(完整版)中考数学图形的初步认识练习题(含答案),推荐文档
完整word版几何图形初步全国中考真题及答案
2021年中考数学分类汇编几何图形初步一.选择题1.〔2021温州〕以下各图中,经过折叠能围成一个立方体的是〔〕A.应选A.B.C.D.2.〔2021宁波〕以下四张正方形硬纸片,剪去阴影局部后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是〔〕A.B.C.D.解答:解:A.剪去阴影局部后,组成无盖的正方体,故此选项不合题意;B.剪去阴影局部后,无法组成长方体,故此选项不合题意;C.剪去阴影局部后,能组成长方体,故此选项正确;D.剪去阴影局部后,组成无盖的正方体,故此选项不合题意;应选:C.3.〔2021福州〕如图,OA⊥OB,假设∠1=40°,那么∠2的度数是〔〕.20°B.40°C.50°D.60°应选C.4.〔2021昭通〕如图是一个正方体的外表展开图,那么原正方体中与“建〞字所在的面相对的面上标的字是〔〕A.美B.丽C.云D.南解答:解:由正方体的展开图特点可得:“建〞和“南〞相对;“设〞和“丽〞相对;“美〞和“云〞相对;应选D.5.〔2021曲靖〕如图是某几何体的三视图,那么该几何体的侧面展开图是〔〕A.B.C.D.解答:解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.应选A.6.〔2021重庆市〕∠A=65°,那么∠A的补角等于〔〕A.125°B.105°C.115°D.95°应选C.7.〔2021百色〕一个几何体的三视图如下图,那么该几何体的侧面展开图的面积为〔〕A.6cm2B.4πcm2C.6πcm2D.9πcm2解答:解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×2×3=6πcm2.应选:C.8.〔2021百色〕∠A=65°,那么∠A的补角的度数是〔A.15°B.35°C.115°D.135°解答:解:∵∠A=65°,∴∠A的补角=180°﹣∠A=180°﹣65°=115°.应选C.9.〔2021台湾〕数轴上A、B、C三点所表示的数分别为AC:CB=1:3,那么以下b、c的关系式,何者正确?〔A.|c|=|b|B.|c|=|b|C.|c|=|b|D.|c|=|b|解答:解:∵C在AB上,AC:CB=1:3,∴|c|=,又∵|a|=|b|,∴|c|=|b|.应选A.〕a、b、c,且〕C在AB上.假设|a|=|b|,10.〔2021台湾〕附图的长方体与以下选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.假设以下有一立体图形的外表积与附图的外表积相同,那么此图形为何?〔〕A.B.C.D.解答:解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的外表积为:6×2+3×2+2×2=22,只有选项B的外表积为:5×2+3+4+5=22.应选:B.11.〔2021自贡〕如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为〔〕A.B.9 C.D.解答:解:∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个正三角形的底面边长为1,高为=,∴侧面积为长为3,宽为3﹣的长方形,面积为9﹣3应选A.12.〔2021资阳〕钟面上的分针的长为1,从9点到9点.30分,分针在钟面上扫过的面积是〔〕A.πB.πC.πD.π解答:解:从9点到9点30分分针扫过的扇形的圆心角是180°,那么分针在钟面上扫过的面积是:=π.应选:A.13.〔2021绵阳〕把如图中的三棱柱展开,所得到的展开图是〔〕A.B.C.D.解答:解:根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱.把图中的三棱柱展开,所得到的展开图是B.应选B.14.〔2021巴中〕如图,是一个正方体的外表展开图,那么原正方体中“梦〞字所在的面相对的面上标的字是〔〕A.大B.伟C.国D.的解答:解:这是一个正方体的平面展开图,共有六个面,其中面“伟〞与面“国〞相对,面“大〞与面“中〞相对,“的〞与面“梦〞相对.应选D.15.〔2021山西省〕如图是一个长方体包装盒,那么它的平面展开图是〔〕A.B.C.D.解答:解:由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B.C、D.不符合长方体的展开图的特征,故不是长方体的展开图.应选A.16.〔2021菏泽〕以下图形中,能通过折叠围成一个三棱柱的是〔〕A.B.C.D.解答:解:A.另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.应选C.17.〔2021大连〕如图,点O在直线AB上,射线OC平分∠DOB.假设∠COB=35°,那么∠AOD 等于〔〕A.35°B.70°C.110°D.145°解答:解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,应选:C.18.〔2021无锡〕圆柱的底面半径为3cm,母线长为5cm,那么圆柱的侧面积是〔〕A.30cm2B.π2C.2.π230cm15cm D15cm解答:解:根据圆柱的侧面积公式,可得该圆柱的侧面积为:2π×3×5=30πcm2.应选B.19.〔2021南京〕如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.以下图形中,是该几何体的外表展开图的是〔〕A.B.C.D.解答:解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.应选B.20.〔2021岳阳〕一个正方体的平面展开图如下图,将它折成正方体后,与汉字“岳〞相对的面上的汉字是〔〕A.建B.设C.和D.谐解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“和〞与“岳〞是相对面,“建〞与“阳〞是相对面,“谐〞与“设〞是相对面.应选C.21.〔2021湘西〕以下图形中,是圆锥侧面展开图的是〔〕A .B .C .D .解答:解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.应选B .22.〔2021随州〕如图是一个长方体形状包装盒的外表展开图.折叠制作完成后得到长方体的容积是〔包装材料厚度不计〕〔 〕A .40×40×70B .70×70×80C .80×80×80D .40×70×80 解答:解:根据图形可知:长方体的容积是: 40×70×80;应选D .23.〔2021荆州〕将一边长为 2的正方形纸片折成四局部,再沿折痕折起来,恰好能不重叠 地搭建成一个三棱锥,那么三棱锥四个面中最小的面积是〔 〕A .1B .C .D .解答:解:最小的一个面是等腰直角三角形,它的两条直角边都是 2÷2=1,1×1÷2=.故三棱锥四个面中最小的面积是 .应选C . 24.〔2021黄石〕直角三角形 ABC 的一条直角边AB=12cm ,另一条直角边BC=5cm ,那么以AB 为轴旋转一周,所得到的圆锥的外表积是〔 〕A .90πcm2B .209πcm2C .155πcm2D .65πcm22π 2解答:解:圆锥的外表积=×10π×13+π×5.应选A .=90cm25.〔2021黄冈〕一个圆柱的侧面展开图为如下图的矩形,那么其底面圆的面积为〔 〕A .πB .4πC .π或4πD .2π或4π解答:解:①底面周长为24π时,半径为4π÷π÷2=2,底面圆的面积为π×2π;②底面周长2=4.为2π时,半径为2π÷π÷2=1,底面圆的面积为π×1π.应选C=26.〔2021恩施州〕如下图,以下四个选项中,不是正方体外表展开图的是〔 〕A .B .C .D .解答:解:选项A ,B ,D 折叠后都可以围成正方体;而C 折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.应选C .27.〔2021天门〕小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒〔如图〕.礼盒每个面上各有一个字,连起来组成“芦山学子加油〞,其中“芦〞的对面是“学〞,“加〞的对面是“油〞,那么它的平面展开图可能是〔〕A.B.C.D.解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,A.“加〞与“子〞是相对面,故本选项错误;B.“芦〞与“子〞是相对面,故本选项错误;C.“芦〞与“子〞是相对面,故本选项错误;D.“芦〞与“学〞是相对面,“山〞与“子〞想相对面,“加〞与“油〞是相对面,故本选项正确.应选D.28.〔2021六盘水〕直尺与三角尺按如下图的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个〔〕A.2个B.3个C.4个D.6个解答:解:与∠1互余的角有∠2,∠3,∠4;一共3个.应选B.29.〔2021河南省〕如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2〞相对的面上的数字是〔〕A.1 B.4 C.5 D.6解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,〕“2〞与“4〞是相对面,“3〞与“5〞是相对面,“1〞与“6〞是相对面.应选B.30.〔2021玉林防城港〕假设∠α=30°,那么∠α的补角是〔〕A.30°B.60°C.120°D.150°解答:解:180°﹣30°=150°.应选D.31.〔2021钦州〕以下四个图形中,是三棱柱的平面展开图的是〔A.B.C.D.解答:A.是三棱锥的展开图,应选项错误;B.是三棱柱的平面展开图,应选项正确;C.两底有4个三角形,不是三棱锥的展开图,应选项错误;D.是四棱锥的展开图,应选项错误.应选B.32.〔2021南宁〕如下图,将平面图形绕轴旋转一周,得到的几何体是〔〕A.B.C.D.解答:解:半圆绕它的直径旋转一周形成球体.应选:A.33.〔2021贵港〕如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共〞字一面的相对面上的字是〔〕A.美B.丽C.家D.园解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“共〞与“园〞是相对面,“建〞与“丽〞是相对面,“美〞与“家〞是相对面.应选D.34.〔2021厦门〕∠A=60°,那么∠A的补角是〔〕A.160°B.120°C.60°D.30°解答:解:∵∠A=60°,∴∠A的补角=180°﹣60°=120°.应选B.二.填空题1.〔2021义乌〕把角度化为度、分的形式,那么°=20°′.解答:解:°=20°30′.故答案为:30.2.〔2021湖州〕把15°30′化成度的形式,那么15°30′=度.解答:解:∵30′度,∴15°30′度;故答案为:.3.〔2021杭州〕四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的外表积分别为S1,2,那么1﹣2S|SS|=〔平方单位〕旋转一周形成的圆柱°.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC的侧面的面积是:2π×2×2=8π,那么|S1﹣S2|=4π.故答案是:4π.4.〔2021泉州〕如图,∠AOB=90°,∠BOC=30°,那么∠AOC=解答:解:由图形可知,∠AOC=∠AOB﹣∠BOC=90°﹣30°=60°.故答案为:60.5.〔2021晋江市〕∠1与∠2互余,∠1=55°,那么∠2=°.解答:解:∠2=90°﹣∠1=90°﹣55°=35°.故答案为:35.6.〔2021曲靖〕如图,直线AB、CD相交于点O,假设∠BOD=40°,OA平分∠COE,那么∠AOE=.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.7.〔2021德宏州〕以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.解答:解:只有图〔1〕、图〔3〕能够折叠围成一个三棱锥.故答案为:〔1〕〔3〕.8.〔2021枣庄〕从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如下图的零件,那么这个零件的外表积为.解答:解:挖去一个棱长为1的小正方体,得到的图形与原图形外表积相等,那么外表积是2×2×6=24.故答案为:24.9.〔2021徐州〕假设∠α=50°,那么它的余角是°.解答:解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.10.〔2021淮安〕如图,三角板的直角顶点在直线l上,看∠1=40°,那么∠2的度数是.解答:解:如图,三角板的直角顶点在直线l上,那么∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.11.〔2021长沙〕∠A=67°,那么∠A的余角等于度.解答:解:∵∠A=67°,∴∠A的余角=90°﹣67°=23°.故答案为:23.12.〔2021咸宁〕在数轴上,点A〔表示整数a〕在原点的左侧,点B〔表示整数的右侧.假设|a﹣b|=2021,且AO=2BO,那么a+b的值为.b〕在原点解答:解:如图,a<0<b.∵|a﹣b|=2021,且AO=2BO,∴b﹣a=2021①,a=﹣2b②,由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671,故答案是:﹣671.13.〔2021咸宁〕如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的外表上,与汉字“香〞相对的面上的汉字是.解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“力〞与“城〞是相对面,“香〞与“泉〞是相对面,“魅〞与“都〞是相对面.故答案为泉.14.〔2021绥化〕直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的外表积是cm2.〔结果保存π〕解答:解:三角形斜边==5〔cm〕,当以3cm的边所在直线为轴旋转一周时,其所得到的几何体的外表积2π?π=π?4+?524=36〔cm2〕;当以4cm的边所在直线为轴旋转一周时,其所得到的几何体的外表积2π?π=π?3+?523=24〔cm2〕;当以5cm的边所在直线为轴旋转一周时,其所得到的几何体为共一个底面的两圆锥,其底面圆的面积=cm,所以此几何体的外表积=?2π??3+?2π??4=π〔cm2〕.故答案为24π,36π,π.15.〔2021德州〕如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.16.〔2021南宁〕一副三角板如下图放置,那么∠ AOB=°.解答:解:根据三角板的度数可得:∠1=45°,∠2=60°,∠AOB=∠1+∠2=45°+60°=105°,故答案为:105.17.〔2021梅州〕假设∠α=42°,那么∠α的余角的度数是解答:解:∵∠α=42°,∴∠α的余角=90°﹣42°=48°.故答案为:48°..。
2023中考九年级数学分类讲解 - 第七讲 图形初步认识(含答案)(全国通用版)
第七讲 图形初步认识专项一 点、线、面、角知识清单1. 两个基本事实:(1)两点确定一条直线;(2)两点之间,线段最短.2. 线段的中点:如图1,B 是线段AC 的中点,则AB=BC= .图1 图23. 线段的和与差:如图2,在线段AC 上取一点B ,则AB+BC= ;AB=AC- ;BC= .4. 角的定义:具有 的两条射线组成的几何图形叫做角,角也可以看作是一条射线绕其端点旋转而形成的几何图形.5. 1周角= º,1平角= º,1直角= º;1º= ′,1′= ″.6. 如果两个角之和等于 ,那么这两个角互为余角(互余);如果两个角之和等于 ,那么这两个角互为补角(互补).同角(或等角)的余角 ;同角(或等角)的补角 . 考点例析例1 互不重合的A ,B ,C 三点在同一直线上,已知AC =2a +1,BC =a +4,AB =3a ,这三点的位置关系是( ) A. 点A 在B ,C 两点之间 B. 点B 在A ,C 两点之间 C. 点C 在A ,B 两点之间D. 无法确定分析:分三种情况讨论:①点A 在B ,C 之间;②点B 在A ,C 之间;③点C 在A ,B 之间.再根据a>0判断. 例2 已知∠α=25°30′,则它的余角为( ) A. 25°30′B. 64°30′C. 74°30′D. 154°30′分析:根据“互为余角的两个角之和为90 º”直接计算即可. 跟踪训练1. 如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( ) A. aB. bC. cD. d① ②第1题图 第2题图第4题图2. 小光准备从A 地去往B 地,打开导航、显示两地距离为37.7 km ,但导航提供的三条可选路线长分别为45 km ,50 km ,51 km (如图).能解释这一现象的数学知识是( ) A. 两点之间,线段最短B. 垂线段最短C. 三角形两边之和大于第三边D. 两点确定一条直线3. 已知线段AB =4,在直线AB 上作线段BC ,使得BC =2.若D 是线段AC 的中点,则线段AD 的长为( ) A. 1B. 3C. 1或3D. 2或34.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图①所ABC ABC示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图②是由边长为4的正方形分割制作的七巧板拼摆而成的“叶问蹬”图,则图中抬起的“腿”(即阴影部分)的面积为()A. 3B. 72C. 2D.525.74°19′30″=°.6.若∠A=34°,则∠A的补角的度数是.专项二相交线知识清单1. 对顶角定义:两角有一个公共顶点,且两角的两边互为反向延长线,具有这种位置关系的两个角互为对顶角.举例:如图,∠1与∠3,∠2与∠4,∠5与,∠6与∠8.性质:对顶角.2. 三线八角(如图)同位角:∠1与∠5,∠2与,∠3与∠7,∠4与.内错角:∠2与∠8,∠3与.同旁内角:∠2与∠5,∠3与.3. 垂线定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,它们的交点叫做.性质:①在同一平面内,过一点有且只有直线与已知直线垂直;②垂线段最短.考点例析例 1 如图1,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD的度数是.图1 图2分析:根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,利用∠AOE+∠COE+∠BOC=180°求得∠BOC的度数,再由对顶角相等求得∠AOD的度数.例2 如图2,设P是直线l外一点,PQ⊥l,垂足为Q,T是直线l上的一个动点,连接PT,则()A. PT≥2PQB. PT≤2PQC. PT≥PQD. PT≤PQ分析:根据垂线段最短即可得到结论.跟踪训练1. 如图,与∠1是内错角的是()A. ∠2B. ∠3C. ∠4D. ∠5第1题图 第2题图 第3题图 第4题图 2. 如图,直线a ,b 相交于点O ,∠1=110°,则∠2的度数是( ) A. 70°B. 90°C. 110°D. 130°3. 如图,下列两个角是同旁内角的是( ) A. ∠1与∠2B. ∠1与∠3C. ∠1与∠4D. ∠2与∠44. 如图,点O 在直线AB 上,OC ⊥OD .若∠AOC =120°,则∠BOD 的度数为( ) A. 30°B. 40°C. 50°D. 60°专项三 平行线知识清单1. 定义:在同一平面内, 的两条直线叫做平行线.2. 公理:经过直线外一点,有且只有 直线与这条直线平行. 推论:如果a ∥b ,c ∥a ,那么 .3. 性质与判定:考点例析例1 如图1,直线l 1∥l 2,直线l 3交l 1于点A ,交l 2于点B ,过点B 的直线l 4交l 1于点C .若∠3=50°,∠1+∠2+∠3=240°,则∠4的度数是( ) A. 80°B. 70°C. 60°D. 50°图1 图2分析:根据“两直线平行,同旁内角互补”得∠1+∠3=180°,从而得到∠2的度数,再求得∠3+∠2的度数.利用“两直线平行,同旁内角互补”得到∠4对顶角的度数,从而得到∠4的度数.例2 (鞍山)如图2,直线a ∥b ,将一个含30°角的三角尺按图中所示的位置放置.