第2讲 基本回归分析
高中数学 第2讲变量的相关性、回归分析及独立性检验
第2讲 变量的相关性、回归分析及独立性检验一、知识回顾1.如何判断两个变量的线性相关:如果在散点图中,2个变量数据点分布在一条直线附近,则这2个变量之间具有线性相关关系。
2.所求直线方程 ˆy=bx +a 叫做回归直线方程;其中 ⋅∑∑∑∑nnii i ii=1i=1nn222iii=1i=1(x-x)(y -y)x -nx yb ==,a =y -bx (x-x)x-nxy回归直线方程必过中心点(,)x y3.相关系数的∑nii (x-x)(y -y)r =性质• (1)|r|≤1.(2)|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.4. ˆˆ=-i i y y i 残差e=实际值-预测值2^^211()===-∑∑nniiii i e y y 总残差平方和:残差平方和越小,即模型拟合效果越好5. 两个分类变量的独立性检验:(1)假设结论不成立,即“两个分类变量没有关系”.(2)在此假设下计算随机变量 22n(ad -bc)K =(a +b)(c +d)(a +c)(b +d)(3) 根据随机变量K 2查表得“两个分类变量没有关系”的概率,用1减去此概率即得有联系的概率 典型例题:例1.(宁夏海南卷)对变量x, y 有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(,)(i=1,2,…,10),得散点图2. 由这两个散点图可以判断( )。
(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关1x 1y 1u 1v变式1. (韶关一模文、理)甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,)()A 甲 ()B 乙 ()C 丙 ()D 丁 例2.一系列样本点(,)(1,2,,)=⋅⋅⋅i i x y i n 的回归直线方程为23,∧=-y x 若117==∑nii X则1==∑ni i y变式1.某地第二季各月平均气温(℃)与某户用水量(吨)如下表,根据表中数据,用最小二乘法求得用水量关于月平均气温的线性回归方程是( )A B. C. D. 例3.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)例4.(惠州一模)对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪x y y x 5.115ˆ-=x y5.115.6ˆ-=x y 5.112.1ˆ-=x y5.113.1ˆ-=x y0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距 第2讲 变量的相关性、回归分析及独立性检验课后作业:姓名: 学号:1.若施化肥量x 与小麦产量y 之间的回归直线方程为ˆ2504yx =+,当施化肥量为50kg 时,预计小麦产量为2.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1 2 3 4用水量y5.443 5.2由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是a x y +-=∧7.0,则=a3.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .57.2 3.6B .57.2 56.4C .62.8 63.6D .62.8 3.64.有一笔统计资料,共有11个数据如下(不完全以大小排列):2,4,4,5,5,6,7,8,9,11,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .6B .6C .66D .6.55.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( ) A.5,10,15,20,25 B.2,4,8,16,32 C.1,2,3,4,5 D.7,17,27,37,476.(广州调研文、理)某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是 人.7. (韶关一模文、理)一个社会调查机构就某地居民的 月收入调查了10000人,并根据所得数据画了样本的频率分 布直方图(如下图)。
第九章方差分析及回归分析 第2讲精品PPT课件
x1, x2, , xn
因此干脆不把X看成随机变量,而将它当作 普通的变量。X的变化将使Y发生相应的变 化,但它们之间的变化是不确定的。由于Y 是随机变量 ,当X取得任一个可能的值x时, Y都相应地服从一定的概率分布。
10
设进行 n 次独立试验,测得试验数据如下表:
xபைடு நூலகம்
x1
x2
xn
y
y1
y2
yn
我们的问题是,如何根据这组观察值,用 “最佳”的形式来表达变量Y与x的相关关系?
