高中数学必修四教案-1.1.1 任意角(2)-人教A版

合集下载

1.1.1任意角(教案)

1.1.1任意角(教案)

1.1 任意角和弧度制1.1.1 任意角【教学内容解析】本节课内容是《普通高中课程标准实验教科书数学》人教A版必修4第一章《三角函数》1.1《任意角和弧度制》中第1.1.1节《任意角》的第一课时,本节教学内容为任意角,主要学习任意角的推广、象限角、用几何和符号表示终边相同的角.本节内容为三角函数的第一节,终边相同的角的表示为后面证明恒等式、化简及利用诱导公式求三角函数的值奠定基础.由此确定本节课的教学重点为:教学重点:将0°~360°的角的概念推广到任意角.【学情分析】学生早在小学与初中学习过“角”,对角的概念有一定印象,但是过去接触过的角都在0°~360°,在对角的认识上已经形成一定的思维定势,所以在本小节要将角的概念推广可能会有一定的困难.用集合和符号来表示终边相同的角,涉及任意角、象限角、终边相同的角等新概念,对学生来说刚刚将角推广到任意角,然后就利用它来解决终边相同的角,是学习的主要难点.故确定本节课的教学难点为:教学难点:角的概念的推广,终边相同的角的表示.【教学目标设置】根据上述教学内容的地位和作用,结合课程标准与学情,确定了以下目标:1.结合生活中实例,认识角的概念推广的必要性;2.初步学会在平面直角坐标系中讨论任意角,并能熟练写出与已知角终边相同的角的集合.3.通过从特殊的三个角找关系,推广到一般的终边相同的角的集合的书写,体会类比的思想方法,同时利用直角坐标系作出角解决问题,渗透数形结合的数学思想.【教学策略分析】根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高.针对本节课的重点——将0°~360°的角的概念推广到任意角,教学中,通过“思考”提出拨手表指针问题,引导学生感受推广角的概念的必要性,使他们明白要正确表达“校准”手表的过程,需要同时说明分针的旋转量和旋转方向,教学时,让学生自己描述“校准”过程,让学生体会仅用0°~360°的角已经难以回答当前的问题,进而引出学习课题.同时还以体操转体运动为例,进一步说明引入新概念的必要性和实际意义.针对本节课的主要难点,教学中此处设置问题,让学生自己在直角坐标系中画30°,330°,-390°,(这一组角比教材上的那组角更容易找关系)通过观察这些角得出终边相同,然后提问这些角之间有怎样的数量关系?能不能用其中一个角表示这些角?让学生自己得出这一组角中任意两角之差是360°的整数倍,进一步类比得出所有与任意角α终边相同的角,连同α在内构成一个集合的表示.通过学生自己活动解决“探究”,经历由具体数值到一般值的抽象的过程,形成对“终边相同的角相差360°的整数倍”的直观感知.教学中同时多媒体,建立坐标系,画出任意角,并测出角的大小,旋转角的终边,观察角的变化规律,从而将数、形联系起来,使角的几何表示和集合表示相结合.对例题和习题的处理上,对教材上的例2改编为终边落在x轴上的角的集合,将终边落在y轴上的角的集合作为变式,变式设置了4个问题,让学生对终边落在各个坐标轴与象限角的表示有深刻认识,总结两种方法,为后面章节学习打下基础。

新课标-人教A版-高中数学必修4教案精选

新课标-人教A版-高中数学必修4教案精选
o

那么有( D A.
) . B. C. ( ) D.
例 2 用集合表示: (1)各象限的角组成的集合.
o
(2)终边落在
o o
轴右侧的角的集合.
解:(1) 第一象限角: {α|k360 π<α<k360 +90 ,k∈ Z} o o o o 第二象限角: {α|k360 +90 <α<k360 +180 ,k∈ Z} o o o o 第三象限角: {α|k360 +180 <α<k360 +270 ,k∈ Z} o o o 第四象限角:{α|k360 +270o<α<k360 +360 ,k∈Z} (2)在 ~ 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得
1
1.定义中说:角的始边与 x 轴的非负半轴重合,如果改为与 x 轴的正半轴重合行不行,为什么? 2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字? 3.是不是任意角都可以归结为是象限角,为什么? 处理:学生思考片刻后回答,教师适时予以纠正。 答:1.不行,始边包括端点(原点) ; 2.端点在原点上; 3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。 师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的 预习才是有效果的。 0 0 0 0 0 师生讨论:好,按照象限角定义,图中的 30 ,390 ,-330 角,都是第一象限角;300 ,-60 角,都是第四象限 0 角;585 角是第三象限角。 师:很好,不过老师还有几事不明,要请教大家: (1)锐角是第一象限角吗?第一象限角是锐角吗?为什么? 生:锐角是第一象限角,第一象限角不一定是锐角; 0 师: (2)锐角就是小于 90 的角吗? 0 生:小于 90 的角可能是零角或负角,故它不一定是锐角; 0 0 师: (3)锐角就是 0 ~90 的角吗? 0 0 0 0 0 0 生:锐角:{θ|0 <θ<90 };0 ~90 的角:{θ|0 ≤θ<90 }. 学生练习(口答) 已知角的顶点与坐标系原点重合,始边落在 x 轴的非负半轴上,作出下列各角,并指出 它们是哪个象限的角? 0 0 0 0 (1)420 ; (2)-75 ; (3)855 ; (4)-510 . 答: (1)第一象限角; (2)第四象限角; (3)第二象限角; (4)第三象限角. 5.终边相同的角的表示法 师:观察下列角你有什么发现? 390 330 30 1470 1770 生:终边重合. 0 师:请同学们思考为什么?能否再举三个与 30 角同终边的角? 0 0 0 0 0 0 0 0 0 0 0 生:图中发现 390 ,-330 与 30 相差 360 的整数倍,例如,390 =360 +30 ,-330 =-360 +30 ;与 30 角同终边的 0 0 角还有 750 ,-690 等。 0 0 0 0 师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差 360 的整数倍。例如:750 =2×360 +30 ; 0 0 0 0 -690 =-2×360 +30 。那么除了这些角之外,与 30 角终边相同的角还有: 0 0 0 0 3×360 +30 -3×360 +30 0 0 0 0 4×360 +30 -4×360 +30 ……, ……, 0 0 0 由此,我们可以用 S={β|β=k×360 +30 ,k∈Z}来表示所有与 30 角终边相同的角的集合。 师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示? 0 生:S={β|β=α+k×360 ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 6.例题讲评 例 1 设 E {小于90 的角} F {锐角},G={第一象限的角} ,

人教a版必修4学案:1.1.1任意角(含答案)

人教a版必修4学案:1.1.1任意角(含答案)

