光学系统外形尺寸计算 ppt课件

合集下载

第八章 典型光学系统 应用光学教学课件

第八章 典型光学系统  应用光学教学课件
D/f物 称为物镜的相对孔径。
为什么不直接用光束口径,而采用相对孔径来代表望远物镜的 光学特性?? 是因为相对孔径近似等于光束的孔径角2U’max. 相对孔径越大,U’max越大,象差也就越大。为了校正像差, 必须使物镜的结构复杂化。 相对孔径代表物镜复杂化的程度
3. 视场 系统所要求的视场,也就是物镜的视场
材料容易制造,特别对大口径零件更是如此
大口径的望远镜都采用反射式 反射望远镜在天文望远镜中应用十分广泛 反射表面磨制的要求是很高的,再加上需经常重新镀反射面及部件组装、校
正的困难,反射系统在科普望远镜中应用受到限制
1.牛顿系统 一个抛物面和一块与光轴成45度的平面反射镜构成 2 格里高里系统 一个抛物面主镜和一个椭球面副镜构成
二 望远系统的放大率及工作放大率
1、望远系统的分辨率:用极限分辨角φ表示 按瑞利判断:φ=140″/D 按道威判断:φ=120″/D 即:入射光瞳直径D越大,极限分辨率越高。
2、视觉放大率和分辨率的关系 φ Г=60″,Г=60″/φ=D/2.3 望远镜的视放大率越大,它的分辨精度就越高 3、有效放大率(正常放大率):望远镜的正常放大率应使
第八章 典型光学系统
3、眼睛的光学参数:
标准眼: 根据大量的测量结果,定出了眼睛的各项光学常数,
包括角膜、水状液、玻状液和水晶体的折射率、各光学 表面的曲率半径、以及各有关距离。
简约眼:把标准眼简化为一个折射球面的模型
二、眼睛的调节及校正
1、眼睛的调节原理? 折射球面r的改变
远点距,肌肉完全放松时,眼睛所能看到的最远lr 近点距,肌肉最紧张时,眼睛所能看到的最近点lp
3. 一望远物镜焦距为1m,相对孔径为1:12,测出出瞳 直径为4mm,试求望远镜的放大率和目镜焦距。

(最新)光学系统外形尺寸计算

(最新)光学系统外形尺寸计算

根据使用要求确定光学系统整体结构尺寸的设计过程称为光学系统的外形尺寸计算。

光学系统的外形尺寸计算要确定的结构内容包括系统的组成、各光组元的焦距、各光组元的相对位置和横向尺寸。

外形尺寸计算基本要求:第一,系统的孔径、视场、分辨率、出瞳直径和位置;第二,几何尺寸,即光学系统的轴向和径向尺寸,整体结构的布局; 第三,成像质量、视场、孔径的权重。

一、只包括物镜和目镜的望远系统计算一个镜筒长L=f1′+f2′=250mm ,放大率Γ= -24,视场角2ω=1º40′的刻普勒望远镜的外形尺寸。

(一) 求物镜和目镜的焦距⎩⎨⎧='='⇒⎪⎩⎪⎨⎧-=''-=Γ='+'=m mf m m f f f f f L 1024024250212121(二) 求物镜的通光孔径物镜的口径取决于分辨率的要求,若使物镜的分辨率与放大率相适应,可根据望远镜的口径与放大率关系式Γ≥D1/2.3求出D1,只是为了减轻眼睛的负担,才取物镜的口径D1=1.5Γ=36mm (三) 求出瞳直径5.11=Γ='DD(四) 视场光阑的直径D398.601455.02402213=⨯⨯='=ωtg f D(五) 目镜的视场角2ω′03382,51193492.001455.0240'=''='⇒=⨯=Γ='ωωωωtg tg(六) 求出瞳距lz ′42.102401010101222=⨯+='-'+'='f f f f lz(七) 求目镜的口径D278.83492.042.1025.1212=⨯⨯+=''+'=ωtg l D D z(八) 目镜的视度调节5.010001051000522±=⨯±='±=f x(九) 选取物镜和目镜的结构由于物镜的相对孔径D/f ′=36/240=1/6.67,焦距f ′=240mm ,选用双胶合物镜即可。