比较合理的想法就是,取Xx时随机变量
Y的数学期望EY Xx 作为Xx时Y的估计值。
11
设Y的数学期望EY存在,其值随X的取值
而定,即Y的数学期望是x的函数。将这一函数
记为yx 或x,xEY Xx称为Y关于x
的回归函数。 为 此 , 我 们 就 将 讨 论 Y 与 x的 相 关 关 系 的 问 题
转 换 为 讨 论 E Y x与 x的 函 数 关 系 了 。
由一个或一组非随机变量来估计或预测某 一个随机变量的观察值时所建立的数学模 型及所进行的统计分析称为回归分析
7
如果这个模型是线性的就称为线性回归分析 这种方法是处理变量间相关关系的有力工具,是
数理统计工作中一种常用的方法。它不仅告诉人 们怎样建立变量间的数学表达式,即经验公式, 而且还利用概率统计知识进行分析讨论,判断出 所建立的经验公式的有效性,从而可以进行预测 或估计。 本章主要介绍如何建立经验公式。
14
温度x(oc) 100 110 120 130 140 150 160 170 180 190 得率(%) 45 51 54 61 66 70 74 78 85 89
得率与温度关系的散点图 100 90 80 70 60 50 40
《回归分析二》课件
主成分回归模型的建立
通过主成分分析得到新的自变量, 在回归分析中建立模型。
主成分回归与经典回归的 比较
比较两种回归模型的优缺点和适 用范围。
多重共线性诊断
检查自变量之间是否存在高度相关性。
条件异方差诊断
检查误差项的方差是否符合恒定的假设。
非线性回归
1
多项式回归
使用多项式函数来拟合非线性关系。
对数回归
2
将变量的对数作为自变量进行回归分析。
3
岭回归
通过加入正则化项来处理自变量间的共 线性。
主成分回归
主成分分析
利用线性变换找出数据的主要特 征。
《回归分ห้องสมุดไป่ตู้二》PPT课件
# 回归分析二 ## 线性回归的参数估计 - 最小二乘法求出模型参数 - 参数的置信区间估计
线性回归的显著性检验
1
模型的全局显著性检验
通过F检验确定整个模型是否具有显著性。
2
模型的局部显著性检验
通过t检验确定各个参数是否显著。
回归模型的诊断
残差检验
检查残差是否满足回归模型的前提假设。
《回归分析课程教案》课件
《回归分析课程教案》课件第一章:引言1.1 课程目标让学生了解回归分析的基本概念和应用领域。
让学生掌握回归分析的基本原理和方法。
培养学生应用回归分析解决实际问题的能力。
1.2 教学内容回归分析的定义和分类回归分析的应用领域回归分析的基本原理和方法1.3 教学方法讲授法:讲解回归分析的基本概念和原理。
案例分析法:分析实际案例,让学生了解回归分析的应用。
1.4 教学资源课件:介绍回归分析的基本概念和原理。
案例:提供实际案例,让学生进行分析。
1.5 教学评估课堂讨论:学生参与课堂讨论,回答问题。
第二章:一元线性回归分析2.1 教学目标让学生了解一元线性回归分析的基本概念和原理。
让学生掌握一元线性回归模型的建立和估计方法。
培养学生应用一元线性回归分析解决实际问题的能力。
2.2 教学内容一元线性回归分析的定义和特点一元线性回归模型的建立和估计方法一元线性回归模型的检验和预测2.3 教学方法讲授法:讲解一元线性回归分析的基本概念和原理。
数据分析法:分析实际数据,让学生了解一元线性回归模型的建立和估计方法。
2.4 教学资源课件:介绍一元线性回归分析的基本概念和原理。
数据分析软件:用于一元线性回归模型的建立和估计。
2.5 教学评估课堂练习:学生进行课堂练习,应用一元线性回归分析解决实际问题。
第三章:多元线性回归分析3.1 教学目标让学生了解多元线性回归分析的基本概念和原理。
让学生掌握多元线性回归模型的建立和估计方法。
培养学生应用多元线性回归分析解决实际问题的能力。
3.2 教学内容多元线性回归分析的定义和特点多元线性回归模型的建立和估计方法多元线性回归模型的检验和预测3.3 教学方法讲授法:讲解多元线性回归分析的基本概念和原理。
数据分析法:分析实际数据,让学生了解多元线性回归模型的建立和估计方法。
3.4 教学资源课件:介绍多元线性回归分析的基本概念和原理。
数据分析软件:用于多元线性回归模型的建立和估计。
3.5 教学评估课堂练习:学生进行课堂练习,应用多元线性回归分析解决实际问题。
回归分析的基本思想及其初步应用ppt
线性回归模型的评估是检验模型预测效果的重 要步骤。评估的指标包括模型的拟合优度、显 著性检验和预测精度等。
显著性检验可以通过F检验和t检验来实现,用于 检验模型的参数是否显著不为零。
03
非线性回归分析
