2017年陕西省中考数学副卷
【中考真题】2017年陕西省中考数学试卷含答案解析(Word版)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:21()12--==( ) A .54-B .14-C .34- D .0 【答案】C . 【解析】 试题分析:原式=14﹣1=34-,故选C . 考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B . 【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B . 考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8 C .﹣2 D .﹣8 【答案】A . 【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【答案】C.【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选C.考点:平行线的性质.5.化简:x xx y x y--+,结果正确的是()A.1B.2222x yx y+-C.x yx y-+D.22x y+【答案】B.【解析】试题分析:原式=2222x xy xy yx y+-+-=2222x yx y+-.故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为()A.B.6C.D【答案】A.【解析】试题分析:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=,∴∠CAB′=90°,∴B′C A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k <2【答案】D.【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A B C.D【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则P A的长为()A .5BC .D . 【答案】D . 【解析】试题分析:连接OA 、OB 、OP ,∵∠C =30°,∴∠APB =∠C =30°,∵PB =AB ,∴∠P AB =∠APB =30°∴∠ABP =120°,∵PB =AB ,∴OB ⊥AP ,AD =PD ,∴∠OBP =∠OBA =60°,∵OB =OA ,∴△AOB 是等边三角形,∴AB =OA =5,则Rt △PBD 中,PD =cos30°•PB ×5,∴AP =2PD =,故选D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线224y x mx =--(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若点M ′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20) 【答案】C . 【解析】试题分析:224y x mx =--=22()4x m m ---,∴点M (m ,﹣m 2﹣4),∴点M ′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m =±2.∵m >0,∴m =2,∴M (2,﹣8).故选C . 考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣5,0,π中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B tan38°15′≈.(结果精确到0.01)【答案】A.64°;B.2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A,B两点分别在反比例函数3myx=(m≠0)和25myx-=(m≠52)的图象上,若点A与点B关于x轴对称,则m的值为.【答案】1.【解析】试题分析:设A(a,b),则B(a,﹣b),依题意得:325mbamba⎧=⎪⎪⎨-⎪-=⎪⎩,所以325m ma+-=0,即5m﹣5=0,解得m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.【答案】18.【解析】∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分)15.计算:11(|2|()2---.【答案】- 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案.试题解析:原式=22+=-=- 考点:二次根式的混合运算;负整数指数幂. 16.解方程:32133x x x +-=-+. 【答案】x =﹣6. 【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.试题解析:去分母得,(x +3)2﹣2(x ﹣3)=(x ﹣3)(x +3),去括号得,x 2+6x +9﹣2x +6=x 2﹣9,移项,系数化为1,得x =﹣6,经检验,x =﹣6是原方程的解. 考点:解分式方程.17.如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)【答案】作图见解析. 【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24tan23,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;(2)由题意得,7500x+6800≥100000,∴x≥4415,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316.【解析】(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:3 16.考点:列表法与树状图法;概率公式.23.如图,已知⊙O的半径为5,P A是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC的长;(2)求证:BC∥P A.【答案】(1);(2)证明见解析.【解析】在Rt△ODA中,AD=OA•sin60,∴AC=2AD=;(2)∵AC⊥PB,∠P=30°,∴∠P AC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠P AC=∠BCA,∴BC∥P A.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA 转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB 交AB于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【答案】(1)2)PQ=;(3)喷灌龙头的射程至少为19.71米.【解析】试题分析:(1)构建Rt△AOD中,利用cos∠OAD=cos30°=ADOA,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,由勾股定理解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.试题解析:(1)如图1,过O作OD⊥AC于D,则AD=12AC=12×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=12∠BAC=12×60°=30°,在Rt△AOD中,cos∠OAD =cos30°=AD OA,∴OA =6=(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴12AB •MN =96,12×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC AD MN AN =,∴12818DC ,∴DC =163,∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在AB 上任取一点异于点F 的点G ,连接GO ,GM ,∴MF =OM +OF =OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3,∴OM =,∴MF =OM +r =+13≈19.71(米).答:喷灌龙头的射程至少为19.71米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。
2017年陕西数学中考副题.docx
班级: ________姓名:________得分:________机密★启用前试卷类型:A2017 年陕西省初中毕业学业考试数学试卷本试卷分为第Ⅰ卷 (选择题 ) 和第Ⅱ卷 (非选择题 ) 两部分。
第Ⅰ卷 1 至2 页,第Ⅱ卷 3 至 10 页,全卷共 120 分。
考试时间为 120 分钟。
第Ⅰ卷 (选择题共30分)注意事项:1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或 B) 用 2B 铅笔和钢笔或中性笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚。
2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案标号。
把答案填在试题卷上是不能得分的。
3.考试结束,本卷和答题卡一并交给监考老师收回。
一、选择题 (共 10 小题,每小题 3 分,计 30 分.每小题只有一个选项是符合题意的)1.计算: 3 -2=111 A.-9 B. 9C.- 6D.-62.如图的几何体是由一平面将一圆柱体截去一部分后所得,则该几何体的俯视图是3.若正比例函数y =kx(k ≠0) 的图象经过点 (2, 1-k),则 k 的值为11A . 1B .-3C .- 1D.34.如图,直线 a ∥b ,点 A 在直线 b 上,∠ BAC = 108 °,∠ BAC 的两边与直线 a 分别交于 B 、C 两点.若∠ 1= 42°,则∠ 2 的大小为A . 30°B . 38°C .52 °D .72 °a 25.化简: a +1-a +1,结果正确的是1A . 2a +1B .1C.D. 2a +1a +1a +16.如图,在△ ABC 中,∠ A=60 °,∠ B =45 °.若边 AC 的垂直平分线 DE 交边 AB 于点 D,交边 AC 于点 E,连接 CD ,则∠ DCB =A. 15°B. 20°C.25 °D.30°7.设一次函数y=kx+b(k ≠0)的图象经过点随 x 的值增大而增大,则该一次函数的图象一定不(1,-经过3) ,且y 的值...A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD 中, AB = 2.若以 CD 边为底边向其形外作等腰直角△DCE ,连接 BE ,则 BE 的长为A. 5B.2 2 C. 10D.23︵.如图,矩形内接于⊙,点是上一点,连接 PB、9ABCD O P ADPC. 若 AD =2AB ,则 sin ∠ BPC 的值为5 2 5335A. 5=2B. 5C. 2D. 10.已知抛物线+ bx +c 的对称轴为x =1 ,且它与 x 轴交于10y xA、B 两点.若 AB 的长是 6,则该抛物线的顶点坐标为A. (1,9)B.(1,8)C. (1,- 9)D.(1,- 8)机密★启用前2017 年陕西省初中毕业学业考试数学试卷三总总核题二分分分号1516171819202122232425人人得分第Ⅱ卷 (非选择题共90分)注意事项:1.答卷前请你将密封线内的项目填写清楚。
2017年陕西省中考数学试卷含答案解析版
实用标准文档2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)21.(3分)计算:(﹣)﹣1=() D C.﹣.0.﹣ B A.﹣2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()D..B.C.Am)两点,则),B(m,﹣4,﹣3.(3分)若一个正比例函数的图象经过A(36)的值为(8D.﹣C.﹣2 A.2B.8,1=25°落在直线a上,若∠B(3分)如图,直线a∥b,Rt△ABC的直角顶点4.)2的大小为(则∠D.85°65°B.75°C.55°A.)3分)化简:﹣,结果正确的是(5.(22yxD.C...A1B+拼在一起,其中ABC和△A′B′C′36.(分)如图,将两个大小、形状完全相同的△,,AC=BC=3AC′B′=90°ACB=.连接ABC′重合,与点点A′A点落在边上,B′C若∠∠)则B′C的长为(文案大全.实用标准文档.D.6 C.3 A.3B)在第一象限0(k≠与直线l:y=kx+b+7.(3分)如图,已知直线l:y=﹣2x421)k的取值范围是(2,0),则.若直线交于点Ml与x轴的交点为A(﹣22<.D0<k C.0<k<4 2kA.﹣2<<2 B.﹣<k<0的中点,连接CDBC=3.若点E是边.(3分)如图,在矩形ABCD中,AB=2,8)的长为(,则AE交AE于点FBF作AE,过点BBF⊥.A. D C . B .,若点5C=30°ABC(3分)如图,△是⊙O的内接三角形,∠,⊙O的半径为.9)PAPB=ABABPOP是⊙上的一点,在△中,,则的长为(文案大全.实用标准文档A.5 B.C.5D.52﹣2mx﹣4(m>分)已知抛物线y=x0)的顶点M关于坐标原点O的对10.(3称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.)(结果精确到0.01≈.B.tan38°15′的图)(m≠m≠0)和y=B13.(3分)已知A,两点分别在反比例函数y=(.关于x轴对称,则m的值为象上,若点A与点B.若,连接ACBAD=∠BCD=90°,∠14.(3分)如图,在四边形ABCD中,AB=AD.ABCD的面积为,则四边形AC=6分)小题,共78三、解答题(本大题共111﹣﹣(2﹣+|)×分)计算:(15.5(﹣|).文案大全.实用标准文档16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学518.(并校政教处在七年级随机抽取了部分学生,为了了解七年级学生的早锻炼情况,(分钟)进行了调查.现把调查结果x对这些学生通常情况下一天的早锻炼时间四组,如下表所示,同时,将调查结果绘制成下面两幅不完整DC、分成A、B、的统计图.请你根据以上提供的信息,解答下列问题:)补全频数分布直方图和扇形统计图;(1区间内;(2)所抽取的七年级学生早锻炼时间的中位数落在请你估计这个年级学生中约有多少人一名学生,)已知该校七年级共有1200(3之间的:40~分钟.(早锻炼:指学生在早晨7:007天早锻炼的时间不少于20 锻炼),AE=CF且AD、F分别为边和CD上的点,EABCD如图,7.19(分)在正方形中,.AG=CGGCEAF连接、交于点.求证:文案大全.实用标准文档,不乘船”“乡思柳.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为20观湖赏柳.小红和小军很想知道”“聚贤亭不易到达,每年初春时节,人们喜欢在之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺乡思柳”聚贤亭“”与“处,用侧的A来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”,此时测得小军的眼睛距地面的高度点的仰角为23°”顶端M乡思柳倾器测得“点的仰角M顶端“乡思柳”AB为1.7米,然后,小军在A处蹲下,用侧倾器测得米.请你利用以上测得的数1,这时测得小军的眼睛距地面的高度AC为为24°(参考数.1米)乡思柳“”之间的距离AN的长(结果精确到据,计算“聚贤亭”与cos24°0.4067,0.4245,sin24°≈0.9205sin23°≈0.3907,cos23°≈,tan23°≈据:).0.4452,tan24°≈≈0.9135分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他.(721个大棚个大棚种植香瓜,另外2对家里的3个温室大棚进行修整改造,然后,1他高兴地现在他家的甜瓜和香瓜已全部售完,种植甜瓜,今年上半年喜获丰收,.”说:“我的日子终于好了以后就5个大棚,李师傅在扶贫工作者的指导下,最近,计划在农业合作社承包打他根据种植经验及今年上半年的市场情况,用8个大棚继续种植香瓜和甜瓜,并预测明年两两个品种同时种,一个大棚只种一个品种的瓜,算下半年种植时,种瓜的产量、销售价格及成本如下:文案大全.实用标准文档个大棚中所产明年上半年8现假设李师傅今年下半年香瓜种植的大棚数为x个,元.的瓜全部售完后,获得的利润为y根据以上提供的信息,请你解答下列问题:之间的函数关系式;与x(1)求出y个大棚中,香瓜至少种植几个大棚?才能使获得的利)求出李师傅种植的8(2 10万元.润不低于是中华民族的传统习俗.节日期间,小邱家”分)端午节“赛龙舟,吃粽子22.(7,肉)),豆沙粽子(记为B包了三种不同馅的粽子,分别是:红枣粽子(记为A,这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈)粽子(记为C给一个花盘中一个豆沙粽子和一个肉粽子;给一个白盘中放入了两个红枣粽子,放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?1()若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子2(求小邱取到的两个粽子中一中随机取一个粽子,请用列表法或画树状图的方法,个是红枣粽子、一个是豆沙粽子的概率.,连接A是⊙O的一条切线,切点为PA(8分)如图,已知⊙O的半径为5,.23,连接于点D于点C、交PBPBAOPO并延长,交⊙于点B,过点作AC⊥交⊙O时,P=30°BC,当∠的长;)求弦AC1(.∥PABC2()求证:文案大全.实用标准文档22+mxy=x+n3﹣2x﹣与抛物线C24.(10分)在同一直角坐标系中,抛物线C:y=ax:21关于y轴对称,C与x轴交于A、B两点,其中点A在点B的左侧.2(1)求抛物线C,C的函数表达式;21(2)求A、B两点的坐标;(3)在抛物线C上是否存在一点P,在抛物线C上是否存在一点Q,使得以AB21为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.分)问题提出(1225.的的内心,则OAO是△ABC(1)如图①,△ABC是等边三角形,AB=12,若点;长为问题探究边上一点,且ADP是AD=18ABCD中,AB=12,,如果点(2)如图②,在矩形的面积平分?若ABCDPQ将矩形边上是否存在一点Q,使得线段那么AP=3,BC的长;若不存在,请说明理由.