酶作用机理和调节【生物化学】
酶的作用和作用机理是什么
酶的作用和作用机理是什么在生物化学领域,酶是一类具有高度专一性和高效催化作用的蛋白质,广泛存在于生物体内,在许多生物体内的生化反应中扮演着至关重要的角色。
那么,酶的作用是什么?酶的作用机理又是如何的呢?酶的作用酶是生物体内能够加速生化反应速率的催化剂。
酶通过在不参与反应的情况下,在生化反应发生时起到促进反应速率的作用。
酶使生化反应在较温和的条件下快速进行,为维持生命活动提供必要的动力。
在细胞内,酶作用于底物分子上,形成酶-底物复合物,经过一系列的反应步骤,得到产物,最后酶从底物中解离出来,可以循环再利用。
酶的高度特异性使其只能识别特定结构的底物,从而保证了生化反应的准确性。
此外,酶在生化反应中起到催化剂的作用,降低了反应所需的能量,从而减少了生化反应的活化能。
因此,酶在生物体内起到了非常关键的作用。
酶的作用机理酶能够催化生化反应的作用机理主要包括以下几个方面:1.酶与底物的结合:酶具有活性位点,与底物结合形成酶-底物复合物,这种结合是非常特异和紧密的。
酶能够通过与底物相互作用,使底物分子的构象发生改变,有利于反应的进行。
2.诱导拟态:酶能够通过与底物结合时的构象改变,引导底物向更有利的构象转变,从而降低了反应的活化能,更加利于反应的进行。
3.催化反应:酶能够提供适当的环境条件,如特定的酶活性位点、亲和力、酶-底物特异性等,加速底物分子间的结合和反应。
这种催化作用使得底物之间的相互作用更为有效。
4.反应释放:在反应发生之后,产物与酶-底物复合物之间的结合能力会降低,促使产物从酶上解离出来,酶可以再次参与其他反应。
总的来说,酶的作用机理是通过特异性结合底物,诱导拟态、提供适当的环境条件,催化生化反应,然后释放产物,完成生化反应过程。
综上所述,酶作为生物体内的催化剂,在维持生命体的代谢、生长和繁殖等生命活动中发挥着重要作用。
对酶的作用和作用机理的深入研究,有助于揭示生物体生命活动的本质,也为人类健康和生物技术的发展提供了重要的理论基础。
酶的作用和作用机理
酶的作用和作用机理
酶是一类催化生物化学反应的蛋白质,它在生物体内起着重要的调节作用。
酶可以加速生物体内的化学反应速率,使细胞代谢更加高效。
本文将探讨酶的作用和作用机理。
酶的作用
酶在生物体内发挥着重要的作用,它们可以促进生物体内的化学反应。
酶可以作用于各种不同的底物,将它们转化成不同的产物。
在生物体内,酶参与了多种代谢途径,包括碳水化合物、脂肪和蛋白质代谢等。
酶还可以修饰DNA和RNA,参与基因表达的调控过程。
酶的作用可以使生物体内的代谢更加高效,帮助维持体内稳态。
如果没有酶的作用,许多生物体内的代谢反应将很难发生或者速率极其缓慢,生物体可能会因此受到严重影响。
酶的作用机理
酶的作用机理是复杂而精妙的。
酶通过与底物特定的结合形成酶-底物复合物,然后在活性位点上发挥作用。
活性位点是酶分子上的一个特定区域,可以与底物结合并促进化学反应的进行。
酶通过降低反应的活化能,加速了反应速率。
酶可以通过多种方式实现这一点,包括提供合适的微环境、调节底物的构象和提供催化反应所需要的功能基团等。
酶的结构决定了其特定的催化机制和底物特异性。
酶的作用机理受到多种因素的影响,包括温度、pH值和离子浓度等。
酶在特定的条件下才能保持最佳的活性,否则可能会失活或者显示出降低的催化效率。
总的来说,酶的作用和作用机理是生物体内代谢的关键环节。
了解酶的作用机制对于理解生物体内化学反应的发生和调控至关重要,对于疾病的治疗和新药的研发也具有重要的指导意义。
以上就是关于酶的作用和作用机理的一些基本概念和原理,希望能对读者有所启发和帮助。
生物化学 酶的作用机制与调节
研究酶活性部位的方法
化学修饰法
用某些化学试剂与酶分子侧链基团以共价键结合,观察酶的 活性改变,以确定活性中心的氨基酸残基
如果共价修饰后酶活性不受影响,则修饰的氨基酸残基不是 活性中心内的;如果酶活性丧失或降低,则修饰的氨基酸残基 可能位于活性中心内