多项式回归
04
回归分析的初步应用
经济预测
总结词
通过分析历史数据和相关经济指标,回归分 析可以预测未来的经济趋势和变化。
详细描述
回归分析在经济预测中应用广泛,例如,通 过分析历史GDP、消费、投资等数据,可以 预测未来经济增长速度、通货膨胀率等经济 指标。这种预测有助于企业和政府制定经济 政策,进行资源分配和投资决策。
结果解读
查看回归分析结果,包括系数、标 准误、显著性等。
03
02
线性回归分析
选择回归分析模块,设置自变量和 因变量。
模型评估
根据回归分析结果评估模型的性能 。
04
THANKS
感谢观看
05
回归分析的注意事项
数据质量
01
02
03
完整性
确保数据集中的所有观测 值都完整无缺,没有遗漏 或缺失的数据。
准确性
数据应准确无误,避免误 差或错误的测量和记录。
一致性
不同来源或不同时间点的 数据应具有一致的格式和 标准,以便进行比较和分 析。
过拟合与欠拟合
过拟合
模型在训练数据上表现良好,但 在测试数据上表现较差。原因是 模型过于复杂,导致对训练数据 的过度拟合。
它通过找出影响因变量的因素,并确 定这些因素对因变量的影响程度,来 预测因变量的取值。
回归分析的分类
回归分析的基本思想-及其初步应用(教学课件2019)
第二章回归分析ppt课件
U和Q的相对大小反映了因子x对y的影响程度, 在n固定的情况下,如果回归
方差所占y方差的比重越大,剩余方差所占的比重越小,就表明回归的效果
越好, 即:x的变化对y的变化起主要作用, 利用回归方程所估计出的ŷ也会
越接近观测值y。
ŷ的方差占y的方差的比重(U/(U+Q))可作为衡量回归模型效果的标准:
ŷ
y -y
ŷ -y
y
x
syy
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
yt )2
“回归平方和”与“剩余平方和”
对上式两边分别乘以n,研究各变量的离差平方和的关系。为避免过多数学符
号,等号左边仍采用方差的记号syy。
n
n
syy ( yt y)2 ( yt yt )2 U Q
回忆前文所讲, y的第i个观测值yi服从怎样的分布?
yi ~ N (β0 +βxi , σ2)
e=yi- (β0 +βxi ) 服从N(0, σ2)
于是, yi (0 xi ) 服从标准正态分布N (0,1)
0.4
在95%的置信概率下:
因为定理: 若有z ~ N (, 2 ), 则有 z ~ N (0,1)
通过方差分析可知,可用“回归平方和”U与“剩余平方和”Q的比值来衡 量回归效果的好坏。可以证明,假设总体的回归系数为0的条件下,统计 量:
U
F=
1 Q
注意Q的自由度为n-2, 即:残差e的方差的无 偏估计为:Q/(n-2)
n2 服从分子自由度为1,分母自由度为n - 2的F分布
上式可以用相关系数的平方来表示:
回归分析的基本思想及其初步应用课件PPT
[导入新知]
1.残差平方和法
(1)^e i=yi-^y i=yi-^b xi-^a (i=1,2,…,n),称为相应于点
(xi,yi)的残差. n
(2)残差平方和
i=1
(yi-^y i)2
越小,模型拟合效果越好.
2.残差图法
残差点 比较均匀地 落在水平的带状区域内,说明选用的
模型比较合适,其中这样的带状区域宽度 越窄 ,说明模型的
年序 1 2 3 4 5
最大积雪深度x/尺 15.2 10.4 21.2 18.6 26.4
灌溉面积y/千亩 28.6 19.3 40.5 35.6 48.9
返回
年序 6 7 8 9 10
最大积雪深度x/尺 23.4 13.5 16.7 24.0 19.1
灌溉面积y/千亩 45.0 29.2 34.1 46.7 37.4
y =110(28.6+19.3+…+37.4)=36.53,
返回
10
x2i -10 x 2=227.845,
i=1
10
xiyi-10 x y =413.065,
i=1
^b=∑i=n1x∑i=niy1xi-2i -1010--xx 2
-y ≈1.813,
^a=36.53-1.813×18.85≈2.355.
返回
解:对 U=Aebt 两边取对数得 ln U=ln A+bt,令 y=ln U, a=ln A,x=t,则 y=a+bx,y 与 x 的数据如下表:
x 0 1 2 3 4 5 6 7 8 9 10 y 4.6 4.3 4.0 3.7 3.4 3.0 2.7 2.3 2.3 1.6 1.6 根据表中数据画出散点图,如图所示,从图中
因此电压 U 对时间 t 的回归方程为U^=e-0.313t·e4.61.