若∠1=24°,则∠2的度数为( ) A. 120°B. 136°C. 144°D. 156°分析:过60°角的顶点作c ∥a ,如图所示.根据平行线的性质,先求出∠4的度数,进而求得∠3的度数.再由“两直线平行,同旁内角互补”求得∠2的度数.归纳:将三角尺放在平行线中,三角尺中各内角的度数是隐含条件,结合平行线的性质,把所求角度转化为已知角同旁内角__________ 两直线平行 判定性质 内错角____________ 两直线平行 判定 性质 同位角____________ 两直线平行 判定 性质度或隐含角度的和或差.跟踪训练1. 某同学的作业如下框:如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.第1题图其中※处填的依据是()A. 两直线平行,内错角相等B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,同旁内角互补2. 如图,AM∥BN,∠ACB=90°,∠MAC=35°,则∠CBN的度数是()A. 35°B. 45°C. 55°D. 65°第2题图第3题图第4题图3. 如图,AB∥CD,∠1=45°,∠2=35°,则∠3的度数为()A. 55°B. 75°C. 80°D. 105°4. 一块含30°角的直角三角尺和直尺如图放置.若∠1=146°33′,则∠2的度数为()A. 64°27′B. 63°27′C. 64°33′D. 63°33′5. 将一副三角尺如图所示摆放,则∥,理由是.第5题图6. 如图,AB∥CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F,求证:∠DEF=∠F.第6题图专项四线段垂直平分线与角平分线知识清单1. 线段的垂直平分线性质:线段垂直平分线上的点到线段两端点的相等.判定:到线段两端点距离相等的点在该线段的上.2. 角平分线定义:从一个角的顶点引一条射线,把这个角分成两个的角,这条射线叫做这个角的平分线.性质:角平分线上的点到角两边的距离.判定:角内部到角两边距离相等的点在上.考点例析例1如图1,在△ABC中,AC=4,∠A=60°,∠B=45°,边BC的垂直平分线DE交AB于点D,连接CD,则AB的长为.图1 图2分析:根据线段垂直平分线的性质得到DB=DC,进而可得∠DCB=∠B.利用三角形的外角性质得到∠ADC=90°.由含30°角的直角三角形的性质求出AD,再利用勾股定理求出DC,进而求得AB.归纳:有线段垂直平分线就有等腰三角形,这样不仅有两组相等线段,还有两组相等的角,一组垂直关系.例2 如图2,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A. 8 B. 7.5 C. 15 D. 无法确定分析:过点D作DE⊥BC于点E,如图2所示.根据角平分线的性质得到DE=DA=3,然后利用三角形的面积公式计算.跟踪训练1.如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,连接AE.若AE=4,EC=2,则BC的长是()A. 2B. 4C. 6D. 8第1题图第2题图2.如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A. 10.5B. 12C. 15D. 183.如图,在□ABCD中,AD=4,对角线BD=8,分别以点A,B为圆心,大于12AB的长为半径画弧,两弧相交于点E,F,作直线EF,交对角线BD于点G,连接GA,GA恰好垂直于边AD,则GA的长是()A. 2 B. 3 C. 4 D. 5第3题图第4题图第5题图第6题图4. 如图,AD是△ABC的角平分线.若∠B=90°,BD D到AC的距离是.5. 如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若BC=4,DE=1.6,则BD的长为.6.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E.若CD=3,BD=5,则BE的长为.专项五命题、定理与反证法知识清单1. 命题:判断的语句,叫做命题;命题由和两部分组成,可写成“”的形式.命题分为真命题和命题.判断一个命题为假命题,只需举出一个反例即可.2. 定理:经过推理论证,可以作为推理依据的命题叫做定理.3. 互逆命题和互逆定理:在两个命题中,如果第一个命题的条件是第二个命题的,而第一个命题的结论是第二个命题的,那么这两个命题叫做互逆命题.如果一个定理的逆命题能被证明是命题,那么就叫它是原定理的逆定理.4. 反证法:在证明一个命题时,人们有时先假设命题,从这样的假设出发,经过推理得出和已知条件,或者与定义、基本事实、定理等,从而得出假设命题不成立,即所求证的命题正确. 这种证明方法叫做反证法.考点例析例1 下列命题是真命题的是()A. 正六边形的外角和大于正五边形的外角和B. 正六边形的每一个内角为120°C. 有一个角是60°的三角形是等边三角形D. 对角线相等的四边形是矩形分析:由多边形的外角和都是360º对选项A作出判断;根据多边形的内角和公式及正多边形各内角度数相等对选项B作出判断;利用等边三角形的判定、矩形的判定对选项C,D作出判断.例2 能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A. -1B. x+1C. x=D. x分析:当x2是有理数时,就是反例,所以应求出各选项中x2的值,再判断.归纳:要判断一个命题是真命题,必须经过推理论证;要判断一个命题是假命题,只需举一个反例即可.跟踪训练1.下列命题中,假命题是()A. 直角三角形斜边上的中线等于斜边的一半B. 等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合C. 若AB=BC,则B是线段AC的中点D. 三角形三条边的垂直平分线的交点叫做这个三角形的外心2. 下列命题中,假命题是()A. 两组对边平行的四边形是平行四边形B. 三个角是直角的四边形是矩形C. 四条边相等的四边形是菱形D. 有一个角是直角的平行四边形是正方形3.下列命题:的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;③天气预报明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形.其中真命题的个数是()A. 0 B. 1 C. 2 D. 34. 用反证法证明“在△ABC中,若∠A>∠B>∠C,则∠A>60°”时,应先假设()A. ∠A=60°B. ∠A<60°C. ∠A≠60°D. ∠A≤60°5.下列命题中,真命题的个数为.①所有的正方形都相似;②所有的菱形都相似;③边长相等的两个菱形相似;④对角线相等的两个矩形相似.6. 写出命题“全等三角形对应边相等”的逆命题:.专项六尺规作图知识清单1. 在几何中,把只能使用和这两种工具作图的方法称为尺规作图.2. 五种基本尺规作图:①作一条线段等于已知线段;②作一个角等于已知角;③作角的平分线;④作线段的垂直平分线;⑤过一个点(这个点在直线上或直线外)作已知直线的垂线.考点例析例1 如图1,已知直线l1∥l2,直线l3分别与l1,l2交于点A,B.请用尺规作图法,在线段AB上求作一点P,使点P到l1,l2的距离相等.(保留作图痕迹,不写作法)图1 图2分析:作线段AB的垂直平分线得到线段AB的中点,则该中点即为所求作的点P.解:例2 请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图2,∠O及其一边上的两点A,B,求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.分析:先在∠O的内部作∠DAB=∠O,再过点B作AD的垂线,垂足为C.解:跟踪训练1. 如图,已知直线AB和AB上一点C,过点C作直线AB的垂线,步骤如下:第一步:以点C为圆心,以任意长为半径作弧,交直线AB于点D,E;第二步:分别以点D,E为圆心,以a为半径画弧,两弧交于点F;第三步:作直线CF,直线CF即为所求.下列关于a的说法正确的是()A. a≥12DE的长 B. a≤12DE的长 C. a>12DE的长 D. a<12DE的长第1题图第2题图2. 如图,在△ABC中,∠BAC=70°,∠C=40°,分别以点A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A. 30°B. 40°C. 50°D. 60°3. 如图,在Rt△ABC中,∠ACB=90°,D是斜边AB上一点,且AC=AD.(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.①②第3题图第4题图4.已知△ABC和△CDE都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图①,当BC=CD时,作△ABC的中线BF;(2)如图②,当BC≠CD时,作△ABC的中线BG.专项七平行线中的转化思想知识清单转化思想就是把陌生的问题转化为熟悉的问题,把复杂的问题转化为简单的问题.利用转化思想可以解决平行线中的“折线问题”,转化方法为过折点作平行线,把折角转化为两角的和或者差,图形转化为两条直线平行,利用平行线的性质解答.考点例析例如图,AB∥CD,EF⊥CD于点F.若∠BEF=150°,则∠ABE的度数为()A. 30°B. 40°C. 50°D. 60°分析:过点E作EG∥AB,如图所示.由垂直的定义,得∠EFD=90°,利用平行线的性质得∠GEF的度数,结合∠BEF=150°得到∠BEG的度数,再根据平行线的性质得∠ABE的度数.跟踪训练1. 如图,将一块含有60°角的直角三角尺放置在两条平行线上.若∠1=45°,则∠2的度数为()A. 15°B. 25°C. 35°D. 45°第1题图第2题图第3题图第4题图2. 一把直尺与一块直角三角尺按图中方式摆放.若∠1=47°,则∠2的度数为()A. 40°B. 43°C. 45°D. 47°3. 一副三角尺如图所示放置,两三角尺的斜边互相平行,每个三角尺的直角顶点都在另一个三角尺的斜边上,则图中∠α的度数为()A. 45°B. 60°C. 75°D. 85°4. 如图,一束太阳光线平行照射在放置于地面的正六边形上.若∠1=19°,则∠2的度数为()A. 41°B. 51°C. 42°D. 49°参考答案专项一点、线、面、角例1 A 例2 B1. A2. A3. C4. A5. 74.3256. 146°专项二相交线例1 60 例2 C1. C2. C3. B4. A专项三平行线例1 B 例2 C1. C2. C3. C4. B5. BC ED 内错角相等,两直线平行6. 证明:因为AB∥CD,所以∠DCF=∠B.因为∠B=∠D,所以∠DCF=∠D.所以AD∥BC.所以∠DEF=∠F.专项四线段垂直平分线与角平分线例1 2+例2 B1. C2. C3. B4.5. 2.46. 4专项五命题、定理与反证法例1 B 例2 C1. C2. D3. B4. D5. 16. 三组对应边相等的两个三角形全等专项六尺规作图例1 如图1,点P即为所求作.图1 图2例2 如图2,Rt△ABC即为所求作.1. C2. A3. (1)解:如图,AE即为所求作.①②第3题图第4题图(2)证明:因为AE平分∠BAC,所以∠CAE=∠DAE.在△ACE和△ADE中,AC=AD,∠CAE=∠DAE,AE=AE,所以△ACE≌△ADE(SAS). 所以∠ADE=∠C=90°.所以DE⊥AB.4. 解:(1)如图①,线段BF即为所求作.(2)如图②,线段BG即为所求作.专项七平行线中的转化思想例 D1. A2. B3. C4. A。
4.1 最新中考数学复习:《图形的初步认识》近8年全国中考题型大全(含答案)
1图形的初步认识一、选择题1. (2015 浙江省金华市)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是( )A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD 折叠,两条折痕的交点为O ,测得OA =OB ,OC =OD2. (2017 湖北省仙桃潜江天门江汉油田) 2017湖北天门,3,3分)如图,已知AB ∥CD ∥EF ,FC 平分∠AFE ,∠C =25°,则∠A 的度数( )F E D CBA A .25°B .35°C .45°D .50°3. (2018 贵州省铜仁地区) 在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm4. (2018 山东省德州市) (4.00分)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C .图③D.图④5. (2018 山东省聊城市) (3.00分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115° C.120° D.125°6. (2018 山东省潍坊市)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°7. (2019 河北省) (3分)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC28. (2019 湖北省鄂州市) (3分)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为()A.45°B.55°C.65°D.75°9. (2019 湖北省仙桃潜江天门江汉油田) (3分)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A.20°B.25°C.30°D.35°10. (2019 吉林省) (2分)曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点之间,线段最短 B.平行于同一条直线的两条直线平行C.垂线段最短 D.两点确定一条直线11. (2019 江苏省常州市) 如图,在线段PA、PB、PC、PD中,长度最小的是()3A.线段PA B.线段PB C.线段PC D.线段PD12. (2019 江苏省宿迁市) (3分)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100° C.75°D.60°13. (2019 山东省东营市) (3分)将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF等于()A.75°B.90°C.105° D.115°14. (2019 山东省济宁市) (3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A.65°B.60°C.55°D.75°415. (2019 山东省淄博市) (4分)如图,小明从A处沿北偏东40︒方向行走至点B 处,又从点B处沿东偏南20方向行走至点C处,则ABC∠等于()A.130︒B.120︒C.110︒D.100︒16. (2019 陕西省) 如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°17. (2019 四川省成都市) (3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°18. (2019 四川省资阳市) (4分)如图,l1∥l2,点O在直线l1上,若∠AOB=90°,∠1=35°,则∠2的度数为()A.65°B.55°C.45°D.35°56 19. (2019 浙江省宁波市) (4分)已知直线m ∥n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若∠1=25°,则∠2的度数为( )A .60°B .65°C .70°D .75°20. (2019 广西防城港市) (3分)如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D .21. (2019 广西防城港市) (3分)将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .60︒B .65︒C .75︒D .85︒22. (2019 广西玉林市) (3分)若2945α=︒',则α的余角等于( )A .6055︒'B .6015︒'C .15055︒'D .15015︒'23. (2019 四川省攀枝花市) (3分)如图,//AB CD ,AD CD =,150∠=︒,则2∠的7度数是( )A .55︒B .60︒C .65︒D .70︒二、填空题24. (2018 江苏省南京市) 如图,五边形ABCDE 是正五边形,若12//l l ,则12∠-∠= .25. (2019 湖南省娄底市) 如图,//AB CD ,//AC BD ,128∠=︒,则2∠的度数为 .26. (2019 江苏省扬州市) (3分)将一个矩形纸片折叠成如图所示的图形,若∠ABC =26°,则∠ACD = °.27. (2019 山东省菏泽市)如图,AD ∥CE ,∠ABC =100°,则∠2﹣∠1的度数是 .828. (2019 浙江省金华市) (4分)如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是 .29. (2019 山东省威海市) (3分)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=23°,则∠2= °.30. (2019 辽宁省大连市) (3分)如图//AB CD ,//CB DE ,50B ∠=︒,则D ∠= ︒.参考答案一、选择题1. 考点折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质.分析根据平行的判定逐一分析作出判断:A. 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线a,b互相平行;B. 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线a,b互相平行;C.如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线a,b互相平行;D. 如图4,由OA=OB,OC=OD,AOC BOD∠∠≌,从而得CAO DBO=,=得AOC BOD∠∠∆∆再根据“内错角相等,两直线平行”的判定可判定纸带两条边线a,b互相平行. 故选C.2.思路分析∵CD∥EF,∠C=25°∴∠C=∠CFE=25°,又∵CF平分∠AFE,∴∴∠AFE=2∠CFE=50°,∵AB∥CD,∴∠A=∠AFE=50°.标准答案D,点评本题考查了平行线的性质和角平分线的性质。
2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解