第一章三角函数§1.1任意角和弧度制1.1.1任意角自主学习知识梳理1.角的概念(1)角的概念:角可以看成平面内________________绕着________从一个位置________到另一个位置所成的图形.(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按______________________形成的角负角按________________形成的角零角一条射线________________,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是______________.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=____________},即任一与角α终边相同的角,都可以表示成角α与____________的和.4.终边落在坐标轴上角的集合终边所在的位置角的集合x轴正半轴x轴负半轴x轴y轴正半轴y轴负半轴y轴自主探究终边落在各个象限的角的集合.α终边所在的象限角α的集合第一象限第二象限第三象限第四象限对点讲练知识点一终边相同的角与象限角例1在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.回顾归纳 解答本题可先利用终边相同的角的关系:β=α+k ·360°,k ∈Z ,把所给的角化归到0°~360°范围内,然后利用0°~360°范围内的角分析该角是第几象限角. 变式训练1 判断下列角的终边落在第几象限内: (1)1 400°; (2)-2 010°.知识点二 终边相同的角的应用例2 已知,如图所示,(1)写出终边落在射线OA ,OB 上的角的集合; (2)写出终边落在阴影部分(包括边界)的角的集合.回顾归纳 解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的所有角的集合,如果集合能化简的还要化成最简.变式训练2 如图所示,写出终边落在阴影部分的角的集合.知识点三 角的象限的判断例3 已知α是第二象限角,试确定2α,α2的终边所在的位置.回顾归纳 若已知角α是第几象限角,判断α2,α3等是第几象限角,主要方法是解不等式并对k 进行分类讨论.考查角的终边的位置.变式训练3 已知α为第三象限角,则α2所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.关于终边相同角的认识一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:(1)α为任意角.(2)k ·360°与α之间是“+”号,k ·360°-α可理解为k ·360°+(-α).(3)相等的角,终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.(4)k ∈Z 这一条件不能少.课时作业一、选择题 1.与405°角终边相同的角是( ) A .k ·360°-45°,k ∈Z B .k ·180°-45°,k ∈Z C .k ·360°+45°,k ∈Z D .k ·180°+45°,k ∈Z 2.若α=45°+k ·180° (k ∈Z ),则α的终边在( ) A .第一或第三象限 B .第二或第三象限 C .第二或第四象限 D .第三或第四象限 3.若角α与β的终边相同,则α-β的终边落在( ) A .x 轴的正半轴 B .x 轴的负半轴 C .y 轴的正半轴 D .y 轴的负半轴 4.若α是第四象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 5. 如图,终边落在阴影部分(含边界)的角的集合是( )A .{α|-45°≤α≤120°}B .{α|120°≤α≤315°}C .{α|k ·360°-45°≤α≤k ·360°+120°,k ∈Z }D .{α|k ·360°+120°≤α≤k ·360°+315°,k ∈Z }二、填空题6.经过10分钟,分针转了________度.7.下列命题:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角大于第一象限角;⑤第二象限角是钝角;⑥小于180°的角是钝角、直角或锐角.其中判断错误的是______.(把有关命题的序号写上即可)8.若α=1 690°,角θ与α终边相同,且-360°<θ<360°,则θ=________.三、解答题9.在与角-2 010°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.10.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.第一章三角函数§1.1任意角和弧度制1.1.1任意角知识梳理1.(1)一条射线端点旋转(2)类型定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角3.α+k·360°,k∈Z整数个周角4.终边所在的位置角的集合x轴正半轴{α|α=k·360°,k∈Z}x轴负半轴{α|α=k·360°+180°,k∈Z}x轴{α|α=k·180°,k∈Z}y轴正半轴{α|α=k·360°+90°,k∈Z}y轴负半轴{α|α=k·360°+270°,k∈Z}y轴{α|α=k·180°+90°,k∈Z}自主探究α终边所在的象角α的集合限第一{α|k·360°<α<k·360°+90°,k∈Z}象限第二{α|k·360°+90°<α<k·360°+180°,k∈Z}象限第三{α|k·360°+180°<α<k·360°+270°,k∈Z}象限第四{α|k·360°-90°<α<k·360°,k∈Z}象限对点讲练例1解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.变式训练1解(1)1 400°=3×360°+320°,∵320°是第四象限角,∴1 400°也是第四象限角.(2)-2 010°=-6×360°+150°,∴-2 010°与150°终边相同.∴-2 010°是第二象限角.例2解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.变式训练2解设终边落在阴影部分的角为α,角α的集合由两部分组成.(1){α|k·360°+30°≤α<k·360°+105°,k∈Z}.(2){α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合(1)与(2)的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)·180°+105°,k∈Z}={α|k ·180°+30°≤α<k ·180°+105°,k ∈Z }. 例3 解 因为α是第二象限角, 所以k ·360°+90°<α<k ·360°+180°,k ∈Z . 所以2k ·360°+180°<2α<2k ·360°+360°,k ∈Z ,所以2α的终边在第三或第四象限或终边在y 轴的非正半轴上. 因为k ·360°+90°<α<k ·360°+180°,k ∈Z ,所以k ·180°+45°<α2<k ·180°+90°,k ∈Z ,所以当k =2n ,n ∈Z 时,n ·360°+45°<α2<n ·360°+90°,即α2的终边在第一象限; 当k =2n +1,n ∈Z 时,n ·360°+225°<α2<n ·360°+270°,即α2的终边在第三象限.所以α2的终边在第一或第三象限.变式训练3 D [由于k ·360°+180°<α<k ·360°+270°,k ∈Z , 得k 2·360°+90°<α2<k 2·360°+135°. 当k 为偶数时,α2为第二象限角;当k 为奇数时,α2为第四象限角.]课时作业 1.C 2.A3.A [∵α=β+k ·360°,k ∈Z , ∴α-β=k ·360°,k ∈Z .]4.C [可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.]5.C [与边界终边相同的角为k ·360°+120°或k ·360°-45°.故阴影部分的角为k ·360°-45°≤α≤k ·360°+120°,k ∈Z .] 6.-607.①③④⑤⑥解析 ①390°角是第一象限角,可它不是锐角,所以①不正确.②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,所以②正确. ③-330°角是第一象限角,但它是负角,所以③不正确.④120°角是第二象限角,390°是第一象限角,显然390°>120°,所以④不正确. ⑤480°角是第二象限角,但它不是钝角,所以⑤不正确.⑥0°角小于180°,但它既不是钝角,也不是直角或锐角,故⑥不正确. 8.-110°或250°解析 ∵α=1 690°=4×360°+250°,∴θ=k ·360°+250°,k ∈Z .∵-360°<θ<360°, ∴k =-1或0. ∴θ=-110°或250°.9.解(1)∵-2 010°=-6×360°+150°,∴与角-2 010°终边相同的最小正角是150°.(2)∵-2 010°=-5×360°+(-210°),∴与角-2 010°终边相同的最大负角是-210°.(3)∵-2 010°=-6×360°+150°,∴与-2 010°终边相同也就是与150°终边相同.由-720°≤k·360°+150°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+150°依次得:-570°,-210°,150°,510°.10.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.。

2014年人教A版必修四教案 1.2.1任意角的三角函数(2)

2014年人教A版必修四教案 1.2.1任意角的三角函数(2)

课 题:1.2.1 任意角的三角函数(二)教学目标:(1)掌握三角函数的符号;(2)根据定义理解与运用公式一,把求任意角的三角函数值转化为求0°~360°间的三角函数值.(3)初步应用定义分析与解决与三角函数值有关的一些简单问题. 教学重点:三种三角函数的定义域和函数值在各象限的符号;终边相同的角的同一三角函数值相等(公式一).教学难点: 理解转化,灵活运用诱导公式(一). 教学设想: 一、复习回顾:任意角的三角函数定义是什么? 二、探究新知:1.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例1.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.练习:书P15练习42.提问:角的终边落在坐标轴上三个三角函数值是多少? 完成书上P15练习33.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+= (其中k Z ∈)利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值.例2.确定下列三角函数值的符号:(1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan 3π练习: tan(-666°36’)、tan113π例3.求下列三角函数值:(1)9cos4π; (2)11tan()6π-三、学习小结(1)你能准确判断三角函数值在各象限内的符号吗?(2)请写出各三角函数的定义域;(3)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?。