存在,求出PQ问题解决与其所对的劣弧围成草地和弦AB3)某城市街角有一草坪,草坪是由△ABM(处的水管上安装了一喷灌龙头,的草地组成,如图③所示.管理员王师傅在M既要能并且在用喷灌龙头浇水时,以后,他想只用喷灌龙头来给这块草坪浇水,他让喷灌龙头的转角正于是,确保草坪的每个角落都能浇上水,又能节约用水,,然后再转回,这样往复MBMA转到好等于∠AMB(即每次喷灌时喷灌龙头由)同时,再合理设计好喷灌龙头喷水的射程就可以了.喷灌.2D的中点;过弦AB,△如图③,已测出AB=24m,MB=10mAMB的面积为96m作DE⊥AB.,又测得于点EDE=8m交文案大全.实用标准文档请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)文案大全.实用标准文档2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)21.(3分)计算:(﹣)﹣1=()D.0C.﹣A.﹣B.﹣【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是().B.C.DA.简单组合体的三视图.【考点】根据从正面看得到的图形是主视图,可得答案.【分析】.解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选:B【解答】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【点评】m4)两点,则)3,﹣6,B(m,﹣((3.3分)若一个正比例函数的图象经过A)的值为(8.﹣ D 2 C 8B 2A...﹣一次函数图象上点的坐标特征.【考点】的坐标代入所得的函【分析】B运用待定系数法求得正比例函数解析式,把点文案大全.实用标准文档数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()85°. D 65°...A55°B75°C平行线的性质.【考点】的度数,23的度数,再根据平行线的性质求出∠【分析】由余角的定义求出∠即可得出结论.,解:∵∠1=25°【解答】.=65°1=90°﹣∠﹣25°∴∠3=90°,∥ab∵.3=65°∴∠2=∠.C故选:文案大全.实用标准文档本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.【点评】)分)化简:﹣,结果正确的是(5.(322y+ C B..D.x A.1分式的加减法.【考点】计算题;分式.【专题】原式通分并利用同分母分式的减法法则计算即可得到结果.【分析】B 故选【解答】解:原式==.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.【点评】拼在一起,其中A′B′C′ABC3分)如图,将两个大小、形状完全相同的△和△6.(,AC=BC=3AC′B′=90°,.连接B′C若∠ACB=∠重合,点A′与点A点C′落在边AB上,)的长为(则B′CD. C .3 .3A.B6勾股定理.【考点】,CAB′=90°,根据等腰直角三角形的性质得到∠根据勾股定理求出【分析】AB 根据勾股定理计算.文案大全.实用标准文档【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=,∠CAB=45°,=3∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,=3∴B′C=,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)如图,已知直线l:y=﹣2x+4与直线l:y=kx+b(k≠0)在第一象限21交于点M.若直线l与x轴的交点为A(﹣2,0),则k的取值范围是()22<<k D.0 C0 .0<k<4 B2B.﹣<k<2 .﹣2<k<:一次函数图象上点的坐标特征.两条直线相交或平行问题;F8【考点】推理填空题.【专题】的关系;然、b),求出kx与轴的交点为A(﹣2,0【分析】首先根据直线l2的交点横坐标、纵坐标l的交点坐标,根据直线l、直线、直线后求出直线ll2211的取值范围即可.k都大于0,求出,),0x轴的交点为A(﹣2【解答】解:∵直线l与2,+b=0∴﹣2k解得∴的交点在第一象限,0kby=kx:与直线+﹣:l∵直线y=2x4l+(≠)21文案大全.实用标准文档>解得0<k<2.∴>故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为().B . D C.B.:矩形的性质.LB【考点】相似三角形的判定与性质;即可.,再求出BF=3=?AE?BF,先求出AE【分析】根据S=S ABCDABE矩形△.BE【解答】解:如图,连接是矩形,ABCD∵四边形,BC=AD=3,∠D=90°∴AB=CD=2,,==AE=Rt在△ADE中,,=3==S?AE?BF∵S ABCDABE矩形△.∴BF=.B故选本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关【点评】属于中考常键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,考题型.,若点的半径为,⊙的内接三角形,∠是⊙分)如图,△(9.3ABCOC=30°O5文案大全.实用标准文档P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为().5 D C.5 B A.5 .:等腰三角形的性质.KH三角形的外接圆与外心;【考点】,进而求得∠∠C=30°,根据圆周角定理求得∠OB、OPAPB=【分析】连接OA、∠,∠OBP=⊥AP,AD=PDPAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB,解直角三角形求是等边三角形,从而求得PB=OA=5OBA=60°,即可求得△AOB.,即可求得PA得PD,OP、OB、【解答】解:连接OA,C=30°∵∠,C=30°∴∠APB=∠,PB=AB∵APB=30°∠∴∠PAB=,ABP=120°∴∠,∵PB=AB,,AD=PD∴OB⊥AP,∠OBA=60°∴∠OBP=,OB=OA∵是等边三角形,AOB∴△,AB=OA=5∴,5=中,PD=cos30°?PB=×Rt则△PBD,AP=2PD=5∴.D故选文案大全.实用标准文档等边三角形的判定和性质以及解直本题考查了圆周角定理、垂径定理、【点评】角三角形等,作出辅助性构建等边三角形是解题的关键.2的对关于坐标原点O0)的顶点Mm﹣2mx﹣4(>10.(3分)已知抛物线y=x)在这条抛物线上,则点M的坐标为(称点为M′,若点M′)4,﹣208)D.(13B.(3,﹣)C.(2,﹣5A.(1,﹣)二次函数的性质.【考点】然后利用关于原点对称点的特点得到的坐标,先利用配方法求得点M【分析】的坐标代入抛物线的解析式求解即可.M′点M′的坐标,然后将点222222.﹣)4﹣﹣mm﹣4=(x﹣【解答】解:y=x﹣2mx﹣4=xm﹣2mx+m2.4,﹣m)﹣∴点M(m2.4m)+∴点M′(﹣m,222.4=m4∴m2m++﹣.2解得m=±,0∵m>.m=2∴.),﹣8∴M(2.故选C求本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,【点评】的坐标是解题的关键.得点M′分)12小题,每小题43分,共二、填空题(本大题共.中,最大的一个数是,,,﹣(11.3分)在实数﹣50,π实数大小比较.【考点】大于负数,正数大于负数,比较即可.0根据正数大于0,【分析】解:根据实数比较大小的方法,可得【解答】文案大全.实用标准文档>﹣50>,π>>,0,π,5,其中最大的数是π.故实数﹣故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.)0.01.(结果精确到tan38°15′≈ B.三角形内角和定理.:数的开方;K725:计算器—三角函数;【考点】计算器—,根据角平分线﹣∠A=128°∠:由三角形内角和得∠ABC+ACB=180°【分析】A);+∠ACB∠2=ABC+∠ACB=(∠ABC定义得∠1+∠:利用科学计算器计算可得.B,A=52°解:A、∵∠【解答】,A=128°∠ACB=180°﹣∠∴∠ABC+,ACBCE平分∠∵BD平分∠ABC、,∠ACB∠ABC、∠2=∴∠1=,)=64°+(∠ABC∠ACB∠2=则∠1+∠∠ABC+ACB=;64°故答案为:,2.030.78832.5713tan38°15′、B≈×≈文案大全.实用标准文档故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.(m≠0两点分别在反比例函数y=)和y=(m13.(3分)已知A,B≠)的图象上,若点A与点B关于x轴对称,则m的值为.【考点】反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),,依题意得:所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.全等三角形的判定与性质.【考点】的面ADN,△ABM与△AM=ANADNABM【分析】作辅助线;证明△≌△,得到的面积即可解决问题.AMCN积相等;求出正方形文案大全.实用标准文档【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°;为矩形,∠MAN=90°∴四边形AMCN,∵∠BAD=90°;DAN∴∠BAM=∠中,ADN在△ABM与△,,)ADN(AAS∴△ABM≌△的面积相等;ADNABM与△AM=AN(设为λ);△∴的面积;AMCN=正方形∴四边形ABCD的面积222;AC=6=AM,而+由勾股定理得:ACMC22,=18=36,λ∴2λ.故答案为:18正方形的判定及其性质等【点评】本题主要考查了全等三角形的判定及其性质、几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.分)小题,共78三、解答题(本大题共111﹣.﹣2|﹣(15.(5分)计算:(﹣)×)+|二次根式的混合运算;负整数指数幂.【考点】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【分析】2﹣﹣+2原式【解答】解:=﹣﹣2﹣=﹣3=本题属于解题的关键是熟练运用运算法则,【点评】本题考查学生的运算能力,基础题型.=1.﹣516.(分)解方程:文案大全.实用标准文档【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.2﹣2(x﹣3)=(x﹣3)(x+3)解:【解答】去分母得,(x+3),22﹣9,﹣2x+去括号得,x6=x+6x+9移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)基本作图.作图—【考点】即可.P的平分线交BC于点【分析】根据题意可知,作∠BDC即为所求.P解:如图,点【解答】熟知角平分线的作法和性质是解答此题本题考查的是作图﹣基本作图,【点评】的关键.分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学.18(5并为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,(分钟)进行了调查.现把调查结果对这些学生通常情况下一天的早锻炼时间x 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整D、、、分成ABC的统计图.文案大全.实用标准文档请你根据以上提供的信息,解答下列问题:)补全频数分布直方图和扇形统计图;(1区间内;(2)所抽取的七年级学生早锻炼时间的中位数落在请你估计这个年级学生中约有多少人一名学生,12003)已知该校七年级共有(之间的40~7:20分钟.(早锻炼:指学生在早晨7:00天早锻炼的时间不少于锻炼):W4:扇形统计图;分布直方图;V5:用样本估计总体;VB【考点】频数(率)中位数.区间人数及其百分比求得总人数,再根据各区间人数之)先根据A【分析】(1区间百分比可得答案;区间人数及D和等于总人数、百分比之和为1求得C)根据中位数的定义求解可得;(2)利用样本估计总体思想求解可得.3(,5%=20010÷【解答】解:(1)本次调查的总人数为,(人)×分钟的人数为20065%=130~则2030,=20%+10%65%)+﹣(项目的百分比为D15%补全图形如下:文案大全.实用标准文档(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.:全等三角形的判定与性质.KD【考点】正方形的性质;,根据全等三角形的AD=CDADF=CDE=90°,根据正方向的性质,可得∠【分析】判定与性质,可得答案.是正方形,ABCD ∵四边形【解答】证明:.,AD=CDADF=CDE=90°∴∠,∵AE=CF,∴DE=DF,中在△ADF和△CDE,SAS)≌△∴△ADFCDE(,DCEDAF=∴∠∠,CGF中,和△在△AGE文案大全.实用标准文档∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)解直角三角形的应用﹣仰角俯角问题.【考点】BD=CE=xAN=x米,则、E,设,垂足分别为点BD⊥MN,CE⊥MND作【分析】米,再由锐角三角函数的定义即可得出结论.,ED、,MNCE⊥MN,垂足分别为点解:如图,作【解答】BD⊥米,米,则BD=CE=x设AN=x,MD=x?tan23°△MBD中,在Rt,ME=x?tan24°中,在Rt△MCE,MD=DE=BC﹣∵ME文案大全.实用标准文档∴x?tan24°﹣x?tan23°=1.7﹣1,.(米)≈34∴x=,解得x答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.熟记锐角三角函数【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,的定义是解答此题的关键.分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他(721.个大棚2个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外对家里的3他高兴地现在他家的甜瓜和香瓜已全部售完,种植甜瓜,今年上半年喜获丰收,.”说:“我的日子终于好了以后就个大棚,计划在农业合作社承包5最近,李师傅在扶贫工作者的指导下,打他根据种植经验及今年上半年的市场情况,8个大棚继续种植香瓜和甜瓜,用并预测明年两一个大棚只种一个品种的瓜,算下半年种植时,两个品种同时种,现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;文案大全.实用标准文档(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,,4∴x≥∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;文案大全.实用标准文档(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.切线的性质.【考点】,由垂AOD=60°O的切线,从而可求出∠)连接1OA,由于PA是⊙【分析】(的长度.,由锐角三角函数即可求出AC径定理可知:AD=DC,从而由圆周角定理即可求出BOA=120°)由于∠AOP=60°,所以∠2(PABC ∥,从而可证明∠BCA=60°,OA)连接(【解答】解:1文案大全.实用标准文档∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA?sin60°=AC=2AD=5∴,P=30°PB,∠2)∵AC⊥(,∴∠PAC=60°AOP=60°∵∠,∴∠BOA=120°,∴∠BCA=60°BCAPAC=∠∴∠PABC∥∴本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的【点评】判定等知识,综合程度较高,属于中等题型.22n++与抛物线C:y=xmx抛物线.(10分)在同一直角坐标系中,C:y=ax﹣﹣2x32421的左侧.在点B、B两点,其中点A与关于y轴对称,Cx轴交于A2的函数表达式;CC1)求抛物线,(21两点的坐标;BA、2()求AB使得以上是否存在一点Q,在抛物线上是否存在一点3()在抛物线CP,C21、四点为顶点的四边形是平行四边形?若存在,求出QP、、、为边,且以ABP两点的坐标;若不存在,请说明理由.Q文案大全.实用标准文档。
2017年陕西省中考数学试卷含答案解析(Word版)
