土石坝有限元分析(ANSYS)-渗流分析命令流
有限元法在土石坝渗流稳定分析中的运用
桂五水库大坝经数次加高培厚筑 分 析 。
E M中提取 的流 域河 网水 系 高精度 D E M前提下 , 数字地表水 系和排 坦的区域 ,如果数据精度无法提供真 使得从 D E M 自动 提取 出 实存在的细微高程差别 ,就无法生成 和实际情况有些差别 。本文所取的最 涝分 区可 以通过基 于 D 合理的数字河 网。 为此 , 选取较高精度 小水道长度 阀值略大于经验值 ,是由 来 ,但存在河道局部偏移及河 网失 真等 需要进行 局部修正 。在 D E M数 字 的 1: 5 0 0 0 D E M 作为数据 源 , 基本可 研究 区的特点所决定的 ,由于地势平 问题 ,
薮 科技推广与应用】 l
有限元法在土石= l [ 贝 滢流稳定分析巾响运用
王
引 言
鑫 赵 才全 梁
军
一
、
水库 大坝渗流稳定 进行 计算分析 , 为 成 , 因当时施工工艺条 件差 等原因 , 坝 身 和走 访有关人员 ,得知大坝渗流性态 现 状存 在以下 问题 : ( 1 ) 大坝坝 体 内埋 设 的测压 管 已堵
元法在土石坝渗流分析 中得到 了广泛 坝 干渠 输水 箱涵 ,断面 为 2 . 2 5 m× 可能性和产生渗流破坏 的可能 ,选择对
. 2 5 m( 长 ×宽 ) 。 应用 ,此种方法可以计算非稳定渗流 2 和较 复杂 的渗流问题。本文拟采用有 限元软 件 ( A u t o B A N K) 对淮 安市桂 五 三、 大坝渗流性态现状分析
一
四、 大坝渗流稳定计算
为了对桂 五水 库现状大坝渗流安全
2 . 5 ,戗台内有清水 进行评价 , 根据水位情况 , 考虑其遭遇 的 定设备 , 且费 时较长。近年来 , 有限 上下坡 比均为 1: 1 / 3 坝高水位 、 正常蓄水位 、 设计水 位 、 水 位降落期水位下的大坝渗流稳定性进 行
anays渗流
第2章水工流体力学问题的ANSYS模拟ANSYS软件具有专门针对流体的计算模块,可以模拟理想流体的流动、稳定和非稳定渗流。
本章主要介绍利用ANSYS进行简单的渗流分析和流体分析。
2.1 水工渗流场模拟需要指出的是,在ANSYS中并不存在专门的渗流分析模块,但由于渗流场与温度场的有限元计算公式相同,因此可以利用ANSYS中的热分析模块进行分析,只需相应参数对应采取即可。
鉴于问题的复杂性,这里仅用一个重力坝的例子进行分析。
2.1.1 数值模拟对象考虑混凝土大坝下水的渗流。
假定坝下土壤的渗流系数K约为每天15米,即K=15m/天,试确定该土壤的渗流速度分布。
本问题为一个稳态渗流问题,可以利用ANSYS的稳态热传导进行分析。
2.1.2 有限元模型本问题中,考虑混凝土坝体不透水,渗流主要发生在坝基部分,因此,模型仅涉及坝基,具体建模过程如下:1.模型的定义启动ANSYS,设置好文件夹及文件名;2.设置分析类型点击Preferences,在弹出的对话框中选择Thermal,选择热分析,点击OK;随后进入前处理模块:Main Menu>PreProcessor;3.设置单元类型对于二维渗流(热)分析,采用Plane55单元。
Element Type>Add/Edit/Delete…,弹出对话框:4.定义材料参数稳态渗流分析中,主要设置材料的渗透系数(本问题中,坝基材料的渗透系数为K =15m/天,其对应热分析中的热传导系数)。
设置方法如下:Material Props>Material Models …,弹出对话框中:5.建立数学模型本问题中,通过创建关键点,再由关键点直接生成二维(坝基)面。
●在命令行中,分别输入关键点命令,生成关键点:K,1,0,0;K,2,5,0;K,3,9,0;K,4,16,0;K,5,16,4;K,6,16,5;K,7,9,5;K,8,9,4;K,9,5,4;K,10,5,5;K,11,0,5;K,12,0,4●连接关键点生成面Modelling>Creat>Areas>Arbitary>Throuth KPs…,弹出点选择对话框:8,9)、(3,4,5,8)、(8,5,6,7)、(12、9,10,11),生成其它四个面。
有限元分析软件ANSYS命令流中文说明
有限元分析软件ANSYS命令流中文说明有限元分析软件ANSYS命令流中文说明(1)CommandVSBV, NV1, NV2, SEPO, KEEP1, KEEP2 —Subtracts volumes from volumes,用于2个solid相减操作,最终目的是要nv1-nv2=?通过后面的参数设置,可以得到很多种情况:sepo项是2个体的边界情况,当缺省的时候,是表示2个体相减后,其边界是公用的,当为sepo的时候,表示相减后,2个体有各自的独立边界。
keep1与keep2是询问相减后,保留哪个体?当第一个为keep时,保留nv1,都缺省的时候,操作结果最终只有一个体,比如:vsbv,1,2,sepo,,keep,表示执行1-2的操作,结果是保留体2,体1被删除,还有一个1-2的结果体,现在一共是2个体(即1-2与2),且都各自有自己的边界。
如vsbv,1,2,,ke ep,,则为1-2后,剩下体1和体1-2,且2个体在边界处公用。
同理,将v换成a及l是对面和线进行减操作!mp,lab, mat, co, c1,…….c4 定义材料号及特性lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)co: 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,degVSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPType,是选择的方式,有选择(s),补选(a),不选(u),全选(all)、反选(inv)等,其余方式不常用Item, Comp 是选取的原则以及下面的子项如volu 就是根据实体编号选择,loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标!其余还有材料类型、实常数等MIN, VMAX, VINC,这个就不必说了吧!,例:vsel,s,volu,,14vsel,a,volu,,17,23,2上面的命令选中了实体编号为14,17,19,21,23的五个实体VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体nv1:初始体号nv2:最终的体号ninc:体号之间的间隔kswp=0:只删除体kswp=1:删除体及组成关键点,线面如果nv1=all,则nv2,ninc不起作用其后面常常跟着一条显示命令VPLO,或aplo,nplo,这个湿没有参数的命令,输入后直接回车,就可以显示刚刚选择了的体、面或节点,很实用的哦!Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备Type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0” 使用正负号“1”仅用绝对值下面是单元生死第一个载荷步中命令输入示例:!第一个载荷步TIME,... !设定时间值(静力分析选项)NLGEOM,ON !打开大位移效果NROPT,FULL !设定牛顿-拉夫森选项ESTIF,... !设定非缺省缩减因子(可选)ESEL,... !选择在本载荷步中将不激活的单元EKILL,... !不激活选择的单元ESEL,S,LIVE !选择所有活动单元NSLE,S !选择所有活动结点NSEL,INVE !选择所有非活动结点(不与活动单元相连的结点)D,ALL,ALL,0 !约束所有不活动的结点自由度(可选)NSEL,ALL !选择所有结点ESEL,ALL !选择所有单元D,... !施加合适的约束F,... !施加合适的活动结点自由度载荷SF,... !施加合适的单元载荷BF,... !施加合适的体载荷SAVESOLVE请参阅TIME,NLGEOM,NROPT,ESTIF,ESEL,EKILL,NSLE,NSEL,D,F,SF和BF命令得到更详细的解释。
浅谈基于ANSYS的土石坝渗流场模拟
介 质 的分界线应 该与 非均质 岩层 的分界 线也 要保 持
一
情况 , 由于 A S S软件 没有 提供模 拟 图的给水 度 的 NY 功能 , 不能直接 分析 非 稳 定 渗 流 的情 况 和渗 流 问题
本身 的复杂性 , 采用 数值 模拟方 法 , 如何真 实准确 的 模 拟实 际渗流是 一个 需要 不断完 善 的过 程 。从 而研
参考文 献 :
[ ] 毛昶熙 . 流计算分析与控制 [ . 1 渗 M] 北京 : 中国水利水
电 出 版社ห้องสมุดไป่ตู้,o3 2o.
