5,3) = 5!/(3!*(5-3)!) = 10。
三、二项式定理二项式定理是代数中一个重要的定理,它包括二项式系数的公式以及二项式的展开式。
二项式系数的公式为C(n,m) = n!/(m!*(n-m)!)二项式展开式为(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,n)*a^0*b^n例如,(a+b)^3 = C(3,0)*a^3*b^0 + C(3,1)*a^2*b^1 + C(3,2)*a^1*b^2 + C(3,3)*a^0*b^3 = a^3 + 3*a^2*b + 3*a*b^2 + b^3。
四、排列组合概率排列组合概率是指在进行某种排列或组合的情况下,发生一定事件的概率。
在排列组合概率中,一般会出现某个事件的发生总数以及排列或组合的总数,然后通过计算得出该事件的概率。
例如,从一副扑克牌中随机取5张牌,计算得到顺子的概率。
我们可以计算出顺子的排列数,即5个元素的排列数P(5,5)=5!=120,然后计算出总的排列数,即从52张牌中取5张的排列数P(52,5)=52!/(52-5)!=2,598,960,最后通过计算得出顺子的概率为120/2,598,960≈0.000046。
古典概型(2)
3 (1) 4 11 (2) 12
小知识
概率统计的第一篇论文是1657年惠更斯的《论赌博的计算》 概率统计的第一篇论文是1657年惠更斯的《论赌博的计算》,从 1657年惠更斯的 那时起直到十九世纪初, 那时起直到十九世纪初,人们运用当时发展起来的排列组合理论和变量数学为 工具,发展了古典概率和几何概率范围的概念、计算及其分析性质的成果, 工具,发展了古典概率和几何概率范围的概念、计算及其分析性质的成果,如 大数定律,贝叶斯定理,高斯分布,最小二乘法等。拉普拉斯以《分析概率论》 大数定律,贝叶斯定理,高斯分布,最小二乘法等。拉普拉斯以《分析概率论》 作了总结,形成了古典的描述性统计学。 作了总结,形成了古典的描述性统计学。十九世纪是统计学相对停滞和酝酿时 二十世纪初至第二次世界大战前, 期,二十世纪初至第二次世界大战前,由于法俄概率论和英美统计科学的发展 以及它们的结合,使概率统计学得以正式列入数学之林, 以及它们的结合,使概率统计学得以正式列入数学之林,诸分支在实践中迅速 产生,如在生物学研究中提出的回归分析;出自农业实验的方差分析、 产生,如在生物学研究中提出的回归分析;出自农业实验的方差分析、实验设 计理论;大规模工业生产所要求的抽样检查;从道奇── ──洛密克抽样表到序贯 计理论;大规模工业生产所要求的抽样检查;从道奇──洛密克抽样表到序贯 分析以至质量控制。等等。形成现代统计学的大部分内容。二次世界大战后, 分析以至质量控制。等等。形成现代统计学的大部分内容。二次世界大战后, 概率统计学主要在纯理论研究上取得进展。 概率统计学主要在纯理论研究上取得进展。 概率统计学的形成,标志着人类的认识和实践领域, 概率统计学的形成,标志着人类的认识和实践领域,从必然现象扩展到偶 然现象(随机事件),这是与从精确数学到模糊数学类似的变革, ),这是与从精确数学到模糊数学类似的变革 然现象(随机事件),这是与从精确数学到模糊数学类似的变革,它使科学与 数学结合的历史进程前进了一大步,因此,它的应用十分广泛,除自然科学外, 数学结合的历史进程前进了一大步,因此,它的应用十分广泛,除自然科学外, 社会经济统计已成独立分支;它与其它学科结合形成了生物统计、统计预报、 社会经济统计已成独立分支;它与其它学科结合形成了生物统计、统计预报、 统计物理、计量史学等边缘学科; 统计物理、计量史学等边缘学科;它向其它的数学分支渗透而产生了随机微分 方程、随机几何等理论。 方程、随机几何等理论。
古典概型和几何概型
一、 古典概型1)基本事件:一次试验中所有可能的结果都是随机事件,这类随机事件称为基本事件. 2)基本事件的特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和. 3)我们将具有这两个特点的概率模型称为古典概率模型,其特征是: ① 有限性:即在一次试验中所有可能出现的基本事件只有有限个.② 等可能性:每个基本事件发生的可能性是均等的;称这样的试验为古典概型. 4)基本事件的探索方法:① 列举法:此法适用于较简单的实验.② 树状图法:这是一种常用的方法,适用于较为复杂问题中的基本事件探索.5)在古典概型中涉及两种不通的抽取放方法,下列举例来说明:设袋中有n 个不同的球,现从中一次模球,每次摸一只,则有两种摸球的方法: ① 有放回的抽样每次摸出一只后,任放回袋中,然后再摸一只,这种模球的方法称为有放回的抽样,显然对于有放回的抽样,依次抽得球可以重复,且摸球可以无限地进行下去. ② 无放回的抽样每次摸球后,不放回原袋中,在剩下的球中再摸一只,这种模球方法称为五放回抽样,每次摸的球不会重复出现,且摸球只能进行有限次. 二、 古典概型计算公式1)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n; 2)如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n=. 3)事件A 与事件B 是互斥事件()()()P AB P A P B =+4)事件A 与事件B 可以是互斥事件,也可以不是互斥事件()()()()P A B P A P B P A B =+-.古典概型注意:① 列举法:适合于较简单的试验.② 树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(),x y 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如()1,2与()2,1相同.三、几何概型事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 四、几何概型的计算1)几何概型中,事件A 的概率定义为()AP A μμΩ=,其中μΩ表示区域Ω的几何度量,A μ表示区域A 的几何度量. 2)两种类型线型几何概型:当基本事件只受一个连续的变量控制时.面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决. 五、几何概型具备以下两个特征:1)无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2)等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.一、古典概型古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值.