2017 年陕西省中考数学试卷、选择题(本大题共 10小题,每小题 3分,共 30 分)1.计算:( 12)21 =()513A .B .C .D .0444【答案】 C .【解析】试题分析:原式 = 1﹣ 1= 3 ,故选 C .44考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(D .答案】 B . 解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选 考点:简单组合体的三视图.答案】 A . 【解析】考点:一次函数图象上点的坐标特征.3.若一个正比例函数的图象经过 A (3,﹣ 6), B (m ,﹣4)两点,m 的值为( )A .2B .8C .﹣ 2D .﹣ 8A .B .C .B .4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠ 1=25°,则∠ 2的大小为A.55°B.75°C.65°D.85°答案】C.解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣25 °=65°.∵a∥b,∴∠ 2=∠3=65°.故考点:平行线的性质.5.化简:xyx,xy 结果正确的是(A.12xB . 2xy2yC.xyxyD.x2y2答案】B.解析】试题分析:原式22x xy xy y22xyx22xy .故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△ A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C.若∠ ACB=∠AC′B=90°,AC=BC=3,则B′C 的长为(A.3 3 B.6 C.3 2 D.21【答案】A .【解析】试题分析:∵∠ ACB=∠AC′B′=90°,AC=BC=3,∴AB= AB2 BC2=3 2 ,∵△ABC 和△A′B′C′大小、形状完全相同,∴∠ C′AB′=∠CAB=45°,AB ∴∠CAB′=90°,∴ B′C= CA2 B'A2=3 3,故选A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4 与直线l2:y=kx+b(k≠0)在第一象限交于点l2与x轴的交点为A(﹣2,0),则k 的取值范围是()A.﹣2<k<2 B.﹣2< k< 0 C.0<k< 4<2答案】D.解析】∠CAB=45°,′=AB=3 2 ,M.若直线D.0<k考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形 ABCD 中, AB=2,BC=3.若点 E 是边 CD 的中点,连接 AE ,过点 B 作答案】 B . 【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ ABC 是⊙O 的内接三角形,∠ C=30°,⊙ O 的半径为 5,若点 P 是⊙ O 上的一 点,在△ ABP 中, PB=AB ,则 PA 的长为()A . 3 10 23 10 5C .10D .35 5【答案】 D . 【解析】试题分析:连接 OA 、OB 、 OP ,∵∠ C=30°,∴∠ APB =∠ C=30°,∵ PB=AB ,∴∠ PAB=∠APB=30°∴∠ ABP=120°,∵ PB=AB ,∴ OB ⊥AP ,AD=PD ,∴∠ OBP=∠OBA=60°,∵ OB=OA ,∴△AOB 是等边三角形,∴ AB=OA=5,则 Rt △PBD 中,PD =cos30°?PB= ×5=AP=2PD=5 3 ,故选 D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线 y x 2 2mx 4 ( m > 0)的顶点 M 关于坐标原点 O 的对称点为 M ′,若 点 M ′在这条抛物线上,则点 M 的坐标为( ) ﹣20) 【答案】 C . 【解析】试题分析: y x 2 2mx 4=(x m )2 m 2 4 ,∴点 M ( m ,﹣ m 2﹣ 4),∴点 M ′(﹣ m ,m 2+4),∴ m 2+2m 2﹣ 4=m 2+4.解得 m=±2.∵m >0,∴ m=2,∴ M ( 2,﹣ 8).故选 C . 考点:二次函数的性质.A .5B . 53 2C . 5 2A .(1,﹣ 5)B .( 3,﹣13)C .(2,﹣8)D .(4,、填空题(本大题共 4 小题,每小题3分,共12 分)11.在实数﹣5,﹣3 ,0,π ,6 中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ ABC中,BD和CE是△ABC 的两条角平分线.若∠ A=52°,则∠ 1+∠2的度数为.B.317 tan38° 15′≈.(结果精确到0.01)【答案】A.64°;B.2. 03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.3m 2m 5 513.已知A,B 两点分别在反比例函数y (m≠ 0)和y (m≠ )的图象上,x x 2 若点A 与点B 关于x 轴对称,则m 的值为.【答案】1.解析】b 3mb试题分析:设 A (a ,b ),则 B (a ,﹣ b ),依题意得:a,所以 3m 2m 52m 5 a ba=0,即 5m ﹣ 5=0,解得 m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x 轴、 y 轴对称的点的坐标.14.如图,在四边形 ABCD 中, AB=AD ,∠ BAD =∠ BCD =90°,连接 AC .若 AC=6,则四 边形 ABCD 的面积为 .【解析】∴四边形 ABCD 的面积 =正方形 AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而 AC=6∴2λ 2=36, λ 2=18,故答案为: 18. 考点:全等三角形的判定与性质.、解答题(本大题共 11小题,共 78 分)15.计算: ( 2) 6 | 3 2 | (1) 1.答案】 3 3 . 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式 = 12 2 3 2 = 2 3 3 = 3 3 . 考点:二次根式的混合运算;负整数指数幂.x3 216.解方程:1答案】 18.x3【答案】 x=﹣ 6. x3【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 试题解析:去分母得, ( x+3)2﹣2(x ﹣3)=(x ﹣3)(x+3),去括号得, x 2+6x+9﹣2x+6=x 2 ﹣9,移项,系数化为 1,得 x=﹣6,经检验, x=﹣6 是原方程的解.考点:解分式方程.17.如图,在钝角△ ABC 中,过钝角顶点 B 作 BD ⊥BC 交 AC 于点 D .请用尺规作图法在 BC 边上求作一点 P ,使得点 P 到 AC 的距离等于 BP 的长.(保留作图痕迹,不写作法)【解析】18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益, 某中学为了了解七年级学生 的早锻炼情况, 校政教处在七年级随机抽取了部分学生, 并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200 名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20 分钟.(早锻炼:指学生在早晨7:00~7:40 之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:2)由于共有200 个数据,其中位数是第100、101个数据的平均数,则其中位数位于区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20 分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD 中,E、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF、CE 交于点G.求证:AG =CG .【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF =CDE =90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳” 之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M 点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1. 7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M 点的仰角为24°,这时测得小军的眼睛距地面的高度AC 为1 米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1 米).(参考数据:sin23°≈0. 3907,cos23°≈0. 9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0. 9135,tan24°≈0. 4452.)【答案】34 米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,在Rt△MBD 中,MD=x?tan23°,在Rt△MCE 中,ME=x?tan24°,∵ME﹣MD=DE=BC,∴x?tan24°﹣x?tan23°=1. 7﹣1,∴ x= 0.7,解得x≈34(米).tan 24 tan23 答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34 米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3 个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8 个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10 万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000 建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;4(2)由题意得,7500x+6800≥100000,∴x≥4 ,∵x 为整数,∴李师傅种植的8个大棚15 中,香瓜至少种植5 个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.13【答案】(1)1;(2)3.2 16【解析】A,A)、(A,B)、(A,C)、(A,C)、A,A)、(A,B)、(A,C)、(A,C)、B,A)、(B,B)、(B,C)、(B,C)、C,A)、(C,B)、(C ,C )、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.16考点:列表法与树状图法;概率公式.23.如图,已知⊙ O的半径为5,PA是⊙ O的一条切线,切点为A,连接PO 并延长,交⊙ O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC 的长;答案】(1)5 3;(2)证明见解析.解析】在Rt△ODA 中,AD=OA?sin60°=5 3,∴AC=2AD=5 3 ;2(2)∵ AC⊥ PB,∠ P=30°,∴∠ PAC=60°,∵∠ AOP =60°,∴∠ BOA=120°,∴∠ BCA=60°,∴∠ PAC =∠BCA ,∴ BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B 两点,其中点A 在点B 的左侧.(1)求抛物线C1,C2 的函数表达式;(2)求A、B 两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q 两点的坐标;若不存在,请说明理由.答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n 的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B 的坐标;(3)由题意可知AB 只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入C2 的函数表达式可求得P、Q 的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴ P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴ t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC 是等边三角形,AB=12,若点O是△ ABC 的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD 中,AB=12,AD=18,如果点P是AD 边上一点,且AP=3,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△ AMB 的面积为96m2;过弦AB的中点D作DE⊥AB 交AB 于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0. 01 米)【答案】(1)4 3;(2)PQ=12 2 ;(3)喷灌龙头的射程至少为19.71 米.【解析】AD试题分析:(1)构建Rt △ AOD 中,利用cos∠ OAD=cos30°=,可得OA 的长;OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD 中,由勾股定理解得:r=13根据三角形面积计算高MN 的长,证明△ ADC∽△ANM ,列比例式求DC 的长,确定点O在△ AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.11试题解析:(1)如图1,过O 作OD⊥AC于D,则AD= AC= ×12=6,∵ O是内心,△2211ABC 是等边三角形,∴∠ OAD= ∠ BAC= × 60°=30°,在Rt△AOD 中,cos∠22OAD =cos30°=AD,∴ OA =6÷ 3 = 4 3 ,故答案为:4 3 ;OA 2(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,11∴ 1 AB?MN=96,1×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ ADC∽△ 22 DC AD DC 12 16ANM,∴ ,∴ ,∴DC= ,∴ OD < CD,∴点O在△ AMB 内部,∴连MN AN 8 18 3接MO 并延长交AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在AB 上任取一点异于点F 的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF > MG ,过O 作OH ⊥ MN ,垂足为H,则OH =DN =6,MH =3,∴ OM = MH2 OH2= 32 62=3 5,∴MF =OM+r= 35 +13≈19. 71(米).答:喷灌龙头的射程至少为19.71 米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。
2017年陕西省中考数学试卷及答案(Word版)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:21()12--==( )A .54-B .14-C .34- D .0【答案】C . 【解析】 试题分析:原式=14﹣1=34-,故选C . 考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B . 【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B . 考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8 【答案】A .【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【答案】C.【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选C.考点:平行线的性质.5.化简:x xx y x y--+,结果正确的是()A.1 B.2222x yx y+-C.x yx y-+D.22x y+【答案】B.【解析】试题分析:原式=2222x xy xy yx y+-+-=2222x yx y+-.故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.B.6 C.D【答案】A.【解析】试题分析:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=CAB′=90°,∴B′CA.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l与x轴的交点为A(﹣2,0),则k的取值范围是()2A.﹣2<k<2B.﹣2<k<0C.0<k<4 D.0<k<2【答案】D.【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A B C.D【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B C.D.【答案】D.【解析】试题分析:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB×,∴AP=2PD=,故选D.考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线224=--(m>0)的顶点M关于坐标原点O的对称点为M′,y x mx若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【答案】C.【解析】试题分析:224x m m---,∴点M(m,﹣m2﹣4),∴点M′=--=22()4y x mx(﹣m,m2+4),∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣5,0中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B tan38°15′≈.(结果精确到0.01)【答案】A.64°;B.2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A,B两点分别在反比例函数3myx=(m≠0)和25myx-=(m≠52)的图象上,若点A与点B关于x轴对称,则m的值为.【答案】1.【解析】试题分析:设A(a,b),则B(a,﹣b),依题意得:325mbamba⎧=⎪⎪⎨-⎪-=⎪⎩,所以325m ma+-=0,即5m﹣5=0,解得m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.【答案】18.【解析】∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分)15.计算:11(|2|()2--.【答案】- 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案.试题解析:原式=22+-=-=-考点:二次根式的混合运算;负整数指数幂. 16.解方程:32133x x x +-=-+. 【答案】x =﹣6. 【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 试题解析:去分母得,(x +3)2﹣2(x ﹣3)=(x ﹣3)(x +3),去括号得,x 2+6x +9﹣2x +6=x 2﹣9,移项,系数化为1,得x =﹣6,经检验,x =﹣6是原方程的解. 考点:解分式方程.17.如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)【答案】作图见解析.【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24tan23,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;(2)由题意得,7500x+6800≥100000,∴x≥4415,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316.【解析】(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:3 16.考点:列表法与树状图法;概率公式.23.如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC的长;(2)求证:BC∥PA.【答案】(1);(2)证明见解析.【解析】在Rt△ODA中,AD=OA,∴AC=2AD=;(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA,∴BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q 两点的坐标;若不存在,请说明理由.【答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE ⊥AB交 AB于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【答案】(1);(2)PQ=;(3)喷灌龙头的射程至少为19.71米.【解析】试题分析:(1)构建Rt△AOD中,利用cos∠OAD=cos30°=ADOA,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,由勾股定理解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.试题解析:(1)如图1,过O 作OD ⊥AC 于D ,则AD =12AC =12×12=6,∵O 是内心,△ABC 是等边三角形,∴∠OAD =12∠BAC =12×60°=30°,在Rt △AOD 中,cos ∠OAD =cos30°=AD OA,∴OA =6÷=(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴12AB •MN =96,12×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC AD MN AN =,∴12818DC ,∴DC =163,∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交 AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在 AB 上任取一点异于点F 的点G ,连接GO ,GM ,∴MF =OM +OF =OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3,∴OM =,∴MF =OM +r =+13≈19.71(米).答:喷灌龙头的射程至少为19.71米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。