光学设计报告

光学设计报告

湖北第二师范学院《光学系统设计》题目:望远镜的设计姓名:刘琦学号:1050730017班级:10应用物理学目录望远系统设计............................................................................................... 第一部分:外形尺寸计算 .......................................................................... 第二部分:PW法求初始结构参数(双胶合物镜设计) ....................... 第三部分:目镜的设计 .............................................................................. 第四部分:像质评价 .................................................................................. 第五部分心得体会 ..................................................................................望远镜设计第一部分:外形尺寸计算一、各类尺寸计算 1、计算'f o 和'f e由技术要求有:1'4o Df =,又30D mm =,所以'120o f mm =。

又放大率Γ=6倍,所以''206o e f f mm ==。

2、计算D 出303056D D D mm =∴===Γ物出物 3、计算D 视场2'2120416.7824o o D f tg tg mm ω==⨯⨯=视场4、计算'ω(目镜视场)''45o tg tg ωωωΓ⨯=⇒≈5、计算棱镜通光口径D 棱(将棱镜展开为平行平板,理论略)该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图:将普罗I 型棱镜展开,等效为两块平板,如下图:如何考虑渐晕?我们还是采取50%渐晕,但是拦掉哪一部分光呢?拦掉下半部分光对成像质量没有改善(对称结构,只能使光能减少),所以我们选择上下边缘各拦掉25%的光,保留中间的50%。

课件工程光学-08典型光学系统.ppt

课件工程光学-08典型光学系统.ppt

1.0
0.8
光谱光效率
为什么暗环境下能
0.6
做饭、洗衣,但不
0.4
能描龙绣凤?
0.2
2024/10/8
0.0 400 500 600 700 800
l(nm)
光谱光效率函数曲线
第七章 光度学基础
7
§8.1.5 眼睛的分辨率
眼睛刚能分辨开二个很靠近点的能力称为眼睛的分辨率。 二者成反 比
刚能分辨的二个点对眼睛物方节点的张角称为极限分辨角。
瞄准精度和前面讲到的分辨率是不是一个概念?
瞄准精度随所选取的瞄准标志而异,最高精度可达人眼分辨率的1/6到1/10。
二实线重合 60
2024/10/8
二直线端部对准 叉线对准单线
(10~20)
10
第七章 光度学基础
双线对称夹单线 (5~10)
9
§8.1.7 眼睛的立体视觉
眼睛观察空间物体时,能区别它们的相对远近而具有立体视觉。简称体视。 C
若以50%渐晕点为界来决定线视场2 y
F
2 y 2B2F
f tanW2
f h d
250 f
2 y 500h d
W F
f 眼瞳
W3W2 W1 2a 2h
眼瞳
d
2024/10/8
第七章 光度学基础
14
讨论:
逢年过节,要买放大镜孝敬老人, 该如何选择其放大倍率?
2y h
2y 1
2y 1 d
(2)与照明光谱成份有关:单色光分辨率高(眼睛有色差); (3)与视网膜上成像位置有关,黄斑处分辨率最高。
对眼睛张角小物体的要借助望远镜或显微镜等仪器,仪器 应有适当的放大率,使能被仪器分辨的也能被眼睛分辨。

《光学系统CAD》课件

《光学系统CAD》课件

光学系统CAD的未来应用
光通信领域
随着5G、6G等通信技术的发展,光学系统CAD在光通信领域的应 用将更加广泛,涉及光器件设计、光波导结构优化等方面。
生物医疗领域
光学系统CAD在生物医疗领域的应用将逐渐增多,涉及光学成像、 光学生物传感器等方面。
智能驾驶领域
随着智能驾驶技术的发展,光学系统CAD在智能驾驶领域的应用将 更加重要,涉及车载摄像头、激光雷达等方面。
VS
光学系统CAD通过建立数学模型和仿 真,对光学系统的性能进行预测和优 化。它能够大大提高设计效率,缩短 产品研发周期,降低研发成本,提高 产品质量。
光学系统CAD的重要性
光学系统CAD在现代光学产业中具有 举足轻重的地位。随着科技的不断进 步,光学系统的设计和制造变得越来 越复杂,对精度和性能的要求也越来 越高。
光学系统CAD的未来挑战
复杂光场模拟
随着光学系统的复杂度增加,如何准确模拟复杂光场成为 光学系统CAD面临的重要挑战。
高精度制造
随着光学元件的精度要求不断提高,如何实现高精度制造 成为光学系统CAD面临的挑战之一。
多学科交叉
光学系统CAD涉及多个学科领域,如何实现多学科的交叉 融合,提高设计的综合性能,是未来需要解决的问题。
05
光学系统CAD的未来展望
光学系统CAD的发展趋势
技术融合
随着光学、计算机科学和数学的交叉发展, 光学系统CAD将进一步融合多种技术,实现 更高效、精确的光学设计。
智能化
人工智能和机器学习在光学系统CAD中的应用将更 加广泛,实现自动化设计、优化和仿真,提高设计 效率。
云端化
光学系统CAD将逐渐向云端化发展,实现数 据共享、远程协作和实时更新,提高设计协 同性。