2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒C.40︒D.30︒2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A.B.C.D.∠的大3.(2024·北京·中考真题)如图,直线AB和CD相交于点O,OE OC∠=︒,则EOBAOC⊥,若58小为()A.29︒B.32︒C.45︒D.58︒4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A.B.C.D.11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意B.意吉如C.吉意如D.意如吉12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”)A.校B.安C.平D.园13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A .三棱锥B .圆锥C .三棱柱D .长方体16.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A .热B .爱C .中D .国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点 B .C 点 C .D 点 D .E 点29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=( )A .10︒B .15︒C .20︒D .30︒30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(答案详解)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A .60︒B .50︒C .40︒D .30︒ 【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A .B .C .D .【答案】C【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3.(2024·北京·中考真题)如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒ 【答案】B 【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒−︒−=︒,故选:B .4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为( )A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒ 【答案】C 【分析】本题考查了平行线的性质,根据两直线平行,同旁内角互补求解即可.【详解】解:∵AB CD ∥,∴180BEF EFD ∠+∠=︒,∵64EFD ∠=︒,∴116180EFD BEF ∠︒∠==︒−,故选:C .6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒ 【答案】B 【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=︒,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=︒,∵1120∠=︒,∴218012060∠=︒−︒=︒, 故选:B .7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=︒,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=︒∴,145B ∠=︒,18035C B ∴∠=︒−∠=︒,∥Q BC DE ,35D C ∴∠=∠=︒.故选B .8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒由题意得3150∠=∠=︒,590∠=∴2418090390∠=∠=︒−︒−∠=︒故选:B .9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒【答案】C【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C . 10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A .B .C .D .【答案】D【分析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.【详解】解:圆锥的侧面展开图是扇形.故选:D .11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A 、B 、C 处依次写上的字可以是( )A .吉 如 意B .意 吉 如C .吉 意 如D .意 如 吉【答案】A 【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是()A.校B.安C.平D.园【答案】A【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答.【详解】解:与“共”字所在面相对面上的汉字是“校”,故选:A.13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【答案】C【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C.14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【答案】B【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B.15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了常见几何体的展开图,掌握常见几何体展开图的特点是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴该几何体是三棱柱,故选:C .16.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒ 【答案】A【分析】本题考查了平行线的性质,由ABCD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD , ∴60CDB ∠=︒, ∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒−∠−∠=︒,故选:A .18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒ 【答案】B 【分析】题目主要考查根据平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒−∠−∠=︒,故选:B19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】本题考查了平行线的性质,对顶角的性质,补角的定义等知识,利用平行线的性质得出180AEF CGE +∠=︒∠,得出结合对顶角的性质180AEF DGF ∠+∠=︒,根据邻补角的定义得出180AEF BEG ∠+∠=︒,即可求出中与AEF ∠互补的角,即可求解.【详解】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒ DE GF ,450=∠=︒故选:B .21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒−︒=︒,故选:C .22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒【答案】C 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 180,根据平行线分线段成比例得出AOM ∠180一定成立,故的中点,24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒【答案】C 【分析】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.根据两直线平行,同旁内角互补即可得出结果.【详解】AB CD180ABC BCD ∴∠+∠=︒120ABC ∠=︒60BCD ∴∠=︒ 故选:C25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒【答案】B 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:∠=∠=︒由题意得:3230∠=︒−∠−︒=︒∴1180345105故选:B.27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A最远的点是()A.B点B.C点C.D点D.E点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A距离最远的顶点是C,故选:B.29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=()A.10︒B.15︒C.20︒D.30︒【答案】B【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性∠=︒,再根据平角的定义求解,即可解题.质得到3135【详解】解:如图,∠=︒,直角三角板位于两条平行线间且145∴∠=︒,3135又直角三角板含30︒角,∴︒−∠−∠=︒,1802330∴∠=︒,215故选:B.30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为()A .25︒B .35︒C .45︒D .55︒ 【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,ABCD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒【答案】C 【分析】本题考查了平行线的性质,垂直的定义,度分秒的计算等,先利用垂直定义结合已知条件求出125.8BAD ∠=︒,然后利用平行线的性质以及度分秒的换算求解即可.【详解】解∶∵AB AC ⊥,135.8∠=,∴19035.8125.8BAD BAC ∠=∠+∠=︒+︒=︒,∵AD BC ∥,∴180B BAD ∠+∠=°,∴18054.25412B BAD '∠=︒−∠=︒=︒,故选∶C .二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °. 【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒, ∴2135∠=∠=︒.故答案为:35.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒−∠=︒;故答案为:109︒36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .【答案】120︒/120度【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒−︒=︒,故答案为:120︒.37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.【答案】66【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .【答案】50︒/50度【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为120︒,即120EFA FAB ∠=∠=︒,则可求得GFA ∠的度数,根据平行线的性质可求得FAH ∠的度数,进而可求出HAB ∠的度数,再根据三角形内角和定理即可求出ABI ∠的度数. 【详解】解:∵正六边形的内角和(62)180720=−⨯=︒, 每个内角为:7206120︒÷=︒,120EFA FAB ∴∠=∠=︒, 20EFG ∠=︒,12020100GFA ∴∠=︒−︒=︒, AH FG ∥,180G FAH FA ∠=︒∴∠+,180********GFA FAH =︒−∠=︒−︒=︒∴∠, 1208040HAB FA FAH B ∴∠=∠−︒−︒=︒∠=,BI AH ⊥,90BIA ∴∠=︒,904050ABI ∴∠=︒−︒=︒.故答案为:50︒.39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ; (2)143B C D △的面积为 . ,证明()11SAS AC D ACD ≌)证明()11SAS AB D ABD ≌三点共线,得11112AB D AC D S △△+=,继而得出113AB D =△,证明3C AD △99CAD S ==△,推出S △【详解】解:(1)连接11B D 、1B ∵ABC 的面积为ABD S S △=∵点A ,1C ,1AC AC =和ACD 中,CAD , ∴()11SAS AC D ACD ≌111AC D ACD S S ==△△,∠11AC D △的面积为1,故答案为:1;)在11AB D 和△1AB AD BAD AD =∠∴()11SAS AB D ABD ≌111AB D ABD S S ==△△,∠180BDA CDA ∠+∠=︒1111180B D A C D A ∠+∠=和ACD 中,3AD AD,3C ∠CAD △,332233C AD CADS AC SAC ⎫==⎪⎭33C AD =△1AC C =【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB=),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1图2图3(1)直接写出ADAB的值;(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是()图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)【答案】(1)2;(2)C;∴所用卡纸总费用为:⨯+⨯+⨯=(元).202533158。
【精品】中考数学总复习图形的认识初步-精练精析含答案解析
图形的性质——图形的认识初步2一.选择题(共8小题)1.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.2.下列图形哪一个是正方体的表面展开图()A.B.C.D.3.下列图形中,不是正方体表面展开图的是()A. B.C.D.4.如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.5.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A.B.C.D.6.骰子可以看做是一个小立方体(如图),它相对两面之和的点数之和是7,下面展开图中符合规则的是()A.B.C.D.7.如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形()A.B.C.D.8.下列哪个图形经过折叠能围成一个正方体()A. B.C.D.二.填空题(共7小题)9.如图,点C在直线MN上,AC⊥BC于点C,∠1=65°,则∠2=_________ °.10.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是_________ .11.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是_________ .12.若∠α补角是∠α余角的3倍,则∠α=_________ .13.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是_________ .14.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_________ .15.一副三角板如图所示放置,则∠AOB=_________ °.三.解答题(共8小题)16.根据图中多面体的平面展开图,写出多面体的名称17.直线AB上有A、B、C、D四个点,如图,现要在直线AB上找一点M,使得A、B、C、D四点到M点的距离之和最小,试分析M点可能的位置.18.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.19.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=_________ ;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.20.如图所示,OE平分∠AOC,OF平分∠BOC,若∠AOB+∠EOF=156°,求∠EOF的度数.21.已知如图,∠BOC和∠AOC的比是3:2,OD平分∠AOB,∠COD=10°,求∠AOB的度数.22.如图所示,OE和OD分别是∠AOB和∠BOC的平分线,且∠AOB=90°.(1)若∠BOC=40°,求∠EOD的度数;(2)若∠AOB+∠BOC=x°,直接写出用含x的式子表示∠EOD的度数.23.已知∠AOB=α,过点O任作一射线OC,OM平分∠AOC,ON平分∠BOC,(1)如图,当OC在∠AOB内部时,试探寻∠MON与α的关系;(2)当OC在∠AOB外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由.图形的性质——图形的认识初步2参考答案与试题解析一.选择题(共8小题)1.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选:B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.2.下列图形哪一个是正方体的表面展开图()A.B.C.D.考点:几何体的展开图.分析:根据展开图中每个面都有对面,可得答案.解答:解:解:由四棱柱四个侧面和上下两个底面的特征可知,C选项可以拼成一个正方体;而A、B、D选项,有两个面重合的现象,故不是正方体的展开图;故选:C.点评:考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.3.下列图形中,不是正方体表面展开图的是()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:A围成几何体时,有两个面重合,故不能围成正方体;B、C、D均能围成正方体.故选A.点评:本题考查了几何体的展开图,熟练掌握正方体的表面展开图是解题的关键.4如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.考点:展开图折叠成几何体.专题:常规题型.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有蓝圆圈与灰色圆圈的两个面是相对面,故A、B选项错误;又有蓝色圆圈的面与红色三角形的面相邻时应该是三角形的直角边所在的边与蓝色圆圈的面相邻,即折叠后有蓝色圆圈的面应是左面或下面,所以C选项不符合,故C选项错误;D选项符合.故选D.点评:本题主要考查了正方体的展开折叠问题,要注意相对两个面上的图形,从相对面入手,分析及解答问题比较方便.5.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A.B.C.D.考点:展开图折叠成几何体.分析:在验证立方体的展开图时,要细心观察每一个标志的位置是否一致,然后进行判断.解答:解:根据展开图中各种符号的特征和位置,可得墨水在B盒子里面.故选:B.点评:本题考查正方体的表面展开图及空间想象能力.易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.6.骰子可以看做是一个小立方体(如图),它相对两面之和的点数之和是7,下面展开图中符合规则的是()A.B.C D.考点:展开图折叠成几何体.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.解答:解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是相对面,4点与6点是相对面,2点与5点是相对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是相对面,1点与5点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是相对面,5点与2点是相对面,1点与6点是相对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是相对面,3点与4点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形()A.B.C.D.考点:展开图折叠成几何体.分析:根据相邻面、对面的关系,可得答案.解答:解:圆面的临面是长方形,长方形不指向圆,故选;B.点评:本题考查了展开图折成几何体,相邻面间的关系是解题关键.8.下列哪个图形经过折叠能围成一个正方体()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.解答:解:A、折叠后有两个侧面重合,缺少下面,故A不能折叠成正方体;B、折叠后有两个侧面重合,缺少一个侧面,故C不能折叠成正方体;C、能折叠成正方体;D、折叠后两个上面重合,缺少下面,故D不能折叠成正方体.故选;C.点评:本题考查了债开图折叠成几何体,每一个面都有唯一的一个对面的展开图才能折叠成正方体.二.填空题(共7小题)9.如图,点C在直线MN上,AC⊥BC于点C,∠1=65°,则∠2=25 °.考点:余角和补角.