【题干】甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( ) A .16B .14C .13D .12【答案】D.【解析】甲、乙在同一组:113P =.甲、乙不在同一组,但相遇的概率:2111362P =+=.【点评】【题干】有十张卡片,分别写有A 、B 、C 、D 、E 和a 、b 、c 、d 、,(1)从中任意抽取一张,①求抽出的一张是大写字母的概率;②求抽出的一张是或的概率;e A a(2)若从中抽出两张,③求抽出的两张都是大写字母的概率;④求抽出的两张不是同一个字母的概率; 【答案】 【解析】 【点评】【题干】袋子中装有编号为,a b 的2个黑球和编号为,,c d e 的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.【答案】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de ;(2)0.6;(3)0.7. 【解析】(1),,,,,,,,,ab ac ad ae bc bd be cd ce de .(2)由题意知本题是一个古典概型,试验发生包含了上一问列举的所有结果,记“恰好摸出1个黑球和1红球”为事件A ,则事件A 包含的基本事件为,,,,,ac ad ae bc bd be ,共6个基本事件,所以()60.610P A ==. (3)试验发生包含的事件共有10个,记“至少摸出1个黑球”为事件B ,则B 包含的基本事件为,,,,,,ab ac ad ae bc bd be ,共7个基本事件,所以()70.710P B ==. 【点评】步骤:用列举法求出基本事件的总数n ,求出具体时间包含的基本事件数m ,根据古典概型求出概率.二、一维情形的几何概型(长度)将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 【题干】在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B . 2πC . 12D . 23 【答案】A【解析】∵0cos x <<12,∴52,233x k k ππππ⎛⎫∈++ ⎪⎝⎭.当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,,,2332x ππππ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率133P ππ==.【点评】【题干】平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14B .13 C . 12D .23【答案】B【解析】为了确定硬币的位置,由硬币中心O 向靠的最近的平行线引垂线OM ,垂足为M ;线段OM 长度的取值范围就是30,2⎡⎤⎢⎥⎣⎦,只有当132OM <≤时,硬币不与平行线相碰,所以所求事件的概率33110223P ⎛⎫⎛⎫=-÷-= ⎪ ⎪⎝⎭⎝⎭. 【点评】【题干】在区间[010],中任意取一个数,则它与4之和大于10的概率是______. 【答案】25【解析】在区间[010],中,任意取一个数x ,则它与4之和大于10的x 满足4x +>10, 解得610x <≤,所以,概率为1062105-=. 【点评】【题干】在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与812cm 之间的概率为( ) A .56B .12C .13D .16【答案】D.【解析】由题意可得此概率是几何概率模型.因为正方形的面积介于362m 与812m 之间,座椅正方形的边长介于6cm 到9cm 之间,即线段AM 介于6cm 到9cm 之间,所以AM 的活动范围长度为:3.由几何概型的概率公式可得31186=.【点评】【题干】某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A .113 B. 19 C . 14 D . 12【答案】B【解析】整个靶子是如图所示的大圆,而距离靶心距离小于2用图中的小圆所示:故此人射击中靶点与靶心的距离小于2的概率226129P ππ==.【点评】【题干】两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( ) A.12B .13C .14D .23【答案】13. 【解析】设事件A 为“灯与两端距离都大于2m ”,根据题意,事件A 对应的长度为2m 的部分,因此,事件A 发生的概率()2163P A ==. 【点评】三、二维情形的几何概型(面积)数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,利用公式可求.【题干】如图,60AOB ∠=°,2OA =,5OB =,在线段OB 上任取一点C ,试求: (1)AOC ∆为钝角三角形的概率;(2)AOC ∆为锐角三角形的概率.【答案】(1)0.4(2)0.6【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC ∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===,即AOC ∆为钝角三角形的概率为0.4.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===,即AOC ∆为锐角三角形的概率为0.6. 【点评】AOC ∆为直角三角形的概率等于0,但直角三角形AOC ∆是存在的,因此概率为0的事件不一定是不可能事件.【题干】已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.【答案】36【解析】设图中阴影部分的面积为S ,由题意可得6001251000S =⨯,解得36S =. 【点评】【题干】小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率. 【答案】 【解析】 【点评】CE DBOA【题干】在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足225x y +≤,从区域W 中随机取点(),M x y .(1)若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;(2)已知直线():0l y x b b =-+>与圆22:5O x y +=求y x b ≥-+的概率. 【答案】(1)17;(2.