第6章 光学系统设计PPT课件

第6章 光学系统设计PPT课件

近点距 (cm)
-7 -10 -14 -22 -40 -200 100 40
远点距 (cm)
200 80 40
A=R-P (屈光度)
14
10
7
4.5 2.5 1
0.2 5
0
人眼的适应
眼睛能适应不同亮暗环境的能力称为适应。
适应可分为明适应和暗适应。前者发生在 由暗处到亮处时,适应时间大约几分钟; 后者发生在由亮处到暗处时,适应时间大 约30-60分钟。
图6-7 HG500发光二极管的配光曲线
4.光源的温度和颜色
任何物体,只要其温度在绝对零度以上,就向外界发出辐射,称为
温度辐射。黑体是一种完全的温度辐射体,其辐射本领 Mb ,T 表示为

M b
,T
M ,T ,T
式中,M
,T
de ddA
为辐射本领; ,T 为吸收率,当 ,T 1 时的物体称
被测 对象
光学系统 光学系统
光电探测器 光源
调理电路
作用:将光束变成平行光束、发散光束、 会聚光束或其他形式结构的光束
控制电路
计算机 显示与控制
现代光学仪器构成框图
❖光学系统的特点: ❖1、信息加载于光波,非接触、不破坏 ❖2、光波传播速度快,可实时测量控制 ❖3、波长短,测量精度高 ❖4、具有很高的空间分辨率 ❖5、可进行图像处理
一、光源的基本参数
1.发光效率
在给定的波长范围内,某一光源所发出的光通量
与产生该光通量所
V
需要的功率P 之比,称为该光源的发光效率,表示为:
V
2 d
1
P
P
(6-8)
式中,1 ~ 2 为该光电测量系统的光谱范围。

(工程光学教学课件)第7章 典型光学系统

(工程光学教学课件)第7章 典型光学系统

D' l'z D lz
[例7-4] 有一显微镜,物镜的放大率β=-40×,目镜的倍率 为Γe=15(均为薄透镜),物镜的共轭距为195mm,求物 镜和目镜的焦距、物体的位置、光学筒长、物镜和目镜的间 距、系统的等效焦距和总倍率。
解: 已知物镜的共轭距L=195mm和放大率β=-40×
11 1
l' l f0'
眼睛的视角分辨率相适应,即光学系统的放大率和被观察物体所
需的分辨率的乘积等于眼睛的分辨率。
五、眼睛的对准精度
对准:是指在垂直于视轴方向上的重合或置中过程; 对准误差:对准后,偏离置中或重合的线距离或角距离。
六、眼睛的景深
当眼睛调焦在某一对准平面时,眼睛不必调节 能同时看清对准平面前和后某一距离的物体, 称作眼睛的景深。
设艾里斑的半径为 a,则 :
a 0.61 n'sin u'
道威判断:两个相邻像点之间的两衍射斑中心距为 0.85a 时,则能被光学系统分辨。
设显微镜能分辨的物方两点间最短距离为
由瑞利判断可得:
a 0.61 0.61 n sin u NA
(7-28)
由道威判断或得:
0.85a 0.5 NA
眼睛的调节能力:用能清晰调焦的极限距离表示, 即远点距离lr和近点距离lp。以远点距离lr和近点 距离lp的倒数差来度量:
1 1 RP A lr lp
(7-1)
正常眼:眼睛的像方焦点F’与视网膜重合; 远点位于人眼前无限远处。
近视眼:眼睛的像方焦点F’位于视网膜前方; 远点位于人眼前有限距离处。
开普勒望远镜746三望远镜的视场孔径光阑渐晕光阑y为分划板半径2一般在1015伽利略望远镜孔径光阑视场光阑例76有一架开普勒望远镜视觉放大率为6物方视场角28出瞳直径d5mm物镜和目镜之间距离l140mm假定孔径光阑与物镜框重合系出瞳距离目镜口径分划板直径物镜口径和目镜焦距物镜焦距目镜的作用类似于放大镜把物镜所成的像放大在人眼的远点或明视距离供人眼观察其光学特性参数有