分析:直接利用互余的两个角的和为90度,即可解答.解答:解:∵AC⊥BC,∠1=65°∴∠2=90°﹣∠1=90°﹣65°=25°.故答案为:25°.点评:此题考查余角的意义,掌握互余的两个角的和为90°,结合图形解决问题.10.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是(1)(3).考点:展开图折叠成几何体.专题:压轴题.分析:由平面图形的折叠及三棱锥的展开图解题.解答:解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).点评:本题考查了展开图折叠成几何体的知识,属于基础题型.11.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是135°.考点:角的计算.专题:计算题.分析:先根据对顶角相等求出∠AOC的度数,根据垂直的定义求出∠AOE,然后相加即可得解.解答:解:∵OE⊥AB,∴∠AOE=90°,∵∠BOD=45°,∴∠AOC=∠BOD=45°,∴∠COE=∠AOE+∠AOC=90°+45°=135°.故答案为:135°.点评:本题考查了对顶角相等的性质,垂直的定义,根据图形找出角的关系代入数据进行计算即可,比较简单.12.若∠α补角是∠α余角的3倍,则∠α=45°.考点:余角和补角.分析:分别表示出∠α补角和∠α余角,然后根据题目所给的等量关系,列方程求出∠α的度数.解答:解:∠α的补角=180°﹣α,∠α的余角=90°﹣α,则有:180°﹣α=3(90°﹣α),解得:α=45°.故答案为:45°.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.13.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“力”与“城”是相对面,“香”与“泉”是相对面,“魅”与“都”是相对面.故答案为泉.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.15.一副三角板如图所示放置,则∠AOB=105 °.考点:角的计算.分析:根据三角板的度数可得:∠2=45°,∠1=60°,再根据角的和差关系可得∠AOB=∠1+∠2,进而算出角度.解答:解:根据三角板的度数可得:∠2=45°,∠1=60°,∠AOB=∠1+∠2=45°+60°=105°,故答案为:105.点评:此题主要考查了角的计算,关键是掌握角之间的关系.三.解答题(共8小题)16.根据图中多面体的平面展开图,写出多面体的名称考点:几何体的展开图.分析:由平面展开图的特征以及长方体、三棱柱、圆柱等几何体的特征作答.解答:解:由平面展开图的特征可知,从左边第一个是长方体,第二个是三棱柱,第三个是圆柱.点评:考查了几何体的展开图,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.17.直线AB上有A、B、C、D四个点,如图,现要在直线AB上找一点M,使得A、B、C、D四点到M点的距离之和最小,试分析M点可能的位置.考点:直线、射线、线段.分析:分别讨论M的位置:①A、D之间;②D、C之间;③C、B之间,然后即可确定位置.解答:解:①若M在A、B(包含A,不包含B)之间,如图①所示:则总路程为:AM+DM+CM+BM=AB+CD+2DM;②若M在B、C(包含B,包含C)之间,如图②所示:则总路程为:AM+DM+CM+BM=AB+CD;③若M在C、D(不包含C,包含D)之间,如图③所示:则总路程为:AM+DM+CM+BM=AB+CD+2CM.综上可得M在C、D处或C、D之间使得A、B、C、D四点到M点的距离之和最小.点评:本题考查的是比较线段的大小,关键是分类讨论,要使总路程和最短,就要保证重复走的路程最小.18.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.考点:角平分线的定义.专题:证明题.分析:利用∠AOB+∠BOC=180°,由OE、OF分别是∠AOB和∠BOC的平分线,求出∠EOB+∠BOF=90°,即可得出结论.解答:解:∵∠AOB+∠BOC=180°,∵OE、OF分别是∠AOB和∠BOC的平分线,∴∠AOE=∠EOB,∠BOF=∠FOC,∵∠AOE+∠EOB+∠BOF+∠FOC=180°,∴∠EOB+∠BOF=90°,∴OE⊥OE.点评:本题主要考查了角平分线及垂线,解题的关键是利用角平分线求解.19.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=40°;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.考点:角平分线的定义.分析:(1)设∠CON=∠BON=x°,∠MOC=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,由∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°=80,可得∠MON=∠MOB+∠NOB,即可求解.(2)由∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON可得结论.解答:解:(1)∵ON平分∠BOC,∴∠CON=∠BON,设∠CON=∠BON=x°,∠MOB=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,又∵OM平分∠AOC∴∠AOM=∠COM=2x°+y°,∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°∵∠AOB=80°∴2(x+y)°=80°,∴x°+y°=40°∴∠MON=∠MOB+∠NOB=x°+y°=40°故答案为:40°.(2)2∠MON=∠AOB.理由如下:∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON.点评:本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.20.如图所示,OE平分∠AOC,OF平分∠BOC,若∠AOB+∠EOF=156°,求∠EOF的度数.考点:角的计算;角平分线的定义.分析:首先根据角平分线的定义以及角度的和、差得到∠AOB和∠EOF的关系,即可求解.解答:解:∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC,∠COF=∠BOC,∴∠EOF=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB.又∵∠AOB+∠EOF=156°,∴∠EOF=52°.点评:本题考查了角度的计算,以及角平分线的定义,正确证明∠EOF=∠AOB是关键.21.已知如图,∠BOC和∠AOC的比是3:2,OD平分∠AOB,∠COD=10°,求∠AOB的度数.考点:角的计算;角平分线的定义.分析:设∠BOC=3x,则∠AOC=2x,则∠AOB=5x,根据角平分线定义,利用x可以表示出∠AOD,然后根据∠COD=10°即可列方程求得x的值,从而求得∠AOB的度数.解答:解:∵∠BOC和∠AOC的比是3:2,∴设∠BOC=3x,则∠AOC=2x,则∠AOB=5x,∵OD平分∠AOB,∴∠AOD=x,则x﹣2x=10,解得:x=20,则∠AOB=100°.点评:本题考查了角度的计算,正确设未知数.列方程是关键.22.如图所示,OE和OD分别是∠AOB和∠BOC的平分线,且∠AOB=90°.(1)若∠BOC=40°,求∠EOD的度数;(2)若∠AOB+∠BOC=x°,直接写出用含x的式子表示∠EOD的度数.考点:角的计算;角平分线的定义.分析:(1)根据角平分线定义求出∠BOE=∠AOB=45°,∠BOD=∠BOC=20°,代入∠EOD=∠BOE+∠BOD求出即可;(2)根据角平分线定义求出∠BOE=∠AOB,∠BOD=∠BOC,代入∠EOD=∠BOE+∠BOD求出即可.解答:解:(1)∵OE和OD分别是∠AOB和∠BOC的平分线,∠AOB=90°,∠BOC=40°,∴∠BOE=∠AOB=45°,∠BOD=∠BOC=20°,∴∠EOD=∠BOE+∠BOD=45°+20°=65°;(2)∵OE和OD分别是∠AOB和∠BOC的平分线,∠AOB+∠BOC=x°,∴∠BOE=∠AOB,∠BOD=∠BOC,∴∠EOD=∠BOE+∠BOD=(∠AOB+∠BOC)=x°.点评:本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠EOD=(∠AOB+∠BOC).23.已知∠AOB=α,过点O任作一射线OC,OM平分∠AOC,ON平分∠BOC,(1)如图,当OC在∠AOB内部时,试探寻∠MON与α的关系;(2)当OC在∠AOB外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由.考点:角的计算;角平分线的定义.分析:(1)根据角平分线的性质,可得∠NOC与∠BOC的关系,∠COM与∠COA的关系,根据角的和差,可得答案;(2)根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COM的度数,∠CON的度数,根据角的和差,可得答案.解答:解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=,∠COM=∠COA.∵∠CON+∠COM=∠MON,∴∠MON=(BOC+AOC)=α;(2)如图:,∵OM平分∠AOC,ON平分∠BO C,∴∠MOC=(∠AOB+∠BOC),∠CON=BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC﹣∠CON=(AOB+∠BOC)﹣∠BOC=∠AOB=α.点评:本题考查了角的计算,利用了角平分线的性质,角的和差.。
中考数学考点集训分类训练11 图形的初步认识(含答案)
分类训练11 图形的初步认识命题点1直线、线段和角 1(2022北京)如图,利用工具测量角,则∠1的大小为( )A.30°B.60°C.120°D.150°2(2022柳州)如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是( )A.①B.②C.③D.④3(2022常州)如图,斑马线的作用是引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行4(2022连云港)已知∠A的补角是60°,则∠A= °.5(2022湘潭)如图,一束光沿CD方向,先后经过平面镜OB,OA反射后,沿EF方向射出,已知∠AOB=120°,∠CDB=20°,则∠AEF= .命题点2相交线与角平分线6(2022苏州)如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是( )A.25°B.30°C.40°D.50°(第6题) (第7题)7(2022河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为( ) A.26° B.36° C.44° D.54°8(2022株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB 于点M,ON⊥BC于点N,若OM=ON,则∠ABO= 度.命题点3平行线的判定与性质9(2022滨州)如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为( )A.58°B.68°C.78°D.122°10(2022泸州)如图,直线a∥b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是( ) A.30° B.40° C.50° D.70°(第10题) (第11题)11(2022鄂州)如图,直线l1∥l2,点C,A分别在l1,l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为( ) A.10° B.15° C.20° D.30°12(2022山西)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为( ) A.100° B.120° C.135° D.150°(第12题) (第13题) 13(2022海南)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是( ) A.80° B.100° C.120° D.140°14(2022济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 .15(2022宜昌)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方向,则∠ACB的大小是 .16(2022扬州)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND= °.命题点4命题17(2022达州)下列命题是真命题的是( )A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a<b,则ac2<bc2D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1318(2022台州)如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是( )A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC19(2022无锡)请写出命题“如果a>b,那么b-a<0”的逆命题: .分类训练11 图形的初步认识1.A2.B3.A4.120 【解析】 ∠A=180°-60°=120°.5.40° 【解析】 由题易知∠EDO=∠CDB=20°,∠AEF=∠OED.在△ODE中,∠OED=180°-∠EOD-∠EDO=180°-120°-20°=40°,∴∠AEF=∠OED=40°.6.D7.B8.15 【解析】 ∵OM⊥AB,ON⊥BC,OM=ON,∴BO平分∠ABC,则∠ABO=1∠2×30°=15°.ABC=129.A 【解析】 ∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABC=122°,∴∠BCD=180°-122°=58°.10.B 【解析】 因为a∥b,所以∠BAC+∠2=∠1=130°.因为AB⊥AC,所以∠BAC=90°,所以∠2=130°-∠BAC=130°-90°=40°.11.B 【解析】 由尺规作图可知AC=BC,∴∠CAB=∠CBA.∵∠BCA=150°,∴∠CAB=∠CBA=15°.∵l1∥l2,∴∠1=∠CBA=15°.12.B 【解析】 ∵DE∥CB,∠C=90°,∴∠DAC=∠C=90°.又∠BAC=30°,∴∠DAB=90°+30°=120°.13.B 【解析】 如图,∵∠1=140°,∴∠4=180°-140°=40°.∵△ABC是等边三角形,∴∠A=60°.∵m∥n,∴∠2=∠3=40°+60°=100°.14.53°28' 【解析】 由平行线的性质,可得∠2=180°-∠1=180°-126°32'=53°28'.15.85° 【解析】 由题意可知,∠DAC=50°,∠EBC=35°.如图,过点C作CF∥AD,则CF∥BE,∴∠ACF=∠DAC=50°,∠BCF=∠EBC=35°,∴∠ACB=50°+35°=85°.16.105 【解析】 ∵∠BAC=90°,∠EDF=90°,∠E=60°,∠C=45°,∴∠F=30°,∠B=45°.∵EF∥BC,∴∠NDB=∠F=30°,∴∠BND=180°-∠B-∠NDB=180°-45°-30°=105°.一题多解如图,∵EF∥BC,∠E=60°,∴∠GDC=∠E=60°,∴∠AGD=60°+45°=105°,∴∠AND=180°-105°=75°,∴∠BND=180°-75°=105°.17.D18.D 【解析】 ∵AB=AC,且AD⊥BC,∴AP垂直平分线段BC,∴PB=PC,故A 中命题是真命题.∵PB=PC,且AD⊥BC,∴AP垂直平分线段BC,∴AB=AC,故B中命题是真命题.∵AB=AC,且∠1=∠2,∴AD⊥BC,BD=CD,∴AP垂直平分线段BC,∴PB=PC,故C中命题是真命题.已知PB=PC,∠1=∠2,不能证明△APB≌△APC,∴AB和AC不一定相等,故D中命题是假命题.故选D.19.如果b-a<0,那么a>b。
中考数学复习----《图形初步认识之角》知识点总结与练习题(含答案解析)
中考数学复习----《图形初步认识之角》知识点总结与练习题(含答案解析)知识点总结1.方向角:方向角的表示方法为角度+距离。
在表达时将北或南放在前,然后加上偏离方向与角度。
如北偏东50°。
2.角的计算:即角的度数的计算。
3.余角和补角:若∠A+∠B=90°,则∠A与∠B互余,其中一个角是另一个的余角;若∠A+∠B=180°,则∠A与∠B互补,其中一个角是另一个的补角;练习题1、(2022•烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是()A.北偏东70°B.北偏东75°C.南偏西70°D.南偏西20°【分析】根据题意可得∠ABC=75°,AD∥BE,AB=AC,再根据等腰三角形的性质可得∠ABC=∠C=75°,从而求出∠BAC的度数,然后利用平行线的性质可得∠DAB=∠ABE=40°,从而求出∠DAC的度数,即可解答.【解答】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∵AD∥BE,∴∠DAB=∠ABE=40°,∴∠DAC=∠DAB+∠BAC=40°+30°=70°,∴小岛C相对于小岛A的方向是北偏东70°,故选:A.2、(2022•益阳)如图,PA,PB表示以P为起点的两条公路,其中公路PA的走向是南偏西34°,公路PB 的走向是南偏东56°,则这两条公路的夹角∠APB=°.【分析】根据题意可得∠APC=34°,∠BPC=56°,然后进行计算即可解答.【解答】解:如图:由题意得:∠APC=34°,∠BPC=56°,∴∠APB=∠APC+∠BPC=90°,故答案为:90.3、(2022•百色)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为°.【分析】根据三角形外角定理进行计算即可得出答案.【解答】解:根据题意可得,∠BAC=90°+45°=135°.故答案为:135.4、(2022•湘潭)如图,一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,已知∠AOB =120°,∠CDB=20°,则∠AEF=.【分析】根据平面镜反射的规律得到∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,根据三角形内角和定理求出∠OED的度数,即可得到∠AEF=∠OED的度数.【解答】解:∵一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,∴∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,∠OED=180°﹣∠AOB﹣∠EDO=180°﹣120°﹣20°=40°,∴∠AEF=∠OED=40°.故答案为:40°.5、(2022•甘肃)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°【分析】根据互余两角之和为90°计算即可.【解答】解:∵∠A=40°,∴∠A的余角为:90°﹣40°=50°,故选:A.6、(2022•玉林)已知:α=60°,则α的余角是°.【分析】根据如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角即可得出答案.【解答】解:90°﹣60°=30°,故答案为:30.7、(2022•连云港)已知∠A的补角为60°,则∠A=°.【分析】根据补角的定义即可得出答案.【解答】解:∵∠A的补角为60°,∴∠A=180°﹣60°=120°,故答案为:120.。
2025年中考数学一轮复习:图形的初步认识(附答案解析)
第1页(共22页)2025年中考数学一轮复习:图形的初步认识
一.选择题(共10小题)
1.如图,OA 是北偏东30°方向的一条射线,若∠BOA =90°,则OB 的方位角是(
)
A .西北方向
B .北偏西30°
C .北偏西60°