2.广义酸碱催化
由广泛的质子供体(酸)和质子受体 (碱)参与的酸碱催化
生理条件不是强酸强碱而是近于中性 的环境,因此高反应性的H+和OH-环境 不存在
因此广义酸碱催化指的是细胞内的弱 酸弱碱参与的接受H+和提供H+的催化
①专一酸碱催化只与pH相关, 与缓冲液浓度无关
②广义酸碱催化与pH和缓冲 液浓度都相关
(NAG-NAM)n
5 4
3
1 2
N-乙酰氨基葡萄糖 NAG
①溶菌酶水解断开 NAM-NAG间的 β1,4-糖苷键
②溶菌酶不能水解
×
NAG-NAM间的
β1,4-糖苷键
③溶菌酶也能水解几丁 质(NAG多聚糖) NAG-NAG间的 β1,4-糖苷键
CH3 | R= -CH | COOH
乳酸基
酶的催化实例
酸嘧啶核苷 ③2’,3’-环磷酸核苷水解释放3’-磷酸核苷
酶的催化实例
胰核糖核酸酶A
酶活性中心的研究确定 A.酶切法
① 用枯草杆菌蛋白酶限制性水解20-21氨基酸残基间肽键,得到S 肽(20肽)和S蛋白(104肽),二者均无活性
② S肽与S蛋白在中性pH共育,可完全恢复活性 ③ 人工合成S肽氨基端的13个氨基酸与S蛋白共育,可恢复70%活性 ④ 去除人工肽His12和Met13的S肽,共育不能恢复活性
《生物化学》酶的作用机制和酶的调节
side view
胃蛋白酶原
在pH5.0以下断裂 切去44个氨基酸片断
胃蛋白酶
溶菌酶
必需基团
酶的活性中心往往只是包括酶蛋白的几个氨基酸残 基,而对于活性中心以外的氨基酸残基,并非是可有可无 的,有些氨基酸残基也是酶表现催化活性所必需的,称为 必需基团。因此酶的活性中心属于必需基团的一部分,必 需基团还包括其它一些对酶活性必需的氨基酸残基。
(五)金属离子催化
1、需要金属的酶分类 (1)金属酶 含紧密结合的金属离子,多属于过渡金 属离子如,Fe2+、Fe3+、Cu2+、Zn2+、 Mn2+或Co3+。 (2)金属-激活酶 含松散结合的金属离子,通常为碱和碱 土金属离子,如Na+、K+、Mg2+或Ca2+。
(五)金属离子催化
2、金属离子以三种主要途径参加催化过程: (1)通过结合底物为反应定向 (2)通过可逆的改变金属离子的氧化态调 节氧化还原反应 (3)通过静电稳定或屏蔽负电荷
(一)酶活性部位的特点
1、活性部位在酶分子的总体中只占相当小的部分。 2、酶的活性部位是一个三维实体。 3、酶的活性部位并不是和底物的形状正好互补的,而 是在酶和底物结合的过程中,底物分子或酶分子, 有 时是二者构象同时发生变化后才互补的。 (诱导 契合学说)。 4、酶的活性部位位于酶分子表面的一个裂缝内,底物 分子结合到裂缝内并发生催化作用。 5、底物通过次级键较弱的的力结合到酶上。 6、酶活性部位具有柔性或可运动性。
广义酸基团 (质子供体) 广义碱基团(质子受体)
(四)共价催化(covalent catalysis)
共价催化又称亲核催化或亲电子催化,在催化时, 亲核催化剂或亲电子催化剂能分别放出电子或汲 取电子并作用于底物的缺电子中心或负电中心,迅 速形成不稳定的共价中间复合物,降低反应活化能, 使反应加速。
酶的作用和作用机理是什么
酶的作用和作用机理是什么
酶是一种特殊的蛋白质,它在生物体内起着至关重要的作用。
酶是生物体内催
化化学反应的催化剂,能够加速反应速率而不改变反应所引发的方向。
酶的作用机理涉及到酶与底物的结合、反应过渡态的形成以及产物释放等多个步骤。
在生物体内,酶扮演着“生命的工厂”角色。
酶能够在生体温下加速化学反应,
从而维持生物体内繁复的代谢过程顺利进行。
酶选择性地作用于特定的底物,使得生物体内的代谢通路高效而有序。
酶的作用机理主要包括底物结合、催化反应和产物释放三个主要步骤。
首先,
酶通过其特定的活性位点与底物结合形成酶-底物复合物。
这种结合能够使底物的
化学键变得更容易断裂,从而促进反应的进行。
接着,酶通过提供合适的环境和催化功能,促使底物发生化学反应,形成反应过渡态。
最后,酶释放产物,使得反应达到平衡状态。