1.1.1《任意角》课件(人教A版必修4)

1.1.1《任意角》课件(人教A版必修4)

5.与1 991°终边相同的最小正角是_____. 【解析】∵与1 991°终边相同的角β=1 991°+ k²360°,(k∈Z),∴0°<1 991°+k²360°≤360°
191 <k≤ 191 又k∈Z, 即 -5 -4 , 360 360 ∴k=-5,∴与1 991°终边相同的最小正角是

)
(B)钝角是第二象限角
(C)终边相同的角一定相等 (D)不相等的角,它们的终边必不相同 【解析】选B.因为钝角α满足90°<α<180°,所以角α的 终边一定在第二象限.
3.若α 是第四象限角,则180°+α 一定是( (A)第一象限角 (B)第二象限角

(C)第三象限角
(D)第四象限角
【解析】选B.方法一:∵α是第四象限角 ∴-90°+k²360°<α<k²360° ∴90°+k²360°<180°+α<180°+k²360°(k∈Z) 方法二:由角的运算知,角α与角180°+α关于原点对称,即
∴θ=120°或240°.
7.在0°~360°范围内,找出与下列各角终边相同的角,并 判断它们是第几象限角: (1)918°;(2)-624°18′. 【解析】(1)∵918°=2〓360°+198°,
而198°∈(180°,270°),
∴918°与198°的终边相同,是第三象限角. (2)∵-624°18′=-2〓360°+95°42′, 又95°42′∈(90°,180°), ∴-624°18′与95°42′的终边相同,是第二象限角.
n²360°,
∴ 是第三象限角. 3 答案:一、三、四
4.(15分)若集合A={α |k²180°+30°<α <k²180°+90°, k∈Z},集合B={β |k²360°-45°<β <k²360°+45°, k∈Z},求A∩B.

1.1.1 任意角(2)

1.1.1 任意角(2)

S={α|α=45°+k· 180°,k∈Z}. -315°,-135°,45°,225°, 405°,585°.
={β| β=900+ k ∙1800 , k ∈Z}
角的终边落在坐标轴上的情形
90 k 360
0
0
y
1800 k 3600
o
2700 k 3β |β = k∙1800,k∈Z}
例3 写出终边在直线y=x上的角的集合S,并把 S中适合不等式-360°≤ <720°的元素 写 出来.
1.1.1 任 意 角(2)
例1 已知角的顶点与直角坐标系的原点重合,始 边与x轴的非负半轴重合,作出下列各角,并指出 它们是第几象限角
(1)420
(2)855
0
0
(3) 510
0
例2
写出终边落在y轴上的角的集合。
{偶数}∪{奇数} ={整数}
900+ k ∙3600 Y X O 2700+k∙3600
解:终边落在y轴正半轴上的角的集合为
0+180 0 的偶数倍 0+ k ∙360 0, k ∈Z} {β| =90 } S1={ | ββ =90
={β| β=900+2 k ∙1800, k ∈Z} ={β| β=900+1800 的偶数倍}
终边落在y轴负半轴上的角的集合为
0 的奇数倍 0+ k ∙360 0, k ∈Z} {β| β=270 =900+180 } S2={
={β| β=900+1800+2k ∙1800, k∈Z} ={β| β=900+(2 k +1)1800 , k∈Z} ={β| β=900+1800 的奇数倍}

高中数学必修四:1.1.1《任意角》 PPT课件 图文

高中数学必修四:1.1.1《任意角》 PPT课件 图文

精讲领学
例题1 写出与下列各角终边相同的角的集合S,并把S中在 360~720范围的角写出来.
( 1 ) 6 0 ;( 2 ) 2 1 ;( 3 ) 3 6 3 1 4
解: ( 1 ) S {| k 3 6 0 6 0 , k Z }300,60,420
( 2 ) S {| k 3 6 0 2 1 , k Z }21,339,699
2、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630°
3、把-1485°转化为α+k·360° (0°≤α<360°, k∈Z)的形式是( ) A.45°-4×360° B.-45°-4×360° C.-45°-5×360° D.315°-5×360°
反馈固学
1.1.1 任意角
第一课时
(1)推广角的概念;理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角终边相同的角(包括角)的表示方法; (4)树立运动变化观点,深刻理解推广后的角的概念;
思考:那么工人在拧紧或拧松螺丝时,转动的角度 如何表示才比较合适?
逆时 针
4、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等
5:任意两个角的数量大小可以相加、相减.
例如50°+80°=130°, 50°-80°=-30°, 你能解释一下这两个式子的几何意义吗?
130°是以50°角的终边为始边,逆时针旋转80°所成的角. -30°是以50°角的终边为始边,顺时针旋转80°所成的角.
注3:(1) 为任意角 (2) k Z这一条件必不可少;
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.

人教A版数学必修四教案:1.1.1任意角

人教A版数学必修四教案:1.1.1任意角

第一章 三角函数1.1任意角和弧度制1.1.1任意角一、教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境: “转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

新人教A版必修四第一章1.1.1任意角知识梳理及重难点题型(含解析版)

新人教A版必修四第一章1.1.1任意角知识梳理及重难点题型(含解析版)