浙江大学几何光学课件(望远镜开始)

浙江大学几何光学课件(望远镜开始)

当前位置:第七章典型光学系统-望远镜与转像系统本章要点望远镜与转像系统1. 望远镜的成像原理与放大率2. 望远镜的分辨率与正常放大率3. 望远镜的瞄准精度4. 望远镜的主观亮度5. 望远镜的光束限制6. 望远镜的物镜和目镜,视度调节7. 望远镜的棱镜转像系统、单组透镜转像系统和双组透镜转像,场镜的作用8. 光学系统外形尺寸计算(含棱镜展开及空气平板法)引言典型光学系统包括眼睛放大镜显微镜望远镜摄影系统投影与放映系统§ 7-4 望远镜与转像系统•望远镜的成像原理•望远镜的放大率望远镜是目视光学系统,其放大率为视觉放大率:可见,当物镜的焦距大于目镜的焦距时视觉放大。

筒长。

当目镜焦距一定时,视觉放大率大要求物镜焦距长,导致筒长增大。

当像方视场角一定时,放大率越大物方视场越小。

出瞳要与眼瞳匹配,当放大率大时入瞳增大导致镜筒增大。

•望远镜的分辨率与正常放大率望远镜的正常放大率应使望远镜能分辨的眼睛也能分辨。

光学仪器的极限分辨角为,要求(眼睛的极限分辨角)得即为正常放大率。

此时出瞳与眼瞳相当。

•望远镜的瞄准精度因为望远镜有视觉放大作用,如果眼睛直接观察时的瞄准精度为,则通过望远镜观察时的瞄准精度为。

想一想:实际上望远镜的放大率不一定都是正常放大率,针对不同的用途应如何选择其大小?•望远镜的主观亮度主观亮度指眼睛观察到的像的明亮程度。

望远镜的主观亮度对点光源和扩展光源具有不同的特征。

1.点光源:指引起视网膜上一个细胞感应的光源,这时感觉到的明亮程度取决于光通量。

设点光源发光强度为,观察距离为,是眼睛的透过率,是望远镜的透过率。

眼睛直接观察时接收的光通量为眼睛通过望远镜观察时接收的光通量为①当,进入望远镜的光通量全部进入眼瞳②当,进入望远镜的光通量全部进入眼瞳③当,进入望远镜的光通量不全进入眼瞳应取,有所以,高倍望远镜具有增大点光源主观亮度的作用。

当望远镜入瞳一定时,随倍数增大出瞳逐渐减小,至出瞳与眼瞳相当时,继续增大放大倍数不再影响主观亮度。

光学零件图解说PPT课件

光学零件图解说PPT课件
• 光ห้องสมุดไป่ตู้不同的介质中传播时,具有不 同的速度。在物理学中折射率定义
了n1.2=v1/v2,称为第二种介质
对第一种介质的相对折射率。其中
v1为光在第一种介质的传播速度; v2为光在第一种介质的传播速度。
6
vd值(色散系数)
• 同一介质对不同的波长有不同 的折射率,这就是物质的色散
性。 vd =(nD-1)/(nF-nC)
2 1.6 3 0.01
4
• ①是通过去除表面所得到的表面,表面高 低不平度为3.2微米。可通过铣磨得到。
• ②是通过去除表面所得到的表面,表面高 低不平度为1.6微米。可通过树脂细砂轮铣 磨或精磨得到。
• ③是通过去除表面所得到的表面,表面高 低不平度为0.01微米。须通过先精磨、后 抛光得到。
• ④是不去除表面,是压型料表面。
14
透镜、分划板等园形光学零件 应标出下列有关尺寸和公差:
• 零件表面的曲率半径; • 外园直径及公差; • 中心厚度及公差; • 倒角尺寸及公差。 • 光学零件的表面为平面时,通常不标注。
有时标为R∞。 • (一般以参考尺寸标注球面镜的边缘厚度
及弯月透镜凸面顶点到凹面边缘的轴向尺 寸 。)
15
棱镜及其它非园形光学零件图纸上 应标出下列有关尺寸公差:
19
镀膜特性
• 平面与球面反射镜和分光镜零件图 的特有内容:对分光膜层的反射率 和透过率及其公差在技术要求中说 明;检验膜层的质量标准在技术要 求中说明。
20
简单的三视图
• 主视图 • 俯视图 • 左视图
21
愿我们在今后的工作中
• 互相学习 • 共同进步
22
个人观点供参考,欢迎讨论