酶的催化活性受到多种因素的影响,包括底物浓度、温度、pH值等。
酶活性
一般随着底物浓度的增加而增加,但在一定浓度范围内会达到最大值。
温度和pH
值也会影响酶的构象和活性,过高或过低的温度及异常的pH值都会影响酶的活性。
总之,酶作为生物体内化学反应的催化剂,发挥着重要的作用。
通过理解酶的
作用机理,可以更好地认识生物体内代谢的调控和调节机制,对于人类健康和医学研究具有重要意义。
酶的作用和作用机理
酶的作用和作用机理
在生物化学领域中,酶是一类高效的催化剂,对生物体内各种生物化学反应起着至关重要的作用。
酶在细胞内起到了调控代谢途径、合成分子和分解废物等重要功能。
本文将探讨酶的作用与作用机理。
酶的作用
酶在生物体内参与了各个生物化学反应,可以加速反应速率,降低活化能,从而促进生物体的正常代谢。
以消化系统为例,唾液中的唾液淀粉酶可以催化淀粉分解成葡萄糖,使得食物中的多糖得以被吸收。
类似地,胃蛋白酶可以将蛋白质分解成氨基酸,以供生物体合成自身所需的蛋白质。
此外,酶还可以通过调控代谢路径来维持细胞内的稳态。
例如,ATP合成酶和ATP分解酶协调合成和分解ATP,保持细胞内ATP的水平,从而满足细胞对能量的需求。
酶的作用机理
酶的作用机理主要是通过诱导适当的环境条件,使得底物能够更容易地进入酶的活性中心,并促使反应发生。
酶的活性中心通常是一个具有特定结构的裂解活性相对较高的部分。
酶的活性中心与底物结合后形成酶底物复合物,而这个复合物的形成使得反应能够以更少的活化能发生。
此外,酶的活性会受到温度、pH值等环境条件的影响。
一般来说,酶对于适宜的温度和pH值会有最高的活性,当环境条件偏离适宜范围时,酶的活性会受到影响。
这也是为什么在一些生物学实验中,需要严格控制温度和pH值的原因。
总的来说,酶作为生物体内重要的催化剂,在调控细胞代谢、合成和分解各种生物分子等方面发挥着非常重要的作用。
通过了解酶的作用和作用机理,可以更好地理解生物体内种种生物化学过程的本质。
生物化学第9章酶作用机制和酶活性调节
通过结合底物为反应定向。 通过可逆的改变金属离子的氧化态调节氧化还原反应。 通过静电稳定或屏蔽静电荷。
金属离子催化的例证:烯醇化酶
(二)酶具有高催化能力的原因
1、底物和酶的邻近效应(approximation)与定 向效应(orientation)
在酶促反应中,由于酶和底物分子之间的亲和性,底物分 子有向酶的活性中心靠近的趋势,最终结合到酶的活性中 心,使底物在酶活性中心的有效浓度大大增加的效应叫做 邻近效应。
酶分子中可作为酸碱催化的功能基团
影响酸碱催化反应的因素包括酸碱强度及质子 传递的速率。
His咪唑基的解离常数约6.0,咪唑基解离下来 的质子浓度与水中的[H+]相近,在中性条件下, 一半以酸形式存在,一半以碱形式存在;同时, 咪唑基接受质子和供出质子的速率十分迅速, 半衰期小于10-10秒。
通过Asp102、His57、Ser195组成的质子传递链, 使Ser195失去质子,生成强亲核基团-O-
底物结合(step 1), S195羟 基对底物羰基碳发动亲核进 攻。 (step 2). 底物羰基氧 洞
在His57帮助下,H2O对酯基 的羰基碳发动亲核进攻。同
1、酸碱催化(acid-base catalysis)
酸-碱催化可分为狭义的酸-碱催化和广义的 酸-碱催化。酶参与的酸-碱催化反应一般都 是广义的酸-碱催化方式。
广义酸-碱催化是指通过质子酸提供部分质 子,或是通过质子碱接受部分质子的作用,以 稳定过渡态,达到降低反应活化能的一种催 化机制。
所以,His是酶中最有效最活泼的一个催化功 能基团。
2、共价催化(Covalent catalysis)
共价催化包括亲核催化和亲电催化。但 由于参与共价催化的主要是亲核基团, 所以共价催化也称为亲核催化。
生物化学酶促反应动力学酶的作用机制和酶的调节讲课文档
初速度
产 酶促反应速度逐渐降低
物
0
时间
酶促反应的时间进展曲线
第十二页,共165页。