1.1.1任意角重难点题型【举一反三系列】知识链接【知识点1 任意角的概念】1.任意角2.角的分类【知识点2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示3.非象限角当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示【知识点3 终边相同的角】一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合,即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 举一反三【考点1 象限角与集合间的基本关系】【例1】(2019春•杜集区校级月考)设A ={小于90°的角},B ={第一象限角},则A ∩B 等于( )A .{锐角}B .{小于90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)} {}Z k k S ∈⋅+==,360| αββ【变式1-1】(2019秋•钦南区校级月考)已知A ={第一象限角},B ={锐角},C ={小于90°的角},那么A 、B 、C 关系是( )A .A ∩C =CB .B ⊆C C .B ∪A =CD .A =B =C【变式1-2】(2019秋•黄陵县校级月考)设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( )A .A =B B .B =C C .A =CD .A =D【变式1-3】(2019秋•宜昌月考)设M ={α|α=k •90°,k ∈Z }∪{α|α=k •180°+45°,k ∈Z },N ={α|α=k •45°,k ∈Z },则( )A .M ⊆NB .M ⊇NC .M =ND .M ∩N =∅【考点2 求终边相同的角】【例2】(2019春•娄底期末)下列各角中与225°角终边相同的是( )A .585°B .315°C .135°D .45°【变式2-1】(2018春•武功县期中)下列各组角中,终边相同的角是( )A .﹣398°,1042°B .﹣398°,142°C .﹣398°,38°D .142°,1042°【变式2-2】(2018春•武邑县校级期末)与﹣457°角终边相同角的集合是( )A .{α|α=k •360°+457°,k ∈Z }B .{α|α=k •360°+97°,k ∈Z }C .{α|α=k •360°+263°,k ∈Z }D .{α|α=k •360°﹣263°,k ∈Z } 【变式2-3】(2018春•林州市校级月考)在0°~360°范围内,与﹣853°18'终边相同的角为( )A .136°18'B .136°42'C .226°18'D .226°42'【考点3 已知α终边所在象限求2α,2α,3α】 【例3】(2018秋•宜昌期末)已知α为锐角,则2α为( )A .第一象限角B .第二象限角C .第一或第二象限角D .小于180°的角【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则3α的终边所在位置不可能是( ) A .第一象限 B .第二象限 C .第三象限D .笫象限 【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则2α所在的象限是( ) A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则2α-是( )A .第一象限角B .第一或第二象限角C .第一或第三象限角D .第二或第四象限角 【考点4 终边对称的角的表示法】 【例4】(2019春•南京期中)若角α=m •360°+60°,β=k •360°+120°,(m ,k ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称 【变式4-1】若角α的终边与45°角的终边关于原点对称,则α= .【变式4-2】若角α和β的终边关于直线x +y =0对称,且α=﹣60°,则角β的集合是 .【变式4-3】已知α=﹣30°,若α与β的终边关于直线x ﹣y =0对称,则β= ;若α与β的终边关于y 轴对称,则β= ;若α与β的终边关于x 轴对称,则β= .【考点5 已知终边求角】【例5】(2019春•凉州区校级月考)已知α=﹣1910°.(1)把角α写成β+k •360°(k ∈Z ,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出θ的值,使θ与α的终边相同,且﹣720°≤θ<0°.【变式5-1】若角α的终边落在直线x +y =0上,求在[﹣360°,360°]内的所有满足条件的角α.【变式5-2】已知α、β都是锐角,且α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,求∠α、∠β的大小.【变式5-3】(2018春•武功县期中)已知角α=45°;(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;(2)集合|18045,2k M x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭,|18045,4k N x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭那么两集合的关系是什么? 【考点6 已知角终边的区域确定角】【例6】写出角的终边在阴影中的角的集合.【变式6-1】如图所示;(1)分别写出终边落在0A ,0B 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.【变式6-2】用集合表示顶点在原点,始边重合于x轴非负半轴,终边落在阴影部分内的角(不含边界).【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.1.1.1任意角重难点题型【举一反三系列】知识链接【知识点1 任意角的概念】1.任意角2.角的分类【知识点2 象限角与非象限角】1.象限角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,则角的终边(除端点外)在第几象限,就称这个角为第几象限角.2.象限角的集合表示3.非象限角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限.4.非象限角的集合表示【知识点3 终边相同的角】一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合,即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 举一反三【考点1 象限角与集合间的基本关系】【例1】(2019春•杜集区校级月考)设A ={小于90°的角},B ={第一象限角},则A ∩B 等于( )A .{锐角}B .{小于90°的角}C .{第一象限角}D .{α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}【分析】先求出A ={锐角和负角},B ={α|k •360°<α<k •360°+90°,k ∈Z },由此利用交集的定义给求出A ∩B .【答案】解:∵A ={小于90°的角}={锐角和负角},B ={第一象限角}={α|k •360°<α<k •360°+90°,k ∈Z },∴A ∩B ={α|k •360°<α<k •360°+90°(k ∈Z ,k ≤0)}. {}Z k k S ∈⋅+==,360| αββ故选:D.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意任意角的概念的合理运用.【变式1-1】(2019秋•钦南区校级月考)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.A∩C=C B.B⊆C C.B∪A=C D.A=B=C【分析】分别判断,A,B,C的范围即可求出【答案】解解:∵A={第一象限角}=(k•360°,90°+k•360°),k∈Z;B={锐角}=(0,90°),C={小于90°的角}=(﹣∞,90°)∴B⊆C,故选:B.【点睛】本题考查了任意角的概念和角的范围,属于基础题.【变式1-2】(2019秋•黄陵县校级月考)设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是()A.A=B B.B=C C.A=C D.A=D【分析】根据A={θ|θ为锐角}={θ|0°<θ<90°},D={θ|θ为小于90°的正角}={θ|0°<θ<90°},可得结论.【答案】解:根据A={θ|θ为锐角}={θ|0°<θ<90°},D={θ|θ为小于90°的正角}={θ|0°<θ<90°},可得A=D.故选:D.【点睛】本题考查象限角和任意角,考查学生对概念的理解,比较基础.【变式1-3】(2019秋•宜昌月考)设M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},N={α|α=k •45°,k∈Z},则()A.M⊆N B.M⊇N C.M=N D.M∩N=∅【分析】讨论k为偶数和k为奇数时,结合N的表示,从而确定N与M的关系.【答案】解:∵N={α|α=k•45°,k∈Z},∴当k为偶数,即k=2n时,n∈Z,α=k•45°=2n•45°=n•90°,∴当k为奇数,即k=2n+1时,n∈Z,α=k•45°=(2n+1)•45°=n•90°+45°,又M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},∴M⊆N.故选:A.【点睛】本题主要考查了集合之间的关系与应用问题,是基础题.【考点2 求终边相同的角】【例2】(2019春•娄底期末)下列各角中与225°角终边相同的是()A.585°B.315°C.135°D.45°【分析】写出与225°终边相同的角,取k值得答案.【答案】解:与225°终边相同的角为α=225°+k•360°,k∈Z,取k=1,得α=585°,∴585°与225°终边相同.故选:A.【点睛】本题考查终边相同角的表示法,是基础题.【变式2-1】(2018春•武功县期中)下列各组角中,终边相同的角是()A.﹣398°,1042°B.﹣398°,142°C.﹣398°,38°D.142°,1042°【分析】根据终边相同的角的定义,化﹣398°和1042°为α+k•360°,k∈Z的形式,再判断即可.【答案】解:由题意,﹣398°=322°﹣2×360°,1042°=322°+2×360°,142°,38°;这四个角中,终边相同的角是﹣398°和1042°.故选:A.【点睛】本题考查了终边相同角的概念与应用问题,是基础题.【变式2-2】(2018春•武邑县校级期末)与﹣457°角终边相同角的集合是()A.{α|α=k•360°+457°,k∈Z}B.{α|α=k•360°+97°,k∈Z}C.{α|α=k•360°+263°,k∈Z}D.{α|α=k•360°﹣263°,k∈Z}【分析】终边相同的角相差了360°的整数倍,又263°与﹣457°终边相同.【答案】解:终边相同的角相差了360°的整数倍,设与﹣457°角的终边相同的角是α,则α=﹣457°+k•360°,k∈Z,又263°与﹣457°终边相同,∴{α|α=263°+k•360°,k∈Z},故选:C.【点睛】本题考查终边相同的角的概念及终边相同的角的表示形式.【变式2-3】(2018春•林州市校级月考)在0°~360°范围内,与﹣853°18'终边相同的角为()A.136°18'B.136°42'C.226°18'D.226°42'【分析】直接由﹣853°18'=﹣3×360°+226°42′得答案.