工程光学 典型光学系统PPT课件

工程光学 典型光学系统PPT课件

眼睛及其光学系统
放大镜 显微镜系统 望远镜系统
目视 光学系统
目镜
第一节 眼睛及其光学系统
一、眼睛(Eyes)的结构
调节肌
1、巩膜:包围眼球的白色 不透明外层,D≈25mm.
2、角膜(Cornea):眼球前突出的透明球面膜,
r≈8mm,n ≈1.38;
——主要折射成像界面(角膜—空气)
眼球横切面
3、前室:角膜后水晶体前的空间,充满透明水状液n =1.336。
1、调焦(对准)平面上的物点——视网膜上的点像
2、远景、近景平面上的物点——视网膜上的像为弥散斑
若弥散斑可看作一像点, 则要求其对人眼张角小于极限分辨角。
八、双目立体视觉
1,视差角
A
A
A
B
l
B
a1
a2 b2a2源自b1 a1b视觉基线
2,视差、体视锐度
视差:
视差越大,两物体的纵向 深度越大,反之越小
二、瑞利判据 :等亮度的两个物点,其一衍射图样的中央 极大与另一衍射图样的第一级极小重合时,认 为刚好能分辨这两个物点。
——能分辨的两个等亮度点间的距离对应于艾里斑半径。
无限远物点被理想光学系统成衍射图案: 第一暗环半径对出瞳中心的张角:
=1.22 / D,入瞳直径D的函数
——能分辨的二点间的最小角距离
2、眼睛+目视光学仪器:视角可被目视光学仪器放大。 观察物体所需分辨率×目视光学仪器的放大率=眼睛分辨率
★ 不同的目视光学仪器,通常选择的物距为: 1)放大镜、显微镜:观察物位于明视距离附近; 2)望远镜:观察物位于远处或无穷远。
第二节 放大镜 (The Magnifying Glass)
一、放大镜的成像原理

光学设计与光学工艺PPT课件

光学设计与光学工艺PPT课件

可编辑课件PPT
9
二、光 学 设 计 过 程
3、象质评价
光学设计者必须对各种光学系统的剩余象差的允 许值和象差公差有所了解,以便根据剩余象差的 大小判断光学系统的成象质量。
可编辑课件PPT
10
二、光 学 设 计 过 程
瑞利判断
适用于小象差系统如: 望远物镜、显微物镜等。 实际波面与理想波面之 间的最大波象差不超过
每输入一次要可进编辑行课件一PP次T 自动优化。
12
二、光 学 设 计 过 程
5、公差分析
公差分析的目的:给出合理的加工要求,合理的 加工要求既能保证加工的可行性,同时又能降低加 工难度和加工成本,因此公差分析工作至关重要。
公差分析宗旨:
使最差情况下的传递函数由于工艺因素的总下降
量不大于0.15,以便探测器仍能分辨它对应的空
可间编辑频课件率PP。T
13
二、光 学 设 计 过 程
性能合理镜头的首选公差
可编辑课件PPT
14
二、光 学 设 计 过 程
性能合理镜头的首选公差
Radius(半径)
Fringes(光圈) Irregular(表面不规
则度)
样板的检测精度,光学设计 包偏师括心应光包该学括与元两光件种学的,加厚一工度种师和是沟机简通械单元的件横 向N支=偏撑λ心/的2,(间普上隔通、。的下光)学,加另工一一种般是控使制元 件在始5使个终用光保Z圈E持M,与A较机X软好架件的座模精接拟度触公应的差该“时控滚,制 动公表”差面。操不两作规在种数则3偏T个度T心光H可模I圈有以型以两通实内个过际。参局上数部完,全不 同光in。t圈1在是(滚用△动来N的)定情来义况考公下察差,,的与工表机艺面架上编座号接, 触而良in可好t2以的是做左作到侧为0半补.3径偿个被的光良表圈好面。地编校号准,, 表最面小倾值斜和只最发大生值的是右以侧镜表头面长上度。单