v 在其他因素不变的情况下,底物浓度对反应速度的 影响呈矩形双曲线关系。
V
反 应 初 速 度
0
底 物 浓 度 [S]
反应初速度随底物浓度变化曲线
第十三页,共165页。
V Vmax
[S] 当底物浓度较低时
反应速度与底物浓度成正比;反 应为一级反应。
活性部位基团)
第五十六页,共165页。
(1) 非专一性不可逆抑制剂
①重金属离子 Ag+ 、 Cu2+ 、 Hg2+ 、 Pb2+ 、 Fe3+
高浓度时可使酶蛋白变性失活; 低浓度时对酶活性产生抑制。
——通过加入EDTA解除
第五十七页,共165页。
②烷化剂(多为卤素化合物)
H2N-CH-COOH CH2 SH
单分子反应:A P
双分子反应:A+B P+Q
第四页,共165页。
• 单分子反应
v = kc
• 双分子反应
v = kc1c2 c 、c1、c2 :反应物浓度(mol/l) k:比例常数/反应速率常数
第五页,共165页。
2.反应级数
能以v = kc表示,为一级反应; 能以v = kc1c2表示,则为二级反应; v 与反应物浓度无关,则为零级反应。
数。
[S]很大时, Vmax= k3[E] 。
k3表示当酶被底物饱和时,每秒钟每个酶分子转 换底物的分子数,
——又称为转换数、催化常数kcat kcat越大,酶的催化效率越高
第三十一页,共165页。
生物化学(第三版)第十章 酶的作用机制和酶的调节课后习题详细解答_ 复习重点
第十章酶的作用机制和酶的调节提要酶的活性部位对于不需要辅酶的酶来说,就是指酶分子中在三维结构上比较靠近的几个氨基酸残基负责与底物的结合与催化作用的部位,对于需要辅酶的酶来说,辅酶分子或辅酶分子上的某一部分结构,往往也是酶活性部位的组成部分。
酶活性部位有6个共同特点。
研究酶活性部位的方法有:酶分子侧链基团的化学修饰法,动力学参数测定法,X射线晶体结构分析法和定点诱变法,这些方法可互相配合以判断某个酶的活性部位。
酶是催化效率很高的生物催化剂,这是由酶分子的特殊结构所决定的。
经研究与酶催化效率的有关因素有7个,即底物和酶的邻近效应与定向效应,底物的形变与诱导契合,酸碱催化,共价催化,金属离子催化,多元催化和协同效应,活性部位微环境的影响。
但这些因素不是同时在一个酶中其作用,也不是一种因素在所有的酶中起作用,对于某一种酶来说,可能分别主要受一种或几种因素的影响。
研究酶催化的反应机制,始终是酶学研究的一个重点,通过大量的研究工作,已经对一些酶的作用机制有深入了解,该章对溶解酶、胰核糖核酸酶A、羧肽酶A、丝氨酸蛋白酶、天冬氨酸蛋白酶等的催化作用机制进行了详尽的讨论。
酶活性是受各种因素调节控制的,除了在第8章中已介绍的几种因素外,主要还有①别构调节,例如ATCase。
②酶原的激活,如消化系统蛋白酶原的激活及凝血系统酶原的激活。
③可逆共价修饰调控,如蛋白质的磷酸化,一系列蛋白激酶的作用。
通过以上作用,使酶能在准确的时间和正确的地点表现出它们的活性。
别构酶一般都是寡聚酶,有催化部位和调节部位,别构酶往往催化多酶体系的第一步反应,受反应序列的终产物抑制,终产物与别构酶的调节部位相结合,由此调节多酶体系的反应速率。
别构酶有协同效应,[S]对υ的动力学曲线呈S形曲线(正协同)或表现双曲线(负协同),两者均不符合米氏方程。
ATCase作为别构酶的典型代表,已经测定了其三维结构,详细研究了别构机制和催化作用机制。
为了解释别构酶协同效应的机制,有两种分子模型受到人们重视,即协同模型和序变模型。
生物化学学习题酶的催化作用和调控机制
生物化学学习题酶的催化作用和调控机制酶是生物体内的一类特殊蛋白质,它在生物化学过程中起着催化和调控作用。
酶的催化作用和调控机制是生物化学学习中的重要内容。
本文将通过解答一些生物化学学习题,来探讨酶的催化作用和调控机制的原理和应用。
1. 什么是酶的催化作用?酶的催化作用是指酶作为催化剂,在生物化学反应中加速反应速率而本身不参与反应的过程。
酶能够降低活化能,使反应更容易发生。