【解析】(1)若x Z ∈,y Z ∈,则点M 的个数共有21个,列举如下:()2,1--,()2,0-,()2,1-,()1,2--,()1,1--,()1,0-,()1,1-,()1,2-,()0,2-,()0,1-,()0,0,()0,1,()0,2,()1,2-,()1,1-,()1,0,()1,1,()1,2,()2,1-,()2,0,()2,1时,点M 位于第四象限.当点M 的坐标为()1,2-,()1,1-,()2,1-时,点M 位于第四象限.故点M 位于第四象限的概率为17. (2)由已知可知区域W 的面积是5π.因为直线:l y x b =-+与圆22:5O x y +=的弦长为,如图,可求得扇形的圆心角为23π,所以扇形的面积为125233S ππ=⨯=,则满足y x b≥-+的点构成的区域的面积为122sin 233S ππ=⨯=,所以y x b≥-+的概率为20125ππ- .【点评】【题干】如图,60AOB ︒∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求:(1)AOC ∆为钝角三角形的概率; (2)AOC ∆为锐角三角形的概率. 【答案】(1)0.4 ;(2)0.6 .【解析】如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.(1)当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形,记“AOC∆为钝角三角形”为事件M ,则()110.45OD EB P M OB ++===.(2)当且仅当点C 在线段DE 上时,AOC ∆为锐角三角形,记“AOC ∆为锐角三角形”为事件N ,则()30.65DE P N OB ===. 【点评】【题干】在区间[]1,1-上任取两实数,a b ,求二次方程2220x ax b ++=的两根都为实数的概率. 【答案】()12P A =【解析】方程有实根的条件为22440a b ∆=-≥,即||||a b ≥.在平面直角坐标系中,点(),a b 的取值范围为如图所示,的正方形的区域,随机事件A “方程有实根”的所围成的区域如图所示的阴影部分.易求得()12P A =.【点评】四、三维情形的几何概型(体积)【题干】在Rt ABC ∆中,30A ∠=,过直角顶点C 作射线CM 交线段AB 于M,求使CE DBOAAM AC >的概率.【答案】16. 【解析】设事件D 为“作射线CM ,使AM AC >”.在AB 上取点1C 使1AC AC =,因为1A C C ∆是等腰三角形,所以118030752ACC -∠==,907515A μ=-=,90μΩ=,所以()151906P D ==. 【点评】几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在ACB ∠内的任意位置是等可能的.若以长度为“测度”,就是错误的,因M 在AB 上的落点不是等可能的.【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. (1)设“14P ABC V V -≥”的事件为X ,求概率()P X ; (2)设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】 【解析】 【点评】【题干】一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是( ) A .18 B .116 C .127 D .38【答案】C ;【解析】容易知道,当蜜蜂在边长为10,各棱平行于玻璃容器的棱的正方体内飞行时是安全的.于是安全飞行的概率为331013027=.【点评】【题干】在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】112π-【解析】点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则()3331421231212P A ππ-⨯⨯==-. 【点评】【题干】在棱长为a 的正方体1111ABCD A B C D -内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.2 B .2 C. 16D . 16π【答案】C【解析】本题是几何概型问题,与点A 距离等于a 的点的轨迹是一个八分之一个球面, 其体积为:33114836a a V ππ=⨯⨯=,“点P 与点O 距离大于1的概率”事件对应的区域体积为:3314836a a ππ⨯⨯=,则点P 到点A 的距离小于等于a 的概率为:33166a a ππ=.【点评】【题干】设正四面体ABCD 的体积为V ,P 是正四面体ABCD 的内部的点. ①设“14P ABC V V -≥”的事件为X ,求概率()P X ; ②设“14P ABC V V -≥且14P BCD V V -≥”的事件为Y ,求概率()P Y . 【答案】①()2764P X =②18【解析】①分别取,,DA DB DC上的点,,E F G,并3,3,3DE EA DF FB DG GC ===,连结,,EF FG GE ,则平面EFG 平面ABC .当P 在正四面体DEFG 内部运动时(如图),满足14P ABC V V -≥,故()33327464D EFG D ABC V DE P X V DA --⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭.②在AB 上取点H ,使3AH HB =,在AC 上取点I ,使3AI IC =,在AD 上取点J ,使3AJ JD =,P 在正四面体AHIJ 内部运动时,满足14P BCD V V -≥.结合①,当P 在正四面体DEFG 的内部及正四面体AHIJ 的内部运动时,亦即P 在正四面体EMNJ 内部运动时(M 是EG 与IJ 的交点,N 是EF 与HJ 的交点),同时满足14P ABC V V -≥且14P BCD V V -≥,于是()331281J EMN D ABC JE D Y V A V P --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭=⎭⎝.【点评】五、高考汇编【题干】(2010年江苏理科 3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率________.【答案】【解析】【点评】【题干】(2010年江苏理科4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]5,40 中,其频率分布直方图如图所示,则其抽样的100根中,有________根在棉花纤维的长度小于20mm .