目视光学系统PPT课件

目视光学系统PPT课件
目视光学系统PPT课件
contents
目录
• 目视光学系统概述 • 目视光学系统的基本原理 • 目视光学系统的应用 • 目视光学系统的设计与优化 • 目视光学系统的未来发展 • 目视光学系统案例分析
01 目视光学系统概述
定义与分类
定义
目视光学系统是指通过光学原理,将目标物体成像并呈现给观察者,以便进行 观察、识别和测量的系统。
光学系统初步设计
根据系统目标和性能参数,选择 合适的光学元件和设计光学系统 结构。
光学系统仿真与优化
利用光学仿真软件进行光学系统 的模拟,对设计进行优化,提高 光学性能。
总结词
设计原则与流程
实际制作与测试
根据优化后的设计,制作实际的 光学系统,并进行性能测试和评 估。
光学元件的选择与优化

光学元件的选择与优化
02 目视光学系统的基本原理
光的性质与传播
光的波粒二象性
光的反射、折射和散射
光既具有波动性,又具有粒子性。光 波在空间传播时会产生衍射、干涉等 现象。
当光遇到不同介质时,会发生反射、 折射和散射现象,这些现象对目视光 学系统的成像质量有重要影响。
光的传播速度
光在真空中的传播速度最快,约为 299,792,458米/秒,在其他介质 中的传播速度会减慢。
性。
测量与定位
目视光学系统还可以用于测量和 定位,通过观察和测量目标物体 的位置和尺寸等信息,可以用于 各种领域,如科学研究、工业制
造、军事侦察等。
促进科技发展
目视光学系统的发展和应用推动 了多个领域的科技进步,如天文 学、生物学、医学、地理学等, 为人类认识世界和改造世界提供
了重要的工具。
目视光学系统的历史与发展

光学系统设计

光学系统设计

光学系统设计过程介绍关键词:光学系统设计光学传递函数象差所谓光学系统设计就是根据使用条件,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。

因此我们可以把光学设计过程分为4 个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及象质评价。

一、外形尺寸计算在这个阶段里要设计拟定出光学系统原理图,确定基本光学特性,使满足给定的技术要求,即确定放大倍率或焦距、线视场或角视视场、数值孔径或相对孔径、共轭距、后工作距离光阑位置和外形尺寸等。

因此,常把这个阶段称为外形尺寸计算。

一般都按理想光学系统的理论和计算公式进行外形尺寸计算。

在计算时一定要考虑机械结构和电气系统,以防止在机构结构上无法实现。

每项性能的确定一定要合理,过高要求会使设计结果复杂造成浪费,过低要求会使设计不符合要求,因此这一步骤慎重行事。

二、初始结构的计算和选择、初始结构的确定常用以下两种方法:1.根据初级象差理论求解初始结构这种求解初始结构的方法就是根据外形尺寸计算得到的基本特性,利用初级象差理论来求解满足成象质量要求的初始结构。

2.从已有的资料中选择初始结构这是一种比较实用又容易获得成功的方法。

因此它被很多光学设计者广泛采用。

但其要求设计者对光学理论有深刻了解,并有丰富的设计经验,只有这样才能从类型繁多的结构中挑选出简单而又合乎要求的初始结构。

初始结构的选择是透镜设计的基础,选型是否合适关系到以后的设计是否成功。

一个不好的初始结构,再好的自动设计程序和有经验的设计者也无法使设计获得成功。

三、象差校正和平衡初始结构选好后,要在计算机上用光学计算程序进行光路计算,算出全部象差及各种象差曲线。

从象差数据分析就可以找出主要是哪些象差影响光学系统的成象质量,从而找出改进的办法,开始进行象差校正。

象差分析及平衡是一个反复进行的过程,直到满足成象质量要求为止。

四、象质评价光学系统的成象质量与象差的大小有关,光学设计的目的就是要对光学系统的象差给予校正。

应用光学教学课件ppt作者刘晨第3章理想光学系统

应用光学教学课件ppt作者刘晨第3章理想光学系统

应用光学第3章 理想光学系统3.1 理想光学系统的概念及性质3.2 理想光学系统的基点和基面、焦距3.3 理想光学系统的成像3.4 理想光学系统的组合3.5 透镜3.1 理想光学系统的概念及性质3.1.1 理想光学系统的概念3.1.2 理想光学系统的性质实际的光学系统要求用一定宽度的光束、对一定大小的范围成像。