回归分析 ppt课件
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
回归分析学习课件PPT课件
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
第二章 回归分析与相关分析(2)
第二章 回归分析与相关分析§3 多元线性回归分析在现实地理系统中,任何事物的变化都是多种因素影响的结果,一因多果、一果多因的情况比比皆是。
为了处理一果多因的因果关系问题,我们需要掌握多元线性回归知识。
本节着重讲述二元线性回归分析。
至于三元以上,基本原理可以依此类推。
1 基本模型二元线性回归模型可以表为2211x b x b a y ++=, (3-1)式中a 、b 1、b 2为待定的偏回归参数(partial regression coefficient )。
理论上的预测模型为i i i x b x b a y2211ˆ++=. (3-2) 原则上讲,式(3-2)中的参数a 、b 1、b 2与式(3-1)中的a 、b 1、b 2是有区别的:式(3-1)的是真实的系数值,式(3-2)的是计算的系数值。
但为了方便起见,我们不作符号上的区分。
实测数据的模型可以表作d yd x b x b a y i i i i i ±=±++=ˆ2211, (3-3) 从而i i i i i i x b x b a y yy d 2211ˆ---=-=. (3-4) 令min )(12221112→---==∑∑==ni i i i n i i x b x b a y d S . (3-5)为求极值,分别对a 、b 1、b 2求偏导,并令其为零,可得0)(22211=---=∂∂∑ii i i x b x b a y a S, (3-6) 0)(2122111=---=∂∂∑i ii i i x x b x b a y b S, (3-7)0)(2222111=---=∂∂∑i ii i i x x b x b a y b S. (3-8) 上面三式可以化为正规方程形式⎪⎪⎩⎪⎪⎨⎧=++=++=++∑∑∑∑∑∑∑∑∑∑∑i i i i i ii i i i i i i i i y x x b x x b x a y x x x b x b x a y x b x b an 22222112121221112211. (3-9) 根据线性代数的有关原理,可令∑∑∑∑∑∑∑∑∑=222122121121iiiiiiiiiii i i x x x y x xx x y x xx y A , ∑∑∑∑∑∑∑∑=2222211121ii iiiiiii i i x y x xx x y x x x y nB ,∑∑∑∑∑∑∑∑=iiiiii iiii i yx x x x yx x x yx n B 2212121112, ∑∑∑∑∑∑∑∑=222122121121iiiiiiii i i xx x xx x x x x x nC .借助Cramer 法则容易得到C Aa =,C B b 11=,CB b 12=. (3-10) 2 回归结果的检验检验的类型与一元线性回归相似,包括相关系数检验、标准误差检验、F 检验、t 检验和DW 检验。
回归分析-(2)PPT课件
-
10
•相关关系的种类
1按相关因素的多少分 2按相关关系的形式分 3按相关关系的方向分 4按相关关系的程度分
单相关 复相关 线性相关(直线相关) 非线性相关(曲线相关) 正相关 负相关 完全相关 不完全相关 不相关
有几个,但取值范围变化有一
定规律,则称 y 与 x 之间有相
关关系。
-ቤተ መጻሕፍቲ ባይዱ
y
x
两变量相关关系在图
形上表现为各观测点 分布在线的周围
7
相关关系举例
▪ 商品的消费量(y)与居民收入(x)之间的关系 ▪ 商品销售额(y)与广告费支出(x)之间的关系 ▪ 粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、温
-
14
㈠相关表
简单相关表 例:居民消费支出和收入的相关表 (单位:百元)
家庭编号
1 2 3 4 5 6 7 8 9 10
消费支出y 15 20 30 40 42 53 60 65 70 78 可支配收入x 18 25 45 60 62 75 88 92 99 98
根据以上资料绘制坐标图便得到相关图
-
15
•单变量分组表
例:30家企业按产品产量分组的平均单位产品成本
产量 (千件)x
20 30 40 50 80 合计
企业数
9 5 5 6 5 30
平均单位成本 (元/件) y
16.8 15.6 15.0 14.8 14.2
-
16
•双变量分组表
例:30家企业按产品产量和单位产品成本分组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
验,以求证其是否符合经济理论或现实情况的要求。 用户可以发现刚才的回归结果中已经给出了最基本的F 检验和t检验的结果,下面将介绍其他检验的相关命令, 这些检验均为Wald检验。
(1)线性检验命令的基本格式如下: test (spec) [(spec) …] [, test_options] 在这个命令中,test是线性检验的命令语句,而(spec)则表
2 利用最小二乘法进行模型的估计 对模型进行回归的仍然是采用命令方式进行操作,命