【答案】解:由﹣853°18'=﹣3×360°+226°42′,可得,在0°~360°范围内,与﹣853°18'终边相同的角为226°42′,故选:D .【点睛】本题考查终边相同的角的表示法,是基础题.【考点3 已知α终边所在象限求2α,2α,3α】【例3】(2018秋•宜昌期末)已知α为锐角,则2α为( )A .第一象限角B .第二象限角C .第一或第二象限角D .小于180°的角【分析】写出α的范围,直接求出2α的范围,即可得到选项.【答案】解:α为锐角,所以α∈(0°,90°),则2α∈(0°,180°),故选:D .【点睛】本题考查象限角与轴线角,基本知识的考查,送分题.【变式3-1】(2018•徐汇区校级模拟)若α是第二象限的角,则3α的终边所在位置不可能是()A .第一象限B .第二象限C .第三象限D .笫象限【分析】写出第二象限的角的集合,得到的范围,分别取k 值得答案.【答案】解:∵α是第二象限角,∴90°+k •360°<α<180°+k •360°,k ∈Z .则30°+k •120°<<60°+k •120°,k ∈Z .当k =0时,30°<<60°,α为第一象限角;当k =1时,150°<<180°,α为第二象限角;当k =2时,270°<<300°,α为第四象限角.由上可知,的终边所在位置不可能是第三象限角.故选:C .【点睛】本题考查象限角及轴线角,考查终边相同角的集合,是基础题.【变式3-2】(2019春•北碚区校级期中)已知α为第二象限角,则2α所在的象限是( ) A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【分析】用不等式表示第二象限角α,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【答案】解:∵α是第二象限角,∴k •360°+90°<α<k •360°+180°,k ∈Z ,则k •180°+45°<<k •180°+90°,k ∈Z ,令k =2n ,n ∈Z有n •360°+45°<<n •360°+90°,n ∈Z ;在一象限;k =2n +1,n ∈z ,有n •360°+225°<<n •360°+270°,n ∈Z ;在三象限;故选:C .【点睛】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限【变式3-3】(2019秋•宜城市校级月考)如果α是第三象限角,则2α-是( )A .第一象限角B .第一或第二象限角C.第一或第三象限角D.第二或第四象限角【分析】由α是第三象限角,得到180°+k•360°<α<270°+k•360°,k∈Z,从而能求出﹣的取值范围,由此能求出﹣所在象限.【答案】解:∵α是第三象限角,∴180°+k•360°<α<270°+k•360°,k∈Z,∴﹣135°﹣k•180°<﹣<﹣90°﹣k•180°,∴﹣是第一或第三象限角.故选:C.【点睛】本题考查角所在象限的判断,是基础题,解题时要认真审题,注意第三象限角的取值范围的合理运用.【考点4 终边对称的角的表示法】【例4】(2019春•南京期中)若角α=m•360°+60°,β=k•360°+120°,(m,k∈Z),则角α与β的终边的位置关系是()A.重合B.关于原点对称C.关于x轴对称D.关于y轴对称【分析】结合角的终边相同的定义进行判断即可.【答案】解:α的终边和60°的终边相同,β的终边与120°终边相同,∵180°﹣120°=60°,∴角α与β的终边的位置关系是关于y轴对称,故选:D.【点睛】本题主要考查角的终边位置关系的判断,结合角的关系是解决本题的关键.【变式4-1】若角α的终边与45°角的终边关于原点对称,则α=.【分析】角α的终边与45°角的终边关于原点对称,可得α=k•360°+225°,(k∈Z).【答案】解:∵角α的终边与45°角的终边关于原点对称,∴α=k•360°+225°,(k∈Z).故答案为:α=k•360°+225°,(k∈Z).【点睛】本题考查了终边相同的角,属于基础题.【变式4-2】若角α和β的终边关于直线x+y=0对称,且α=﹣60°,则角β的集合是.【分析】求出β∈[0°,360°)时角β的终边与角α的终边关于直线y=﹣x对称的值,再根据终边相同的角写出角β的取值集合.【答案】解:若β∈[0°,360°),则由角α=﹣60°,且角β的终边与角α的终边关于直线y=﹣x对称,可得β=330°,所以当β∈R时,角β的取值集合是{β|β=330°+k•360°,k∈Z}.故答案为:{β|β=330°+k•360°,k∈Z}.【点睛】本题主要考查了终边相同的角的定义和表示方法,是基础题.【变式4-3】已知α=﹣30°,若α与β的终边关于直线x﹣y=0对称,则β=;若α与β的终边关于y轴对称,则β=;若α与β的终边关于x轴对称,则β=.【分析】由题意画出图形,然后利用终边相同角的表示法得答案.【答案】解:如图,设α=﹣30°所在终边为OA,则关于直线x﹣y=0对称的角β的终边为OB,终边在OB上的最小正角为120°,故β=120°+k•360°,k∈Z;关于y轴对称的角β的终边为OC,终边在OC上的最小正角为210°,故β=210°+k•360°,k∈Z;关于x轴对称的角β的终边为OD,终边在OD上的最小正角为30°,故β=30°+k•360°,k∈Z.故答案为:120°+k•360°,k∈Z;210°+k•360°,k∈Z;30°+k•360°,k∈Z.【点睛】本题考查终边相同角的表示法,数形结合使问题更加直观,是基础题.【考点5 已知终边求角】【例5】(2019春•凉州区校级月考)已知α=﹣1910°.(1)把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,指出它是第几象限的角;(2)求出θ的值,使θ与α的终边相同,且﹣720°≤θ<0°.【分析】(1)利用终边相同的假的表示方法,把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,然后指出它是第几象限的角;(2)利用终边相同的角的表示方法,通过k的取值,求出θ,且﹣720°≤θ<0°.【答案】解:(1)∵﹣1910°=﹣6×360°+250°,180°<250°<270°,∴把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式为:﹣1910°=﹣6×360°+250°,它是第三象限的角.(2)∵θ与α的终边相同,∴令θ=k•360°+250°,k∈Z,k=﹣1,k=﹣2满足题意,得到θ=﹣110°,﹣470°.【点睛】本题考查终边相同角的表示方法,基本知识的考查.【变式5-1】若角α的终边落在直线x+y=0上,求在[﹣360°,360°]内的所有满足条件的角α.【分析】求出角α的终边相同的角,然后求解在[﹣360°,360°]内的所有满足条件的角α.【答案】解:角α的终边落在直线x+y=0上,则直线的倾斜角为:45°,角α的终边的集合为:{α|α=k•180°+45°,k∈Z}.当k=﹣2时,α=﹣315°,k=﹣1时,α=﹣135°,k=0时,α=45°,k=1时,α=225°,在[﹣360°,360°]内的所有满足条件的角α:﹣315°,135°,45°,225°.【点睛】本题考查终边相同角的表示,考查计算能力.【变式5-2】已知α、β都是锐角,且α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,求∠α、∠β的大小.【分析】按照终边相同角的表示方法将α+β、α﹣β表示出来,然后解出α、β,由α、β都是锐角得到所求.【答案】解:因为α+β的终边与﹣280°角的终边相同,α﹣β的终边与670°角的终边相同,所以α+β=﹣280°+360°k;α﹣β=670°+360°k;k∈Z;两式相加,2α=390°+720°k =360°+30°+720°k =30°+720°k ;α=15°+360°k ;因为α,β是锐角,所以α=15°;β=65°.【点睛】本题考查了终边相同角的表示,利用方程组的思想求两角,属于基础题.【变式5-3】(2018春•武功县期中)已知角α=45°;(1)在区间[﹣720°,0°]内找出所有与角α有相同终边的角β;(2)集合|18045,2k M x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭,|18045,4k N x x k Z ⎧⎫==⨯︒+︒∈⎨⎬⎩⎭那么两集合的关系是什么? 【分析】(1)所有与角α有相同终边的角可表示为45°+k ×360°(k ∈Z ),列出不等式解出整数k ,即得所求的角.(2)先化简两个集合,分整数k 是奇数和偶数两种情况进行讨论,从而确定两个集合的关系.【答案】解析:(1)由题意知:β=45°+k ×360°(k ∈Z ),则令﹣720°≤45°+k ×360°≤0°,得﹣765°≤k ×360°≤﹣45°,解得,从而k =﹣2或k =﹣1,代回β=﹣675°或 β=﹣315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M ⊊N .【点睛】(1)从终边相同的角的表示入手分析问题,先表示出所有与角α有相同终边的角,然后列出一个关于k的不等式,找出相应的整数k,代回求出所求解;(2)可对整数k的奇、偶数情况展开讨论.【考点6 已知角终边的区域确定角】【例6】写出角的终边在阴影中的角的集合.【分析】利用象限角的表示方法、终边相同的角的集合性质即可得出.【答案】解:图1:角的集合为{α|30°+k×360°≤α≤120°+k•360°,k∈Z};图2:角的集合为{α|﹣210°+k•360°≤α≤30°+k•360°,k∈Z};图3:角的集合为{α|﹣45°+k•360°≤α≤30°+k•360°,k∈Z};图4:角的集合为{α|60°+k•360°≤α≤120°+k•360°,k∈Z}∪{α|240°+k•360°≤α≤300°+k•360°,k∈Z}.【点睛】本题考查了象限角的表示方法、终边相同的角的集合性质,考查了推理能力与计算能力,属于中档题.【变式6-1】如图所示;(1)分别写出终边落在0A,0B位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.【分析】(1)直接由终边相同角的表示法写出终边落在0A,0B位置上的角的集合;(2)结合(1)中写出的终边落在0A,0B位置上的角的集合,利用不等式表示出终边落在阴影部分(包括边界)的角的集合.【答案】解:(1)如图,终边落在OA上的角的集合为{α|α=150°+k•360°,k∈Z}.终边落在OB上的角的集合为{α|α=﹣45°+k•360°,k∈Z};(2)如图,终边落在阴影部分(包括边界)的角的集合为{β|﹣45°+k•360°≤β≤150°+k•360°,k∈Z}.【点睛】本题考查象限角和轴线角,考查了终边相同角的概念,是基础题.【变式6-2】用集合表示顶点在原点,始边重合于x轴非负半轴,终边落在阴影部分内的角(不含边界).【分析】直接利用所给角,表示角的范围即可.【答案】解:图1所表示的角的集合:{α|k•360°﹣30°<α<k•360°+75°,k∈Z}.图2终边落在阴影部分的角的集合.{α|k•360°﹣135°<α<k•360°+135°,k∈Z}【点睛】本题考查角的表示方法,是基础题.【变式6-3】已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【分析】直接利用所给角,表示角的范围即可.【答案】解:图(1)所表示的角的集合:{α|k•360°﹣135°≤α≤k•360°+135°,k∈Z}.图2终边落在阴影部分的角的集合{α|k•180°+30°≤α≤k•180°+60°,k∈Z【点睛】本题考查角的表示方法,是基础题.。