4 工 程 实例 分 析
本 文利用 西安市 金盆水 利枢 纽工 程为例 。该 工 程 为大 型二等工 程 , 于黏 土心墙 土石 坝 , 址位 于 属 坝
西安 市 的周至县境 内 , 周至 县城 约 1 k 距 3 m。该 枢纽
有重要 地位 。对 土石 坝 而 言 , 透水 流 除浸 湿 土 体 渗 降低其 强度指 标外 , 当渗 透 力大 到 一定 程 度 时将 导 致坝坡 滑动 、 防渗 体 被击 穿 、 坝基 管 涌 、 土 等重 大 流 渗流事 故 , 接 影 响大 坝 的运 行安 全 。对 于 混凝 土 直
受力安 全 ; 岸坝 肩渗透 压力 ( 下水 位 ) 两 地 的高 地关 系到坝 肩岸坡 岩体 的抗 滑稳定安 全 。带 有浸蚀 性 的
渗流对 建筑 物和 坝基 的可溶 性 物质 造 成 浸蚀 , 响 影
结构安 全 问题 。此 外 , 大 的渗 透 损 失也 将 减少 工 过
程效益 。
( ) 散化 : 求 解 域 划 分 为具 有 一 定 几 何形 2离 将 状 的单元 进行单 元 编号 并 确定 插 值 函数 , 对结 点 进 行 总体 编号和单元 上 的局部 编号并 给 出结 点局部 标
有限元分析软件ANSYS命令流中文说明4 4
有限元分析软件ANSYS命令流中文说明4 4有限元分析软件ANSYS命令流中文说明4/42010-05-23 21:151设置分析类型ANTYPE,Antype,status,ldstep,action其中antype表示分析类型STATIC:静态分析MODAL:模态分析TRANS:瞬态分析SPECTR:谱分析2 KBC,KEY制定载荷为阶跃载荷还是递增载荷EKY=0递增方式KEY=1阶跃方式3 SOLVE开始一个求解运算4 LSSOLVE读入并求解多个载荷步5 TIME,time设置求解时间有时在分析中需要进入后处理,然后在保持进入后处理之前的状态的情况下接着算下去,可以使用以下的方法:PARSAV,ALL,PAR,TXT!PARSAV命令是储存ANSYS的参数,ALL代表所有参数,PAR是文件名,TXT是扩展名/SOLU ANTYPE,REST,CruStep-1,,CONTINUE!ANTYPE是定义分析类型的命令,REST代表重启动,CruStep代表本载荷步的编号PARRES,NEW,PAR,TXT!PARRES是恢复参数的命令,NEW表示参数是以刷新状态恢复,PAR和TXT 代表了储存了参数的文件名和扩展名如果有单元生死的问题,可以这样处理:ALLSEL,ALL*GET,E_SUM_MAX,ELEM,NUM,MAX!得到单元的最大编号,即单元的总数ESEL,S,LIVE!选中"生"的单元*GET,E_SUM_AL,ELEM,COUNT*DIM,E_POT_AL,E_SUM_MAX!单元选择的指示*DIM,E_NUM_AL,E_SUM_AL!单元编号的数组J=0!读出所选单元号*DO,I,1,E_SUM_MAX*VGET,E_POT_AL(I),ELEM,I,ESEL!对所有单元做循环,被选中的单元标志为"1"*IF,E_POT_AL(I),EQ,1,THEN J=J+1 E_NUM_AL(J)=I*ENDIF*ENDDO ALLSEL,ALL在重启动之后恢复单元生死状态*if,E_SUM_AL,ne,0,then*do,i,1,Num_Alive esel,a,E_NUM_AL(i)*enddo ealive,all allsel*endif/WINDOW,WN,XMIN,XMAX,YMIN,YMAX,NCOPY注意x的坐标是-1到1.67,y坐标是-1到1 Xmin=off on,FULL,LEFT,RIGH,TOP,BOT,LTOP,LBOT,RTOP,RBOT注意一个问题,除了1号窗口外,其他的不能用鼠标操作,只用先发/view 和/dist,然后用/replot。
土石坝有限元分析(ANSYS)-渗流分析命令流
土石坝有限元分析(ANSYS)-渗流分析命令流土石坝渗流分析,采用非饱和土渗流参数,迭代计算浸润线,根据前次计算结果,不断修改单元的渗透系数和浸润逸出点位置,直到满足精度要求。
本算例的土石坝体型比较简单.采用非饱和渗流计算.即渗透系数为空隙压力的函数.首先建立一个数据文件PPPP.TXT,存储渗透系数函数关系,如下。
第一列为空隙压力值(水头M),第二列为渗透系数指数,渗透系数等于10^A(M/D)。
! -10.00 -4.0E+00! -9.00 -3.6E+00! -8.00 -3.2E+00! -7.00 -2.8E+00! -6.00 -2.4E+00! -5.00 -2.0E+00! -4.00 -1.6E+00! -3.00 -1.2E+00! -2.00 -8.0E-01! -1.00 -4.0E-01! 0.00 0.0E+00!土坝顶宽4M,上下游坡比均为1:2,总高12M,底宽52M。
上游水深8M,下游无水。
FINISH/CLEAR/TITLE, EARTHDAM SEEPAGE/FILNAME,SEEPAGE5/PLOPTS,DATE,0*DIM,TPRE,TABLE,11,1,1,PRESS,KKPE ! 定义水压与渗透系数的关系数组*TREAD,TPRE,PPPP,TXT ! 读入数组*DIM,NCON,ARRAY,4 ! 定义数组,用于存贮单元四个节点号/PREP7SMRT,OFFANTYPE,STATIC ! THERMAL ANALYSISET,1,PLANE55MP,KXX,1,1 ! 饱和状态下的渗透系数MP,KXX,2,1E-4 ! 完全干燥下的渗透系数,假设空隙水压力小于-10M时K,1,24,12K,2,24,0K,3,0,0K,4,28,12K,5,28,0K,6,52,0L,1,3L,1,2L,4,5L,5,6L,4,6LESIZE,ALL,,,24A,1,3,2A,1,2,5,4A,4,5,6MSHK,2 ! MAPPED AREA MESH IF POSSIBLEMSHA,0,2D ! USING QUADSAMESH,ALL ! MESH AREASNUMMRG,NODE ! MERGE NODES AT BOTTOM OF CAISSON*GET,N_MAX,NODE,,NUM,MAX ! 获得最大节点号*GET,E_MAX,ELEM,,NUM,MAX ! 