令的基本格式如下: regress depvar [indepvar] [if] [in] [weight] [,options] 其中regress代表“回归”的基本命令语句,depvar代 表被解释变量(或称因变量)的名称,indepvar代表 解释变量(或称自变量)的名称,if代表条件语句,in 代表范围语句,weight代表权重语句,options代表其 他选项。
一、实验基本原理
二、实验内容和实验数据
根据统计资料得到了美国汽车产业的横截面数据(1978
年) ,变量主要包括:price=汽车的价格,mpg=每加 仑油所行驶的英里数,weight=汽车的重量,foreign表 示是否是进口车,如果foreign=0代表是国产车,如果 foreign=1代表是进口车。完整的数据在本书附带光盘 的data文件夹的“usaauto.dta”工作文件中。
否同时显著不为零,则需要输入如下命令: test weight foreign(也可以输入 test (weight=0) (foreign=0)这个命令,效果相同。)
4 模型的预测 经济计量模型设定的最终目的是使其能够对社会经济
生活有一定的预测功能,所以一个模型在估计和检验 之后,就可以用其进行预测了,下面将着重介绍线性 预测的主要内容。 线性预测的基本命令格式如下: predict [type] newvar [if] [in] [, options] 在这里,predict是预测的基本命令语句,newvar代表 将要进行预测的变量,if代表条件语句,in代表范围语 句,options代表其他选项,在预测中起重要作用,表 6.2显示了预测命令中options的命令语句和含义。
利用本实验的数据,预测因变量和残差 “price”和
“e”值的具体操作步骤如下: 若要得到“price”的预测值,需要输入如下命令: predict yhat, xb 这个命令就表示对因变量price进行线性预测,生成的 变量名称为yhat。 若要得到残差序列的预测值,则需要输入如下命令: predict e, residual
示线性检验的形式,主要包括以下五种: 第一种检验所设定的系数都为0,命令形式如下: test coeflist 第二种检验所设定的系数表达式都为0,命令形式如下: test exp=exp[=…] 第三种检验方程eqno中的变量varlist的系数都为0,命令形 式如下: test [eqno] [: varlist] 第四种检验不同方程中变量varlist的系数相同,命令形式 如下: test [eqno=eqno[=…]] [: varlist] 第五种检验方程eqno中的变量varlist系数相同,命令形式 如下: testparm varlist [, equal equation(eqno)]
利用usaauto数据,对汽车价格的影响因素进行计量分
析,分析mpg、weight和foreign对价格的边际影响, 包括进行OLS的估计、检验、预测和绘制图形等相关 内容。
三、实验操作指导 1 打开数据文件、观测数据特征 (1)若要进行各种对原始数据的操作,首先Stata中打开数据文件的方法有多 种,其中较为常用的方法是通过命令直接打开或是使 用菜单操作打开。我们在此使用命令方式,在命令窗 口中输入如下命令: sysuse usaauto, clear (2)在进行回归分析之前,可以先关注一下原始数据 及其统计特征。在命令窗口中输入如下命令: edit 如果想得到数据的统计特征,则需要在命令窗口中输 入如下命令: describe
(2)如果检验为非线性检验,则需要将命令的基本格
式调整如下即可: testnl exp=exp[=exp...] [, options] 这个命令中,testnl是非线性检验的命令语句,而 exp=exp[=exp...]表示系数之间的非线性关系式。
在本实验中,如检验“weight”“foreign”的系数是
这个命令就表示对残差值进行预测,生成的变量名称
为 e。
5 基本回归图形的绘制 在回归分析中,图形是十分重要的一种分析工具,其不仅具有
直观的视觉优势,且能包含巨大的信息量。鉴于图形的画法本 书前面章节已经介绍,这里不再赘述,且多元线性回归大部分 为超平面图形,所以不宜用散点图和回归线表示,所以这里仅 仅介绍简单的残差图形的画法。 残差对预测值标绘图提供了较为有用的诊断工具,在回归分析 之后,我们就可以画出如图6.6所示的残差对预测值的标绘图了。 这种图形的得到只需要在命令窗口中输入如下命令语句: rvfplot, yline(0) 在这个命令中,rvfplot表示自动生成残差e和因变量预测值yhat 的散点图,并标识出纵轴值为零的直线。 当然,图6.6也可以通过更为基本的graph命令得到,命令如下: graph twoway scatter e yhat, yline(0) 这个命令的还以就是画一个两轴的散点图,一个轴是残差预测 值e,一个轴是因变量预测值yhat,同时还要标出纵轴值为零的 直线。
表6.1的内容显示了options所代表的其他选项的具体内
容,主要包括选项的命令语句及其所代表的含义。
要想得到OLS的回归结果,只需本实验的模型在命令
窗口中输入如下命令: regress price mpg weight foreign 这个命令就表示以price作为因变量,mpg、weight、 foreign作为自变量建立线性回归模型,运用OLS方法 进行回归分析。 3 模型的检验