09-17年陕西中考数学正题副题三角函数与三角形相似汇编
09-17年陕西中考数学正题副题三角函数与三角形相似汇编09年:20.(本题满分8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼在墙上的影子高度 1.2CD =m ,0.8CE =m ,30CA =m (点A E C 、、在同一直线上). 已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).10年20 再一次测量活动中,同学们要测量某公园的码头A 与他正东方向的亭子B 之间的距离,如图他们选择了与码头A 、亭子B 在同一水平面上的点P 在点P 处测得码头A 位于点P 北偏西方向30°方向,亭子B 位于点P 北偏东43°方向;又测得P 与码头A 之间的距离为200米,请你运用以上数据求出A 与B 的距离。
11年:20.(本题满分8分)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①、先测出沙坑坑沿的圆周长34.54米;②、甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米,(π取3.14,结果精确到0.1米)S12年20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65︒方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45︒方向(点A B C、、在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:,,,sin250.4226cos250.9063tan250.4663sin650.9063︒≈︒≈︒≈︒≈,,)cos650.4226tan65 2.1445︒≈︒≈13年:20.(本题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )14年:20、(本题满分8分) 某一天,小明和小亮来到一河边,想用遮阳帽和皮尺来测量这一条河流的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B 与河对岸岸边上的一棵树的底部点D 所确定的直线垂直于河岸)①小明在B 点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D 处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB 延长线上的点E 处,此时小亮测得BE=9.6米,小明的眼睛距离地面的距离CB=1.2米。
2017年陕西省中考数学试题及解析
2017年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2017•陕西)计算:(﹣)0=()C.0D.A.1B.﹣2.(3分)(2017•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.(3分)(2017•陕西)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a2b2÷a2b2=3ab4.(3分)(2017•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.(3分)(2017•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2 C.4D.﹣46.(3分)(2017•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.(3分)(2017•陕西)不等式组的最大整数解为()A.8B.6C.5D.48.(3分)(2017•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.(3分)(2017•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10 C.5或9 D.6或810.(3分)(2017•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2017•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2017•陕西)正八边形一个内角的度数为.13.(2017•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2017•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2017•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2017•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2017•陕西)解分式方程:﹣=1.18.(5分)(2017•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2017•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2017•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2017•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2017•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2017•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2017•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2017•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2017•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2017年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2017•陕西)计算:(﹣)0=()A.1B.C .0D.﹣考点:零指数幂.分析:根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.解答:解:(﹣)0=1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.2.(3分)(2017•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.(3分)(2017•陕西)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a2b2÷a2b2=3ab考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.解答:解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.点评:本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.4.(3分)(2017•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′考点:平行线的性质.分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.解答:解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等.5.(3分)(2017•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2 C.4D.﹣4考点:正比例函数的性质.分析:直接根据正比例函数的性质和待定系数法求解即可.解答:解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B点评:本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y 值随x的增大而减小.6.(3分)(2017•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个考点:等腰三角形的判定与性质.分析:根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.解答:解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.点评:此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.(3分)(2017•陕西)不等式组的最大整数解为()A.8B.6C.5D.4考点:一元一次不等式组的整数解.分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.解答:解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,故选C.点评:本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.8.(3分)(2017•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度考点:一次函数图象与几何变换.分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解答:解:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.故选:A.点评:此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.9.(3分)(2017•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.(3分)(2017•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧考点:抛物线与x轴的交点.分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.解答:解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.点评:本题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2017•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)正八边形一个内角的度数为135°.考点:多边形内角与外角.分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).13.(2017•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义求得坡角的度数即可.解答:解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.点评:本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.(3分)(2017•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.考点:反比例函数系数k的几何意义.分析:设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.解答:解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.点评:本题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.15.(3分)(2017•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2017•陕西)计算:×(﹣)+|﹣2|+()﹣3.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.解答:解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、17.(5分)(2017•陕西)解分式方程:﹣=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(5分)(2017•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)考点:作图—复杂作图.分析:作BC边上的中线,即可把△ABC分成面积相等的两部分.解答:解:如图,直线AD即为所求:点评:此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积相等.19.(5分)(2017•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.解答:解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.点评:本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同时考查了平均数和中位数的定义.20.(7分)(2017•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.解答:证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.点评:此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.(7分)(2017•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)考点:相似三角形的应用.分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.解答:解:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.点评:本题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.(7分)(2017•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.考点:一次函数的应用.专题:应用题.分析:(1)根据总费用等于人数乘以打折后的单价,易得y=640×0.85x,对于乙两家旅行甲社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20);(2)把x=32分别代入(1)中对应得函数关系计算y甲和y乙的值,然后比较大小即可.解答:解:(1)甲两家旅行社的总费用:y=640×0.85x=544x;甲乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75(x﹣20)=480x+1920;(2)当x=32时,y甲=544×32=17408(元),y乙=480×32+1920=17280,因为y甲>y乙,所以胡老师选择乙旅行社.点评:本题考查了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.(7分)(2017•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)考点:游戏公平性;列表法与树状图法.分析:(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.解答:解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.点评:(1)此题主要考查了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)此题主要考查了列举法(树形图法)求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.(8分)(2017•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.考点:切线的性质;勾股定理;相似三角形的判定与性质.分析:(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.解答:(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.点评:本题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.(10分)(2017•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.考点:二次函数综合题.分析:(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.解答:解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4,将(4,0),(1,0)代入上式,得解得:,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(﹣4,0),A′(4,0)∴AA′=8,MD=,∴=点评:本题考查了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决本题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意菱形的判定与数形结合思想的应用.26.(12分)(2017•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.。