在估计其成像质量时,需利用理想光学系统成像的概念。

如果光学系统对任意大的范围,以任意大的光束成像都是完善的,这样的光学系统便定义为理想光学系统。

1)物空间的每一点对应于像空间中的一点,且只有唯一的一点与之相对应,这两个对应点称为物像空间的共轭点。

2)物空间中的每一条直线对应于像空间中的一条直线,且只有唯一的一条直线与之相对应,这两条对应直线称为物像空间的共轭线。

3)物空间的任意一点位于直线上,那么其在像空间内的共轭点也必位于该直线的共轭线上。

4)物空间中的任一平面对应于像空间中的一个平面,且只有唯一的一个平面与之相对应,这两个对应平面称为物像空间的共轭面。

3.2 理想光学系统的基点和基面、焦距3.2.1 焦点、焦平面3.2.2 主点和主平面3.2.3 焦距3.2.4 节点和节平面图3-1 基点和基面图3-2 无限远轴外点和物方焦平面上点发出的光束a)无限远轴外点发出的光束 b)物方焦平面上点发出的光束如图3-1所示,延长入射光线A1E1和出射光线GkF′得交点Q′,同样延长光线A′kEk及物方的共轭光线G1F交于Q点。

根据光路的可逆性,物方光线FG1入射于光学系统后,其像方光线必沿E kA′k出射,物方光线A1E1入射于光学系统后,其像方光线必沿GkF′方向出射,显然Q和Q′是一对共轭点,分别过Q和Q′作垂直于光轴的平面QH、Q′H′交光轴于H点和H′点,此两平面同样也是共轭的。

由图可知QH=Q′H′=h,故其放大率β=+1,称这对放大率为+1的共轭面为主平面,QH称为物方主平面(前主面或第一主面),Q′H′称为像方主平面(后主面或第二主面)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2-
§4.2典型光学系统外形尺寸计算 一、开普勒望远镜外形尺寸计算
开普勒望远镜成像原理 -3-
§4.2典型光学系统外形尺寸计算
一、开普勒望远镜外形尺寸计算
已知条件:视觉放大率Γ、视场角2ω、出瞳直径 D′,筒长L和目镜焦距 f、2 出瞳距 lz 三个条件中任选 一个。
1. 物镜和目镜焦距的计算
f1

L 1
f
2

1
L
2. 确认入瞳直径和物镜通光孔径
D D D1 D 物镜框作为孔径光阑
3. 选择物镜和目镜结构
根据物镜的 f1、D / f1和2来选择物镜结构。
根据 tan tan 计算出目镜视场角。
1)已知筒长L
L f1 f2
f1 f 2

f1

L 1
f
2

1
L
2)给定目镜焦距 f2 f1 -f2
3)给定出瞳距 lz
tan tan
lF 2
lz

xz 2
xz
实际工作中直接 从光学设计手册 中选择目镜
-4-
§4.2典型光学系统外形尺寸计算 一、开普勒望远镜外形尺寸计算
2. 确定入瞳直径D和选择物镜结构
D D 计算出相对孔径:D / f1 根据 f1 D / f1 和2选择物镜的结构。
-5-
§4.2典型光学系统外形尺寸计算
一、开普勒望远镜外形尺寸计算
3. 确定物镜、视场光阑和目镜的通光孔径
1)物镜通光孔径 D1 2lz tan 2m1 2m1 KD
-12-
1. 计算场镜的焦距 f2
2 11 lz1 3 1d为转像透镜之间的间隔。
2. 计算各光祖的通光孔径
(1) 物镜的通光孔径 D1 2lz tan 2m1 2m1 KD
(2) 场镜的通光孔径D2=视场光阑孔径
§4.2典型光学系统外形尺寸计算 三、具有透镜转像系统的望远镜系统外形尺寸计算
已知条件:视觉放大率Γ、视场角2ω、出瞳直径 D′、筒长L、出瞳距l'z 、渐晕系数K。
(1) 计算目镜的焦距,选择目镜结构; (2) 计算物镜的焦距,选择物镜结构; (3) 计算视场光阑孔径D2; (4) 计算转向系统的焦距f'3,f'4; (5) 计算转向透镜间距d。
-6-
§4.2典型光学系统外形尺寸计算 二、伽利略望远镜外形尺寸计算
伽利略望远镜成像原理 伽利略望远镜常用在大地测量和航空测量仪器中。 结构简单、筒长短、正像和光能损失少。
-7-
§4.2典型光学系统外形尺寸计算
二、伽利略望远镜外形尺寸计算
1. 物镜和目镜焦距的计算
f1 -f2
为了得到尽可能短的筒长和良好的成像质量,应 按物镜能承担的最大相对孔径来选择物镜的焦距, 相对孔径一般不超过1:4~1:3,一般选择单负透镜作 为目镜。
l