酶与底物结合形成酶-底物复合物,通过调整底物分子的构象,提供合适的反应环境或为反应过程提供必要的功能基团,从而促进和加速生物化学反应。
2. 酶的催化过程中发生了哪些重要事件?酶的催化过程中,发生了以下几个重要事件:(1)底物与酶结合:酶通过底物识别位点与底物结合,形成酶-底物复合物。
(2)底物结构改变:酶可以通过改变底物分子的构象,使之更有利于反应发生。
(3)催化反应:酶通过提供功能基团、调节反应环境等方式催化底物的转化,包括底物的分解、合成、转移等。
(4)生成产物:反应发生后,产生新的物质,酶释放产物,恢复到催化循环中。
3. 酶的活性如何被调控?酶的活性可以通过多种方式被调控,包括:(1)温度:酶的活性随着温度的变化而变化。
适宜的温度范围内,酶的活性增加,但过高或过低的温度会使酶的活性降低甚至失活。
(2)pH值:酶对pH值也非常敏感,适宜的pH值范围内酶的活性最高,但过高或过低的pH值会影响酶的构象和功能基团的离子化状态,从而影响酶的活性。
(3)底物浓度:酶的活性受底物浓度调控。
在底物浓度适宜时,酶的催化作用展现最佳效果,但当底物浓度过高时,酶的活性可能受到抑制。
(4)辅因子:某些酶活性依赖于辅助因子的存在,例如金属离子、辅酶等。
这些辅因子能够与酶结合,形成活性辅因子-酶复合物,从而激活酶的催化作用。
4. 酶在生物体内的调控机制有哪些?酶在生物体内的调控机制有多种,包括:(1)底物浓度反馈抑制:当底物浓度过高时,产物可以通过反馈抑制的方式抑制酶的活性,从而保持底物的代谢平衡。
第六章 酶的作用机制和酶的调节 - 复制
5.酶除了具有进行催化反应必须的基团外, 还具有其他的特性
活性中心的实质
必需基团:活性 中心即酶分子中 在三维结构上相 互靠近的几个 aa残基或其上 的某些基团。 非必需基团:活 性中心以外的部 分对酶催化次要 但对活性中心形 成提供结构基础。
胰凝乳蛋白酶的活性中心
必须基团:酶表现催化活性不可缺少的基团
概念:指能催化相同的化学反应,但其结 构和理化性质及反应机理都有所不同的 一组酶。 应用: 在细胞分化及形态遗传的分子学基础研 究中很重要; 在代谢调控中起重要作用; 作为疾病诊断的指标。如乳酸脱氢酶 (LDH)
(四)酶原的激活:
1、概念: 酶原(proenzyme): 没有催化活性的酶的前体(precursor)。 酶原激活(活化): 从不具活性的酶原转变为有活性的酶的过 程。 其实质是一个或一些专一的肽被裂解, 使酶活性中心形成或暴露的过程。如:
结合部位:结合部位决定酶的专一性
结合部位
催化部位(Catalytic site)
催化 部位 决定 酶的 高效 性
三、影响酶催化效率的有关因素:
(一)底物与酶的邻近和定向效应:
S分子向E活性中心靠近,且趋向E催化部位, 使活性中心这一局部区域[S]增加,并使S分子 发生扭曲,易于断裂,降低反应所需活化能。 从而加快反应速度。
第六章 酶的作用机制和酶的调节
新疆农业大学农学院生物化学教研室 王希东 TEL:8763713 E-mail:wxdxnd@ wxd4085_cn@
本章主要内容
1. 酶的活性中心(活性部位) 2. 酶催化反应的独特性质 3. 影响酶催化效率的有关因素 4. 酶活性的调节
(一)别构酶 (allosteric enzymes):
11 酶的作用机制和调节-王镜岩生物化学(全)
三、酸碱催化
• 酸碱催化是通过瞬时的向反应物提供质子或从反 应物接受质子以稳定过渡态,加速反应的一类催 化机制。
• 组氨酸的咪唑基的重要意义(许多酶的活性中心都有组 氨酸残基)
四、共价催化
• 共价催化:在催 化时,亲核基团 或亲电基团发生 亲核取代和亲电 加成反应, 通过共
价键与底物形成不 稳定的共价酶 - 底物 复合物 , 降低反应 :
糖原磷酸化酶
各种类型可逆的共价修饰
ATP结构式
ATP的形成
尿苷酸结构式
第四节 同 工 酶
1. 同工酶定义