获得最大单元号*DIM,N_TEMP,ARRAY,N_MAX ! 定义节点温度变量-总水头*DIM,N_PRE,ARRAY,N_MAX ! 定义节点压力水头变量!定义上游面总水头值LSEL,S,LINE,,1NSLL,S,1NSEL,R,LOC,Y,0,8D,ALL,TEMP,8 !定义上游面总水头值!定义下游面总水头值LSEL,S,LINE,,6NSLL,S,1*GET,N_NUM2,NODE,,COUNT*DIM,N_NO2,ARRAY,N_NUM2II=0*DO,I,1,N_MAX*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中II=II+1N_NO2(II)=I ! 存储渗流可能逸出点节点编号*ENDIF*ENDDONSEL,R,LOC,Y,0,8 ! 第一次计算,假设浸润线逸出点在8M高位置,与上游同高*GET,N_NUM,NODE,,COUNT ! 获得渗流出口节点总数*DIM,N_NO,ARRAY,N_NUM ! 定义变量,存储渗流出口节点编号II=0*DO,I,1,N_MAX*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中N_NO(II)=I ! 存储渗流出口节点编号*ENDIF*ENDDO*DO,I,1,N_NUMD,N_NO(I),TEMP,NY(N_NO(I)) ! 定义下游面总水头值*ENDDOALLSEL,ALLFINISH/SOLUSOLVEFINISH!第一次计算完毕!------------------------------------------------------------------------- !迭代计算CONUTT=20 ! 最大循环次数DD_HEAT=0.001 ! 前后两次计算,总水头最大允许计算差CHUK_ST=3 ! 出口边界条件重新设定的起始点CHUK_MAXY2=10E5 ! 临时变量,用于存储浸润线出口坐标*DO,COM_NUM,1,CONUTTDD_H=0/POST1SET,1*DO,I,1,N_MAX*IF,COM_NUM,GT,CHUK_ST+1,THENDD1=N_TEMP(I)*IF,ABS(DD1-TEMP(I)),GT,DD_H,THENDD_H=ABS(DD1-TEMP(I))*ENDIF*ENDIFN_TEMP(I)=TEMP(I) ! 计算节点温度(总水头)N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标*ENDDO*IF,COM_NUM,GT,CHUK_ST+1,THEN*IF,DD_H,LE,DD_HEAT,THEN*EXIT*ENDIF*ENDIF/PREP7! 重新给每个单元设定材料MATNUM=2*DO,I,1,E_MAX*DO,KK,1,4*GET,NCON(KK),ELEM,I,NODE,KK ! 获取单元四个节点编号*ENDDOTEMP_Y=(N_TEMP(NCON(1))+N_TEMP(NCON(2))+N_TEMP(NCON(3))+N_TEMP(NCON (4)))/4 !计算单元中心点平均温度RESS_T=TEMP_Y-CENTRY(I)*IF,PRESS_T,GT,0,THENRESS_T=0MPCHG,1,I*ELSEIF,PRESS_T,LT,-10,THENRESS_T=-10MPCHG,2,I*ELSEMP,KXX,MATNUM+1,10**TPRE(PRESS_T)MPCHG,MATNUM+1,IMATNUM=MATNUM+1*ENDIF*ENDDO! 重新设定出口边界条件*IF,CONUTT,GT,CHUK_ST,THEN !前CHUK_ST次采用原边界条件LSEL,S,LINE,,6NSLL,S,1DDELE,ALL,TEMP ! 删除原边界条件II=0CHUK_MAXY=0*DO,JJ,1,N_NUM2*IF,N_TEMP(N_NO2(JJ)),GE,NY(N_NO2(JJ)),THEND,N_NO2(JJ),TEMP,NY(N_NO2(JJ)) ! 总水头=Y坐标*IF,NY(N_NO2(JJ)),GT,CHUK_MAXY,THENCHUK_MAXY=NY(N_NO2(JJ))*ENDIF*ENDIF*ENDDO*IF,CHUK_MAXY2,NE,CHUK_MAXY,THEN ! 判断前后两次计算的浸润线出口位置是否相同NSEL,R,LOC,Y,CHUK_MAXY ! 选择最高节点*IF,CHUK_MAXY,GT,0,THENDDELE,ALL,TEMP ! 删除出口最高节点边界条件*ENDIFCHUK_MAXY2=CHUK_MAXY*ENDIF*ENDIFALLSEL,ALLFINI/SOLUSOLVEFINISH*ENDDOSAVE!迭代计算完毕,进入后处理FINISH/POST1/CLABEL,,1/EDGE,,0/CONTOUR,,8,0,1,8PLNSOL,TEMP ! 显示总水头云图PLVECT,TF, , , ,VECT,ELEM,ON,0PLVECT,TF, , , ,VECT,NODE,ON,0LSEL,S,LINE,,6NSLL,S,1PRRSOL,HEAT ! PRINT FLOWRATE THROUGH SOIL FSUM,HEAT ! 计算渗流量*GET,Q_DAY,FSUM,0,ITEM,HEATALLSEL,ALLSAVE*DO,I,1,N_MAXN_TEMP(I)=TEMP(I) ! 计算节点总水头(温度)N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标DNSOL,I,TEMP,,N_PRE(I) ! 将压力水头值复制到节点*ENDDOPLNSOL,TEMP ! 显示压力水头云图FINI。
基于ANSYS的大坝渗流分析研究
总体而言,ANSYS在大坝渗流分析中具有重要的应用价值和潜力。未来可以 进一步探索ANSYS在解决实际工程问题中的其他应用,为水利工程领域的科学研 究和技术发展提供更全面的支持。
谢谢观看