D .西偏北60°
2.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是(
)
A .和
B .谐
C .社
D .会
3.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为(
)A .4B .6C .12D .8
4.计算机层析成像(CT )技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是(
)。
中考数学专项练习图形认识初步(含解析)
中考数学专项练习图形认识初步(含解析)【一】单项选择题1.能用∠α、∠AOB、∠O三种方式表示同一个角的图形是〔〕A. B.C. D.2.假设∠A=35°16′,那么其余角的度数为〔〕A.54°44′B.54°84′C.55°44′D.144°44′3.用平面去截四棱柱,在所得的截面中,不可能出现的是〔〕A.七边形B.四边形C.六边形D.三角形4.图形哪些是正方体的展开图〔〕A.〔1〕〔2〕〔3〕B.〔2〕〔3〔4〕 C.〔1〕〔3〕〔4〕 D.〔1〕〔2〕〔4〕5.如图,∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,那么∠A OB的度数为〔〕A.14°B.28°C.32°D.40°6.如图,用平面截圆锥,所得的截面图形不可能是〔〕A.B.C.D.7.如下图,O是直线AB上一点,图中小于180°的角共有〔〕A.7个B.9个C.8个D.10个8.如图,AB∥CD,∠C=35°,BC平分∠ABE,那么∠ABE的度数是()A.17.5°B.35°C.70°D.105°9.如下图,小于平角的角有〔〕A.9个B.8个C.7个D.6个10.用一副七巧板,不能拼成以下哪种图形〔〕A.三角形B.正方形C.长方形 D.凸八边形【二】填空题11.钟表上的时间是2时30分,此时时针与分针所成的夹角是_______ _度.12.如图,∠AOC=150°,那么射线OA的方向是________13.比较大小:32.5°________32°5'〔填〝>〞、〝=〞或〝<〞〕.14.如图,OD、OE分别是∠AOC的平分线,∠AOD=40°,∠BOE=2 5°,求∠AOB的度数.解:因为OD平分∠AOC,OE平分∠BOC〔〕.所以∠AOC=2∠AOD,∠BOC=2________,因为∠AOD=40°,________=25°〔〕所以∠AOC=2×40°=80°〔等量代换〕,∠BOC=2×________=________.所以∠AOB=________.15.如图,将三角形ABC纸片沿MN折叠,使点A落在点A′处,假设∠A′MB=55°,那么∠AMN=________°.16.如果一个角与它的余角之比为1:2,那么这个角为________度.17.比较大小:32.15°________2×16°6′.〔填〝>〞或〝<〞号〕【三】计算题18.计算:〔1〕49°38′+66°22′;〔2〕180°﹣79°19′;〔3〕22°16′×5;〔4〕182°36′÷4.19.计算以下各题:〔1〕150°19′42″+26°40′28″〔2〕33°15′16″×5.20.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE、试求∠COE的度数.【四】解答题21.在小学,我们曾学过圆柱的体积计算公式:v=πR2h 〔R是圆柱底面半径,h为圆柱的高〕.现有一个长方形,长为2cm.宽为1cm,分别以它的两边所在的直线为轴旋转一周.得到的几何体的体积分别是多少?它们之间有何关系?22.用一个平面截一个正方体,得到一个长方形的截面.且把正方体分为两部分.问:这两部分各由几个面围成?【五】综合题23.如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC的角平分线,假设∠AOC=70°.〔1〕求∠BOD的度数.〔2〕试判断OE是否平分∠BOC,并说明理由.【一】单项选择题【考点】角的概念【解析】【解答】解:A、因为顶点O处有四个角,所以这四个角均不能用∠O表示,故本选项错误;B、因为顶点O处只有一个角,所以这个角能用∠O、∠α及∠AOB表示,故本选项正确;C、因为顶点O处有三个角,所以这三个角均不能用∠O表示,故本选项错误;D、因为∠O与∠α表示的不是同一个角,故本选项错误.应选B、【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否那么分不清这个字母究竟表示哪个角.角还可以用一个希腊字母〔如∠α,∠β,∠γ、…〕表示,或用阿拉伯数字〔∠1,∠2…〕表示.【考点】余角和补角【解析】【解答】解:∠A的余角为:90°﹣∠A=90°﹣35°16′=54°44′;应选A、【分析】根据余角的定义容易求出∠A的余角为90°﹣∠A、【考点】截一个几何体【解析】【解答】解:四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.应选:A、【分析】四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.【考点】几何体的展开图【考点】角的计算【解析】【解答】解:∵∠BOC=2∠AOB,OD平分∠AOC,∴∠AOC=3∠AOB=2∠AOD,∴∠AOD=1.5∠AOB,∴∠AOD﹣∠AOB=0.5∠AOB=∠BOD=14°,∴∠AOB=28°,应选B、【分析】根据∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,可以得到∠AOB与∠AOD的关系,从而与∠BOD建立关系,得到∠AOB的度数.【考点】截一个几何体【解析】【解答】解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆,所以不可能是正方形.应选:C、【分析】根据圆锥的形状特点判断即可,也可用排除法.【考点】角的大小比较【解析】【解答】解:有两种方法:〔Ⅰ〕先数出以OA为一边的角,再数出以OB、OC、OD、OE为一边的角,把他们加起来.〔Ⅱ〕可根据公式:来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10﹣1=9个.应选B、【分析】按一定的规律数即可.【考点】角平分线的定义,平行线的性质【解析】【分析】先根据两直线平行,内错角相等,求出∠CBA,然后根据角平分线性质求解即可.【解答】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,又∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,应选C、【点评】此题主要考查平行线的性质和角平分线的定义.【考点】角的计算【解析】【解答】解:符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,故有1+2+1+1+2=7个角.应选C、【分析】分别根据以A,B,C,D,E为顶点得出角的个数即可.【考点】七巧板【解析】【解答】解:如图,一副七巧板能拼成三角形,正方形,长方形,平行四边形,不能拼成凸八边形.应选D、【分析】根据七巧板能拼成的常见平面图形解答.【二】填空题【考点】钟面角、方位角【考点】钟面角、方位角【考点】角平分线的定义,角的计算,角的大小比较【考点】角平分线的定义【考点】角的计算,翻折变换〔折叠问题〕【考点】余角和补角【考点】角平分线的定义,角的计算【三】计算题【考点】度分秒的换算【解析】【分析】两个度数相加,度与度,分与分对应相加,分的结果假设满60,那么转化为度.两个度数相减,度与度,分与分对应相减,分的结果假设不够减,那么借位后再减,1°=60′;进行角的乘法运算,应将度分秒分别与5相乘,然后依次进位.一个度数除以一个数,那么从度位开始除起,余数变为分,分的余数变为秒.【考点】度分秒的换算【考点】角平分线的定义,角的计算,余角和补角【解析】【分析】根据OC平分∠AOB可求∠BOC的度数,∠BOD与∠BOC互余可求∠BOD,由∠BOD=3∠DOE可求∠DOE,根据∠COE=∠COD﹣∠DOE可求∠COE【四】解答题【考点】点、线、面、体【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【考点】截一个几何体【解析】【分析】有四种可能:①平行于棱中间竖截;②相邻的两个面斜截;③沿对角线竖截;④从一条棱斜截.【五】综合题【考点】角平分线的定义【解析】【分析】〔1〕根据角的平分线的定义求得∠AOD的度数,然后根据邻补角的定义求得∠BOD的度数;〔2〕首先根据∠DOE=90°,即∠COD+∠COE=90°,即可求得∠COE的度数,然后根据∠BOE=180°﹣∠AOD﹣∠DOE,求得∠BOE的度数,从而判断.。
中考数学总复习《图形初步知识》专项测试卷带答案
中考数学总复习《图形初步知识》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·扬州中考)如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A.三棱锥B.圆锥C.三棱柱D.长方体2.(2024·盐城中考)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A.湿B.地C.之D.都3.(2024·雅安中考)如图,直线AB,CD交于点O,OE⊥AB于O,若∠1=35°,则∠2的度数是( )A.55°B.45°C.35°D.30°4.(2024·德阳中考)如图是某机械加工厂加工的一种零件的示意图,其中AB∥CD,DE⊥BC,∠ABC=70°,则∠EDC等于( )A.10°B.20°C.30°D.40°5.(2024·苏州中考)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为( )A.45°B.55°C.60°D.65°6.(2024·陕西中考)如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为( )A.25°B.35°C.45°D.55°7.(2024·绥化中考)如图,AB∥CD,∠C=33°,OC=OE.则∠A=°.B层·能力提升8.(2024·江西中考)如图是4×3的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A.1种B.2种C.3种D.4种9.(2024·深圳中考)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为( )A.40°B.50°C.60°D.70°10.(2024·日照模拟)如图,正方形网格中每个小正方形的边长都为1,则∠1与∠2的大小关系为( )A.∠1<∠2B.∠1=∠2C.∠1>∠2D.无法比较11.(2024·聊城二模)如图,从笔直的公路l旁一点P出发,向西走6 km到达l;从P 出发向北走6 km也到达l.下列说法错误的是( )A.从点P向北走3 km后,再向西走3 km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北偏西45°走3 km到达l12.(2024·青岛二模)两个矩形的位置如图所示,若∠1=m°,则∠2的度数为( )A.(m-90)°B.(90-m)°C.(m-45)°D.(180-m)°13.(2024·聊城三模)将一副三角尺,按如图所示的方式叠放在一起,点E在直线AC 的上方,旋转三角尺BCE,当三角尺BCE有一条边与斜边AD平行时,∠ACE的度数为.C层·素养挑战14.(2024·青岛一模)【探究1】如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ABC=30°,∠ADC=36°,则∠AEC=;【探究2】如图2,∠BAD的三等分线AE与∠BCD的三等分线CE交于点E,∠EAD=1∠BAD,3∠BCD,AB∥CD,∠ABC=30°,∠ADC=36°,则∠AEC=;∠BCE=13【探究3】如图3,∠BAD的n等分线AE与∠BCD的n等分线CE交于点E,∠EAD=1∠BAD,n ∠BCD,AB∥CD,∠ABC=x°,∠ADC=y°,则∠AEC=(用含x,y,n的式子∠BCE=1n表示).参考答案A层·基础过关1.(2024·扬州中考)如图是某几何体的表面展开后得到的平面图形,则该几何体是(C)A.三棱锥B.圆锥C.三棱柱D.长方体2.(2024·盐城中考)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是(C)A.湿B.地C.之D.都3.(2024·雅安中考)如图,直线AB,CD交于点O,OE⊥AB于O,若∠1=35°,则∠2的度数是(A)A.55°B.45°C.35°D.30°4.(2024·德阳中考)如图是某机械加工厂加工的一种零件的示意图,其中AB∥CD,DE⊥BC,∠ABC=70°,则∠EDC等于(B)A.10°B.20°C.30°D.40°5.(2024·苏州中考)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为(B)A.45°B.55°C.60°D.65°6.(2024·陕西中考)如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为(B)A.25°B.35°C.45°D.55°7.(2024·绥化中考)如图,AB∥CD,∠C=33°,OC=OE.则∠A=66°.B层·能力提升8.(2024·江西中考)如图是4×3的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有(B)A.1种B.2种C.3种D.4种9.(2024·深圳中考)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为(B)A.40°B.50°C.60°D.70°10.(2024·日照模拟)如图,正方形网格中每个小正方形的边长都为1,则∠1与∠2的大小关系为(A)A.∠1<∠2B.∠1=∠2C.∠1>∠2D.无法比较11.(2024·聊城二模)如图,从笔直的公路l旁一点P出发,向西走6 km到达l;从P 出发向北走6 km也到达l.下列说法错误的是(D)A.从点P向北走3 km后,再向西走3 km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北偏西45°走3 km到达l12.(2024·青岛二模)两个矩形的位置如图所示,若∠1=m°,则∠2的度数为(D)A.(m-90)°B.(90-m)°C.(m-45)°D.(180-m)°13.(2024·聊城三模)将一副三角尺,按如图所示的方式叠放在一起,点E在直线AC 的上方,旋转三角尺BCE,当三角尺BCE有一条边与斜边AD平行时,∠ACE的度数为15°或60°或150°.C层·素养挑战14.(2024·青岛一模)【探究1】如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ABC=30°,∠ADC=36°,则∠AEC=33°;【探究2】如图2,∠BAD的三等分线AE与∠BCD的三等分线CE交于点E,∠EAD=13∠BAD,∠BCE=13∠BCD,AB∥CD,∠ABC=30°,∠ADC=36°,则∠AEC=44°;【探究3】如图3,∠BAD的n等分线AE与∠BCD的n等分线CE交于点E,∠EAD=1n∠BAD,∠BCE=1n ∠BCD,AB∥CD,∠ABC=x°,∠ADC=y°,则∠AEC=n-1n(x+y)°(用含x,y,n的式子表示).【解析】【探究1】如图1,过点E作EF∥AB∵AB∥CD,∴∠BCD=∠ABC=30°,∠BAD=∠ADC=36°∵AE平分∠BAD,CE平分∠BCD∴∠BAE=12∠BAD=12×36°=18°,∠DCE=12∠BCD=12×30°=15°∵EF∥AB∴∠FEA=∠BAE=18°∵EF∥AB,AB∥CD ∴EF∥CD∴∠FEC=∠DCE=15°∴∠AEC=∠FEC+∠FEA=15°+18°=33°;【探究2】如图2,过点E作EF∥AB∵AB∥CD∴∠BCD=∠ABC=30°,∠BAD=∠ADC=36°∵∠EAD=13∠BAD,∠BCE=13∠BCD∴∠BAE=23∠BAD=23×36°=24°,∠DCE=23∠BCD=23×30°=20°∵EF∥AB∴∠FEA=∠BAE=24°∵EF∥AB,AB∥CD∴EF∥CD∴∠FEC=∠DCE=20°,∴∠AEC=∠FEC+∠FEA=20°+24°=44°;【探究3】如图3,过点E作EF∥AB∵AB∥CD∴∠BCD=∠ABC=x°,∠BAD=∠ADC=y°∵∠EAD=1n ∠BAD,∠BCE=1n∠BCD∴∠BAE=n-1n ∠BAD=n-1n·y°,∠DCE=n-1n∠BCD=n-1n·x°∵EF∥AB∴∠FEA=∠BAE=n-1n·y°∵EF∥AB,AB∥CD∴EF∥CD∴∠FEC=∠DCE=n-1n·x°∴∠AEC=∠FEC+∠FEA=n-1n ·x°+n-1n·y°=n-1n(x+y)°.第11页共11页。
“图形认识初步”中考试题分类汇编(含答案)
14、图形认识初步要点一:从不同的方向看立体图形和立体图形的展开图 1.(2010·滨州中考)【解析】选B 。
本题考查的是立体图形的平面展开图,借助空间想象或实际操作易判断三棱锥的平面展开图是B.2.(2009·武汉中考)如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )【解析】选A3.(2010·成都中考)如图是一个几何体的三视图,则这个几何体的形状是( )A 圆柱B 圆锥C 圆台D 长方体 【解析】选B ,结合三视图想象,得到答案。
4.(2009·宜昌中考)按如图方式把圆锥的侧面展开,会得到的图形是( ).A .B .C .D .【解析】选C. 圆锥的侧面展开图是扇形.5.(2009·包头中考)将一个正方体沿某些棱展开后,能够得到的平面图形是( )A .【解析】选C.遵循正方体展开图规律“一线不过四、田、凹应弃之”,发挥想象,动手操作,得答案.6.(2010·聊城中考)如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是( )【解析】选A ,其俯视图即从上向下看时,柱体的俯视图为圆,右边的柱体的俯视图为矩形。
7.(2009·凉山中考)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山【解析】选D. 可动手操作得答案:建与山是对面,和与凉是对面,谐与设是对面 8.(2009·泉州中考)如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为( ) A.5 B.4C.3D.2【解析】选D.3与5是对面,4与1是对面,6与2是对面. 9.(2009·泸州中考)将棱长是lcm 的小正方体组成如图所示的几何体,那么这个几何体的表面积是( )A .36cm 2B .33cm 2C .30cm 2D .27cm 2【解析】选A ,从几何体的前、后、左、右、上、下6个不同方向看几何体,都能看到6个小正方形,共有36个小正方形。
中考数学图形的初步认识练习题含答案