【必做练习】高中数学第一章三角函数1.1.1任意角教案新人教A版必修4

【必做练习】高中数学第一章三角函数1.1.1任意角教案新人教A版必修4
最新人教版试题
课题:任意角
[课时安排]
1 课时
[教学目标]
1.理解任意大小的角正角、 负角和零角, 掌握终边相同的角、
象限角、区间角、终边在坐标轴上的角 .
2.从数形结合的角度认识角
3.培养学生用运动变化的观点分析问题,提高学生用换元、
转化、数形结合等数学思想方法解决问题的能力
[教学重点]
理解概念,掌握终边相同角的表示法 .
A. 30° B . 30°
C
. 630° D . 630°
3. 把 1485°转化为 α + k· 360°( 0°≤ α < 360° , k∈ Z)的形式是( )
A . 45o 4×360°
B
C. 45o 5× 360°
D
o
. 45 4× 360°
o
.315 5× 360°
4. 下列结论中正确的是 ( )
方向旋转形成的角;
零角:射线没有任何旋转形成的角;
负角:按
方向旋转形成的角。
(3)象限角与坐标轴上的角:
B 终边
始边
O 顶点
A
使角 的顶点与原点重合,始边与 x 轴正半轴重合,终边落第几象限,则
称为
;终边落在坐标轴上的角称为

2. 与角 终边相同的角为
k 360
k z) ,连同角 可构成一个集
合 S ,即
部编本试题,欢迎下载!
最新人教版试题
(4) 第四象限 . 探究 2. 写出与角
45 的终边相同的角的集合 S,并写出 S 中适合不等式
360
720 的元素 β .
【当堂训练】 1. 与 405°角终边相同的角是( )
A. k ·360°- 45° ( k Z )

高中数学必修4《第一章三角函数》精品课件:1.1.1任意角

高中数学必修4《第一章三角函数》精品课件:1.1.1任意角

S={α|α=45°+k·180°,k∈Z}.
S={ -315°,-135°,45°,225°, 405°,585°}
课堂小结
Office组件之word2007
1.角的概念推广 正角、负角、零角、象限角
2.终边相同的角
3.终边在x轴、y轴上的角的表示
4.终边在各个象限上的角的表示
Office组件之word2007
思考2:终边在x轴上的角的集合表示
终边在x轴上:S={α|α=k·180°,k∈Z};
新课教学
Office组件之word2007
思考3:终边在y轴非正半轴、非负半轴
上的角分别如何表示?
y轴非负半轴:α= 90°+k·360°,k∈Z ; y轴非正半轴:α= 270°+k·360°,k∈Z .
思考4:终边在y轴上的角的集合表示
y
x o
知识探究(三):终边相同的角 Office组件之word2007
思考1:-32°,328°,-392°是第几 象限的角?这些角有什么内在联系?
y
328° o
-392° x
-32°
新课教学
Office组件之word2007
思考2:与-32°角终边相同的角有多 少个?这些角与-32°角在数量上相 差多少?
Office组件之word2007
1.1.1 任意角
知识探究(一):角的概念的推广
Office组件之word2007
复习:角的定义 角是由平面内一条射线绕其端点从
一个位置旋转到另一个位置所组成的 图形(如图).
B
始边
终边
A O
顶点
新课教学
Office组件之word2007
思考1:你认为将一条射线绕其端点按逆时针方向旋