然而,ANSYS在应用于大坝渗流分析时也存在一定的局限性。例如,对于复 杂的三维模型,网格划分和计算量可能会变得非常大,需要较高的计算资源和时 间成本。此外,ANSYS的数值计算结果也会受到许多因素的影响,如模型的简化 程度、参数设置是否合理等。因此,在使用ANSYS进行大坝渗流分析时,需要充 分考虑这些因素,并进行必要的实验验证和对比分析,以确保分析结果的准确性 和可靠性。
结论
本次演示介绍了基于ANSYS的大坝渗流分析方法及其应用。通过文献综述, 总结了ANSYS在水利工程领域的应用及研究现状,指出了现有研究的不足之处。 在此基础上,阐述了ANSYS进行大坝渗流分析的基本原理、方法和流程,并通过 实例分析展示了ANSYS在解决实际工程问题中的应用。最后,对实例分析的结果 进行了讨论和评价,总结了ANSYS在大坝渗流分析中的优势和适用性,并指出了 其局限性。
结果表明,ANSYS作为一种强大的数值计算和可视化工具,在应用于大坝渗 流分析时能够有效地模拟渗流场的分布情况和影响因素。同时,ANSYS还具有广 泛的适用性和灵活性,可以针对不同的工程实际问题进行模型的灵活调整和优化 计算。然而,对于复杂的三维模型和特定的工程问题,仍需充分考虑ANSYS的局 限性,并进行必要的实验验证和对比分析。
实例分析
以某实际大坝渗流问题为例,运用ANSYS进行渗流分析。首先,根据大坝的 结构特征和实际运行环境,建立大坝及周围区域的几何模型;然后,根据工程实 际情况,将模型划分为适当的计算网格;接着,设定合理的边界条件和材料属性, 进行数值计算;最后,根据计算结果进行后处理,得到渗流场的分布情况。
ANSYS有限元生死单元技术在砼面板堆石坝渗流计算中的研究与应用
甘 肃 农 业 大 学 学 报 J OU RNAL O F GANSU A GRICUL TU RAL UN 单元技术在砼面板堆石坝 渗流计算中的研究与应用
吴建东 ,许健
(甘肃农业大学工学院 ,甘肃 兰州 730070)
WU J ian2do ng , XU J ian
(College of Engineering , Gansu Agricult ural U niversity , Lanzho u 730070 , China)
Abstract :Based o n t he basic t heory of seepage and co nt rol equatio ns , a new finite2element seepage cal2 culatio n mat hematical model of co ncrete face rockfill dam was p ropo sed. By utilizing t he similarit y of tem2 perat ure and seepage field and large2scale finite2element co mp utatio n soft ware AN S YS , ekill and ealive technology co uld be used to kill t he unit above t he infilt ratio n line and activate t he unit below t he infilt ra2 tio n line while impo sing correspo nding bo rder co nditio n , and finally o btained t he infilt ratio n line and t he seepage speed of t he dam t hro ugh simulatio n. The result s suggested t hat t he model accuracy meet t he p ro2 ject requirement s , at t he same time t he model was simple and t he result s were int uitive.
基于ANSYS的土石坝稳定渗流场的数值模拟
基于ANSYS的土石坝稳定渗流场的数值模拟一、本文概述随着水利工程的日益发展,土石坝作为一种重要的水利结构,其稳定性与安全性受到了广泛关注。
渗流是土石坝中普遍存在的物理现象,对坝体的稳定性产生深远影响。
因此,对土石坝稳定渗流场的深入研究和分析具有重要的工程实践意义。
本文旨在利用ANSYS这一强大的工程模拟软件,对土石坝的稳定渗流场进行数值模拟,以期更准确地理解渗流对土石坝稳定性的影响,并为土石坝的设计、施工和维护提供理论支持和实践指导。
本文将简要介绍土石坝及其渗流现象的基本概念,阐述稳定渗流场研究的重要性和必要性。
然后,详细介绍ANSYS软件在水利工程中的应用,以及其在土石坝稳定渗流场数值模拟中的优势。
接下来,本文将详细描述数值模拟的过程,包括模型的建立、边界条件的设定、计算参数的选择等。
通过对模拟结果的分析和讨论,揭示土石坝稳定渗流场的特征和规律,为土石坝的安全稳定运行提供理论支撑。
本文的研究不仅有助于深化对土石坝渗流规律的理解,也有助于提升水利工程的设计水平和施工质量,为保障水利工程的安全运行提供有力支持。
二、土石坝渗流基本理论土石坝是一种利用当地石料、土料或混合料,经过抛填、碾压等方法堆筑成的挡水建筑物。
在土石坝的运行过程中,渗流是一个不可忽视的物理过程,它关系到坝体的稳定性和安全性。
因此,对土石坝渗流的基本理论进行深入研究,对于保障坝体安全、优化坝体设计具有重要意义。
渗流是指液体在固体骨架中通过孔隙或裂隙流动的现象。
在土石坝中,渗流主要受到重力、孔隙水压力、坝体材料性质以及边界条件等因素的影响。
当库水通过坝体向下游渗流时,会形成一定的渗流场。
这个渗流场是一个三维的空间分布,其中包含了渗流速度、渗流压力、渗流量等多个物理量。
土石坝的渗流场分析通常采用达西定律来描述渗流速度与渗流压力梯度之间的关系。
达西定律表达式为:v = -k * (dP/dx),其中v为渗流速度,k为渗透系数,dP/dx为渗流压力梯度。
基于ANSYS的土坝渗流分析及其应用
47 6
基 于 A S S的土 坝 渗 流 分 析及 其 应 用 NY
许 尚杰 ,党发 宁 ,田威
(. 1 西安理工 大学 岩 土工程研究所 , 陕西 西安 7 0 4 ; . 10 8 2 山东省水利科学研究 院, 山东 济南 2 0 1 ) 5 0 3