2017年陕西省中考数学试题及答案(word版)
2017年陕西省中考数学试题及答案(word 版)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】 A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5)D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】A 、125B 、512 C 、135 D 、13126.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】 A 、181,181 B 、182,181 C 、180,182 D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 【 】 A 、外离 B 、相交 C 、内切或外切 D 、内含正方体 圆锥 球 圆柱 (第二题图)8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC,BC 则△ABC 的面积为【 】9、 如图,在ABCD 中EF 分别是AD 、CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,则图中的全等三角形有 【 】 A 、2对 B 、3对 C 、4对 D 、5对10、若二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是 【 】 A 、321y y y B 、321y y y C 、312y y y D 、213y y y第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,若0641=∠ 则=∠1 .13、分解因式:=+-a ab ab 442.14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为 元15、若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .16、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=3,BC=7,则梯形ABCD 面积的最大值(第8题图) (第9题图)三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)新课标第一网 解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B,D 两点分别作BE ⊥AG ,DF ⊥AG ,垂足分别为E,F 两点,求证:△ADF ≌△BAE19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。
2017年陕西中考数学试题及答案word
2017年陕西中考数学试题及答案word一、选择题(本题共10小题,每小题3分,共30分)1. 以下哪个数是无理数?A. 2B. √2C. 0.5D. 0.33333...答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 圆D. 不规则多边形答案:C4. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A5. 以下哪个选项是正确的不等式?A. 2x > 3xB. 2x ≤ 3xC. 2x < 3xD. 2x = 3x答案:B6. 一个圆的直径是10厘米,那么它的周长是:A. 31.4厘米B. 62.8厘米C. 15.7厘米D. 50厘米答案:B7. 已知一个三角形的两边长分别为3和4,第三边长x满足以下哪个条件?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C8. 一个等腰三角形的底角为50°,那么顶角的度数是:A. 80°B. 60°C. 50°D. 30°答案:A9. 一个正数的算术平方根是2,那么这个数是:A. 4B. 2C. 1D. 0答案:A10. 以下哪个选项是正确的等式?A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab + b²答案:A二、填空题(本题共5小题,每小题3分,共15分)1. 一个数的绝对值是5,这个数可能是__5__或__-5__。
(完整word版)2017年陕西数学中考副题(含答案word版)
2017年陕西省初中毕业学业考试数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)01.计算: 3-2=A .-19 B.19 C .-6 D .-1602.如图的几何体是由一平面将一圆柱体截去一部分后所得,则该几何体的俯视图是03.若正比例函数y =kx (k ≠0)的图象经过点(2,1-k ),则k 的值为A .1B .-13C .-1 D.1304.如图,直线a ∥b ,点A 在直线b 上,∠BAC =108°,∠BAC 的两边与直线a 分别交于B 、C 两点.若∠1=42°,则∠2的大小为A .30°B .38°C .52°D .72°05.化简:a +1-a2a +1,结果正确的是A .2a +1B .1 C.1a +1 D.2a +1a +106.如图,在△ABC 中,∠A =60°,∠B =45°.若边AC 的垂直平分线DE 交边AB 于点D ,交边AC 于点E ,连接CD ,则∠DCB =A .15°B .20°C .25°D .30°07.设一次函数y =kx +b (k ≠0)的图象经过点(1,-3),且y 的值随x 的值增大而增大,则该一次函数的图象一定不...经过 A .第一象限 B .第二象限 C .第三象限 D .第四象限08.如图,在正方形ABCD 中,AB =2.若以CD 边为底边向其形外作等腰直角△DCE ,连接BE ,则BE 的长为A. 5 B .2 2 C.10 D .2309.如图,矩形ABCD 内接于⊙O ,点P 是AD ︵上一点,连接PB 、PC .若AD =2AB ,则sin ∠BPC 的值为A.55 B.255 C.32 D.351010.已知抛物线y =x 2+bx +c 的对称轴为x =1,且它与x 轴交于A 、B 两点.若AB 的长是6,则该抛物线的顶点坐标为A .(1,9)B .(1,8)C .(1,-9)D .(1,-8)二、填空题(共4小题, 每小题3分, 计12分)11.如图,数轴上的A 、B 两点所表示的数分别为a 、b ,则a +b 0(填“>”,“=”或“<”). 12.请从以下两个小题中任选一个....作答,若多选,则按第一题计分. A .如图,网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC向右平移a 个单位,再向下平移b 个单位得到的,则ba 的值为 .B .用科学计算器计算:6tan16°15′≈ .(结果精确到0.01)13.若正比例函数y =-12x 的图象与反比例函数y =2k -1x (k ≠12)的图象有公共点....,则k 的取值范围是 . 14.如图,在Rt △ABC 中,AC =3,∠ABC =90°,BD 是△ABC 的角平分线,过点D 作DE ⊥BD 交BC 边于点E .若AD =1,则图中阴影部分面积为 .三、解答题(共11小题,计78分.解答应写出过程) 15.(本题满分5分)计算:18-(π-5)0+|22-3|.16.(本题满分5分)解分式方程:2x -1x +2=2-3x -2.17.(本题满分5分)如图,在△ABC 中,AD 是BC 边上的高.请用尺规作图法 在高AD 上求作一点P ,使得点P 到AB 的距离等于PD 的长. (保留作图痕迹,不写作法) 18.(本题满分5分)“垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,将这一情况分为:A —从不随手丢垃圾;B —偶尔随手丢垃圾;C —经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生“是否随手丢垃圾”情况的众数是________;(3)若该校七年级共有1 500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?使AE=CF,连接EF交AD边于点G,交BC边于点H.20.(本题满分7分)小军学校门前有座山,山顶上有一观景台,他很想知道这座山比他们学校的旗杆能高出多少米.于是,有一天,他和同学小亮带着测倾器和皮尺来到观景台进行测量.测量方案如下:如图,首先,小军站在观景台的C点处,测得旗杆顶端M点的俯角为35°,此时测得小军眼睛距测得旗杆顶端M点的俯角为34.5°,此时测得小军的眼睛距C点的距离AC为1米.请根据以上所测得的数据,计算山CD比旗杆MN高出多少米(结果精确到1米)?(参考数据:sin35°≈0.5736,c os35°≈0.8192,t a n35°≈0.7002,sin34.5°≈0.5664,c os34.5°≈0.8241,t a n34.5°≈0.6873)21.(本题满分7分)某樱桃种植户有20吨樱桃待售,现有两种销售方式:一是批发,二是零售.经过市场调查,这两种销售方式对这个种植户而言,每天的销量及每吨所获的利润如下表:(1)求出y与x之间的函数关系式;(2)若受客观因素影响,这个种植户每天只能采用一种销售方式销售,且正好10天销售完所有樱桃,请计算该种植户所获总利润是多少元?22.(本题满分7分)小明爸爸买了一个密码旅行箱,密码由六位数字组成.现小明爸爸已将密码的前四位数字确定为小明的生日(1028),后两位数字由小明自己确定.小明想把十位上的数字设置为奇数,个位上的数字设置为偶数且两个数位上的数字之和为9.这两个数位上的数字采用转转盘的方式来确定,于是小明设计了如图所示的两个可以自由转动的转盘A和B(每个转盘被分成五个面积相等的扇形区域).使用的规则如下:同时转动两个转盘,转盘均停止后记下两个指针所指扇形区域上的数(若指针指到分割线上,则就取指针右边扇形区域上的数).若记下的两个数之和为9,则确定为密码中的数字;否则按上述规则继续转动两个转盘,直到记下的两个数之和为9为止.请用画树状图或列表法的方法,求小明同时转动两个转盘一次,得到的两个数之和恰好为9的概率.23.(本题满分8分)如图,△ABC为⊙O的内接三角形,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE为⊙O的切线;(2)若AC=2DE,求∠ACB的大小.与y轴交于C点,且A(-1,0),OB=OC=3OA.(1)求抛物线L的函数表达式;(2)在抛物线L的对称轴上是否存在一点M,使△ACM周长最小?若存在,求出点M的坐标;若不存在,请说明理由.(3)连接AC、BC,在抛物线L上是否存在一点N使S△ABC=2S△OCN?若存在,求出点N的坐标;若不存在,请说明理由.25.(本题满分12分)(1)如图①,点A是⊙O外一点,点P是⊙O上一动点.若⊙O的半径为3,OA=5,则点P到点A的最短距离为________;(2)如图②,已知正方形ABCD的边长为4,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离为________;(3)如图③,在等边△ABC中,AB=6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CA方向向终点C和A运动,连接AM和BN交于点P,求△APB面积的最大值,并说明理由.2017年陕西省初中毕业学业考试数学答案及评分参考一、选择题二、填空题(共4小题,每小题3分, 计12分)11.< 12. A. 23 B .0.71 13.k <12 14.1三、解答题(共11小题,计78分)15.原式=32-1+3-22=2+ 2.16.(2x -1)(x -2)=2(x 2-4)-3(x +2). -2x =-16. x =8. 经检验,x =8是原方程的根. 17.如图所示,点P 即为所求.18.(1)补全的条形统计图和扇形统计图如图所示.(2)B .(或填偶尔随手丢垃圾亦可)(3)1 500×5%=75(人).∴估计该年级学生中约有75人经常随手丢垃圾.看法:争做遵守倡议的模范;做文明公民;从我做起,绝不随手丢垃圾等. (主题明确,态度积极即可得分)19.∵四边形ABCD 为平行四边形,∴AB ∥CD ,AB =CD ,∠B =∠D . ∴∠E =∠F .又∵AE =CF ,∴BE =DF . ∴△BEH ≌△DFG . ∴BH =DG . 20.如图,作ME ⊥CD ,垂足为E .设CE 长为x 米,则BE =(1.8+x )米,AE =(1+x )米.在Rt △BME 中,EM =1.8tan35x+︒,在Rt △AME 中,EM =1tan34.5x+︒,∴1.8tan35x +︒=1tan34.5x+︒. ∴x ≈42.∴山CD 比旗杆MN 高出约42米.21.(1)y =4 000x +6 000(20-x )=-2 000x +120 000. ∴y =-2 000x +120 000.(2)由题意知201031x x -==.解得x =15. ∴当x =15时,y =-2 000×15+120 000=90 000. ∴该种植户所获总利润为90 000元.22由上表可知,共有25种等可能结果,且两个数位上的数字之和恰好为9的结果有5种.∴P (两个数位上的数字之和恰好为9)=15.23.(1)连接OA 、OC 、OD ,其中OD 与AC 交于点N .∵∠ABD =∠DBC ,∴∠AOD =∠DOC . ∴OD ⊥AC . 又∵DE ∥AC ,∴OD ⊥DE .而点D 在⊙O 上,∴DE 为⊙O 的切线.(2)由(1)知CN =12AC . 当DE =12AC 时,DE =CN ,DE ∥CN .∴四边形NDEC 为矩形.∴∠ACB =90°.24.(1)∵A (-1,0),OB =OC =3OA ,∴B (3,0),C (0,-3).∴0930,3a b c a b c c -+=⎧⎪++=⎨⎪=-⎩解得12,3a b c =⎧⎪=-⎨⎪=-⎩∴y =x 2-2x -3. (2)存在.由题意知,抛物线对称轴为直线x =1.记直线BC 与直线x =1的交点为M ,∴点M 即为所求.理由:连接AM . ∵点A 与点B 关于直线x =1对称,∴AM =MB . ∴CM +AM =CM +MB =BC . ∴△ACM 的周长=AC +BC . 在直线x =1上任取一点M ′,连接CM ′、BM ′、AM ′. ∵AM ′=M ′B ,∴CM ′+AM ′=CM ′+M ′B ≥BC .∴AC +CM ′+AM ′≥AC +BC . ∴△ACM 的周长最小. 设直线x =1与x 轴交于点D ,则MD ∥OC . ∴3DM =23. ∴DM =2. ∴M (1,-2). (3)存在.设点N 坐标为(n ,n 2-2n -3).∵S △ABC =2S △OCN ,∴12×4×3=2×12×3×|n |. ∴|n |=2. ∴n =±2.当n =2时,n 2-2n -3=-3. ∴N (2,-3).当n =-2时,n 2-2n -3=5. ∴N (-2,5).综上所述,符合条件的点N 有(2,-3)或(-2,5). 25.(1)2.(2)25-2.(3)由题意知△ABM ≌△BCN . ∴∠AMB =∠BNC .∴∠AMC +∠BNC =180°. ∴∠APB =∠MPN =180°-∠ACB =120°.作△APB 的外接圆⊙O ,则符合条件的所有点P 都在弦AB 所对的劣弧AB 上. 当点P 运动到AB ︵的中点F 时,此时△ABP 面积最大. ∵过点O 作l ∥AB ,作PH ⊥l 于点H ,交AB 于点G . 连接OP 、OF ,且OF 交AB 于点Q ,则OF ⊥AB . ∵OF =OP ≥HP ,且OQ =HG ,∴QF ≥GP . 连接AF . ∵在Rt △AFQ 中,FQ =12AB tan30°= 3.∴S △ABF =12×6×3=3 3. ∴△ABP 面积的最大值为3 3.。
2017年陕西省中考数学试题及详细解析
二、填空题(本大题共4小题,每小题3分,共12分)
11.(3分)在实数﹣5,﹣ ,0,π, 中,最大的一个数是.
12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.
2017年陕西省中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)计算:(﹣ )2﹣1=( )
A.﹣ B.﹣ C.﹣ D.0
2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )
A. B. C. D.
3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
品种
项目
产量(斤/每棚)
销售价(元/每斤)
成本(元/每棚)
香瓜
2000
12
8000
甜瓜
4500
3
5000
现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.
根据以上提供的信息,请你解答下列问题:
(1)求出y与x之间的函数关系式;
(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.
22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.