【创新设计】2022-2021学年高一数学人教A版必修4学案:1.1.1 任意角 Word版含答案

【创新设计】2022-2021学年高一数学人教A版必修4学案:1.1.1 任意角 Word版含答案

1.1 任意角和弧度制 1.1.1 任意角[学习目标] 1.了解角的概念.2.把握正角、负角和零角的概念,理解任意角的意义. 3.娴熟把握象限角、终边相同的角的概念,会用集合符号表示这些角.[学问链接]1.手表慢了5分钟,如何校准?手表快了1.5小时,又如何校准? 答 可将分针顺时针方向旋转30°;可将时针逆时针方向旋转45°. 2.在学校角是如何定义的?答 定义1:有公共端点的两条射线组成的几何图形叫做角.定义2:平面内一条射线围着端点从一个位置旋转到另一个位置所形成的图形叫做角. 3.学校所学角的范围是什么? 答 角的范围是[0°,360°]. [预习导引] 1.角的概念(1)角的概念:角可以看成平面内一条射线围着端点从一个位置旋转到另一个位置所成的图形. (2)角的表示方法:①常用大写字母A ,B ,C 等表示;②也可以用希腊字母α、β、γ等表示; ③特殊是当角作为变量时,常用字母x 表示. (3)角的分类:按旋转方向可将角分为如下三类:类型 定义图示正角按逆时针方向旋转形成的角负角 按顺时针方向旋转形成的角零角一条射线没有作任何旋转,称它形成了一个零角2.象限角角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.假如角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角全部与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.要点一 任意角概念的辨析例1 在下列说法中: ①0°~90°的角是第一象限角; ②其次象限角大于第一象限角; ③钝角都是其次象限角;④小于90°的角都是锐角. 其中错误说法的序号为 . 答案 ①②④解析 ①0°~90°的角是指[0°,90°),0°角不属于任何象限,所以①不正确. ②120°是其次象限角,390°是第一象限角,明显390°>120°,所以②不正确. ③钝角的范围是(90°,180°),明显是其次象限角,所以③正确.④锐角的范围是(0°,90°),小于90°的角也可以是零角或负角,所以④不正确.规律方法 推断说法错误,只需举一个反例即可.解决本题关键在于正确理解各类角的定义.随着角的概念的推广,对角的生疏不能再停留在学校阶段,否则推断简洁错误.跟踪演练1 设A ={小于90°的角},B ={锐角},C ={第一象限角},D ={小于90°而不小于0°的角},那么有( ) A .B C A B .B A C C .D(A ∩C )D .C ∩D =B答案 D解析 锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.角集合表示锐角 B ={α|0°<α<90°} 0°~90°的角D ={α|0°≤α<90°}小于90°的角A={α|α<90°}第一象限角C={α|k·360°<α<k·360°+90°,k∈Z}要点二象限角的判定例2在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)由于-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)由于650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)由于-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是其次象限角.规律方法本题要求在0°~360°范围内,找出与已知角终边相同的角,并推断其为第几象限角,这是为以后证明恒等式、化简及利用诱导公式求三角函数的值打基础.跟踪演练2给出下列四个说法:①-75°角是第四象限角;②225°角是第三象限角;③475°角是其次象限角;④-315°是第一象限角,其中正确的有()A.1个B.2个C.3个D.4个答案 D解析对于①:如图1所示,-75°角是第四象限角;对于②:如图2所示,225°角是第三象限角;对于③:如图3所示,475°角是其次象限角;对于④:如图4所示,-315°角是第一象限角.要点三终边相同的角的应用例3在与角10 030°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)360°~720°的角.解(1)与10 030°终边相同的角的一般形式为β=k·360°+10 030°(k∈Z),由-360°<k·360°+10 030°<0°,得-10 390°<k·360°<-10 030°,解得k=-28,故所求的最大负角为β=-50°.(2)由0°<k·360°+10 030°<360°,得-10 030°<k·360°<-9 670°,解得k=-27,故所求的最小正角为β=310°.(3)由360°≤k·360°+10 030°<720°,得-9 670°≤k·360°<-9 310°,解得k=-26,故所求的角为β=670°.规律方法求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.跟踪演练3写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.解由终边相同的角的表示知与角α=-1 910°终边相同的角的集合为:{β|β=k·360°-1 910°,k∈Z}.∵-720°≤β<360°,即-720°≤k·360°-1 910°<360°(k∈Z),∴31136≤k<61136(k∈Z).故取k=4,5,6.k=4时,β=4×360°-1 910°=-470°;k=5时,β=5×360°-1 910°=-110°;k=6时,β=6×360°-1 910°=250°.要点四区域角的表示例4写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.规律方法解答此类题目应先在0°~360°上写出角的集合,再利用终边相同的角写出符合条件的全部角的集合,假如集合能化简的还要化成最简.本题还要留意实线边界与虚线边界的差异.跟踪演练4已知集合A={α|k·180°+30°<α<k·180°+90°,k∈Z},集合B={β|k·360°-45°<β<k·360°+45°,k∈Z}.求:(1)A∩B;(2)A∪B.解在直角坐标系中,分别画出集合A,B所包含的区域,结合图形可知,A∩B={θ|30°+k·360°<θ<45°+k·360°,k∈Z},A∪B={γ|k·360°-45°<γ<k·360°+90°或k·360°+210°<γ<k·360°+270°,k∈Z}.1.-361°的终边落在()A.第一象限B.其次象限C.第三象限D.第四象限答案 D2.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°} B.{-126°,144°}C.{-126°,-36°,54°,144°} D.{-126°,54°}答案 C解析令-180°<k·90°-36°<180°,则-144°<k·90°<216°,当k=-1,0,1,2时,不等式均成立,所对应的角分别为-126°,-36°,54°,144°,故选C.3.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=.答案270°解析由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k·360°.又180°<α<360°,令k=3,得α=270°.4.写出终边落在坐标轴上的角的集合S.解终边落在x轴上的角的集合:S1={β|β=k·180°,k∈Z};终边落在y轴上的角的集合:S2={β|β=k·180°+90°,k∈Z};∴终边落在坐标轴上的角的集合:S=S1∪S2={β|β=k·180°,k∈Z}∪{β|β=k·180°+90°,k∈Z}={β|β=2k·90°,k∈Z}∪{β|β=(2k+1)·90°,k∈Z}={β|β=n·90°,n∈Z}.1.对角的理解,学校阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要留意“旋转方向”打算角的“正负”,“旋转量”打算角的“确定值大小”.2.关于终边相同角的生疏一般地,全部与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.留意:(1)α为任意角;(2)k·360°与α之间是“+”号,k·360°-α可理解为k·360°+(-α);(3)相等的角终边肯定相同;终边相同的角不肯定相等,终边相同的角有很多多个,它们相差360°的整数倍;(4)k∈Z这一条件不能少.一、基础达标1.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是()A.A=B B.B=CC.A=C D.A=D答案 D2.与405°角终边相同的角是()A.k·360°-45°,k∈Z B.k·180°-45°,k∈ZC.k·360°+45°,k∈Z D.k·180°+45°,k∈Z答案 C3.如图,终边落在直线y=±x上的角α的集合是()A.{α|α=k·360°+45°,k∈Z}B.{α|α=k·180°+45°,k∈Z}C.{α|α=k·180°-45°,k∈Z}D.{α|α=k·90°+45°,k∈Z}答案 D4.若α是第四象限角,则180°-α是()A.第一象限角B.其次象限角C.第三象限角D.第四象限角答案 C解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.5.已知α∈(0°,360°),α的终边与-60°角的终边关于x轴对称,则α=.答案60°6.下列说法中,正确的是.(填序号)①终边落在第一象限的角为锐角;②锐角是第一象限的角;③其次象限的角为钝角;④小于90°的角肯定为锐角;⑤角α与-α的终边关于x轴对称.答案②⑤解析终边落在第一象限的角不肯定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理其次象限的角也不肯定是钝角,故③的说法也是错误的;小于90°的角不肯定为锐角,比如负角,故④的说法是错误的.7.在与角-2 013°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.解(1)∵-2 013°=-6×360°+147°,∴与角-2 013°终边相同的最小正角是147°.(2)∵-2 013°=-5×360°+(-213°),∴与角-2 013°终边相同的最大负角是-213°.(3)∵-2 013°=-6×360°+147°,∴与-2 013°终边相同也就是与147°终边相同.由-720°≤k·360°+147°<720°,k∈Z,解得:k=-2,-1,0,1.代入k·360°+147°依次得:-573°,-213°,147°,507°.二、力量提升8.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中,角所表示的范围(阴影部分)正确的是()答案 C9.在-180°~360°范围内,与2 000°角终边相同的角为.答案-160°,200°解析∵2 000°=200°+5×360°,2 000°=-160°+6×360°,∴在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.10.角α,β的终边关于y轴对称,若α=30°,则β=.答案150°+k·360°,k∈Z解析∵30°与150°的终边关于y轴对称,∴β的终边与150°角的终边相同.∴β=150°+k·360°,k∈Z.11.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.解(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|n·180°+30°≤x≤n·180°+60°,n∈Z}.12.已知角β的终边在直线3x -y =0上. (1)写出角β的集合S ;(2)写出S 中适合不等式-360°<β<720°的元素.解 (1)如图,直线3x -y =0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA 、OB 为终边的角的集合为:S 1={β|β=60°+k ·360°,k ∈Z }, S 2={β|β=240°+k ·360°,k ∈Z },所以,角β的集合S =S 1∪S 2={β|β=60°+k ·360°,k ∈Z }∪{β|β=60°+180°+k ·360°,k ∈Z }={β|β=60°+2k ·180°,k ∈Z }∪{β|β=60°+(2k +1)·180°,k ∈Z }={β|β=60°+n ·180°,n ∈Z }.(2)由于-360°<β<720°,即-360°<60°+n ·180°<720°,n ∈Z .解得-73<n <113,n ∈Z ,所以n =-2,-1,0,1,2,3.所以S 中适合不等式-360°<β<720°的元素为: 60°-2×180°=-300°;60°-1×180°=-120°; 60°+0×180°=60°;60°+1×180°=240°; 60°+2×180°=420°;60°+3×180°=600°. 三、探究与创新13.若α是第一象限角,问-α,2α,α3是第几象限角?解 ∵α是第一象限角,∴k ·360°<α<k ·360°+90°(k ∈Z ). (1)-k ·360°-90°<-α<-k ·360°(k ∈Z ),∴-α所在区域与(-90°,0°)范围相同,故-α是第四象限角. (2)2k ·360°<2α<2k ·360°+180°(k ∈Z ), ∴2α所在区域与(0°,180°)范围相同,故2α是第一、二象限角或终边在y 轴的非负半轴上. (3)k ·120°<α3<k ·120°+30°(k ∈Z ).方法一 (分类争辩)当k =3n (n ∈Z )时, n ·360°<α3<n ·360°+30°(n ∈Z ),∴α3是第一象限角; 当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°(n ∈Z ),∴α3是其次象限角;当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°(n ∈Z ),∴α3是第三象限角.综上可知:α3是第一、二或第三象限角.方法二 (几何法)如图,先将各象限分成3等份,再从x 轴的非负半轴的上方起,依次将各区域标上1,2,3,4,则标有1的区域即为α3终边所落在的区域,故α3为第一、二或第三象限角.。