摘要 : 利用热传导和水渗流原理的相似性 , 采用 A S S软件提供 的热分析模块, NY 开发编制 了以总 水 头为 因变量 的 多孔 隙介 质 的饱 和. 非饱 和渗 流程 序 。该程序 可用来模 拟复 杂 渗流 场 , 而且 能够检
西安理工 大学 学报 Ju a o ia nvr t o eh o g (0 8 o.4N . or l f ’nU i s y f c nl y 20 )V 1 o4 n X e i T o 2
文章编 号:10 -7 0 2 0 40 6 -5 0 64 1 (0 8 0 -4 70
po e s r c s .Alo h ss f r a e u e o e t b i h d lo l y s p - l d m fL o h n R s t s ,t i ot e c n b s d t sa l h t e mo e fca l e wal a o a s a e e — wa s o
中图分 类号 : U 3 T 4 文献标 识码 : A
An l s n p iai n o m e p g s d o ay i a d Ap l t fDa S e a eBa e n ANS s c o YS
X h n -e , A G F —ig , I N We USag i j D N ann TA i
查每 一迭代 过程 的计 算结 果并 查看 收敛过 程 。应 用该软件 建 立 了崂 山水 库粘 土斜墙 坝模 型并进行
基于ANSYS的土坝三维渗流场模拟
h z
)=0
h│t=t0=h(x,y,z)
温度场
温度 T
热流量 Qr 热传导系数 kr 热传导速度 qr
温度梯度 E
热传导定律:Qr=AKr
dT dn
x(krx
T )+ x
y(kry
T )+ y
z(krz
T )=0 z
T│t=t0=T(x,y,z)
h(M,t)│Γ=φ(s M,t)
T(M,t)│Γ=φ(s M,t)
2 渗流场计算理论及方法
由于渗流场与温度场有极大的相似性,基于此可利用
ANSYS 热分析模块来分析渗流问题。
用有限元方法求解渗流场时最核心、最复杂的问题便是
渗流自由面的确定。目前常用的方法有固定网格法和变动网
格法,这两种方法均可以用 ANSYS 的 APDL 参数化编程语言
来实现,变动网格法需要借助 ANSYS 的生死单元功能来实
现,而固定网格法计算相对简单实用,本文采用 Bathe(1979)年
提出的单元传导矩阵调整法来进行计算,将整个渗流域 R 划
分为两个子域 R1 和 R2。在自由面以上的子域 R1 中节点流速 为 0,令其渗透系数 k 降低至很小的值;在自由面以下子域 R2 中,流速大于 0,其渗透系数 k 仍保持不变,即:
1 引言
在水库除险加固工程中,渗流问题一直是关系到土石坝 安全的关键。目前渗流分析计算领域中应用比较广泛的有数 学解析法、电模拟法和数值分析法。数值分析方法主要有:有 限差分法、有限单元发和边界元法。其中,有限元法随着各种 大型有限元软件快速发展而得到了广泛的应用,常用的大型 通用有限元分析软件有 ANSYS、ADINA、ABAQUS 等,也有一 些专门针对渗流场的计算软件,如 Seep3D、Autobank、STSE、 Modflow 等。各种计算方法和软件各有优缺点,对于复杂边界 条件和复杂渗流介质的空间渗流问题很多平面渗流计算软件 都无法准确计算,本文提出利用 ANSYS 的热分析模块来分析 土石坝的三维渗流问题,并将 ANSYS 三维分析成果中的典型 断面和 Autobank 计算结果进行对比,检验计算结果的准确 性。本文的方法为解决复杂边界、多种介质、多物理场耦合的 三维渗流问题提供有效的方法。
基于ANSYS的土石坝渗流与稳定分析研究的开题报告
基于ANSYS的土石坝渗流与稳定分析研究的开题报告一、研究背景和意义土石坝是一种重要的水利工程结构,其安全稳定性直接关系到人们的生命财产安全和社会经济发展。
而渗流问题是土石坝安全稳定性研究的重要内容之一。
在土石坝工程设计、施工和运行过程中,渗流问题一直是困扰工程师的难题,如何在渗流对土石坝安全稳定性产生影响的情况下,保证土石坝的安全运行是当前亟需解决的问题。
本研究利用ANSYS软件,通过有限元数值模拟方法,研究土石坝内部的渗流分析及土石坝的稳定性分析,旨在探讨土石坝渗流及其对稳定性的影响规律,为土石坝设计、施工和运行提供技术支撑和依据。
二、研究内容和方法本研究的主要内容有两个方面:一是土石坝内部渗流模拟及分析;二是土石坝稳定性分析。
具体通过以下步骤实现:1. 确定研究对象:本研究以某一具体土石坝为研究对象,对其渗流分析及稳定性进行模拟和分析。
2. 建立土石坝模型:根据实际情况建立土石坝三维有限元模型,包括坝体、坝基、边坡等,考虑土、石材料的物理力学特性。
3. 渗流模拟:对建立的土石坝模型进行渗流模拟,通过ANSYS中的多孔介质渗流模型,对土石坝内部流场进行数值计算和分析。
4. 渗流分析:根据渗流模拟结果,分析产生渗流的原因,判断坝体、坝基是否产生渗漏现象,并分析渗漏现象的破坏机理。
5. 稳定性分析:根据建立的土石坝模型,通过ANSYS有限元分析软件对土石坝的稳定性进行数值计算,分析坝体的变形、破坏状况,确定安全系数,预测土石坝的破坏条件。
三、预期成果和意义本研究通过ANSYS软件,对土石坝内部的渗流分析及稳定性分析进行研究,预期取得以下成果:1. 对土石坝内部渗流模拟及分析技术的研究与应用,提高土石坝设计、施工和运行的水平,为工程师在实际工程中提供技术支撑和依据;2. 对土石坝安全稳定性分析方法的探究和应用,为土石坝的安全设计和管理提供科学依据,提高工程的安全性和经济效益;3. 深入了解土石坝渗流及其对稳定性的影响规律,为水工、环境等领域的科研人员提供参考,促进相关学科的发展。
尾矿坝渗流场的ANSYS有限元分析
尾矿坝渗流场的ANSYS有限元分析
王强;鲁炳强;王水平;周文厚;肖金生
【期刊名称】《现代矿业》
【年(卷),期】2009(000)012
【摘要】尾矿坝的渗流稳定对结构稳定有重要影响,渗流场分析是尾矿坝工程研究的重要内容.以ANSYS软件热模块为平台,通过渗流-热理论比拟分析,利用APDL
语言编制渗流计算命令流程序,并应用于金山店锡冶山尾矿坝的渗流场进行了模拟分析,可看出该坝浸润线埋深较高,对坝体的稳定性产生不利影响;初期坝的渗透系数对浸润线具有显著的影响.