【答案】【解析】【点评】【题干】(2011江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是BAB A另一个的两倍的概率是________. 【答案】13【解析】【点评】【题干】(2011江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差2s =________. 【答案】165【解析】可以先把这组数都减去6再求方差,【点评】【题干】(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【答案】15.【解析】分层抽样又称分类抽样或类型抽样.将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性.因此,由35015334⨯=++知应从高二年级抽取15名学生. 【点评】【题干】(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【答案】35. 【解析】∵以1为首项,3-为公比的等比数列的10个数为1,3-,9,27-,···其中有5个负数,1个正数1计6个数小于8, ∴从这10个数中随机抽取一个数,它小于8的概率是63105=. 【点评】。
数学古典模型知识点总结
数学古典模型知识点总结一、古典模型的概念古典模型是指在古典物理学框架下建立的物理模型,是在牛顿力学和经典电磁学的基础上建立的。
它是从经验规律中总结出来的,可以解释和描述一定范围内的现象和规律。
古典模型具有普适性和稳定性,能够描述各种物质的基本性质和运动规律,是对物质世界的经典理论总结。
二、古典力学古典力学是古典物理学的基础,描述了宏观物体的运动规律。
古典力学的基本概念包括力、质点、质量、运动方程等。
牛顿三大定律是古典力学的基石,分别描述了质点的匀速直线运动、力的作用和运动的变化、相互作用的作用和反作用。
三、古典力学的应用古典力学在工程、地球物理、天文学、机械等领域都有重要应用。
它可以用来解释和预测物体的运动、能量转换和相互作用等现象。
例如,在工程领域中,可以通过古典力学分析机械系统的运动和稳定性;在天文学领域中,可以通过古典力学解释行星的运动和天体的相互吸引等。
四、古典电磁学古典电磁学是描述电荷和电场、磁场之间相互作用的理论。
在古典电磁学中,麦克斯韦方程组是最重要的基本方程,描述了电场和磁场的产生和相互作用。
古典电磁学还包括电磁感应现象和电磁波传播等内容。
五、古典电磁学的应用古典电磁学在电子工程、通讯技术、光学等领域有着广泛的应用。
它可以用来解释和预测电磁场的传播特性、电磁波的辐射和感应效应等现象。
例如,在通讯技术中,可以通过古典电磁学研究电磁波的传播和调制技术;在光学领域中,可以通过古典电磁学研究光的产生和传播规律。
六、古典流体力学古典流体力学是描述流体运动和变形的理论。
古典流体力学的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程等,它们描述了流体的运动和相互作用。
古典流体力学还包括流体的流动规律、边界条件和非定常流动等内容。
七、古典流体力学的应用古典流体力学在航空航天、船舶工程、环境保护等领域有着广泛的应用。
它可以用来解释和预测流体的流动规律、能量转化和阻力等现象。
例如,在船舶工程中,可以通过古典流体力学研究艇体的水动力性能;在环境保护领域中,可以通过古典流体力学研究水体的循环和混合规律。
古典概型与几何概型
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
古典概型与几何概型
古典概型与几何概型【知识要点】一、古典概型1、基本事件(1)基本事件的定义一次试验中所有可能的结果都是随机事件,这类随机事件我们称为基本事件. (2)基本事件的特点①任意两个基本事件都是互斥的.②任何事件都可以表示成基本事件的和.2、古典概型(1)古典概型的定义我们将具有上述这两个特点的概率模型称为古典概率模型,简称古典概型. (2)古典概型的特征古典概型是一种特殊的概率模型,其特征有以下两个:①有限性. 即在一次试验中,所有可能出现的结果只有有限个,或者说在一次试验中,只有有限个不同的基本事件.②等可能性. 即每个基本事件发生的可能性都是相等的,或者说所有结果出现的可能性都是相等的.【注】古典概型必须满足两个条件:①有限性;②等可能性,只有这两个条件都满足时才是古典概型.3、基本事件数的探求方法(1)列举法:此法适合于较简单的试验.(2)树状图法:此法是一种常用方法,适合于较复杂问题中基本事件的探求. 4、有放回的抽样与无放回的抽样在古典概型的概率计算中,将涉及两种不同的抽样方法,下面举例来说明. 设一个口袋内有n 个不同的球,现从袋内依次摸球,且每次只摸一只,则有如下两种摸球的方法: (1)有放回的抽样每次摸出一只后,放回袋中,然后再摸一只,这种摸球的方法称为有放回的抽样. 显然,对于有放回的抽样,每次摸出的球可以重复出现,且摸球可以无限次地进行下去. (2)无放回的抽样每次摸出一只后,不放回袋中,在剩下的球中再摸一只,这种摸球的方法称为无放回的抽样. 显然,对于无放回的抽样,每次摸出的球不会重复出现,且摸球只能进行有限次.5、古典概型的概率计算公式在古典概型中,事件A 的概率的计算公式如下:()A mP A n=事件所包含的基本事件的个数试验的基本事件的总数.【注1】()mP A n=既是概率的古典定义,又是求古典概型的概率的基本方法. 求()P A 时,要首先判断是否是古典概型,具体计算步骤如下: Step 1:仔细阅读题目,弄清题目的背景材料,加深理解题意; Step 2:判断本试验的结果是否为等可能事件,设出所求事件A ;Step 3:分别求出“试验的基本事件的总数n”与“事件A所包含的基本事件的个数m”;Step 4:利用公式()mP An=,求出事件A的概率.【注2】在公式()()()P A B P A P B⋃=+中,事件A与事件B是互斥事件;而在公式()()()()P A B P A P B P A B⋃=+-⋂中,事件A与事件B可以是互斥事件,也可以不是互斥事件. 因此,在使用这两个公式时,首先要根据题意判断事件A与事件B是否为互斥事件,然后选择正确的公式进行计算.二、几何概型1、几何概型的定义如果每个事件发生的概率只与构成该事件的区域的面积(体积或长度)成比例,则我们把这样的概率模型称为几何概率模型,简称几何概型.2、几何概型的特征几何概型是另一种特殊的概率模型,其特征有以下两个:①无限性. 即在一次试验中,所有可能出现的结果有无限多个,或者说在一次试验中,有无限多个不同的基本事件.②等可能性. 即每个基本事件发生的可能性都是相等的,或者说所有结果出现的可能性都是相等的.