• 同工酶是指催化相同的化学反应,但其 蛋白质分子结构、理化性质和免疫性能 等方面都存在明显差异的一组酶。 • 存在部位:同工酶不仅存在于同一个体 的不同组织中,甚至同一组织、同一细 胞的不同亚细胞结构中。
6、底物通过次级键结合到酶上。
酶与底物结成ES复合物主要靠次级键: 氢键、盐键、范德华力和疏水相互作用
7、 酶活性部位相对于整个酶分子来
说更敏感 (变性时首先失活)
二、研究酶活性部位的方法
• 1.侧链基团的化学修饰法 • 可以被化学修饰的基团很多,如巯基、 羟基、咪唑基、氨基、羧基和胍基等。
• 2.定点诱变法
大增加了底物的有效浓度)
•定向效应是指反应物的反应 基团之间或酶的催化基团与底 物的反应基团之间的正确取位。
二、底物的形变和诱导契合
• 当酶遇到其专一性底 物时,酶中某些基团 或离子可以使底物分 子内敏感键的某些基 团的电子云密度增高 或降低,使敏感键的 一端更加敏感,底物 分子发生形变,底物 比较接近它的过渡态, 降低了反应活化能, 使反应易于发生。
酶催化机理的实例
胰凝乳蛋白酶(电荷中继网) 催化三联体 Asp---His---Ser
酶的作用和作用机理图
酶的作用和作用机理
酶是一种生物催化剂,能够促进生物体内化学反应的进行。
它们在细胞内起着
关键的作用,参与各种代谢和合成过程。
酶主要通过降低反应的活化能来加速反应速率,从而促进化学反应的进行。
酶的作用
酶在生物体内担任多种重要功能,包括但不限于以下几个方面:
1.代谢调节: 酶能够调节代谢途径中的不同步骤,使代谢反应按需进行,
从而维持生物体内稳态。
2.消化: 消化酶在肠道中促进食物的消化,将食物中的大分子物质分解
为小分子,以便生物体吸收。
3.免疫反应: 某些酶能够参与免疫反应,破坏病原体或调节免疫系统的
活性。
4.DNA复制和修复: 酶在DNA复制和修复过程中起着至关重要的作用,
确保基因组的稳定。
酶的作用机理
酶的作用机理主要可以归结为以下几点:
1.底物结合: 酶能够与底物特异性结合,形成酶-底物复合物。
这种结合
有利于酶调控底物的构象,从而降低反应的活化能。
2.催化反应: 酶通过提供合适的环境,促进底物分子之间的相互作用和
化学键的断裂和形成。
这种作用类似于锁和钥的配合,使反应更容易发生。
3.产物释放: 反应发生后,酶能够释放产物,重新进入下一轮催化过程。
这样,酶可以持续地催化反应,不断加速代谢过程的进行。
综上所述,酶在生物体内具有多种重要作用,其作用机理主要包括底物结合、
催化反应和产物释放等步骤。
通过这些作用,酶能够实现高效、特异性地促进生物体代谢的进行,维持生命的正常运转。
生物化学中的酶催化机理和反应调节
生物化学中的酶催化机理和反应调节生物化学是研究生命体系中各种化学反应的科学,其中重要的一部分就是酶催化机理和反应调节。
酶是一种催化剂,能够加速化学反应的速率,而且是高度选择性的,只作用于特定的底物分子。
酶催化机理的探究历史可以追溯到19世纪末,后来发现酶是种蛋白质,酶的催化反应具有活性位点,并且与底物特异性相关。
酶的运转机理是很复杂的,但一般可以分为酶的底物结合、酶催化底物转化、产品的释放三个方面。
酶与底物结合的过程可以通过酶底物复合物能量来描述,ΔG反映的是酶底物复合物的稳定程度。
当ΔG<0时,说明反应向前进行,能够释放自由能,反之,如果ΔG>0,则说明反应不利于放能反应。
酶与底物结合形成的酶底物复合物会经历过渡态,然后变成反应物中间体,最后输出产物。
酶的催化底物转化过程是多种因素相互作用的结果,其中最重要的因素是亲合力和底物取向。
酶的亲合力强,底物容易结合,因此可以有效地提高反应速率。
底物的取向是酶催化过程中的关键因素之一,因为酶只能作用于特定的底物分子,因此底物的取向也会影响酶与底物的结合程度。
此外,科学家们还研究了许多不同类型的酶,如氧化酶、羧化酶、水解酶等,它们的催化机理也不会完全相同。
反应调节是指在反应过程中调节反应速率的过程,常见的为反馈抑制和激活。
反馈抑制是指高浓度的产物能够抑制酶催化反应的速率,而激活则是指诸如激素、离子等会增强酶的活性。