【总页数】4页(P27-30)
【作者】王强;鲁炳强;王水平;周文厚;肖金生
【作者单位】武汉理工大学;武钢公司金山店铁矿;武钢公司金山店铁矿;武钢公司金山店铁矿;武汉理工大学
【正文语种】中文
【中图分类】TD854.7
【相关文献】
1.白岩尾矿坝土工席垫排渗措施模拟及渗控效果分析 [J], 陶东良;梅聪;陆誉婷
2.垂直—水平联合排渗系统对某尾矿坝排渗效果的影响研究 [J], 程良;李宏儒;马辽;王神尼;张盼
3.温庄尾矿库尾矿坝渗流场的数值模拟 [J], 张平;王欢
4.尾矿库堆积坝排渗设施在某尾矿库的应用 [J], 谭杰骥
5.水平排渗管对尾矿堆积坝渗流场影响三维分析 [J], 陈嘉帅;刘小文
因版权原因,仅展示原文概要,查看原文内容请购买。
ANSYS在土石坝防渗加固分析中的应用
ANSYS 在土石坝防渗加固分析中的应用摘要:为了评价多头小直径深搅桩防渗墙的防渗效果,通过有限元软件 ANSYS 热分析模块 APDL 参数化语言结合反演分析理论,分析了大坝加固前后的渗流特性,对比其浸润面、逸出点、渗流流量的变化。
计算结果表明 ANSYS 热分析能准确得模拟大坝渗流状态,多头小直径深搅防渗墙能有效降低大坝渗流量,加强坝体稳定性,该防渗加固方法可广泛推广应用。
关键词:多头小直径;深搅桩防渗墙;防渗加固;APDL ;反演分析1引言多头小直径深搅桩防渗墙技术在近几年得到了较大范围的应用,但对其防渗效果工程界还无准确的定论。
本文运用 ANSYS 热分析模块,分析某土石坝防渗前后渗流量的变化,为多头小直径深搅桩防渗墙技术的推广提供一定的理论依据。
2 ANSYS 分析渗流原理渗流本是复杂的三维应力场问题,但考虑到坝身长度远大于坝宽,可将其简化为二维问题加以研究。
假设坝体每层土体为各向同性并不可压缩,在稳定流作用下,渗流控制方程为:式中:、分别为、方向的渗流系数;为水头。
而热力学二维微分控制方程为:式中:、分别为、方向的热传导系数;T 为温度。
由( 1)式和( 2)式可以看出,渗流场和热力场的控制方程相同。
同样,在边界条件、坡降、流量计算等方面两者也具有高度的一致性。
由此,不难看出渗流场其实是热力场的一种特殊情况,通过ANSYS 热力学模块仿真模拟大坝渗流是合理的。
3有限元模型建立及渗流系数反演3.1 有限元模型建立为了分析多头小直径深搅桩防渗墙技术防渗效果,选取某水库经多头小直径深搅桩防渗墙技术防渗后的典型断面CS01 进行分析。
坝基土层分布如下:①层为粉质黏土,主要是人工填筑而成。
由于多次加高,碾压不实渗透严重;②层为粉质黏土,塑性较好,层内发现多处小孔,粉性局部略大。
上述两层为渗流发生主要区域;③层为粉质黏土夹粉土;④层为粉质黏土,其下部为完整基岩,可视作不透水层。
通过 ANSYS的APDL命令输入各关键点坐标,然后分别创建线和面建立大坝平面模型。
基于ANSYS的土石坝渗流数值模拟研究
防 渗方 案 的科学性 与 合理性 , 从 而 为土石 坝 工程 设计
0 引言
十 石坝 是一种 常 见 的水 工建 筑物 , _ 它 对地质 要 求
和 建设提 供 了一 定 的参考和 借 鉴 。
1 基于 A NS YS的渗流计算的基本原理
相 对较 低 、施 工简单 ,能就地 取材 ,造 价 相对 经济 ,
( 1 .湖南省 水运 建设投 资集团有 限公 司,湖 南 长沙 4 1 0 0 0 0 ;2 .大连 海洋大学,辽 宁 大连 1 1 6 0 2 3)
摘 要 :基 于有限元原理 ,采用 A NS YS软件 中的热处理模 块 ,建立 了坝体数值 分析模 型,针 对湖南省 长沙县五 龙 山 土石坝的渗流过程进行 了数值模拟 ,得到 了在三种 工况下坝体加 固前后 的渗 流速度 、渗流量 、渗透坡 降、选 出点 高 程 、渗透比降等特征值 ,通过比较 可知 :在 正常蓄水位 、设计 水位及校核 洪水位条件 下,采用 粘土防渗墙进行坝体 的加 固,其渗流速度 、单宽渗 流量、逸出点 高程 以及 逸出点渗透 比降均 小于坝体加 固前计算相应值 ,平 均渗透坡 降 高于加 固前计算相应值 。计算结果表 明采用 粘土防渗处理 方法进行坝体加 固,对保证 土石坝 的渗流稳定和坝体安全
土石 坝加 固前 后渗 流 的数值模 拟 结果 比较 , 肯定 了该
土石坝有限元分析
土石坝有限元分析1.问题描述采用邓肯-张模型对土石坝施工过程和蓄水状态受力情况进行分析,选择通用有限元分析软件ANSYS 作为研究平台,计算土石坝竣工期竖向方向沉降、水平方向沉降、最大主应力和最小主应力情况。
坝体结构示意图如图1所示。
本文主要完成以下工作:采用ANSYS 内部参数化设计语言APDL 编写邓肯-张模型计算材料弹性参数;使用中点增量法计算每步施工单元材料弹性参数;根据位移修正算法,编写专用程序对计算结果进行处理,获得坝体沉降云图。
(本文针对每个步骤提供相应的APDL 程序,方便后续研究人员进一步研究,也希望阅读本文的读者能够将自己的研究成果与大家分享。
相关程序可能存在错误,笔者也未能完全认识到,仅做参考)图1 坝体结构示意图计算所采用参数详见表1所示。
仿真分析结果如下图。
坝身填土排水棱体淤泥质粘土全风化花岗岩图2竖向沉降位移云图图3水平方向位移云图图4最大主应力云图图5最小主应力云图仿真分析流程图如下图。
图6仿真分析流程图2.关键仿真分析过程2.1 网格划分与单元组件创建当几何模型比较规则时,尽可能采用映射方式划分网格,网格分布规则,位移结果过渡光滑一些。
一般情况下几何模型比较复杂,此时建议将截面网格尺寸设置小一些,可以设置为每次浇筑层厚度的四分之一。
采用扫略的方式划分网格,扫略方向可以设置少一些网格,控制整体网格数量。
有限元网格模型如下图。
图7有限元网格模型坝体浇筑分为13步完成,每次浇筑层厚度为1m,根据竖向坐标选取浇筑层单元,创建单元组件,如图8和图9所示。
图8创建单元组件图9单元示意图相关命令流程序如下:!单元分组!==================================================vsel,s,loc,y,0,13.2! 选择坝体几何体alls,below,volu! 选择坝体单元和节点cm,ebar,elem! 创建单元组件ebarcm,nbar,node! 创建节点组件nbarystep=13.2/13! 浇筑层厚度ytorl=0.2! 选择重叠区域范围*do,i,1,13! 循环建立每步浇筑层组件cmsel,s,nbarcmsel,s,ebarnsel,r,loc,y,ystep*(i-1)-ytorl,ystep*i+ytorlesln,r,1cm,e%i%,elem! 组件名格式为exx*enddo2.2 初始应力场计算初始应力场计算时,采用生死单元法抑制所有填筑层土体,仅保留地基土体处于激活状态。
有限元法在土石坝渗流稳定及抗滑稳定分析中的应用
4l1 .