【注】由古典概型与几何概型的特征可见,用几何概型求解概率问题的思路与古典概型是相同的,同属于“比例解法”,即随机事件A的概率可以用“事件A所包含的基本事件所占的图形面积(体积或长度)”与“基本事件所占的总面积(体积或长度)”之比来表示.3、几何概型的概率计算公式在几何概型中,事件A 的概率的计算公式如下:()AA S P A =Ω构成事件的区域的面积(体积或长度)试验的全部结果所构成的区域的面积(体积或长度).4、古典概型与几何概型的异同 (1)相同点古典概型与几何概型中,每个基本事件发生的可能性都是相等的. (2)不同点古典概型要求:试验的基本事件只有有限个;而几何概型要求:试验的基本事件有无限多个.【例题选讲】题型一、求古典概型的概率例1、有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A. 13B. 12C. 23D. 34【解析】甲、乙两位同学参加3个兴趣小组的所有可能有33=9⨯(种) 甲、乙两位同学参加同一个兴趣小组的情况有3(种)则甲、乙两位同学参加同一个兴趣小组的概率31=93P =故选A例2、在30瓶饮料中,有3瓶已过了保质期. 现从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________.(结果用最简分数表示)【解析】设所取2瓶饮料都未过保质期为事件A则2272302726272611721()3029302914521CP AC⨯⨯⨯====⨯⨯⨯故至少取到1瓶已过保质期饮料的概率为11728 1()1145145 P A-=-=例3、考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于__________.【解析】如图所示,设点A,B,C,D,E,F分别是正方体下底面、上底面、左侧面、右侧面、前侧面、后侧面的中心甲从这6个点中任选两个点连成直线,有2615C=种不同的取法乙从这6个点中任选两个点连成直线,也有2615C=种不同的取法于是甲、乙从这6个点中任选两个点连成直线,共有22661515225C C⋅=⨯=种不同的取法又∵所得的两条直线相互平行但不重合的有AC DB,AD CB,AE BF,AF BE,CE DF,CF DE∴甲、乙连得的两条直线相互平行但不重合的,有12种不同的取法故所得的两条直线相互平行但不重合的概率12422575 P==题型二、求几何概型的概率例4、如图所示,在矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( )A.14 B. 13 C. 12 D. 23【解析】设点Q 取自ABE ∆内部为事件A则点Q 取自ABE ∆内部的概率为112()2ABE ABCDAB ADS P A S AB AD ∆⋅===⋅矩形 故选C例5、在区间[1,1]-上随机取一个数x ,则cos 2x π的值介于0到12之间的概率为__________. 【解析】要使10cos22xπ≤≤,[1,1]x ∀∈- 由余弦函数的图像可知,223xπππ-≤≤-或322xπππ≤≤⇒ 213x -≤≤-或213x ≤≤于是满足题意的x 的区间长度为23而区间[1,1]-的总长度为2故对于区间[1,1]-上的数x ,使cos 2x π的值介于0到12之间的概率为21323P ==ABD例6、小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则周末去打篮球;否则,在家看书. 则小波周末不在家看书的概率为__________.【解析】“周末不在家看书”包括“周末去看电影”和“周末去打篮球”两种情况,且这两种情况是互斥事件设小波周末去看电影为事件A,周末去打篮球为事件B则222131()324()14P Aπππππ⨯-⨯===⨯,2211()1164()116P Bππππ⨯===⨯故小波周末不在家看书的概率为3113 ()()41616 P P A P B=+=+=。
古典概型与几何概型
古典概型与几何概型【知识点梳理】一、古典概型1.基本事件:一次试验连同其中可能出现的每一个结果,称为一个基本事件。
基本事件是试验中不能再分的最简单的随机事件。
基本事件有以下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。
2.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,这种事件叫等可能性事件3.古典概型:具有以下两个特征的随机试验的概率模型称为古典概型。
(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
4.古典概型的概率计算公式: 对于古典概型,若试验的所有基本事件数为n ,随机事件A包含的基本事件数为m ,那么事件A 的概率定义为()m P A n=。
二、几何概型1. 几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成正比,则称这样的概率模型为几何概型。
2. 几何概型试验的两个基本特征:(1)无限性:指在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性。
3. 几何概型事件的概率计算公式:积)的区域长度(面积或体实验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(【典型例题分析】题型一、古典概型的概率求法例1.单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案。
如果考生掌握了考查的内容,他可以选择唯一正确的答案。
假设考生不会做,他随机地选择一个答案,问他答对的概率是_________.例2.在6瓶饮料中,有2瓶已过了保质期。
从中任取2瓶,取到已过保质期的饮料的概率是_______.例3. 将一枚质地均匀的硬币连掷三次,观察落地后的情形(1)写出这个试验的所有的基本事件;(2)“出现一枚正面朝上,两枚反面朝上”这一事件包含了哪几个基本事件?(3)求事件“出现一枚正面朝上,两枚反面朝上”的概率。
第四节 古典概型
1 PA PB PAB
又 PA 333 , PB 250 , PAB 83 ,
2000
2000
2000
故所求概率为 p 1 333 250 83 3 . 2000 2000 2000 4
概率论
例7 将 15 名新生随机地平均分配到三个班级中 去 , 这 15 名新生中有 3 名是优秀生 . 求
概率论
解 从箱子中任取两件产品,取法总数为 C122 . 即试验的样本空间中所含有的基本事件总数为 C122 .