我们可以以糖元代谢途径为例,这是一套复杂的反应过程,其中磷酸果糖激酶就是一个被调节的酶,如果磷酸果糖浓度过高,就会导致反馈抑制,从而降低底物的反应速率,这也是人体内糖分代谢调节的一种常见方式。
总的来说,生物化学的酶催化机理和反应调节是一个极为复杂的过程,涉及多个因素相互作用的结果。
在未来的研究中,我们需要更深入地探究酶催化反应的机理,加深我们对生命体系内化学反应的理解。
中国海洋大学生物化学课件8.酶的作用机制和酶的调节-讲义
第八章酶的作用机制和酶的调节目的和要求:理解、掌握酶活性部位的相关概念和特点;掌握酶催化高效性的相关机理;了解几种酶的催化机制,理解结构和功能的适应性;了解酶活性的调节方式,掌握酶活性的别构调节、可逆共价调节和酶原激活调节方式及生物代谢中的作用。
一、酶的活性部位㈠酶的活性部位的特点1、概念:三维结构上比较接近的少数特异的氨基酸残基参与底物的结合与催化作用,这一与酶活力直接相关的区域称酶的活性部位。
结合部位:专一性催化部位:催化能力,对需要辅酶的酶分子,辅酶或其一部分就是活性中心的组成部分;组成酶活性部位的氨基酸数目对不同酶而言存在差异,占整个酶氨基酸残基小部分酶活性部位的基团:亲核性基团,丝氨酸的羟基,半胱氨酸的巯基和组氨酸的咪唑基。
酸碱性基团:天冬氨酸和谷氨酸的羧基,赖氨酸的氨基,酪氨酸的酚羟基,组氨酸的咪唑基和半胱氨酸的巯基等。
2、特点⑴活性部位在酶分子的总体中只占相当小的部分(1%~2%)⑵酶的活性部位是一个三维实体⑶酶的活性部位并不是和底物的形状互补的⑷酶的活性部位是位于酶分子表面的一个裂隙内⑸底物通过次级键结合到酶上⑹酶活性部位具有柔性㈡研究酶活性部位的方法(略)1、酶分子基团的侧链化学修饰⑴非特异性共价修饰:活力丧失程度与修饰剂浓度有正比关系;底物或可逆的抑制剂可保护共价修饰剂的修饰作用。
⑵特异性共价修饰:分离标记肽段,可判断活性部位的氨基酸残基,如二异丙基氟磷酸(DFP)专一性与胰凝乳蛋白酶活性部位丝氨酸残基的羟基结合。
⑶亲和标记:利用底物类似物和酶活性部位的特殊亲和力将酶加以修饰标记来研究酶活性部位的方法。
修饰剂的特点:①结构与底物类似,能专一性引入到酶活性部位;②具活泼化学基团,能与活性部位某一氨基酸共价结合,相应的试剂称“活性部位指示剂”。
胰凝乳蛋白酶和胰蛋白酶,TPE是酶的底物,TPCK是酶的亲和试剂,当酶与TPCK温浴后,酶活性丧失,这种结合具有空间结构的需求,同时也阻止其他试剂如DFP结合。
生物化学-第三章中
1.消化系统蛋白酶原的激活
胰凝乳蛋白酶原
(胰蛋白酶)
六肽
肠 激 酶
活性中心
胰蛋白酶原 胰蛋白酶
胰蛋白酶原的激活示意图
胰蛋白酶对消化道酶的激活作用
胰蛋白酶原
肠 激 酶 胰凝乳蛋白酶原
六肽 弹性蛋白酶原
胰凝乳蛋白酶
胰蛋白酶
弹性蛋白酶
羧肽酶原
羧肽酶
激肽原 激肽释放酶
12中蛋白质凝 血因子有7种是 丝氨酸蛋白酶
进入过渡态,降低了反应活化能,使反应
易于发生。 或者酶构象发生改变的同时,底物分子也发 生形变,形成互相契合的酶-底物复合物。
过渡态
能
量
一般催化 剂反应活
改 化能
变 初态
非催化反应活化能
酶促反应活化能
反应总能量变化 终态
酶促反应活化能的改变
酶(E)与底物(S)结合生成不稳 定的中间物(ES),再分解成产物 (P)并释放出酶,使反应沿一个低 活化能的途径进行,降低反应所需 活化能,所以能加快反应速度。
侧链基团),酶活力丧失与修饰剂浓度成比例,底 物或竞争性抑制剂可降低修饰作用。
特异性共价修饰(作用于酶的特定氨基酸),
如二异丙基氟磷酸(DFP)与酶活性部位的丝氨酸 羟基结合;
亲和标记试剂可以与活性部位的特定基团共价定
量结合,如对甲苯磺酰-L-苯丙氨酰氯甲基酮(TPCK) 与胰凝乳蛋白酶活性部位丝氨酸羟基的结合, 与底 物结构比较类似-亲和标记-自杀性底物也是。
别构剂: 正别构剂---别构激活剂 负别构剂---别构抑制剂
(二)别构酶
别构酶均为寡聚酶,除活性部位外,
还有可以同效应物(调节物)结合的
调节部位.