[ ] 张献 才 , 建 伟 . 土 石 坝 渗 流 稳 定 分 析 及 安 全 评 价 3 张 某
由表 4可 知 , 各 种 计算 工 况 下 , 、 游 坝坡 在 上 下
[ ] 山西 建 筑 ,0 0 3 ( 1 :6 —32 J. 2 1 ,6 1 ) 3 1 6 .
各项 安全 系数 均满 足文 献 [ ] 5 规定 的 允许值 .
水 电 出版 社 ,9 7 19 .
渗流 与稳 定分 析在 土石 坝安 全 评价 中具 有重要
A pp iato ft n t e e eho t he Pe c ato a l y lc i n o he Fi ie Elm ntM t d o t r ol i n St bii t a i i t b lt n l ss o r h D a s nd Sld ng S a iiy A a y i fEa t m
表 4 坝 坡 稳 定 计 算 成 果
在允 许渗透 坡 降范 围 之 内 , 坝不 存 在 渗 透变 形 破 大
坏 . 用有 限元法 分析 坝坡 抗滑 稳定 , 以提供土 坡 应 可
失 稳破 坏发 展过 程 的全 部 应 力 和 变形 信 息 , 且 可 并 以判断 出失稳 破 坏 区域 以及 浸 润 线 的位 置 和形 状 , 为 土石 坝 的安 全评 价提 供依 据 .
文 章 编 号 :0 2—5 3 ( 0 1 0 0 4 0 10 6 4 2 1 ) 6— 0 5— 3
有 限元 法在 土石坝渗 流 稳定及 抗滑 稳定分 析 中的应 用
宋永 嘉 ,韩 晓育 ,田林 钢 ,张献 才
( 北水利水 电学院, 南 郑州 401) 华 河 5 0 1
ANSYS在土石坝防渗加固分析中的应用
ANSYS在土石坝防渗加固分析中的应用土石坝是一种常见的水利工程结构,用于蓄水或防洪目的。
土石坝防渗加固是土石坝设计中非常重要的一环,其主要目的是防止坝体内的水从坝体内部泄漏出去,影响坝体的稳定性和使用寿命。
在土石坝防渗加固设计中,ANSYS软件可以发挥重要的作用。
1.坝体内水压分析:土石坝在蓄水或雨水侵蚀的情况下,坝体内部会产生水压力。
通过ANSYS软件可以对坝体内部的水压力进行分析,包括水压的大小、分布情况等。
这些信息对于设计合适的防渗加固措施非常重要。
2.渗流路径分析:土石坝防渗加固的设计需要准确地预测坝体内水的渗流路径。
通过ANSYS软件可以建立数值模型,模拟坝体内水通过不同部位的渗流路径,找出可能的渗漏点和路径,为加固设计提供参考。
3.加固材料力学性能分析:土石坝防渗加固通常涉及到各种加固材料,如混凝土、聚合物和土工合成材料等。
通过ANSYS软件可以对这些材料的力学性能进行分析,包括强度、刚度、变形等,为加固设计提供依据。
4.加固结构设计优化:在土石坝防渗加固设计过程中,需要确定合适的加固结构形式和参数。
通过ANSYS软件可以建立不同加固结构的有限元模型,进行受力分析和设计优化,找出最优的加固方案。
5.加固效果评估:在加固完成后,需要对加固效果进行评估。
通过ANSYS软件可以对加固后的土石坝进行受力分析和模拟,评估加固效果,判断是否满足设计要求。
综上所述,ANSYS在土石坝防渗加固设计中的应用具有重要意义。
通过ANSYS软件的分析和模拟,可以帮助工程师更准确地了解土石坝的受力和渗流情况,设计出更科学、安全、经济的防渗加固方案。
在实际工程应用中,工程师们可以借助ANSYS软件的强大功能,提高土石坝防渗加固设计的效率和可靠性,确保土石坝的安全运行和长期稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土石坝有限元分析(ANSYS)-渗流分析命令流
土石坝渗流分析,采用非饱和土渗流参数,迭代计算浸润线,根据前次计算结果,不断修改单元的渗透系数和浸润逸出点位置,直到满足精度要求。
本算例的土石坝体型比较简单.采用非饱和渗流计算.即渗透系数为空隙压力的函数.首先建立一个数据文件PPPP.TXT,存储渗透系数函数关系,如下。
第一列为空隙压力值(水头M),第二列为渗透系数指数,渗透系数等于10^A(M/D)。
! -10.00 -4.0E+00
! -9.00 -3.6E+00
! -8.00 -3.2E+00
! -7.00 -2.8E+00
! -6.00 -2.4E+00
! -5.00 -2.0E+00
! -4.00 -1.6E+00
! -3.00 -1.2E+00
! -2.00 -8.0E-01
! -1.00 -4.0E-01
! 0.00 0.0E+00
!土坝顶宽4M,上下游坡比均为1:2,总高12M,底宽52M。
上游水深8M,下游无水。
FINISH
/CLEAR
/TITLE, EARTHDAM SEEPAGE
/FILNAME,SEEPAGE5
/PLOPTS,DATE,0
*DIM,TPRE,TABLE,11,1,1,PRESS,KKPE ! 定义水压与渗透系数的关系数组
*TREAD,TPRE,PPPP,TXT ! 读入数组
*DIM,NCON,ARRAY,4 ! 定义数组,用于存贮单元四个节点号
/PREP7
SMRT,OFF
ANTYPE,STATIC ! THERMAL ANALYSIS
ET,1,PLANE55
MP,KXX,1,1 ! 饱和状态下的渗透系数
MP,KXX,2,1E-4 ! 完全干燥下的渗透系数,假设空隙水压力小于-10M时
K,1,24,12
K,2,24,0
K,3,0,0
K,4,28,12
K,5,28,0
K,6,52,0
L,1,3
L,1,2
L,4,5
L,5,6
L,4,6
LESIZE,ALL,,,24
A,1,3,2
A,1,2,5,4
A,4,5,6
MSHK,2 ! MAPPED AREA MESH IF POSSIBLE
MSHA,0,2D ! USING QUADS
AMESH,ALL ! MESH AREAS
NUMMRG,NODE ! MERGE NODES AT BOTTOM OF CAISSON
*GET,N_MAX,NODE,,NUM,MAX ! 获得最大节点号