中考数学图形初步相识练习题一.选择题〔共20小题〕1.〔2006•盐城〕将下面直角梯形绕直线l旋转一周,可以得到如图立体图形是〔〕A. B.C.D.2.〔2021秋•涞水县期末〕将一个直角三角形绕它最长边〔斜边〕旋转一周得到几何体为〔〕A.B.C.D.3.〔2021•泸州〕棱长是1cm小立方体组成如下图几何体,那么这个几何体外表积为〔〕A.36cm2B.33cm2C.30cm2D.27cm24.〔2021•无锡〕圆柱底面半径为3cm,母线长为5cm,那么圆柱侧面积是〔〕A.30cm2B.30πcm2C.15cm2D.15πcm25.〔2021秋•攸县校级期末〕以以下图形中,不是平面图形是〔〕A.线段B.角C.圆锥D.圆6.〔2021•常州〕以下立体图形中,侧面绽开图是扇形是〔〕A.B.C.D.7.〔2005•扬州〕小丽制作了一个如下图正方体礼品盒,其对面图案都一样,那么这个正方体平面绽开图可能是〔〕A. B. C.D.8.〔2021•大连校级自主招生〕如图,它需再添一个面,折叠后才能围成一个正方体,以下图中黑色小正方形分别由四位同学补画,其中正确是〔〕A.B.C.D.9.〔2021•佛山〕一个几何体绽开图如图,这个几何体是〔〕A.三棱柱B.三棱锥C.四棱柱D.四棱锥10.〔2021秋•栖霞市期末〕下面是一个正方体,用一个平面去截这个正方体截面形态不行能为以下图中〔〕A.B. C. D.11.〔2021秋•钟山区期末〕以下说法正确是〔〕A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线12.〔2021 秋•辛集市期末〕以下说法中正确是〔〕A.两点之间全部连线中,线段最短B.射线就是直线C.两条射线组成图形叫做角D.小于平角角可分为锐角和钝角两类13.〔2021•义乌市〕如图,经过刨平木板上两个点,能弹出一条笔直墨线,而且只能弹出一条墨线,能说明这一实际应用数学学问是〔〕A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与直线垂直14.〔2021•长沙〕如图,C、D是线段AB上两点,且D是线段AC中点,假设A B=10cm,BC=4cm,那么AD长为〔〕A.2cm B.3cm C.4cm D.6cm15.〔2021•徐州〕点A、B、C在同一条数轴上,其中点A、B表示数分别为﹣3、1,假设BC=2,那么AC等于〔〕A.3 B.2 C.3或5 D.2或616.〔2021秋•端州区期末〕线段AB=10cm,点C是直线AB上一点,BC=4cm,假设M是AC 中点,N是BC中点,那么线段MN长度是〔〕A.7cm B.3cm C.7cm或3cm D.5cm17.〔2002•杭州〕在时刻8:30,时钟上时针和分针之间夹角为〔〕A.85°B.75°C.70°D.60°18.〔2021•烟台〕如图,小明从A处动身沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与动身时一样,那么方向调整应是〔〕A.右转80° B.左转80° C.右转100°D.左转100°19.〔2021•乐山〕如图,OA是北偏东30°方向一条射线,假设射线OB与射线O A垂直,那么OB方位角是〔〕A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°20.〔2021 •百色〕一个角余角是这个角补角,那么这个角度数是〔〕A.30°B.45°C.60°D.70°二.填空题〔共6小题〕21.〔2021•枣庄〕从棱长为2正方体毛坯一角,挖去一个棱长为1小正方体,得到一个如下图零件,那么这个零件外表积为.22.〔2005•沈阳〕视察以下图形排列规律〔其中△是三角形,□是正方形,○是圆〕,○△□□○△□○△□□○△□┅┅假设第一个图形是圆,那么第2021个图形是〔填图形名称〕.23.〔2021秋•昆明校级期末〕假设要使图中平面绽开图按虚线折叠成正方体后,相对面上两个数之和为6,x= ,y= .24.〔2021•襄阳〕在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得锐角个.25.〔2021秋•营口期末〕如图,点C是∠AOB边OA上一点,D,E是OB上两点,那么图中共有条线段,条射线,个小于平角角.26.〔2021•湖州〕计算:50°﹣15°30′=.三.解答题〔共4小题〕27.〔2021秋•保山期末〕如图,线段AC=6cm,线段BC=15cm,点M是AC中点,在CB上取一点N,使得CN:NB=1:2,求MN长.28.〔2006•永春县〕如图,O是直线CD上点,OA平分∠BOC,∠AOC=35°,那么∠BOD度数.29.〔2021秋•永登县期末〕如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF大小.30.把一副三角尺如下图拼在一起,试确定图中∠A、∠B、∠AEB、∠ACD度数,并用“<〞将它们连起来.中考数学图形初步相识练习题参考答案与试题解析一.选择题〔共20小题〕1.〔2006•盐城〕将下面直角梯形绕直线l旋转一周,可以得到如图立体图形是〔〕A. B.C.D.【考点】点、线、面、体.【解答】解:A、是直角梯形绕底边旋转形成圆台,故A错误;B、是直角梯形绕垂直于底腰旋转形成圆台,故B正确;C、是梯形底边在上形成圆台,故C错误;D、是梯形绕斜边形成圆台,故D错误.应选:B.2.〔2021秋•涞水县期末〕将一个直角三角形绕它最长边〔斜边〕旋转一周得到几何体为〔〕A.B.C.D.【考点】点、线、面、体.【解答】解:A、圆柱是由一长方形绕其一边长旋转而成;B、圆锥是由始终角三角形绕其直角边旋转而成;C、该几何体是由直角梯形绕其下底旋转而成;D、该几何体是由直角三角形绕其斜边旋转而成.应选:D.3.〔2021•泸州〕棱长是1cm小立方体组成如下图几何体,那么这个几何体外表积为〔〕A.36cm2B.33cm2C.30cm2D.27cm2【考点】几何体外表积.【解答】解:正视图中正方形有6个;左视图中正方形有6个;俯视图中正方形有6个.那么这个几何体中正方形个数是:2×〔6+6+6〕=36个.那么几何体外表积为36cm2.应选:A.4.〔2021•无锡〕圆柱底面半径为3cm,母线长为5cm,那么圆柱侧面积是〔〕A.30cm2B.30πcm2C.15cm2D.15πcm2【考点】几何体外表积;圆柱计算.【解答】解:根据圆柱侧面积公式,可得该圆柱侧面积为:2π×3×5=30πcm2.应选B.5.〔2021秋•攸县校级期末〕以以下图形中,不是平面图形是〔〕A.线段B.角C.圆锥D.圆【考点】相识平面图形.【解答】解:A、B、D是平面图形,C是立体图形,应选C.6.〔2021•常州〕以下立体图形中,侧面绽开图是扇形是〔〕A.B.C.D.【考点】几何体绽开图.【解答】解:根据圆锥特征可知,侧面绽开图是扇形是圆锥.应选:B.7.〔2005•扬州〕小丽制作了一个如下图正方体礼品盒,其对面图案都一样,那么这个正方体平面绽开图可能是〔〕A. B. C.D.【考点】几何体绽开图.【解答】解:根据题意及图示只有A经过折叠后符合.应选:A.8.〔2021•大连校级自主招生〕如图,它需再添一个面,折叠后才能围成一个正方体,以下图中黑色小正方形分别由四位同学补画,其中正确是〔〕A.B.C.D.【考点】绽开图折叠成几何体.【解答】解:四个方格形成“田〞字,不能组成正方体,A错;出现“U〞字,不能组成正方体,B错;以横行上方格从上往下看:C选项组成正方体.应选:C.9.〔2021•佛山〕一个几何体绽开图如图,这个几何体是〔〕A.三棱柱B.三棱锥C.四棱柱D.四棱锥【考点】绽开图折叠成几何体.【解答】解:由图可知,这个几何体是四棱柱.应选:C.10.〔2021秋•栖霞市期末〕下面是一个正方体,用一个平面去截这个正方体截面形态不行能为以下图中〔〕A.B. C. D.【考点】截一个几何体.【解答】解:无论如何去截,截面也不行能有弧度,因此截面不行能是圆.应选D.11.〔2021秋•钟山区期末〕以下说法正确是〔〕A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线【考点】直线、射线、线段.【解答】解:A、直线AB和直线BA是同一条直线;B、正确;C、线段AB和线段BA是一条线段;D、直线AB和直线a能是同一条直线.应选B.12.〔2021 秋•辛集市期末〕以下说法中正确是〔〕A.两点之间全部连线中,线段最短B.射线就是直线C.两条射线组成图形叫做角D.小于平角角可分为锐角和钝角两类【考点】直线、射线、线段;角概念.【解答】解:A、两点之间全部连线中,线段最短,选项正确;B、射线是直线一部分,选项错误;C、有公共端点两条射线组成图形叫做角,选项错误;D、小于平角角可分为锐角、钝角,还应包含直角,选项错误.应选A.13.〔2021•义乌市〕如图,经过刨平木板上两个点,能弹出一条笔直墨线,而且只能弹出一条墨线,能说明这一实际应用数学学问是〔〕A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与直线垂直【考点】直线性质:两点确定一条直线.【解答】解:经过刨平木板上两个点,能弹出一条笔直墨线,此操作根据是两点确定一条直线.应选:A.14.〔2021•长沙〕如图,C、D是线段AB上两点,且D是线段AC中点,假设A B=10cm,BC=4cm,那么AD长为〔〕A.2cm B.3cm C.4cm D.6cm【考点】两点间间隔.【解答】解:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,又点D是AC中点,∴AD=AC=3cm,答:AD长为3cm.应选:B.15.〔2021•徐州〕点A、B、C在同一条数轴上,其中点A、B表示数分别为﹣3、1,假设BC=2,那么AC等于〔〕A.3 B.2 C.3或5 D.2或6【考点】两点间间隔;数轴.【解答】解:此题画图时会出现两种状况,即点C在线段AB内,点C在线段AB 外,所以要分两种状况计算.点A、B表示数分别为﹣3、1,AB=4.第一种状况:在AB外,AC=4+2=6;第二种状况:在AB内,AC=4﹣2=2.应选:D.16.〔2021秋•端州区期末〕线段AB=10cm,点C是直线AB上一点,BC=4cm,假设M是AC 中点,N是BC中点,那么线段MN长度是〔〕A.7cm B.3cm C.7cm或3cm D.5cm【考点】比较线段长短.【解答】解:〔1〕当点C在线段AB上时,那么MN=AC+BC=AB=5;〔2〕当点C在线段AB延长线上时,那么MN=AC﹣BC=7﹣2=5.综合上述状况,线段MN长度是5cm.应选D.17.〔2002•杭州〕在时刻8:30,时钟上时针和分针之间夹角为〔〕A.85°B.75°C.70°D.60°【考点】钟面角.【解答】解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间夹角为30°,∴此时刻分针与时针夹角正好是2×30°+15°=75°.应选:B.18.〔2021•烟台〕如图,小明从A处动身沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与动身时一样,那么方向调整应是〔〕A.右转80° B.左转80° C.右转100°D.左转100°【考点】方向角.【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,须要向右转.应选:A.19.〔2021•乐山〕如图,OA是北偏东30°方向一条射线,假设射线OB与射线O A垂直,那么OB方位角是〔〕A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°【考点】方向角.【解答】解:∵射线OB与射线OA垂直,∴∠AOB=90°,∴∠1=90°﹣30°=60°,故射线OB方位角是北偏西60°,应选:B.20.〔2021 •百色〕一个角余角是这个角补角,那么这个角度数是〔〕A.30°B.45°C.60°D.70°【考点】余角和补角.【解答】解:设这个角度数为x,那么它余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=〔180°﹣x〕,解得x=45°.应选B.二.填空题〔共6小题〕21.〔2021•枣庄〕从棱长为2正方体毛坯一角,挖去一个棱长为1小正方体,得到一个如下图零件,那么这个零件外表积为24 .【考点】几何体外表积.【解答】解:挖去一个棱长为1小正方体,得到图形与原图形外表积相等,那么外表积是2×2×6=24.故答案为:24.22.〔2005•沈阳〕视察以下图形排列规律〔其中△是三角形,□是正方形,○是圆〕,○△□□○△□○△□□○△□┅┅假设第一个图形是圆,那么第2021个图形是三角形〔填图形名称〕.【考点】相识平面图形.【解答】解:视察图形排列规律知,7个图形循环一次,2021÷7=286…6,又由第一个图形是圆形,那么第2021个图形是三角形.故答案为:三角形.23.〔2021秋•昆明校级期末〕假设要使图中平面绽开图按虚线折叠成正方体后,相对面上两个数之和为6,x= 5 ,y= 3 .【考点】专题:正方体相对两个面上文字.【解答】解:这是一个正方体平面绽开图,共有六个面,其中面“1〞与面“x〞相对,面“3〞与面“y〞相对.因为相对面上两个数之和为6,所以,x=5,y=3.故答案为:5,3.24.〔2021•襄阳〕在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得锐角66 个.【考点】角概念.【解答】解:∵在锐角∠AOB内部,画1条射线,可得1+2=3个锐角;在锐角∠AOB内部,画2条射线,可得1+2+3=6个锐角;在锐角∠AOB内部,画3条射线,可得1+2+3+4=10个锐角;…∴从一个角内部引出n条射线所得到锐角个数是1+2+3+…+〔n+1〕=×〔n+1〕×〔n+2〕,∴画10条不同射线,可得锐角×〔10+1〕×〔10+2〕=66.故答案为:66.25.〔2021秋•营口期末〕如图,点C是∠AOB边OA上一点,D,E是OB上两点,那么图中共有 6 条线段, 5 条射线,10 个小于平角角.【考点】角概念.【解答】解:图中有线段OD、OE、DE、OC、DC、EC计6条,射线OC、CA、OD、DE、EB计5条,小于平角角有∠O、∠ODC、∠CDE、∠CED、∠CEB、∠ACE、∠ECD、∠DCO、∠ACD、∠OCE计10个.故填6;5;10.26.〔2021•湖州〕计算:50°﹣15°30′=34°30′.【考点】度分秒换算.【解答】解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.三.解答题〔共4小题〕27.〔2021秋•保山期末〕如图,线段AC=6cm,线段BC=15cm,点M是AC中点,在CB上取一点N,使得CN:NB=1:2,求MN长.【考点】比较线段长短.【解答】解:∵M是AC中点,∴MC=AM=AC=×6=3cm,又∵CN:NB=1:2∴CN=BC=×15=5cm,∴MN=MC+NC=3cm+5cm=8cm.28.〔2006•永春县〕如图,O是直线CD上点,OA平分∠BOC,∠AOC=35°,那么∠BOD度数.【考点】角平分线定义.【解答】解:如图:∵O是直线CD上点,OA平分∠BOC,∠AOC=35°,∴∠BOC=2∠AOC=70°,∴∠BOD=180°﹣∠BOC=110°.故答案为110°.29.〔2021秋•永登县期末〕如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF大小.【考点】角平分线定义.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.30.把一副三角尺如下图拼在一起,试确定图中∠A、∠B、∠AEB、∠ACD度数,并用“<〞将它们连起来.【考点】角大小比较.【解答】解:∠A=30°,∠B=45°,∠AEB=135°,∠ACD=90°∴∠A<∠B<∠ACD<∠AEB.。
几何图形初步认识(优选真题44道)(2021-2023年)中考数学真题(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)图形初步认识(优选真题44道)一.选择题(共30小题)1.(2023•威海)如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是()A.A点B.B点C.C点D.D点【分析】把图形围成立体图形求解.【解答】解:把图形围成立方体如图所示:所以与顶点K D,故选:D.【点评】本题考查了平面图形和立体图形,掌握空间想象力是解题的关键.2.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为()A.36°B.44°C.54°D.63°【分析】先求出∠COD的度数,然后根据∠BOC=∠BOD﹣∠COD,即可得出答案.【解答】解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD﹣∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD﹣∠COD=90°﹣36°=54°.故选:C.【点评】本题考查了余角和补角的知识,解答本题的关键是仔细观察图形,根据角的和差首先求出∠COD 的度数.3.(2023•长春)如图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥【分析】由多面体的表面展开图,即可得到答案.【解答】解:多面体的底面是面③,则多面体的上面是⑤.故选:C.【点评】本题考查几何体的表面展开图,关键是由长方体的表面展开图找到相对面.4.(2023•河北)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向【分析】根据题意可得:∠ABC=70°,AB∥CD,然后利用平行线的性质可得∠ABC=∠DCB=70°,从而根据方向角的定义,即可解答.【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.【点评】本题考查了方向角的定义,熟练掌握方向角的定义是解题的关键.5.(2023•扬州)下列图形是棱锥侧面展开图的是()A.B.C.D.【分析】由棱锥的侧面展开图的特征可知答案.故选:D.【点评】本题考查了几何体的展开图,熟记常见立体图形的侧面展开图和侧面的特征是解决此类问题的关键.6.(2023•乐山)下面几何体中,是圆柱的为()A.B.C.D.【分析】根据各个选项中的几何体的形体特征进行判断即可.【解答】解:A.选项中的几何体是圆锥体,因此选项A不符合题意;B.选项中的几何体是球体,因此选项B不符合题意;C.选项中的几何体是圆柱体,因此选项C符合题意;D.选项中的几何体是四棱柱,因此选项D不符合题意;故选:C.【点评】本题考查认识立体图形,掌握圆柱体,圆锥体,棱柱,球的形体特征是正确判断的前提.7.(2023•宜昌)“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是()A.文B.明C.典D.范【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共边和公共顶点,即“对面无临点”,依此来找相对面.【解答】解:∵正方体的表面展开图,相对的面之间一定隔着一个小正方形,且没有公共边和公共顶点,∴“城”字对面的字是“明”.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,熟练掌握正方体的表面展开图的特点是解题的关键.8.(2023•临沂)如图中用量角器测得∠ABC的度数是()A.50°B.80°C.130°D.150°【分析】本题根据∠ABC的位置和量角器的使用方法可得出答案.【解答】解:根据∠ABC起始位置BA,另一条边BC可得:∠ABC=130°.故选:C.【点评】本题主要考查了学生量角器的使用方法,结合∠ABC的位置进行思考是解题关键.9.(2023•巴中)某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是()A.传B.承C.文D.化【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“红”字所在面相对的面上的汉字.【解答】解:根据图示知:“传”与“文”相对;“承”与“色”相对;“红”与“化”相对.故选:D.【点评】本题考查灵活运用正方体的相对面解答问题,解决本题的关键是根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点.10.(2023•连云港)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形;乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O的两条线段与一段圆弧所围成的图形.下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【分析】根据扇形的定义进行判断.【解答】解:由扇形的定义可知,只有乙是扇形,故选:B.【点评】本题主要考查了认识平面图形—扇形,应熟知扇形的定义:由圆心角的两条半径和圆心角所对的圆弧围成的图形叫做扇形.11.(2023•达州)下列图形中,是长方体表面展开图的是()A.B.C.D.【分析】根据长方体的展开图得出结论即可.【解答】解:由题意知,图形可以折叠成长方体,故选:C.【点评】本题主要考查长方体的展开图,熟练掌握长方体的展开图是解题的关键.12.(2023•台湾)如图,直角柱ABCDEF的底面为直角三角形,若∠ABC=∠DEF=90°,BC>AB>BE,则连接AE后,下列叙述何者正确()A.∠ACB<∠FDE,∠AEB>∠ACB B.∠ACB<∠FDE,∠AEB<∠ACBC.∠ACB>∠FDE,∠AEB>∠ACB D.∠ACB>∠FDE,∠AEB<∠ACB【分析】根据直棱柱的性质得∠BAC=∠FDE,再根据三角形的边角关系即可得出答案.【解答】解:如图,连接AE,∵∠ABC=∠DEF=90°,BC>AB,∴∠ACB<∠BAC,∵∠BAC=∠FDE,∴∠ACB<∠FDE,在△ABC和△ABE中,∠ABC=∠ABE=90°,AB=AB,BC>BE,∴∠AEB>∠ACB,故选:A.