事件 A中所含有的基本事件数为 C92 .
所以
98
PA
C92 C122
21 12 11
6. 11
21
事件 C 中所含有的基本事件数为 C91 C31.
所以
P C
C19C13 C13C19 9 3 3 9 .
所以
PC 9 3 3 9 9 .
12 11 22
例3 从有 9 件正品、3件次品的箱子中任取两件产
品 即一次抽取两件产品 ,求事件 A 取得两件正品, C 取得一件正品一件次品 ,
的概率 .
概率论
第四节 等可能概型(古典概型)
古典概型的定义 古典概率的求法 小结
概率论
我们首先引入的计算概率的数学模型, 是在概率论的发展过程中最早出现的研究 对象,通常称为
古典概型
概率论
定义 1 若随机试验满足下述两个条件: (1) 它的样本空间只有有限多个样本点; (2) 每个样本点出现的可能性相同. 称这种试验为等可能随机试验或古典概型.
120 210
4. 7
概率论
古典概型与几何概型知识点总结
古典概型与几何概型知识点总结古典概型和几何概型是概率论中的两种常见概型,它们分别基于不同的概率空间的划分方式。
下面将对古典概型和几何概型的知识点进行总结。
古典概型(Classical Probability Model)是指概率实验基本样本点是有限个的概率模型。
在古典概型中,样本空间中的每一个样本点发生的机会相同,且样本空间中所有的样本点构成一个有限集合。
在古典概型中,我们通常会利用排列组合的方法来计算事件的概率。
以下是古典概型的一些重要知识点:1.样本空间和事件:样本空间是指一个概率实验中所有可能结果的集合,用Ω表示。
事件是样本空间的一个子集,表示我们感兴趣的结果。
2.事件的概率:在古典概型中,事件A的概率P(A)等于A中的样本点数目除以样本空间中的样本点总数。
即P(A)=,A,/,Ω。
3.加法法则:如果A和B是两个互不相容的事件(即A∩B=Ø),那么两个事件的并事件A∪B的概率等于事件A和事件B的概率之和。
即P(A∪B)=P(A)+P(B)。
4.乘法法则:如果A和B是两个独立事件,即事件A的发生与事件B的发生无关,那么两个事件的交事件A∩B的概率等于事件A的概率乘以事件B的概率。
即P(A∩B)=P(A)*P(B)。
几何概型(Geometric Probability Model)是指概率实验的样本空间是由几何构造组成的。
在几何概型中,样本空间通常是一个几何形状,概率的计算涉及到几何图形的面积或长度。
以下是几何概型的一些重要知识点:1.区间概率:对于一些连续型随机变量,概率可以通过计算指定区间的长度、面积或体积来求解。
这种类型的概率常常与几何图形的几何属性相关。
例如,对于均匀分布的连续随机变量,一个给定区间[a,b]内事件发生的概率等于区间长度除以总长。
2. 概率密度函数:对于连续型随机变量,其概率密度函数(Probability Density Function,PDF)描述了随机变量的可能取值的相对可能性。
第十章 第五节 古典概型、几何概型(理)
名成员记作S 解:把数学小组的3名成员记作 1,S2,S3,自然科学 把数学小组的 名成员记作 小组的3名成员记作 人文科学小组的3名成 小组的 名成员记作Z1,Z2,Z3,人文科学小组的 名成 名成员记作 员记作R 则基本事件是(S 员记作 1,R2,R3,则基本事件是 1,Z1,R1),(S1,Z1, , R2),(S1,Z1,R3),(S1,Z2,R1),(S1,Z2,R2),(S1,Z2, , , , , R3),(S1,Z3,R1),(S1,Z3,R2),(S1,Z3,R3),然后把 , , , , 个基本事件中S 又各得9个基本事件 个基本事件, 这9个基本事件中 1换成 2,S3又各得 个基本事件,故 个基本事件中 换成S 基本事件的总数是27个 基本事件的总数是 个. 表示数学组中的甲同学、 以S1表示数学组中的甲同学、Z2表示自然科学小组的乙 同学. 同学.
[理 要 点] 理 一、基本事件的两个特点 1.任何两个基本事件是 互斥 的; . 2.任何事件(除不可能事件 都可以表示成 基本事件 的和. .任何事件 除不可能事件 除不可能事件)都可以表示成 的和. 二、古典概型 具有以下两个特点的概率模型称为古典概率模型, 具有以下两个特点的概率模型称为古典概率模型,简 称古典概型. 称古典概型. 1.试验中所有可能出现的基本事件 只有有限个 . . 2.每个基本事件出现的可能性 相等 . .