高中数学人教A版必修四1.1.1【教学课件】《任意角》

高中数学人教A版必修四1.1.1【教学课件】《任意角》
【例 1】在下列说法中: ①0°~90°的角是第一象限角; ②第二象限角大于第一象限角; ③钝角都是第二象限角; ④小于 90°的角都是锐角。 ①②④ 。 其中错误说法的序号为________Leabharlann 畅言教育人民教育出版社
|必修四
【解析】①0°~90°的角是指[0°,90°),0°角不属于任何象 限,所以①不正确。 ②120° 是 第 二 象 限 角 , 390° 是 第 一 象 限 角 , 显 然 390°>120°,所以②不正确。 ③钝角的范围是(90°,180°),显然是第二象限角,所以③ 正确。 ④锐角的范围是(0°,90°),小于 90°的角也可以是零角或 负角,所以④不正确。
畅言教育
人民教育出版社
|必修四
2.对终边相同的角的概念的理解 (1)角α 是任意角。 (2)k·360°与α 之间用“+”号,k·360°-α 可理解为k·360°+(-α ),k∈Z
(3)终边相同的角不一定相等,但相等的角终边一定相同。
(4)终边相同的角有无数多个,它们相差360°的整数倍。 (5)终边相同的角的应用: ①利用与角α 终边相同的角的集合,可把任意与角α 终边相同的角β 转化成 β =α +k·360°,k∈Z , 0°≤α <360°的形式;
畅言教育
人民教育出版社
|必修四
2.与 30°角终边相同的角的集合是( A ) A.{α |α =30°+k·360°,k∈Z} B.{α |α =-30°+k·360°,k∈Z} C.{α |α =30°+k·180°,k∈Z} D.{α |α =-30°+k·180°,k∈Z}
解析: 由终边相同的角的定义可知与 30°角终边相同的角的集合 是{α |α =30°+k·360°,k∈Z} 答案:A

2019人教版高中数学必修4全套教案(80页)

2019人教版高中数学必修4全套教案(80页)

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称: ③角的分类:
B 终边
始边
O 顶点
A
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外) 在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角?
人教版高中数学必修精品教学资料
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合 的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β
写出来. 4.课堂小结 ①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角
③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题;
(Ⅳ)
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四教案教案教学目标 1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写.3.了解弧度制,能进行弧度与角度的换算.4.认识弧长公式,能进行简单应用.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题. 导入新课复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题. 3.初中的角是如何度量的?度量单位是什么?°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”可以简记为?. 2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30?k?360??????k?Z?的形式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边相同.从而得出一般规律:所有与角?终边相同的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边相同的角,都可以表示成角?与整数个周角的和. 说明:终边相同的角不一定相等,相等的角终边一定相同.例1在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,所以,与?120角终边相同的角是240,它是第三象限角;(2)640?280?360,所以,与640角终边相同的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????所以,?95012?角终边相同的角是12948?角,它是第二象限角.??例 2 若??k?360??1575?,k?Z,试判断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边相同,所以,?在第三象限.?例 3 写出下列各边相同的角的集合S,并把S中适合不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适合?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适合?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?Z??S中适合?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边相同的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合就是夹在这两个终边相同的角中间的角的集合,我们表示为:????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??所以,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.二、弧度制与弧长公式 1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴ 1?=?180rad???180 1rad??5718’.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r1801lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式 S?注意几点:1.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略,如:3表示3rad , sin?表示?rad角的正弦;2.一些特殊角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把下列各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30’. 解:(1)/71? (2)? (3) ? (4) ? 56变式练习:把下列各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)?18720?;(3)?. 63例7 把下列各角从弧度化为度:(1)?;(2) ;(3) 2;(4)35?. 4解:(1)108 o;(2);(3);(4)45o. 变式练习:把下列各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:因为2R+2R=8,所以R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;篇二:(教案3)任意角和弧度制任意角教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的教学设计
教学目标:
(一)知识与技能
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二)过程与方法
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
(三)情感、态度与价值观
提高学生的推理能力;培养学生应用意识.
教学重点:任意角概念的理解;区间角的集合的书写.
教学难点:终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
角的第一种定义是从一个点出发引出的两条射线构成的几何图形.
二、新课:
1.角的有关概念:
①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类:
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意:
⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
2.象限角的概念:
定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
注意以下几点:
① k ∈Z,
k > 0,表示在α的基础上逆时针旋转,
k < 0 ,表示在α的基础上顺时针旋转,
k = 0 ,即为α.
② 不唯一;
③ 终边相同的角不一定相等,终边相同的角有无限多个,它们相差360º的整数倍.
3.例题:
例1. 在0º~360º范围内,找出与-950º12′终边相同的角,并判断它是哪个象限的角.
例2. 写出终边在直线y=x 上的角的集合S ,并把S 中在-360º~720º间的角写出来.
4.课堂小结
①角的定义;
②角的分类:
③象限角;
④终边相同的角的表示法.
5.课后作业:
P5 练习
3.4.5
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角。

相关文档
最新文档