z

L
100%渐晕最大视场角 5. 视场角的计算
tan 2

D1 D
2
l

z

L
D2

2l

z
tan


KD
-9-
实验:设计设计一款望远镜
已知:
放大倍率:8倍 出瞳距:12mm 出瞳直径:12mm 视场角:4
要求:满足望远镜像差公差要求
提示:计算出望远镜的外形尺寸,在zemax的 LEN中查找合适的物镜和目镜进行拼接,再优化。 /support/resource-center/knowledgebase
1
ppt课件
光学系统的外形尺寸计算
根据使用要求确定光学系统整体结构尺寸的设计过程 称为光学系统的外形尺寸计算。
系统的组成
外形尺寸计算
各光组的焦距 各光组的相对位置和横向尺寸
外形尺寸计算的基本要求
系统的孔径、视场、分辨率、出瞳的直径和位置;
几何尺寸,即光学系统的轴向和径向尺寸,整体结构 的布局;
成像质量、视场和孔径的权重。
要求正像和较短的筒长时,一般要用棱镜转向系统, 在计算外形尺寸时,应将棱镜展开成玻璃平行平板,再变 换成等效空气板,根据通光孔径计算棱镜尺寸。
-15-
§4.2典型光学系统外形尺寸计算
四、具有棱镜转像系统的望远镜系统外形尺寸计算
已知条件:视觉放大率Γ、视场角2ω、出瞳直径D′、 筒长L。
1. 计算物镜和目镜的焦距
tan5

tan4

hz 4
/
f

4
目镜的通光孔径
D3 2lz tan 2
f1 lF2
lz f1tan 2m1lF2
f1
f1
接目镜的通光孔径
D4 2lz tan 2m
-14-
§4.2典型光学系统外形尺寸计算 四、具有棱镜转像系统的望远镜系统外形尺寸计算
-10-
§4.2典型光学系统外形尺寸计算
三、具有透镜转像系统的望远镜系统外形尺寸计算
要求正像和较长的筒长时,一般要用透镜转向系 统,在实际中应用最多的是=-1,中间为平行光的两 组双胶合透镜系统。优点:像质好,装调容易。
物镜焦距:f'1 目镜焦距:f'5
转像透镜焦距:f'3,f'4 筒长:L
-11-
2)视场光阑通光孔径 D2 -2 f1tan
3)目镜通光孔径
场镜通光孔径
D3 2lz tan 2
f1 lF2
lz f1tan 2m1lF2
f1
f1
接目镜孔径的确定 D4 2lz tan 2m 2m D
目镜调节



5
f

2
2
1000
(3) 转像透镜的通光孔径D3,D4视场光阑孔径 (4) 目镜的通光孔径
D5

2 hz 4


f

4

lF 5
tan5

KD3
f

4
lF 5
-13-
把物镜和第一组转像透镜看成是一个望远系统
tan4 1 tan f1 tan
f

3
主光线高度
hz4 hz3 d tan4 / 2
2. 确定入瞳直径D D D
3. 确定入瞳距lz lz L lz
伽利略望远镜的入瞳总是在系统的右边。
-8-
§4.2典型光学系统外形尺寸计算
二、伽利略望远镜外形尺寸计算
4. 视场角的计算
无渐晕
tan 1

D1 D
2 lz
L
50%渐晕
tan 0

2
D1
相关文档
最新文档