2017陕西中考数学试题及答案word
2017陕西中考数学试题及答案word 2017年陕西省初中毕业学业考试数学试卷一、选择题(本题共8小题,每小题3分,共24分)1. 以下哪个数是正数?()A. -2B. 0C. 1D. -1答案:C2. 计算下列哪个选项的结果为负数?()A. 3-2B. 2+(-1)C. 0-(-1)D. -3+2答案:B3. 以下哪个选项是单项式?()A. 3x+2B. 2x^2-1C. 3x^2yD. 5答案:D4. 以下哪个选项是二次根式?()A. √2B. √(1/2)C. √(-1)D. √(0)答案:A5. 以下哪个选项是一次函数的图像?()A. 直线B. 射线C. 线段D. 抛物线答案:A6. 以下哪个选项是锐角三角形?()A. ∠A=30°, ∠B=60°, ∠C=90°B. ∠A=30°, ∠B=60°, ∠C=90°C. ∠A=45°, ∠B=45°, ∠C=90°D. ∠A=30°, ∠B=60°, ∠C=90°答案:B7. 以下哪个选项是相似图形?()A. 两个半径不同的圆B. 两个边长比为1:2的正方形C. 两个边长比为1:2的矩形D. 两个边长比为1:2的平行四边形答案:B8. 以下哪个选项是等腰三角形?()A. 两边长分别为3和4的三角形B. 两边长分别为4和4的三角形C. 两边长分别为3和5的三角形D. 两边长分别为5和5的三角形答案:D二、填空题(本题共6小题,每小题3分,共18分)9. 一个数的相反数是-3,这个数是______。
答案:310. 计算:(-2)^3 = ______。
答案:-811. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°12. 一个等腰三角形的底角为70°,那么顶角的度数是______。
陕西省2017中考试题数学卷(含解析)
2021年XX 省中考数学试卷一、选择题〔本大题共10 小题,每题3 分,共 30 分〕1.计算:(1 )2 1 =〔〕5 213C .A .B .D .0444【答案】 C .【解析】试题分析:原式 = 1﹣1=3 ,应选 C .44考点:有理数的混合运算.2.如下图的几何体是由一个长方体和一个圆柱体组成的,那么它的主视图是〔〕A .B .C .D .【答案】 B . 【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,应选B . 考点:简单组合体的三视图.3.假设一个正比例函数的图象经过A 〔 3,﹣ 6〕, B 〔m ,﹣ 4〕两点,那么 m 的值为〔〕A .2B .8C .﹣ 2D .﹣ 8【答案】 A .【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a∥ b,Rt△ ABC 的直角顶点 B 落在直线 a 上,假设∠ 1=25°,那么∠ 2 的大小为〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕〔〕A . 55°B. 75°C.65°D. 85°【答案】 C.【解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣ 25°=65°.∵ a∥b,∴∠ 2=∠ 3=65°.故选C.考点:平行线的性质.5.化简:xy x x,结果正确的选项是〔〕x yA . 1B. x2y2C.x yD.x2y2x2y2x y 【答案】 B.【解析】x2xy xy y2x2y2试题分析:原式=x 2y2= 2y2.应选 B.x考点:分式的加减法.6.如图,将两个大小、形状完全一样的△ABC 和△ A′ B′C′拼在一起,其中点A′与点A重合,点 C′落在边 AB 上,连接 B′ C.假设∠ ACB=∠ AC′B′=90°,AC=BC=3,那么 B′C 的长为〔〕。
(完整word版)2017年陕西省中考数学试卷(含答案解析版)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣B.﹣C.﹣D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( ) A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为( )A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是( )A.1 B.C.D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为( )A.3B.6 C.3D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为( )A.5 B. C.5D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0。
2017年陕西省中考数学试卷(含答案解析)
2017 年陕西省中考数学试卷一、选择题(本大题共10 小题,每小题3 分,共 30 分)1.( 3 分)计算:(﹣ 1)2﹣ 1= ()2A .﹣ 5B .﹣1 C . ﹣3 444D . 0【考点】 有理数的混合运算.【专题】 计算题;实数.【分析】 原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式 =1﹣ 1= ﹣ 3, 故选 C44【点评】此题考查了有理数的混合运算,熟练掌握运算法则 是解本题的关键.2.( 3 分)如图所示的几何体是由一个长方体和一个圆柱体 组成的,则它的主视图是()A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选: B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3 分)若一个正比例函数的图象经过A(3,﹣ 6),B (m ,﹣ 4 )两点,则 m 的值为()A. 2 B . 8C.﹣ 2D.﹣ 8【考点】一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B 的坐标代入所得的函数解析式,即可求出m 的值.【解答】解:设正比例函数解析式为:y=kx ,将点 A( 3 ,﹣ 6 )代入可得:3k= ﹣6,解得: k= ﹣2 ,∴函数解析式为:y= ﹣ 2x ,将 B (m ,﹣ 4 )代入可得:﹣ 2m= ﹣ 4,解得 m=2 ,故选: A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.( 3 分)如图,直线 a∥ b ,Rt △ ABC 的直角顶点 B 落在直线 a 上,若∠1=25 °,则∠2 的大小为()A. 55°B. 75°C. 65°D. 85°【考点】平行线的性质.【分析】由余角的定义求出∠ 3 的度数,再根据平行线的性质求出∠ 2 的度数,即可得出结论.【解答】解:∵∠1=25 °,∴∠ 3=90 °﹣∠1=90 °﹣ 25 ° =65 °.∵a∥b ,∴∠ 2= ∠ 3=65 °.故选: C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.( 3 分)化简:x﹣y,结果正确的是()x-y x+yx 2+y2x-yD . x 2+y 2A. 1B.x 2-y 2C.x+y【考点】分式的加减法.【专题】计算题;分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.x 2+xy-xy+y2x2+y2【解答】解:原式 =x2 -y 2= x2-y2.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.( 3 分)如图,将两个大小、形状完全相同的△ ABC 和△ A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接 B′ C.若∠ ACB= ∠ AC′ B′ =90 °,AC=BC=3,则B′C 的长为()A.3√3B.6C.3√2D.√21【考点】勾股定理.【分析】根据勾股定理求出 AB ,根据等腰直角三角形的性质得到∠ CAB′ =90 °,根据勾股定理计算.【解答】解:∵∠ACB= ∠ AC′ B′ =90 °, AC=BC=3 ,22∴AB= √ AC+ BC=3 √2,∠ CAB=45 °,∵△ ABC和△ A′ B′ C′大小、形状完全相同,∴ ∠ C′ AB′= ∠ CAB=45 °, AB′ =AB=3 √2,∴∠ CAB′ =90 °,22√3,∴ B′ C=√ CA′A=3+ B故选: A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.( 3 分)如图,已知直线 l 1:y= ﹣ 2x+4 与直线 l2:y=kx+b (k ≠ 0 )在第一象限交于点M .若直线 l 2与 x 轴的交点为A (﹣ 2 , 0 ),则 k 的取值范围是()A.﹣ 2 < k < 2B .﹣ 2 < k < 0 C. 0 < k < 4 D .0 <k < 2【考点】两条直线相交或平行问题;F8 :一次函数图象上点的坐标特征.【专题】推理填空题.【分析】首先根据直线l 2与 x 轴的交点为A(﹣ 2 ,0),求出 k 、b 的关系;然后求出直线l 1、直线 l 2的交点坐标,根据直线 l 1、直线 l 2的交点横坐标、纵坐标都大于0 ,求出 k的取值范围即可.【解答】解:∵直线l 2与 x 轴的交点为A(﹣ 2 , 0 ),∴﹣ 2k+b=0,∴{y = -2x + 4x =解得 {y = kx + 2k y =4-2kk+2 8k k+2∵直线 l1:y= ﹣ 2x+4与直线l2:y=kx+b(k ≠0 )的交点在第一象限,4-2k> 0∴ {k+2解得 0 <k < 2 .8k>0k+2故选: D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.( 3 分)如图,在矩形ABCD中,AB=2,BC=3.若点E 是边 CD 的中点,连接A E ,过点 B 作 BF ⊥AE 交 AE 于点 F,则 BF 的长为()A.3√10B.3√10 C .√10 D .3√5 2555【考点】相似三角形的判定与性质;LB :矩形的性质.11【分析】 根据 S △ ABE =2S 矩形 ABCD =3= 2?AE?BF ,先求出 AE ,再求出 BF 即可.【解答】 解:如图,连接BE .∵四边形 ABCD 是矩形,∴ AB=CD=2 , BC=AD=3 , ∠D=90 °,在Rt△ADE中,2222=√10 ,AE= √ AD+ DE=√3+ 1∵ S △ ABE =21S 矩形 ABCD =3= 21?AE?BF ,∴ BF= 3√510.故选 B .【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.( 3 分)如图,△ ABC 是⊙ O 的内接三角形, ∠ C=30 °, ⊙O 的半径为 5 ,若点 P 是⊙ O 上的一点,在△ ABP 中,PB=AB ,则 PA 的长为()5√3A.5B.2C.5√2D.5 √3【考点】三角形的外接圆与外心; KH :等腰三角形的性质.【分析】连接 OA 、OB 、OP ,根据圆周角定理求得∠APB=∠C=30 °,进而求得∠ PAB= ∠ APB=30 °,∠ ABP=120 °,根据垂径定理得到 OB ⊥AP,AD=PD ,∠OBP= ∠ OBA=60 °,即可求得△ AOB 是等边三角形,从而求得 PB=OA=5 ,解直角三角形求得 PD ,即可求得 PA .【解答】解:连接 OA 、 OB 、OP ,∵∠ C=30 °,∴∠ APB= ∠ C=30 °,∵PB=AB ,∴∠ PAB= ∠ APB=30 °∴∠ ABP=120 °,∵PB=AB ,∴OB ⊥ AP, AD=PD ,第 9页(共 38页)∵OB=OA ,∴△ AOB 是等边三角形,∴ AB=OA=5 ,√35√3则 Rt △ PBD 中,PD=cos30 ° ?PB= 2× 5= 2,∴ AP=2PD=5 √3,故选 D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10 .( 3 分)已知抛物线y=x 2﹣ 2mx ﹣ 4(m > 0 )的顶点 M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点 M的坐标为()A.(1,﹣ 5) B.(3,﹣ 13 )C.(2 ,﹣ 8) D.(4,﹣20 )【考点】二次函数的性质.【分析】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点 M′的坐标代入抛物线的解析式求解即可.【解答】解: y=x 2﹣ 2mx ﹣4=x 2﹣ 2mx+m2﹣m2﹣4=(x ﹣m )2﹣ m 2﹣ 4 .∴点 M (m ,﹣ m 2﹣4).∴点 M′(﹣ m , m 2+4 ).∴m 2 +2m 2﹣ 4=m 2+4 .解得 m= ±2 .∵ m > 0 ,∴m=2 .∴M( 2,﹣ 8 ).故选 C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点 M′的坐标是解题的关键.二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)11 .( 3 分)在实数﹣ 5,﹣√3, 0 ,π,√6中,最大的一个数是.【考点】实数大小比较.【分析】根据正数大于0 ,0 大于负数,正数大于负数,比第11页(共 38页)较即可.【解答】解:根据实数比较大小的方法,可得π>√6> 0> - √3>﹣ 5 ,故实数﹣ 5 , - √3, 0 ,π,√6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数> 0 >负实数,两个负实数绝对值大的反而小.12 .( 3 分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ ABC 中, BD 和 CE 是△ ABC 的两条角平分线.若∠A=52 °,则∠1+ ∠ 2 的度数为.3B. √17 tan38 ° 15 ′≈.(结果精确到0.01)【考点】计算器—三角函数; 25 :计算器—数的开方;K7 :三角形内角和定理.【分析】 A :由三角形内角和得∠ABC+ ∠ ACB=180 °﹣∠ A=128 °,根据角平分线定义得∠1+ ∠2=1∠ABC+ 1∠22 ACB= 1(∠ ABC+ ∠ ACB );2B :利用科学计算器计算可得.【解答】解: A 、∵∠ A=52 °,∴∠ ABC+ ∠ ACB=180 °﹣∠ A=128 °,∵ BD 平分∠ ABC 、 CE 平分∠ ACB ,∴∠ 1= 21∠ABC 、∠ 2=21∠ACB ,则∠ 1+ ∠ 2= 21∠ ABC+21∠ ACB=21(∠ABC+ ∠ ACB ) =64 °,故答案为:64 °;3B 、√17 tan38 ° 15 ′≈2.5713× 0.7883≈2.03,故答案为: 2.03 .【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.3m13 .