古典概型、几何概型[理] 古典概型、几何概型 理 1.理解古典概型及其概率计算公式. .理解古典概型及其概率计算公式. 2.会用计算一些随机事件所含的基本事件数 . 及事件发生的概率. 及事件发生的概率. 3.了解随机数的意义,能运用模拟方法估计概率. .了解随机数的意义,能运用模拟方法估计概率. 4.了解几何概型的意义. .了解几何概型的意义.
中学数学第十一章 第5节 古典概型
第5节古典概型最新考纲 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.知识梳理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=m n.4.古典概型的概率公式P(A)=事件A包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.()(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.()解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),所有可能结果不是有限个,不是古典概型,应利用几何概型求概率,所以(4)不正确.答案(1)×(2)×(3)√(4)×2.(必修3P133A1改编)袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为()A.25 B.415 C.35 D.非以上答案解析从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p=615=25.答案 A3.(必修3P134B1改编)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________.如果试过的钥匙不扔掉,这个概率又是________.解析第二次打开门,说明第一次没有打开门,故第二次打开的概率为2×24×3=13;如果试过的钥匙不扔掉,这个概率为2×24×4=14.答案13144.(2018·全国Ⅱ卷)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.3解析2名男同学和3名女同学,共5名同学,从中取出2人,有C25=10种情况,2人都是女同学的情况有C23=3种,故选中的2人都是女同学的概率为310=0.3.答案 D5.(2017·山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是()A.518 B.49 C.59 D.79解析由题意可知依次抽取两次的基本事件总数n=9×8=72,抽到的2张卡片上的数奇偶性不同的基本事件个数m=C15C14A22=40,所以所求概率p=mn=4072=59.答案 C6.(2019·长沙模拟改编)在装有相等数量的白球和黑球的口袋中放进一个白球,此时由这个口袋中取出一个白球的概率比原来由此口袋中取出一个白球的概率大122,则口袋中原有小球的个数为________.解析设原来口袋中白球、黑球的个数分别为n个,依题意n+12n+1-n2n=122,解得n=5.所以原来口袋中小球共有2n=10个.答案10考点一基本事件及古典概型的判断【例1】袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为5 11,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型.规律方法古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. (3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识. 【训练1】甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张.(1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么?解(1)设(i,j)表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∴甲胜的概率p=512,∵512≠12,∴此游戏不公平.考点二简单的古典概型的概率【例2】(1)(2019·深圳一模)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )A.12B.14C.13D.16(2)(2019·湖南六校联考)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.答案 (1)B (2)13规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【训练2】 (1)(2018·衡阳八中、长郡中学联考)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56(2)(2018·石家庄二模)用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C23=3种,故所求的概率为p=36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n=A55,用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位数字,出现a1<a2<a3>a4>a5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∴出现a1<a2<a3>a4>a5的五位数的概率p=6A55=120.答案(1)B(2)1 20考点三古典概型的交汇问题多维探究角度1古典概型与平面向量的交汇【例3-1】设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为()A.18 B.14 C.13 D.12解析有序数对(m,n)的所有可能情况为4×4=16个,由a⊥(a-b)得m2-2m+1-n=0,即n=(m-1)2.由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以P(A)=216=18.答案 A角度2古典概型与解析几何的交汇【例3-2】将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.解析依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有6×6=36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足2aa2+b2≤2,即a≤b的数组(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.答案7 12角度3古典概型与函数的交汇【例3-3】已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A.79 B.13 C.59 D.23解析f′(x)=x2+2ax+b2,由题意知f′(x)=0有两个不等实根,即Δ=4(a2-b2)>0,∴a>b,有序数对(a,b)所有结果为3×3=9种,其中满足a>b有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p=69=23.答案 D角度4古典概型与统计的交汇【例3-4】(2019·济宁模拟)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710.规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定基本事件个数;(4)代入古典概型的概率公式求解.【训练3】 (2019·黄冈质检)已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率.解 (1)由题意知14n =0.07,解得n =200,∴14+a +28200×100%=30%,解得a =18, 易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p=818=49.[思维升华]1.古典概型计算三步曲第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件个数的方法列举法、列表法、树状图法或利用排列、组合.[易错防范]1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.2.对较复杂的古典概型,其基本事件的个数常涉及排列数、组合数的计算,计算时要首先判断事件是否与顺序有关,以确定是按排列处理,还是按组合处理.基础巩固题组(建议用时:40分钟)一、选择题1.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是()A.23 B.12 C.13 D.16解析从A,B中任意取一个数,共有C12·C13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∴p=26=13.答案 C2.设m,n∈{0,1,2,3,4},向量a=(-1,-2),b=(m,n),则a∥b的概率为()A.225 B.325 C.320 D.15解析 a ∥b ⇒-2m =-n ⇒2m =n ,所以⎩⎨⎧m =0,n =0或⎩⎨⎧m =1,n =2或⎩⎨⎧m =2,n =4,因此概率为35×5=325. 答案 B3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( )A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.答案 A4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13 B.14 C.15 D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.答案 A5.(2019·周口调研)将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( )A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 答案 A 二、填空题6.(2019·武汉模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112.答案 1127.(2019·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.答案 128.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16. 答案 16 三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫8-3542×2+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14. 10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P(B)=C23C23C46=35,P(C)=C33C13C46=15.由互斥事件的概率加法公式,得P(A)=P(B)+P(C)=35+15=45,故所求事件的概率为45.能力提升题组(建议用时:20分钟)11.已知函数f(x)=12ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(-∞,-1]上是减函数的概率为()A.12 B.34 C.16 D.0解析f(x)共有四种等可能基本事件即(a,b)取(2,1),(2,3),(4,1),(4,3),记事件A为f(x)在(-∞,-1]上是减函数,由条件知f(x)是开口向上的函数,对称轴是x=-ba≥-1,事件A共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P(A)=3 4.答案 B12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是()A.34 B.13 C.310 D.25解析6元分成整数元有3份,可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.答案 D13.(2019·江西重点中学盟校联考)从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n=C23·C23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∴经过两次这样的调换后,甲在乙的左边包含的基本事件个数m=6,∴经过这样的调换后,甲在乙左边的概率:p=mn=69=23.答案2 314.(2019·太原一模)某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.该公司对近60天,每天揽件数量统计如下表:(1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?解(1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.古今中外有学问的人,有成就的人,总是十分注意积累的。
古典概型与几何概型
第二讲 古典概型与几何概型
二人会面的条件是: | X − Y|≤1,
阴影部分的面积 p= 正方形的面积 1 2 25 − 2× × 4 9 2 = = 25 25.