【点评】本题考查了认识立体图形,关键是掌握直棱柱的性质和三角形的边角关系.13.(2022•烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是()A.北偏东70°B.北偏东75°C.南偏西70°D.南偏西20°【分析】根据题意可得∠ABC=75°,AD∥BE,AB=AC,再根据等腰三角形的性质可得∠ABC=∠C =75°,从而求出∠BAC的度数,然后利用平行线的性质可得∠DAB=∠ABE=40°,从而求出∠DAC 的度数,即可解答.【解答】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∵AD∥BE,∴∠DAB=∠ABE=40°,∴∠DAC=∠DAB+∠BAC=40°+30°=70°,∴小岛C相对于小岛A的方向是北偏东70°,故选:A.【点评】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.(2022•柳州)如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据“面动成体”进行判断即可.【解答】解:将矩形绕着它的一边所在的直线l旋转一周,可以得到圆柱体,故选:B.【点评】本题考查认识立体图形,理解“面动成体”是正确判断的前提.15.(2022•资阳)如图是正方体的表面展开图,每个面内都分别写有一个字,则与“创”字相对面上的字是()A.文B.明C.城D.市【分析】先以“文”字为底,则左边的是“建”字,右边的是“明”字,上面的是“城”字,正面的是“市”字,后面的是“创”字,再判断与“创”字相对的字即可.【解答】解:将正方体的表面展开图还原成正方体,以“文”字为底,则左边的是“建”字,右边的是“明”字,上面的是“城”字,正面的是“市”字,后面的是“创”字,可知“创”字与“市”字相对.故选:D.【点评】本题主要考查了将正方体表面展开图还原,确定每个字在还原后的正方体的位置是解题的关键.16.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.17.(2022•枣庄)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是()A.青B.春C.梦D.想【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:在原正方体中,与“亮”字所在面相对的面上的汉字是:想,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.18.(2022•绥化)下列图形中,正方体展开图错误的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故D选项都不符合题意.故选:D.【点评】本题主要考查正方体展开图的知识,熟练掌握正方体的侧面展开图是解题的关键.19.(2022•甘肃)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°【分析】根据互余两角之和为90°计算即可.【解答】解:∵∠A=40°,∴∠A的余角为:90°﹣40°=50°,故选:A.【点评】本题考查的是余角的定义,如果两个角的和等于90°,就说这两个角互为余角.20.(2022•常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以得到圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.【点评】本题考查了几何体的展开图.解题的关键是明确圆柱的侧面展开图是长方形.21.(2022•临沂)如图所示的三棱柱的展开图不可能是()A.B.C.D.【分析】根据题意和各个选项中的图形,可以判断哪个图形不可能是三棱柱的展开图.【解答】解:如图所示的三棱柱的展开图不可能是,故选:D.【点评】本题考查几何体的展开图,解答本题的关键是明确题意,利用数形结合的思想解答.22.(2022•泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【分析】根据展开图直接判断即可.【解答】解:根据展开图可以得出是四棱锥的展开图,故选:B.【点评】本题主要考查几何体的展开图,熟练掌握基本几何体的展开图是解题的关键.23.(2021•湖州)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【分析】由平面图形的折叠及长方体的表面展开图的特点解题.【解答】解:该长方体表面展开图可能是选项A.故选:A.【点评】本题考查几何体的展开图,解题的关键是熟练掌握几何体的展开图的特征,属于中考常考题型.24.(2021•泰州)互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是()A.点A在B、C两点之间B.点B在A、C两点之间C.点C在A、B两点之间D.无法确定【分析】用假设法分别计算各选项中的a值,再根据a>0判断即可.【解答】解:∵AC=2a+1,BC=a+4,AB=3a,A、B、C三点互不重合∴a>0,若点A在B、C之间,则AB+AC=BC,即2a+1+3a=a+4,解得a=3 4,故A情况存在,若点B在A、C之间,则BC+AB=AC,即a+4+3a=2a+1,解得a=−3 2,故B情况不存在,若点C在A、B之间,则BC+AC=AB,即a+4+2a+1=3a,此时无解,故C情况不存在,∵互不重合的A、B、C三点在同一直线上,故选:A.【点评】本题主要考查两点间的距离及整式的加减,分类讨论和反证法的应用是解题的关键.25.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【分析】根据线段的性质,可得答案.【解答】解:从A地去往B地,打开导航、显示两地距离为37.7km,理由是两点之间线段最短,故选:A.【点评】本题考查了线段的性质,熟记线段的性质并应用是解题的关键.26.(2021•包头)已知线段AB=4,在直线AB上作线段BC,使得BC=2,若D是线段AC的中点,则线段AD的长为()A.1B.3C.1或3D.2或3【分析】根据题意可分为两种情况,①点C在线段AB上,可计算出AC的长,再由D是线段AC的中点,即可得出答案;②BC在线段AB的延长线上,可计算出AC的长,再由D是线段AC的中点,即可得出答案.【解答】解:根据题意分两种情况,①如图1,∵AB=4,BC=2,∴AC=AB﹣BC=2,∵D是线段AC的中点,∴AD=12AC=12×2=1;②如图2,∵AB=4,BC=2,∴AC=AB+BC=6,∵D是线段AC的中点,∴AD=12AC=12×6=3.∴线段AD的长为1或3.故选:C.【点评】本题主要考查了两点之间的距离,正确理解题目并进行分情况进行计算是解决本题的关键.27.(2021•河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d【分析】利用直尺画出遮挡的部分即可得出结论.【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故选:A.【点评】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.28.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题.29.(2021•百色)已知∠α=25°30)A.25°30′B.64°30′C.74°30′D.154°30′【分析】根据余角的定义,两个锐角和为90°的角互余.【解答】解:由题意得:∠α=25°30′,故其余角为(90°﹣∠α)=64°30′.故选:B.【点评】本题考查的知识点是两个角的互余,互余的两个角的和为90°.30.(2021•黔东南州)由4个棱长均为1的小正方体组成如图所示的几何体,这个几何体的表面积为()A.18B.15C.12D.6【分析】几何体的表面积是几何体正视图,左视图,俯视图三个图形中,正方形的个数的和的2倍.【解答】解:正视图中正方形有3个;左视图中正方形有3个;俯视图中正方形有3个.则这个几何体表面正方形的个数是:2×(3+3+3)=18.则几何体的表面积为18.故选:A .【点评】本题考查的是几何体的表面积,这个几何体的表面积为露在外边的面积和底面积之和.二.填空题(共14小题)31.(2023•无锡)若直三棱柱的上下底面为正三角形,侧面展开图是边长为6的正方形,则该直三棱柱的表面积为 .【分析】由三棱柱三个侧面和上下两个底面的特征,结合侧面展开图是一个边长为6的正方形卡知,上下底面的正三角形的周长为6,即边长为2,然后根据条件公式进而求出表面积即可得出结论.【解答】解:依题意可知:直三棱柱的上下底面的正三角形的边长为2,∴其2个底面积为√34×22×2=2√3. ∵侧面展开图是边长为6的正方形,∴其侧面积为6×6=36,∴该直三棱柱的表面积为36+2√3.故答案为:36+2√3.【点评】此题主要考查了直三棱柱侧面展开图的知识,解题时注意三棱柱的特征,找到所求的量的等量关系是解决问题的关键.32.(2023•乐山)如图,点O 在直线AB 上,OD 是∠BOC 的平分线,若∠AOC =140°,则∠BOD 的度数为 .【分析】根据邻补角定义求得∠BOC 的度数,再根据角平分线定义即可求得答案.【解答】解:∵∠AOC =140°,∴∠BOC =180°﹣140°=40°,∵OD是∠BOC的平分线,∴∠BOD=12∠BOC=20°,故答案为:20°.【点评】本题主要考查角平分线的定义,此为几何中基础且重要知识点,必须熟练掌握.33.(2022•益阳)如图,P A,PB表示以P为起点的两条公路,其中公路P A的走向是南偏西34°,公路PB 的走向是南偏东56°,则这两条公路的夹角∠APB=°.【分析】根据题意可得∠APC=34°,∠BPC=56°,然后进行计算即可解答.【解答】解:如图:由题意得:∠APC=34°,∠BPC=56°,∴∠APB=∠APC+∠BPC=90°,故答案为:90.【点评】本题考查了方向角,熟练掌握方向角的定义是解题的关键.34.(2022•玉林)已知:α=60°,则α的余角是°.【分析】根据如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角即可得出答案.【解答】解:90°﹣60°=30°,故答案为:30.【点评】本题考查了余角和补角,掌握如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角是解题的关键.35.(2022•桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=cm.【分析】根据中点的定义可得AB=2AC=4cm.【解答】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点评】本题主要考查中点的定义,熟知中点的定义是解题关键.36.(2022•湘潭)如图,一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,已知∠AOB =120°,∠CDB=20°,则∠AEF=.【分析】根据平面镜反射的规律得到∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,根据三角形内角和定理求出∠OED的度数,即可得到∠AEF=∠OED的度数.【解答】解:∵一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,∴∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,∠OED=180°﹣∠AOB﹣∠EDO=180°﹣120°﹣20°=40°,∴∠AEF=∠OED=40°.故答案为:40°.【点评】本题考查了角的计算,根据平面镜反射的规律得到∠EDO=∠CDB=20°,∠AEF=∠OED是解题的关键.37.(2022•常德)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是.【分析】根据图形,可以直接写出“神”字对面的字.【解答】解:由图可得,“神”字对面的字是“月”,故答案为:月.【点评】本题考查正方体相对两个面上的文字,解答本题的关键是明确题意,利用数形结合的思想解答.38.(2022•连云港)已知∠A的补角为60°,则∠A=°.【分析】根据补角的定义即可得出答案.【解答】解:∵∠A的补角为60°,∴∠A=180°﹣60°=120°,故答案为:120.【点评】本题考查了余角和补角,掌握如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角是解题的关键.39.(2022•百色)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为°.【解答】解:根据题意可得,∠BAC=90°+45°=135°.故答案为:135.【点评】本题主要考查了角的计算,熟练掌握角的计算方法进行求解是解决本题的关键.40.(2021•丽水)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中FM=2EM,则“奔跑者”两脚之间的跨度,即AB,CD之间的距离是.【分析】如图2中,过点E作EI⊥FK于I,过点M作MJ⊥FK于J.想办法求出BM,MJ,FK与CD 之间的距离,可得结论.【解答】解:如图2中,过点E作EI⊥FK于I,过点M作MJ⊥FK于J.由题意,△ABM,△EFK都是等腰直角三角形,AB=BM=2,EK=EF=2√2,FK=4,FK与CD之间的距离为1,∵EI⊥FK,∴KI=IF,∴EI=12FK=2,∵MJ∥EI,∴MJEI=FMEF=23,∴MJ=4 3,∵AB∥CD,∴AB与CD之间的距离=2+43+1=133,故答案为:13 3【点评】本题考查七巧板,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.41.(2021•兴安盟)74°19′30″=°.【分析】先将30″化成“分”,再将19.5′化成“度”即可.【解答】解:30×(160)′=0.5′,19′+0.5′=19.5′,19.5×(160)°=0.325°,74°+0.325°=74.325°,故答案为:74.325.【点评】本题考查度、分、秒的换算,掌握度、分、秒的换算进率和换算方法是得出正确答案的前提.42.(2021•永州)如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB 的值最小,则点P的坐标是.【分析】连接AB交x轴于点P',求出直线AB的解析式与x轴交点坐标即可.【解答】解:如图,连接AB交x轴于点P',根据两点之间,线段最短可知:P'即为所求,设直线AB的关系式为:y=kx+b,{4k+b=3 b=−3,解得{k=32b=−3,∴y=32x−3,当y=0时,x=2,∴P'(2,0),故答案为:(2,0).【点评】本题主要考查了线段的性质,明白两点之间,线段最短是解题的关键.43.(2021•上海)70°的余角是.【分析】根据余角的定义即可求解.【解答】解:根据定义一个角是70°,则它的余角度数是90°﹣70°=20°,故答案为,20°.【点评】本题主要考查了余角的概念,掌握互为余角的两个角的和为90度是解决此题关键,44.(2021•营口)若∠A=34°,则∠A的补角为.【分析】根据互为补角的两个角的和等于180°列式计算即可得解.【解答】解:∠A的补角=180°﹣∠A=180°﹣34°=146°.故答案为:146°.【点评】本题考查了余角和补角,是基础题,熟记补角的概念是解题的关键.。
中考数学专题复习——图形认识初步(详细答案)
中考数学专题复习——图形认识初步一.选择题(共16小题)1.(2018•南京)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④2.(2018•内江)如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习3.(2018•长沙)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.4.(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥5.(2018•河北)如图,快艇从P处向正北航行到A处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°6.(2018•滨州)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2 7.(2018•大庆)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅8.(2018•河南)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我9.(2018•无锡)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.10.(2018•白银)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°11.(2018•天门)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥12.(2018•烟台)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.1813.(2018•徐州)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.14.(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④15.(2018•台湾)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.B.C. D.16.(2018•北京)下列几何体中,是圆柱的为()A.B. C.D.二.填空题(共4小题)17.(2018•昆明)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为.18.(2018•临安区)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).19.(2018•大庆)已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为cm3.20.(2018•黔南州)∠α=35°,则∠α的补角为度.答案详解一.选择题(共16小题)1.(2018•南京)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.2.(2018•内江)如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.3.(2018•长沙)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.4.(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【解答】解:由图得,这个几何体为三棱柱.故选:C.5.(2018•河北)如图,快艇从P处向正北航行到A处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.6.(2018•滨州)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.7.(2018•大庆)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面.故选:A.8.(2018•河南)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.9.(2018•无锡)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A .B .C .D .【分析】利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.【解答】解:能折叠成正方体的是故选:C .10.(2018•白银)若一个角为65°,则它的补角的度数为( )A .25°B .35°C .115°D .125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C .11.(2018•天门)如图是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .圆柱D .圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A .12.(2018•烟台)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.18【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得.【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选:B.13.(2018•徐州)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.14.(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【解答】解:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故选:A.15.(2018•台湾)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C.D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.16.(2018•北京)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.二.填空题(共4小题)17.(2018•昆明)如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为150°42′.【分析】直接利用度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.18.(2018•临安区)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:,故答案为:.19.(2018•大庆)已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为240cm3.【分析】根据圆柱体积=底面积×高,即可求出结论.【解答】解:V=S•h=60×4=240(cm3).故答案为:240.20.(2018•黔南州)∠α=35°,则∠α的补角为145度.【分析】根据两个角的和等于180°,则这两个角互补计算即可.【解答】解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.。