( 3 分)已知 A ,B 两点分别在反比例函数y= x( m≠0 )和 y= 2m-5(m ≠ 5 )的图象上,若点A 与点B 关于 xx2轴对称,则 m 的值为.【考点】 反比例函数图象上点的坐标特征;关于 x 轴、 y 轴对称的点的坐标.【分析】 设 A ( a , b ),则 B ( a ,﹣ b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求 m 的值.【解答】 解:设 A ( a , b ),则 B (a ,﹣ b ),b = 3m依题意得: {a-b2m-5,=a所以 3m+2m-5 =0 ,即 5m ﹣ 5=0 ,a解得 m=1 .故答案是: 1 .【点评】本题考查了反比例函数图象上点的坐标特征,关于x 轴, y 轴对称的点的坐标.根据题意得﹣5=0 是解题的难点.3m+2m-5a=0 ,即 5m14 .( 3 分)如图,在四边形 ABCD 中, AB=AD ,∠ BAD=∠ BCD=90 °,连接 AC .若 AC=6 ,则四边形 ABCD 的面积为.【考点】全等三角形的判定与性质.【分析】作辅助线;证明△ ABM ≌△ ADN ,得到 AM=AN ,△A BM 与△ ADN 的面积相等;求出正方形 AMCN 的面积即可解决问题.【解答】解:如图,作 AM ⊥ BC 、AN ⊥CD ,交 CD 的延长线于点 N ;∵∠ BAD= ∠ BCD=90 °∴四边形 AMCN 为矩形,∠MAN=90°;∵∠ BAD=90 °,∴∠ BAM= ∠ DAN ;在△ ABM与△ ADN中,∠BAM= ∠ DAN{∠AMB= ∠AND,AB= AD∴△ ABM ≌△ ADN ( AAS ),∴ AM=AN (设为λ);△ ABM 与△ ADN 的面积相等;∴四边形 ABCD的面积=正方形AMCN的面积;由勾股定理得:AC 2 =AM 2 +MC 2,而 AC=6 ;22∴ 2λ=36,λ =18,故答案为: 18 .【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11 小题,共 78 分)15 .( 5 分)计算:(﹣√2)×√6+| √3﹣ 2| ﹣(12)﹣1.【考点】二次根式的混合运算;负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣√12+2﹣√3﹣2=﹣ 2 √3﹣√3=﹣3√3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16 .( 5 分)解方程:x+3﹣2=1 .x-3x+3【考点】解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3 ),去括号得, x 2 +6x+9 ﹣ 2x+6=x 2﹣9 ,移项,系数化为1,得x= ﹣6 ,经检验,x= ﹣6 是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17 .( 5 分)如图,在钝角△ABC 中,过钝角顶点 B 作 BD⊥B C 交 AC 于点 D .请用尺规作图法在 BC 边上求作一点 P,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)第17页(共 38页)【考点】作图—基本作图.【分析】根据题意可知,作∠BDC 的平分线交BC 于点 P 即可.【解答】解:如图,点P 即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18 .( 5 分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成 A 、B 、 C 、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1 )补全频数分布直方图和扇形统计图;( 2 )所抽取的七年级学生早锻炼时间的中位数落在区间内;(3 )已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20 分钟.(早锻炼:指学生在早晨7 :00 ~ 7 : 40 之间的锻炼)【考点】频数(率)分布直方图;V5 :用样本估计总体;VB :扇形统计图;W4 :中位数.【分析】(1)先根据A 区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为 1 求得 C 区间人数及 D 区间百分比可得答案;(2 )根据中位数的定义求解可得;(3 )利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10 ÷5%=200,则 20 ~ 30 分钟的人数为200 × 65%=130(人),D 项目的百分比为1﹣( 5%+10%+65%)=20% ,补全图形如下:(2)由于共有 200 个数据,其中位数是第 100 、101 个数据的平均数,则其中位数位于 C 区间内,故答案为: C ;(3) 1200 ×( 65%+20% ) =1020 (人),答:估计这个年级学生中约有 1020 人一天早锻炼的时间不少于20 分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19 .(7 分)如图,在正方形ABCD 中,E 、F 分别为边AD 和 CD 上的点,且 AE=CF ,连接 AF 、CE 交于点 G.求证:AG=CG .【考点】正方形的性质;KD :全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90 °,AD=CD ,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD 是正方形,∴∠ ADF=CDE=90 °,AD=CD .∵AE=CF ,∴ DE=DF ,AD=CD在△ ADF 和△ CDE 中 {∠ ADF= ∠ CDE,DF= DE∴△ ADF ≌△ CDE ( SAS ),∴∠ DAF= ∠DCE ,∠ GAE= ∠ GCF在△ AGE 和△ CGF 中, {∠ AGE= ∠ CGF,AE=CF∴△ AGE ≌△ CGF ( AAS ),∴AG=CG .【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20 .(7 分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的 A 处,用侧倾器测得“乡思柳”顶端M 点的仰角为23 °,此时测得小军的眼睛距地面的高度AB为 1.7 米,然后,小军在 A 处蹲下,用侧倾器测得“乡思柳”顶端 M 点的仰角为 24 °,这时测得小军的眼睛距地面的高度 AC 为 1 米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离 AN 的长(结果精确到 1 米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈ 0.9135,tan24°≈0.4452 .)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点 D 、E,设 AN=x 米,则 BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作 BD ⊥MN ,CE ⊥MN ,垂足分别为点D、E,设 AN=x 米,则 BD=CE=x 米,在 Rt △ MBD 中, MD=x?tan23 °,在Rt △MCE 中,ME=x?tan24 °,∵ME ﹣ MD=DE=BC ,∴x?tan24 °﹣ x?tan23 ° =1.7 1﹣,∴ x=0.7,解得 x ≈ 34 (米).°-tan23tan24°答:“聚贤亭”与“乡思柳”之间的距离AN的长约为 34 米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21 .( 7 分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3 个温室大棚进行修整改造,然后, 1 个大棚种植香瓜,另外 2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包 5 个大棚,以后就用 8 个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤 / 每销售价(元/每成本(元/每项目棚)斤)棚)香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年 8 个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出 y 与 x 之间的函数关系式;(2)求出李师傅种植的 8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于 10 万元.【考点】一次函数的应用.【分析】( 1)利用总利润 =种植香瓜的利润 +种植甜瓜的利润即可得出结论;(2)利用( 1 )得出的结论大于等于 100000 建立不等式,即可确定出结论.【解答】解:( 1)由题意得,y= (2000 × 12 ﹣ 8000 ) x+ ( 4500 × 3 ﹣5000 )( 8 ﹣ x )=7500x+68000,( 2)由题意得, 7500x+6800≥ 100000,4,∴x ≥ 4 15∵x 为整数,∴李师傅种植的8 个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:( 1 )根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22 .( 7 分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为 A ),豆沙粽子(记为 B ),肉粽子(记为 C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1 )假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2 )若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】列表法与树状图法; X4 :概率公式.【分析】( 1 )根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:( 1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:2= 1,42即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是12;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、( A, C)、(A,A)、(A,B)、(A,C)、( A, C)、(B,A)、(B, B)、(B, C)、(B ,C)、(C,A)、(C, B)、(C, C)、(C ,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:163.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23 .( 8 分)如图,已知⊙ O 的半径为 5 ,PA 是⊙ O 的一条切线,切点为 A,连接 PO 并延长,交⊙ O 于点 B ,过点 A 作 AC⊥PB 交⊙ O 于点 C、交 PB 于点 D,连接 BC ,当∠P=30 °时,(1)求弦 AC 的长;(2)求证: BC ∥PA .【考点】切线的性质.【分析】(1)连接OA,由于PA是⊙ O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC ,由锐角三角函数即可求出AC 的长度.( 2 )由于∠AOP=60 °,所以∠BOA=120 °,从而由圆周角定理即可求出∠BCA=60 °,从而可证明BC ∥PA【解答】 解:( 1)连接 OA ,∵PA 是⊙ O 的切线,∴∠ PAO=90 °∵∠ P=30 °,∴∠ AOD=60°,∵AC ⊥PB ,PB 过圆心 O ,∴AD=DC在 Rt △ ODA 中, AD=OA?sin60 °=5√23∴AC=2AD=5 √3(2)∵AC ⊥PB ,∠P=30 °,∴∠ PAC=60 °,∵∠ AOP=60 °∴∠ BOA=120 °,∴∠ BCA=60 °,∴∠ PAC= ∠BCA∴BC ∥ PA【点评】 本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24 .( 10 分)在同一直角坐标系中,抛物线C1:y=ax 2﹣ 2x ﹣3 与抛物线 C 2:y=x 2 +mx+n关于y轴对称,C2与x轴交于 A 、B 两点,其中点 A 在点 B 的左侧.(1 )求抛物线 C 1, C 2的函数表达式;(2 )求 A、 B 两点的坐标;(3 )在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点 Q,使得以 AB 为边,且以 A 、B 、P、Q 四点为顶点的四边形是平行四边形?若存在,求出 P、Q 两点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1 )由对称可求得a、n 的值,则可求得两函数的对称轴,可求得 m 的值,则可求得两抛物线的函数表达式;( 2 )由 C 2的函数表达式可求得 A 、B 的坐标;( 3 )由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入 C2的函数表达式可求得P、Q 的坐标.【解答】解:(1 )∵C 1、 C 2关于 y 轴对称,∴C 1与 C 2的交点一定在y 轴上,且 C 1与 C2的形状、大小均相同,∴a=1 , n= ﹣ 3 ,∴C 1的对称轴为x=1 ,∴C 2的对称轴为x= ﹣ 1,∴m=2 ,∴C 1的函数表示式为 y=x 2﹣ 2x ﹣ 3 , C2的函数表达式为 y=x 2 +2x ﹣ 3 ;(2 )在 C 2的函数表达式为 y=x 2 +2x ﹣ 3 中,令 y=0 可得 x 2+2x ﹣ 3=0 ,解得 x= ﹣ 3 或 x=1 ,∴A(﹣ 3,0),B(1,0);(3 )存在.