y
5 4 3 2 1
y-x =1 y-x = -1
0
1
2 3 4
5 x
பைடு நூலகம்
第二讲 古典概型与几何概型
一般,设某个区域 D (线段,平面区域,空间 区域),具有测 度 mD(长度,面积,体积)。如果 随机实验 E 相当于向区域内任意地取点,且取到每 一点都是等可能的,则称此类试验为 几何概型。 如果试验 E 是向区域内任意取点,事件 A 对 应于点落在 D 内的某区域 A,则
第二讲 古典概型与几何概型
北 ♣♣
♣♣
…
A
2
3
4
西
东 南
e1
e2
……
ek
…
en
第二讲 古典概型与几何概型
设 S ={e1, e2, …en }, 由古典概型的等可能性,得
P{e1} = P{e2 } = ⋯ =P { en }.
又由于基本事件两两互不相容;所以
1 = P{S} = P{e1}+ P{e2}+⋯P{en},
第二讲 古典概型与几何概型
解:E 的样本空间 S={HHH, HHT, HTH, THH, HTT, THT, TTH,TTT}, n = 8,即 S 中包含有限个元素,且由对称性 知每个基本事件发生的可能性相同,属于古典概型. A1为“恰有一次出现正面”,即 A1={HTT, THT, TTH},
第二讲 古典概型与几何概型
人们在长期的实践中总结得到“概率很小的事件 在一次实验中几乎是不发生的”(称之为实际推断 原理)。现在概率很小的事件在一次实验中竟然发 生了,从而推断接待站不是每天都接待来访者,即 认为其接待时间是有规定的。
第10篇 第5节 古典概型与几何概型课件 理 新人教A版 课件
转化与化归思想在几何概型中的应用 [典例] 甲、乙两人约定在6时到7时之间在某处会面, 并约定先到者应等候另一人一刻钟,过时即可离去.求两 人能会面的概率.
分析:(1)考虑甲、乙两人分别到达某处的时间.在平 面直角坐标系内用x轴表示甲到达约会地点的时间,y轴表 示乙到达约会地点的时间,用0分到60分表示6时到7时的时 间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标 (x,y)就表示甲、乙两人分别在6时到7时时间段内到达的时 间.(2)两人能会面的时间必须满足:|x-y|≤15.这就将问题 化归为几何概型问题.
解析:以x轴和y轴分别表示甲、乙两人到达约定地点 的时间,
则两人能够会面的充要条件是|x-y|≤15.
在如图所示平面直角坐标系下,(x,y)的所有可能结果 是边长为60的正方形区域,而事件A“两人能够会面”的可 能结果由图中的阴影部分表示.
由几何概型的概率公式得: P(A)=S阴 S影=6026-02452=36003- 6020025=176. 所以,两人能会面的概率是176.
第5节 古典概型与几何概型
基础梳理
1.古典概型 (1)基本事件的特点 ①任何两个基本事件是 互斥 的; ②任何事件(除不可能事件)都可以表示成基本事件的 和.
(2)古典概型 ①定义:具有以下两个特点的概率模型称为古典概率 模型,简称为古典概型. a.试验中所有可能出现的基本事件只有 有限 个; b.每个基本事件出现的可能性 相等 .
即时突破1 (2013年高考江苏卷)现有某类病毒记作 XmYn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m, n都取到奇数的概率为________.
解析:因为正整数m,n满足m≤7,n≤9, 所以(m,n)所有可能的取值一共有7×9=63(种), 其中m,n都取到奇数的情况有4×5=20(种), 因此所求概率为P=2603. 答案:2603
初中数学_古典概型_基础
古典概型【学习目标】1.正确理解古典概型的特点;2.掌握古典概型的概率计算公式;3.了解整数型随机数的产生与随机模拟实验.【要点梳理】要点一、古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An=计算概率.4.古典概型的概率公式:()AP A=包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC 的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点二、随机数的产生1.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.2.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN=作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.【典型例题】类型一:等可能事件概念的理解例1.判断下列说法是否正确,并说明理由。