初中数学第七章图形的初步认识全章课课练(含答案)
第七章平面图形及其位置关系1.线段、射线、直线想一想●你能举几个生活中可以近似地看作线段、射线、直线的物体吗?怎样表示?●线段、射线、直线有哪些区别与联系?做一做1.在美术课上,老师教学生写艺术字,一共需画________条线段.2.请用适当的方法表示下列各条线,并判断每组线是否有交点.3.过三点可以画几条直线?过四个点呢?想一想,画一画.4.如图,9个点排成正方形形状.任意把其中几个点连起来,可以得到各种图形.•你能连出几个正方形?正三角形呢?5.已知有理数a<b<0<c<9,且│c│>│a│.从最小的数开始,•按从小到大的顺序用线段连起来,得到一个什么图形?试一试6.作图,使三条直线两两相交.7.如图,图中共有多少条线段?请把它们一一写出来.答案:1.162.(1)没有交点(2)有交点,因为直线可以无限延伸(3)无交点,因为射线只能向一边延伸3.过三点可以画1条或3条直线,过四点可以画1条、4条或6条直线4.可以连成6个正方形;不能连成正三角形5.这是兔子 6.略 7.30条略2.比较线段的长短想一想●你能想出多少种方法画一条3厘米长的线段?●你能找已知线段的中点、四等分点吗?●你会画已知两线段的和吗?两线段的差呢?做一做1.不用刻度尺,你能把一条绳子剪成4条相等的小段吗?试一试.2.已知线段AB,用直尺和圆规画一条长为2AB的线段.AB3.已知直线上依次有三点A,B,C,且AB=7cm,BC=5cm.若M为AB的中点,N为BC•的中点,取MN的中点D,求CD的长.4.如图,用刻度尺画AB,CD边的中点M,N,连接MN.比较2MN与AD+BC的大小关系.ADCB试一试5.已知,点A,D,E,B,C表示5个城市,由A城到B城有两条路线:①由A经C到B,•②由A经D,E到B.请运用已学的几何知识,判断哪一条路较近.6.小明、小红、小英、小军的位置及每两家的路程如图所示,•现小明急需把东西交给其他三人(也可转带),怎样走才能使总路程最短?答案:1.一根绳子对折两次,沿折线剪开2.略 3.5.5cm4.2MN=AD+BC 5.A点经D、E到点B较近6.小明送给小红和小军,小红再送给小英3.角的度量与表示(一)想一想●你能用几种方法表示角?●角的大小可以用度、分、秒来度量,度、分、秒之间怎样换算? 做一做1.如图,为杭州旅游产品之一的王星记扇子.你能用几种方法表示它的夹角?•它是钝角吗?2.计算: (1)(78)°=_______分=________秒;(2)7 200″=________分=________度; (3)1.2′=_______度=_______秒.3.如图,长方形纸箱的表面有______个角,以A 为顶点的角有_______个,以AB•为边的角有________个.4.如图是某野生动物园的游园指南. (1)用字母表示图中各景点;(2)用适当的方法表示以入口处为中心,任意两个园区之间的夹角;(3)以入口处为顶点,用量角器量出各景点与正北方向的夹角的度数.试一试5.仔细观察手表或钟面,你能确定6:30、9:30、2:00时刻,时针与分针的夹角吗?6.一次海难事件中,某海员的航海日记写道:19××年×月×日,我们从x港(O点)出发,沿北偏东50°方向航行150千米后,折向北偏西75°方向航行100千米,再向西北方向航行50千米就撞上了冰山.请你画出此航线图,并确定冰山的位置.答案:1.表示角的方法为∠1(或∠ ),或∠AOB,或∠O 锐角2.(1)1052,3 150 (2)120,2 (3)0.02,723.24,3,44.略5.15°,105°,60° 6.略ODCB A3.角的度量与表示(二)想一想●直角、平角、周角具有什么特征?锐角和钝角呢?●怎样利用直尺和圆规作已知角?做一做1.48°30′+11°30′=______°;56.37°+23.43°=_______°_______′.2.用度、分、秒表示:18.36°=______°_______′________″.3.判断:(1)周角是一条射线;()(2)平角是一条直线;()(3)角平分线就是将一个角分成两个角;()(4)两个锐角之和一定小于钝角.()4.据图填空:(1)∠AOC=∠______+∠______=∠_____-∠_______;(2)∠AOD=∠______+∠______=∠_____+∠______+∠______.5.如图,已知∠1和∠2,用直尺和圆规画出∠POQ,使∠POQ=∠1+∠2.21试一试6.仅用直尺和圆规画一个角,使它的角平分线恰好为已知射线OP.7.已知,∠AOB=2∠AOC,OC一定是∠AOB的平分线吗?请作图验证.答案:1.60°,79°,48′2.18°,21′,36″3.(1)×(2)×(3)×(4)×4.(1)AOB BOC AOD DOC (2)AOC DOC AOB BOC COD5.略 6.略 7.不一定是角平分线4.角的比较想一想●怎样区别锐角、直角、钝角、平角和周角?它们之间有什么大小关系?●你知道几种比较角的大小的方法?试一试1.•如图1为一只折叠的纸燕子•.•用适当的方法表示锐角有•_________,•直角有___________,钝角有__________.(1) (2) (3)2.上一节第4题中,哪些角是锐角?哪些角是直角?哪些角是钝角?•并指出它们的大小关系.3.如图2,∠AOB与∠COD为直角.若∠AOC=40°,则∠BOD=_______度.•图中锐角有_______,直角_________,钝角有__________.4.如图3,试确定图中各角的大小及它们的等量关系.5.利用一副三角板(两块),你能画出几个不同的角(小于180度)?•在你所画的角中,最小的角是多少度?哪些是锐角、直角、钝角?6.如图,BD 为△ABC 的边AB 上的高,请把∠D 、∠1、∠2、∠C•这四个角按从小到大的顺序排列起来,并说明理由.21DCBA答案: 1.略 2.略3.140;∠AOC ;∠AOB ,∠COD ;∠BOC ,∠AOD ,∠BOD 4.略5.15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,175°.其中15°,30°,45°,60°,75°是锐角,90°是直角,105°,120°,135°,150°,175•°是钝角 6.∠C<∠1<∠D<∠25.平行想一想●除了课本上的例子,你的身边还有哪些平行或利用平行原理的例子? ●怎样画平行线?你会哪几种方法? ●平行线有哪些性质? 做一做1.下列说法不正确的是( ).(A )过任意一点P 可作已知直线L 的一条平行线 (B )同一平面内两条不相交的直线是平行线 (C )过直线外一点只能画一条直线与已知直线平行 (D )平行于同一条直线的两条直线平行2.如图,四边形ABCD 和四边形AFCE 都是平行四边形,点E ,F 分别在CD ,AB 上,•则图中平行线的组数是( ). (A )2 (B )3 (C )4 (D )5 3.(1)你能用学过的方法判断图中a ,b 这两条直线的位置关系吗?(2)过直线外一点A ,分别画直线L 和直线a 的平行线;(3)找出图中所有的平行线,并用“∥”表示.4.如图,过△ABC 的顶点A ,B ,C ,画与对边平行的直线,分别交于点A ′,B ′,C ′.•测量∠A 、∠B 、∠C 与∠A ′、∠B ′、∠C ′的度数.它们之间有什么等量关系?F ED CBA试一试5.平面上有10条直线,无任何三条交于一点.欲使它们出现31个交点,可能吗?请作图验证.6.(1)图中有哪些平行的线段?把它们表示出来;(2)用量角器量出∠A、∠H和∠D、∠E的度数.它们之间有什么数量关系?答案:1.A 2.B3.(1)a∥b (2)(3)m∥a∥b,n∥L4.∠A=∠A′,∠B=∠B′,∠C=∠C′5.可能6.(1)AB∥GH,CD∥EF,AH∥DE,BC∥GF(2)∠A+∠H=180°,∠D+∠E=180°6.垂直想一想●怎样判断两条直线是否垂直?●怎样画垂线?你会哪几种方法?●垂直的直线有哪些性质?做一做1.图中有哪些线段互相垂直?用“⊥”表示.2.如图,分别过点A,B作直线L的垂线,并用你学过的知识判断这两条垂线的位置关系.3.如图,直线a⊥直线L.用平移三角尺画平行线的方法,过点A画直线a•的平行线b,则b______L.4.如图,AC⊥AB,AD⊥BC,DE⊥AC.则A到DE的距离是________,•B•到AD•的距离是_______,C到DE的距离是_______.试一试5.如图,请按要求作图,并回答问题:(1)过点C画线段AB的垂线,垂足为点D;(2)该垂线是否经过格点?如果经过格点,请在图中标出所经过的格点;(3)量一量点C到AB的距离(精确到1mm).答案:1.AB⊥BC,ED⊥CD,FC⊥BD,BF⊥DF 2.两条直线平行 3.⊥4.AE;BD;CE 5.略7.有趣的七巧板(一)想一想●利用七巧板的2块部件,能拼成三角形吗?3块呢?●利用七巧板的2块部件,能拼成正方形吗?3块呢?●七巧板的部件能组成长方形吗?其他多边形呢?做一做1.如图所示为一副七巧板.(1)用2块部件拼两个不同三角形;用3块部件拼一个三角形;(2)用2块部件拼两个不同正方形;用3块部件拼一个正方形;(3)用七巧板拼两个不同的长方形;(4)用七巧板拼一个五边形.试一试2.给七巧板涂上适当的颜色,拼出你最喜欢的动物,看你拼得像不像?3.利用七巧板拼一些多边形,你能拼出多少种?答案:1.略 2.略 3.略7.有趣的七巧板(二)想一想●在你制作的七巧板中,有哪些互相平行、互相垂直的线段?做一做1.你能用如图的七巧板拼出两个小正方形吗?这7块几何图形的面积有怎样的等量关系(如图中三角形的面积是大三角形面积的12)?2.怎样用七巧板拼如图所示的数字?试一试.3.你能用一副七巧板拼出六边形吗?•这个六边形相邻两边所夹的角的度数是多少?4.如图,用一副七巧板和一块小正方形板(七巧板中的一块)•拼成了一个大正方形.若用一副七巧板和一块菱形板能拼成正方形吗?若加上一块中三角形板呢?•试一试.答案:1.拼正方形方法如图.三角形③,正方形④,菱形⑤的面积相等,且是小三角形⑥,⑦的面积的两倍,是大三角形①,②的面积的一半。
2022年中考训练 专题九 图形的初步认识与三角形(含答案)
专题九图形的初步认识与三角形一、单选题1.(2022最新·衢州)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A. B. C. D.2.(2022最新·衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A. B. C.D.3.(2022最新·台州)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3B. 7+4C. 8+3D. 8+44.(2022最新·绍兴)将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是( )A. B. C. D.5.(2022最新·绍兴)如图,等腰三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP 交CP的延长线于点H,连结AP,则∠PAH的度数()A. 随着θ的增大而增大B. 随着θ的增大而减小C. 不变D. 随着θ的增大,先增大后减小6.(2022最新·宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB 至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()D. 47.(2022最新·宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A. △ABC的周长B. △AFH的周长C. 四边形FBGH的周长 D. 四边形ADEC的周长8.(2022最新·金华·丽水)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行9.(2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 页(共 17 页)
18.(2008•烟台)如图,小明从 A 处出发沿北偏东 60°方向行走至 B 处,又沿 北偏西 20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调 整应是( )
A.
B.
C.
D.
9.(2014•佛ft)一个几何体的展开图如图,这个几何体是( )
A.三棱柱 B.三棱锥 C.四棱柱 D.四棱锥 10.(2014 秋•栖霞市期末)下面是一个正方体,用一个平面去截这个正方体截 面形状不可能为下图中的( )
ft区期末)下列说法正确的是( )
13.(2014•义乌市)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨 线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )
A.两点确定一条直线 B.两点之间线段最短 C.垂线段最短 D.在同一平面内,过一点有且只有一条直线与已知直线垂直
14.(2014•长沙)如图,C、D 是线段 AB 上的两点,且 D 是线段 AC 的中点, 若 AB=10cm,BC=4cm,则 AD 的长为( )
A. B.
C. D.
第 1 页(共 17 页)
7.(2005•扬州)小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同, 那么这个正方体的平面展开图可能是( )
A.
B.
C.
D.
8.(2010•大连校级自主招生)如图,它需再添一个面,折叠后才能围成一个正 方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )
条不同射线,可得锐角
个.
25.(2014 秋•营口期末)如图,点 C 是∠AOB 的边 OA 上一点,D,E 是 OB
上两点,则图中共有
条线段,
条射线,
个小于平角的角.
26.(2014•湖州)计算:50°﹣15°30′=
.
三.解答题(共 4 小题) 27.(2015 秋•保ft期末)如图,线段 AC=6cm,线段 BC=15cm,点 M 是 AC 的中点,在 CB 上取一点 N,使得 CN:NB=1:2,求 MN 的长.
(填图形名称).
23.(2013 秋•昆明校级期末)若要使图中平面展开图按虚线折叠成正方体后,
相对面上两个数之和为 6,x=
,y=
.
第 4 页(共 17 页)
24.(2008•襄阳)在锐角∠AOB 内部,画 1 条射线,可得 3 个锐角;画 2 条不
同射线,可得 6 个锐角;画 3 条不同射线,可得 10 个锐角;…照此规律,画 10
A.右转 80° B.左转 80° C.右转 100° D.左转 100° 19.(2014•乐ft)如图,OA 是北偏东 30°方向的一条射线,若射线 OB 与射线
OA 垂直,则 OB 的方位角是( )
A.北偏西 30° B.北偏西 60° C.东偏北 30° D.东偏北 60° 20.(2015•百色)一个角的余角是这个角的补角的 ,则这个角的度数是(
A.2cmB.3cm C.4cm D.6cm
15.(2014•徐州)点 A、B、C 在同一条数轴上,其中点 A、B 表示的数分别为 ﹣3、1,若 BC=2,则 AC 等于( ) A.3 B.2 C.3 或 5 D.2 或 6
16.(2015 秋•端州区期末)已知线段 AB=10cm,点 C 是直线 AB 上一点, BC=4cm,若 M 是 AC 的中点,N 是 BC 的中点,则线段 MN 的长度是( ) A.7cmB.3cm C.7cm 或 3cm D.5cm
28.(2006•永春县)如图,已知 O 是直线 CD 上的点,OA 平分 ∠BOC,∠AOC=35°,则∠BOD 的度数.
第 5 页(共 17 页)
29.(2015 秋•永登县期末)如图,∠AOB=110°,∠COD=70°,OA 平分 ∠EOC,OB 平分∠DOF,求∠EOF 的大小. 30.把一副三角尺如图所示拼在一起,试确定图中∠A、∠B、∠AEB、∠ACD 的 度数,并用“<”将它们连起来.
中考数学图形的初步认识练习题
一.选择题(共 20 小题) 1.(2006•盐城)将下面的直角梯形绕直线 l 旋转一周,可以得到如图立体图形 的是( )
A.
B.
C.
D.
2.(2014 秋•涞水县期末)将一个直角三角形绕它的最长边(斜边)旋转一周
得到的几何体为( )
A.
B.
C.
D.
3.(2009•泸州)棱长是 1cm 的小立方体组成如图所示的几何体,那么这个几
) A.30° B.45° C.60° D.70°
二.填空题(共 6 小题)
21.(2013•枣庄)从棱长为 2 的正方体毛坯的一角,挖去一个棱长为 1 的小正
方体,得到一个如图所示的零件,则这个零件的表面积为
.
22.(2005•沈阳)观察下列图形的排列规律(其中△是三角形,□是正方形,○
是圆),○△□□○△□○△□□○△□┅┅若第一个图形是圆,则第 2008 个图形是
何体的表面积为( )
A.36cm2 B.33cm2 C.30cm2 D.27cm2 4.(2013•无锡)已知圆柱的底面半径为 3cm,母线长为 5cm,则圆柱的侧面积 是( ) A.30cm2 B.30πcm2 C.15cm2 D.15πcm2
5.(2014 秋•攸县校级期末)以下图形中,不是平面图形的是( ) A.线段 B.角 C.圆锥 D.圆 6.(2014•常州)下列立体图形中,侧面展开图是扇形的是( )
第 6 页(共 17 页)
中考数学图形的初步认识练习题 参考答案与试题解析
一.选择题(共 20 小题) 1.(2006•盐城)将下面的直角梯形绕直线 l 旋转一周,可以得到如图立体图形 的是( )
第 2 页(共 17 页)
A. 直线 AB 和直线 BA 是两条直线 B. 射线 AB 和射线 BA 是两条射线 C. 线段 AB 和线段 BA 是两条线段 D. 直线 AB 和直线 a 不能是同一条直线
12.(2015秋•辛集市期末)下列说法中正确的是( ) A.两点之间的所有连线中,线段最短 B.射线就 是直线 C.两条射线组成的图形叫做角 D.小于平角的角可分为锐角和钝角两类