∵AB 的中点为(﹣ 1 ,0 ),且点 P 在抛物线 C 1上,点 Q 在抛物线 C2上,∴A B 只能为平行四边形的一边,∴P Q ∥ AB 且 PQ=AB ,由( 2 )可知 AB=1 ﹣(﹣ 3 ) =4 ,∴P Q=4 ,设 P( t , t 2﹣ 2t ﹣ 3 ),则 Q( t+4 ,t 2﹣2t ﹣ 3)或( t ﹣ 4 ,t 2﹣2t ﹣ 3 ),①当Q( t+4 ,t 2﹣2t ﹣ 3 )时,则t 2﹣2t ﹣3= (t+4 )2+2(t+4 )﹣ 3 ,解得 t= ﹣ 2 ,∴t2﹣ 2t ﹣ 3=4+4 ﹣ 3=5 ,∴P(﹣ 2,5 ),Q(2,5);②当 Q(t ﹣ 4 ,t 2﹣ 2t ﹣ 3)时,则 t 2﹣2t ﹣ 3= ( t ﹣ 4)2+2(t﹣4)﹣ 3 ,解得 t=2 ,∴t 2﹣ 2t ﹣ 3=4 ﹣ 4﹣ 3= ﹣3 ,∴P(﹣ 2,﹣ 3),Q(2,﹣ 3),综上可知存在满足条件的点P、 Q,其坐标为 P(﹣ 2 , 5 ),Q(2,5)或 P(﹣ 2,﹣ 3 ),Q(2,﹣ 3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在( 1 )中由对称性质求得 a、n 的值是解题的关键,在( 2 )中注意函数图象与坐标轴的交点的求法即可,在( 3 )中确定出 PQ 的长度,设 P点坐标表示出Q 点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25 .( 12 分)问题提出(1 )如图①,△ ABC是等边三角形,AB=12 ,若点O 是△ABC 的内心,则OA 的长为;问题探究(2)如图②,在矩形 ABCD 中, AB=12 , AD=18 ,如果点 P是 AD 边上一点,且 AP=3 ,那么 BC 边上是否存在一点 Q ,使得线段 PQ 将矩形 ABCD 的面积平分?若存在,求出 PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM 草地和弦 AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在 M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由 MA 转到 MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出 AB=24m ,MB=10m ,△ AMB 的面积为96m 2;过弦 AB 的中点 D 作 DE ⊥ AB 交 AB ?于点 E ,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到 0.01 米)【考点】圆的综合题.【分析】( 1 )构建 Rt △ AOD中,利用 cos ∠OAD=cos30 °=OA AD,可得 OA 的长;( 2 )经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3 )如图 3 ,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在 Rt △ AOD 中, r 2=12 2+( r ﹣8 )2,解得: r=13 根据三角形面积计算高 MN 的长,证明△ ADC ∽△ ANM ,列比例式求DC 的长,确定点 O 在△ AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.【解答】解:(1)如图 1,过 O 作 OD ⊥AC 于 D,则 AD=1AC= 1×12=6 ,22∵O 是内心,△ ABC 是等边三角形,∴∠OAD= 12∠ BAC= 12× 60 ° =30 °,在 Rt △ AOD 中, cos ∠ OAD=cos30 °=ADOA,∴OA=6 ÷√23=4 √3,故答案为: 4 √3;(2)存在,如图 2 ,连接 AC 、 BD 交于点 O,连接 PO 并延长交 BC 于 Q ,则线段 PQ 将矩形 ABCD 的面积平分,∵点 O 为矩形 ABCD 的对称中心,∴CQ=AP=3 ,过 P 作 PM ⊥ BC 于点,则 PM=AB=12 , MQ=18 ﹣ 3 ﹣3=12 ,由勾股定理得: 22=√12+ 12 2=12 √2 ;PQ= √ PM + MQ(3 )如图 3 ,作射线 ED 交 AM 于点 C∵ AD=DB , ED ⊥ AB , AB ?是劣弧, ∴ AB ?所在圆的圆心在射线 DC 上,假设圆心为 O ,半径为 r ,连接 OA ,则 OA=r ,OD=r ﹣ 8 ,1AD= 2AB=12 ,在 Rt △ AOD 中, r 2=12 2+( r ﹣ 8 )2,解得: r=13 ,∴ OD=5 ,过点 M 作 MN ⊥AB ,垂足为N ,∵ S △ABM =96 ,AB=24 ,∴ 12AB?MN=96,12×24 ×MN=96 ,∴ MN=8 ,NB=6 , AN=18 , ∵CD ∥MN ,∴△ ADC ∽△ ANM ,DC AD∴MN=AN,∴DC =12,818∴ DC= 163 ,∴ OD <CD ,∴点 O 在△ AMB 内部,∴连接 MO 并延长交 AB?于点 F ,则 MF 为草坪上的点到M点的最大距离,?F 的点G ,连接 GO ,GM , ∵在 AB 上任取一点异于点 ∴ MF=OM+OF=OM+OG>MG ,即 MF >MG ,过 O 作 OH ⊥ MN ,垂足为 H ,则 OH=DN=6 ,MH=3 ,22 22=3 √5,∴OM= √ MH + OH =√3+ 6∴ MF=OM+r=3 √5+13 ≈ 19.71 (米),答:喷灌龙头的射程至少为19.71 米.【点评】本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为 MF.。
2017年陕西省中考数学试卷(含答案解析版)(K12教育文档)
2017年陕西省中考数学试卷(含答案解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年陕西省中考数学试卷(含答案解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年陕西省中考数学试卷(含答案解析版)(word版可编辑修改)的全部内容。
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣B.﹣C.﹣D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C.D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为( )A.3B.6 C.3D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5D.5(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,10.若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13) C.(2,﹣8) D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:________姓名:________得分:________
机密★启用前试卷类型:A
2017年陕西省初中毕业学业考试
数学试卷
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页,全卷共120分。
考试时间为120分钟。
第Ⅰ卷(选择题共30分)
注意事项:
1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A或B)用2B铅笔和钢笔或中性笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚。
2.当你选出每小题的答案后,请用2B铅笔把答题卡上对应题号的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案标号。
把答案填在试题卷上是不能得分的。
3.考试结束,本卷和答题卡一并交给监考老师收回。
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)
1.计算:3-2=
A.-1
9 B.
1
9C.-6D.-
1
6
2.如图的几何体是由一平面将一圆柱体截去一部分后所得,则该几何体的俯视图是
3.若正比例函数y =kx (k ≠0)的图象经过点(2,1-k ),则k 的值为
A .1
B .-13
C .-1 D.13
4.如图,直线a ∥b ,点A 在直线b 上,∠BAC =108°,∠BAC 的两边与直线a 分别交于B 、C 两点.若∠1=42°,则∠2的大小为
A .30°
B .38°
C .52°
D .72°
5.化简:a +1-a 2
a +1
,结果正确的是 A .2a +1 B .1 C.1a +1 D.2a +1a +1 6.如图,在△ABC 中,∠A =60°,∠B =45°.若边AC 的垂直平分线DE 交边AB 于点D ,交边AC 于点E ,连接CD ,则∠DCB =
A .15°
B .20°
C .25°
D .30°
7.设一次函数y =kx +b (k ≠0)的图象经过点(1,-3),且y 的值随x 的值增大而增大,则该一次函数的图象一定不...
经过 A .第一象限 B .第二象限
C .第三象限
D .第四象限
8.如图,在正方形ABCD 中,AB =2.若以CD 边为底边向其形外作
等腰直角△DCE ,连接BE ,则BE 的长为 A. 5 B .2 2 C.10 D .23
9.如图,矩形ABCD 内接于⊙O ,点P 是AD ︵上一点,连接PB 、PC .
若AD =2AB ,则sin ∠BPC 的值为 A.55 B.255 C.32 D.3510
10.已知抛物线y =x 2+bx +c 的对称轴为x =1,且它与x 轴交于A 、B 两点.若AB 的长是6,则该抛物线的顶点坐标为
A .(1,9)
B .(1,8)
C .(1,-9)
D .(1,-8)
第Ⅱ卷(非选择题 共90分)
二、填空题(共4小题, 每小题3分, 计12分)
11.如图,数轴上的A 、B 两点所表示的数分别为a 、b ,则a +b 0(填“>”,“=”或“<”).
12.请从以下两个小题中任选一个....
作答,若多选,则按第一题计分. A .如图,网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平
移b 个单位得到的,则b a 的值为 .
B .用科学计算器计算:6tan16°15′≈ .(结果精确到0.01)
13.若正比例函数y =-12x 的图象与反比例函数y =2k -1x (k ≠12)的图
象有公共点....
,则k 的取值范围是 . 14.如图,在Rt △ABC 中,AC =3,∠ABC =90°,BD 是△ABC 的角平分线,过点D 作DE ⊥BD 交BC 边于点E .若AD =1,则图中阴影部分面积为 .
三、解答题(共11小题,计78分.解答应写出过程)
15.(本题满分5分)计算:18-(π-5)0+|22-3|.
16.(本题满分5分)解分式方程:2x -1x +2=2-3x -2
.
17.(本题满分5分)如图,在△ABC 中,AD 是BC 边上的高.请用尺规作图法在高AD 上求作一点P ,使得点P 到AB 的距离等于PD 的
长.(保留作图痕迹,不写作法)
18.(本题满分5分)“垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,将这一情况分为:A—从不随手丢垃圾;B—偶尔随手丢垃圾;C—经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下两幅不完整的统计图.
请你根据以上信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生“是否随手丢垃圾”情况的众数是________;
(3)若该校七年级共有1 500名学生,请你估计该年级学生中“经
常随手丢垃圾”的学生约有多少人?谈谈你的看法?
19.(本题满分7分)如图,在▱ABCD中,延长BA到点E,延长DC到点F,使AE=CF,连接EF交AD边于点G,交BC边于点H.
20.(本题满分7分)小军学校门前有座山,山顶上有一观景台,他很想知道这座山比他们学校的旗杆能高出多少米.于是,有一天,他和同学小亮带着测倾器和皮尺来到观景台进行测量.测量方案如下:如图,首先,小军站在观景台的C点处,测得旗杆顶端M点的俯角为35°,此时测得小军眼睛距C点的距离BC为1.8米;然后,小军在C点处蹲下,测得旗杆顶端M点的俯角为34.5°,此时测得小军的眼睛距C 点的距离AC为1米.请根据以上所测得的数据,计算山CD比旗杆MN高出多少米(结果精确到1米)?
(参考数据:sin35°≈0.5736,c os35°≈0.8192,t a n35°≈0.7002,sin34.5°≈0.5664,c os34.5°≈0.8241,t a n34.5°≈0.6873)
21.(本题满分7分)某樱桃种植户有20吨樱桃待售,现有两种销售方式:一是批发,二是零售.经过市场调查,这两种销售方式对这个种植户而言,每天的销量及每吨所获的利润如下表:
假设该种植户售完20吨樱桃,共批发了x吨,所获总利润为y 元.
(1)求出y与x之间的函数关系式;
(2)若受客观因素影响,这个种植户每天只能采用一种销售方式销售,且正好10天销售完所有樱桃,请计算该种植户所获总利润是多少元?
22.(本题满分7分)小明的爸爸买了一个密码旅行箱,密码由六位数字组成.现小明爸爸已将密码的前四位数字确定为小明的生日(1028),
后两位数字由小明自己确定.小明想把十位上的数字设置为奇数,个位上的数字设置为偶数,且两个数位上的数字之和为9.这两个数位上的数字他采用转转盘的方式来确定,于是,小明设计了如图所示的两个可以自由转动的转盘A和B(每个转盘被分成五个面积相等的扇形区域).使用的规则如下:
同时转动两个转盘,转盘均停止后,记下两个指针所指扇形区域上的数(如果指针指到分割线上,那么就取指针右边扇形区域上的数).若记下的两个数之和为9,则确定为密码中的数字;否则,按上述规则继续转动两个转盘,直到记下的两个数之和为9为止.请用列表法或画树状图的方法,求小明同时转动两个转盘一次,得到的两个数之和恰好为9的概率.
23.(本题满分8分)如图,△ABC为⊙O的内接三角形,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.
(1)求证:DE 为⊙O 的切线;
(2)若DE =12AC ,求∠ACB 的大小.
24.(本题满分10分)如图,已知抛物线L :y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0),OB =OC =3OA .
(1)求抛物线L 的函数表达式;
(2)在抛物线L 的对称轴上是否存在一点M ,使△ACM 周长最小?若存在,求出点M 的坐标;若不存在,请说明理由.
(3)连接AC 、BC ,在抛物线L 上是否存在一点N ,使S △ABC =2S △OCN ?若存在,求出点N 的坐标;若不存在,请说明理由.
25.(本题满分12分)(1)如图①,点A 是⊙O 外一点,点P 是⊙O 上一动点.若⊙O 的半径为3,OA =5,则点P 到点A 的最短距离为
________;
(2)如图②,已知正方形ABCD的边长为4,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离为________;
(3)如图③,在等边△ABC中,AB=6,点M、N分别从点B、C 同时出发,以相同的速度沿边BC、CA方向向终点C和A运动,连接AM和BN交于点P,求△APB面积的最大值,并说明理由.。