*GET,E_MAX,ELEM,,NUM,MAX ! 获得最大单元号
*DIM,N_TEMP,ARRAY,N_MAX ! 定义节点温度变量-总水头
*DIM,N_PRE,ARRAY,N_MAX ! 定义节点压力水头变量
!定义上游面总水头值
LSEL,S,LINE,,1
NSLL,S,1
NSEL,R,LOC,Y,0,8
D,ALL,TEMP,8 !定义上游面总水头值
!定义下游面总水头值
LSEL,S,LINE,,6
NSLL,S,1
*GET,N_NUM2,NODE,,COUNT
*DIM,N_NO2,ARRAY,N_NUM2
II=0
*DO,I,1,N_MAX
*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中
II=II+1
N_NO2(II)=I ! 存储渗流可能逸出点节点编号
*ENDIF
*ENDDO
NSEL,R,LOC,Y,0,8 ! 第一次计算,假设浸润线逸出点在8M高位置,与上游同高*GET,N_NUM,NODE,,COUNT ! 获得渗流出口节点总数
*DIM,N_NO,ARRAY,N_NUM ! 定义变量,存储渗流出口节点编号
II=0
*DO,I,1,N_MAX
*IF,NSEL(I),EQ,1,THEN ! 判断节点是否选中
N_NO(II)=I ! 存储渗流出口节点编号
*ENDIF
*ENDDO
*DO,I,1,N_NUM
D,N_NO(I),TEMP,NY(N_NO(I)) ! 定义下游面总水头值
*ENDDO
ALLSEL,ALL
FINISH
/SOLU
SOLVE
FINISH
!第一次计算完毕
!------------------------------------------------------------------------- !迭代计算
CONUTT=20 ! 最大循环次数
DD_HEAT=0.001 ! 前后两次计算,总水头最大允许计算差CHUK_ST=3 ! 出口边界条件重新设定的起始点
CHUK_MAXY2=10E5 ! 临时变量,用于存储浸润线出口坐标*DO,COM_NUM,1,CONUTT
DD_H=0
/POST1
SET,1
*DO,I,1,N_MAX
*IF,COM_NUM,GT,CHUK_ST+1,THEN
DD1=N_TEMP(I)
*IF,ABS(DD1-TEMP(I)),GT,DD_H,THEN
DD_H=ABS(DD1-TEMP(I))
*ENDIF
*ENDIF
N_TEMP(I)=TEMP(I) ! 计算节点温度(总水头)
N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标*ENDDO
*IF,COM_NUM,GT,CHUK_ST+1,THEN
*IF,DD_H,LE,DD_HEAT,THEN
*EXIT
*ENDIF
*ENDIF
/PREP7
! 重新给每个单元设定材料
MATNUM=2
*DO,I,1,E_MAX
*DO,KK,1,4
*GET,NCON(KK),ELEM,I,NODE,KK ! 获取单元四个节点编号
*ENDDO
TEMP_Y=(N_TEMP(NCON(1))+N_TEMP(NCON(2))+N_TEMP(NCON(3))+N_TEMP(NCON (4)))/4 !计算单元中心点平均温度
RESS_T=TEMP_Y-CENTRY(I)
*IF,PRESS_T,GT,0,THEN
RESS_T=0
MPCHG,1,I
*ELSEIF,PRESS_T,LT,-10,THEN
RESS_T=-10
MPCHG,2,I
*ELSE
MP,KXX,MATNUM+1,10**TPRE(PRESS_T)
MPCHG,MATNUM+1,I
MATNUM=MATNUM+1
*ENDIF
*ENDDO
! 重新设定出口边界条件
*IF,CONUTT,GT,CHUK_ST,THEN !前CHUK_ST次采用原边界条件
LSEL,S,LINE,,6
NSLL,S,1
DDELE,ALL,TEMP ! 删除原边界条件
II=0
CHUK_MAXY=0
*DO,JJ,1,N_NUM2
*IF,N_TEMP(N_NO2(JJ)),GE,NY(N_NO2(JJ)),THEN
D,N_NO2(JJ),TEMP,NY(N_NO2(JJ)) ! 总水头=Y坐标
*IF,NY(N_NO2(JJ)),GT,CHUK_MAXY,THEN
CHUK_MAXY=NY(N_NO2(JJ))
*ENDIF
*ENDIF
*ENDDO
*IF,CHUK_MAXY2,NE,CHUK_MAXY,THEN ! 判断前后两次计算的浸润线出口位置是否相同NSEL,R,LOC,Y,CHUK_MAXY ! 选择最高节点
*IF,CHUK_MAXY,GT,0,THEN
DDELE,ALL,TEMP ! 删除出口最高节点边界条件
*ENDIF
CHUK_MAXY2=CHUK_MAXY
*ENDIF
*ENDIF
ALLSEL,ALL
FINI
/SOLU
SOLVE
FINISH
*ENDDO
SAVE
!迭代计算完毕,进入后处理
FINISH
/POST1
/CLABEL,,1
/EDGE,,0
/CONTOUR,,8,0,1,8
PLNSOL,TEMP ! 显示总水头云图
PLVECT,TF, , , ,VECT,ELEM,ON,0
PLVECT,TF, , , ,VECT,NODE,ON,0
LSEL,S,LINE,,6
NSLL,S,1
PRRSOL,HEAT ! PRINT FLOWRATE THROUGH SOIL FSUM,HEAT ! 计算渗流量
*GET,Q_DAY,FSUM,0,ITEM,HEAT
ALLSEL,ALL
SAVE
*DO,I,1,N_MAX
N_TEMP(I)=TEMP(I) ! 计算节点总水头(温度)
N_PRE(I)=N_TEMP(I)-NY(I) ! 计算节点压力,总水头-Y坐标DNSOL,I,TEMP,,N_PRE(I) ! 将压力水头值复制到节点
*ENDDO
PLNSOL,TEMP ! 显示压力水头云图
FINI。