别构酶的调控方式有四类:
生物化学第10章 酶的作用机理和酶的调节
别够调节可发生在底物-底物、调节物-底物、调节物-调节 物之间,可以是正协同也可以是负协同。
2.别构酶的动力学
别构酶的[S]对V0的动力学曲线不是双曲线,而是S形曲线(正协 同)或表观双曲线(负协同),二者均不符合米氏方程。
定向效应: 底物会诱导酶分子构象改变,使酶活性中心的相 关基团和底物的反应基团正确定向排列,使反应基团之间 的分子轨道以正确方向严格定位,使酶促反应易于进行。
2. 底物的形变(distortion)与诱导契合
当酶遇到其底物时,酶中某些基团或离子可以使底物分子 内敏感键中的某些基团的电子云密度增高或降低,产生“电子 张力”,使敏感键的一端更加敏感,底物分子发生形变,底物 比较接近它的过渡态,降低了反应活化能,使反应易于发生。
[S] (10-4molL-1)
(NAG)2 (NAG)3 (NAG)4 (NAG)5 (NAG)6 (NAG)8
相对水解率
0 1 8 4000 30000 30000
××
ABCDEF
NAG-NAM-NAG-NAM-NAG-NAM
××
NAG-NAG-NAG
NAG-NAG-NAG-NAG NAG-NAG-NAG-NAG-NAG NAG-NAM-NAG-NAM-NAG-NAM
酶与底物给合时构象变化的示意图
3.多元催化和协同效应
在酶催化反应中,几个基元催化反应配合在一起起作用, 如:胰凝乳蛋白酶是通过Asp102, His57,Ser195组成电荷中继网 催化肽键水解,包括亲核和酸碱共同催化共同作用。
4. 活性部位微环境的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶作用机理和调节
一、选择题
⒈关于酶活性中心的描述,哪一项正确?()
A、所有的酶都有活性中心;
B、所有酶的活性中心都含有辅酶;
C、酶的必须基团都位于酶的活性中心内;
D、所有的抑制剂都是由于作用于酶的活性中心;
E、所有酶的活性中心都含有金属离子
⒉酶分子中使底物转变为产物的基团是指:()
A、结合基团;
B、催化基团;
C、疏水基团;
D、酸性基团;
E、碱性基团
⒊酶原的激活是由于:()
A、氢键断裂,改变酶分子构象;
B、酶蛋白和辅助因子结合;
C、酶蛋白进行化学修饰;
D、亚基解聚或亚基聚合;
E、切割肽键,酶分子构象改变
⒋同工酶是指()
A、辅酶相同的酶;
B、活性中心的必需基团相同的酶;
C、功能相同而分子结构不同的酶;
D、功能和性质都相同的酶;
E、功能不同而酶分子结构相似的酶
⒌有关别构酶的结构特点,哪一项不正确?()
A、有多个亚基;
B、有与底物结合的部位;
C、有与调节物结合的部位;
D、催化部位和别
构部位都位于同一亚基上;E、催化部位与别构部位既可以处于同一亚基也可以处于不同亚基上。
⒍属于酶的可逆性共价修饰,哪项是正确的?
A、别构调节;
B、竞争性抑制;
C、酶原激活;
D、酶蛋白和辅基结合;
E、酶的丝氨酸羟基磷酸化
⒎溶菌酶在催化反应时,下列因素中除哪个外,均与酶的高效率有关?()
A、底物形变;
B、广义酸碱共同催化;
C、临近效应与轨道定向;
D、共价催化;
E、无法确定
⒏对具有正协同效应的酶,其反应速度为最大反应速度0.9时底物浓度([S]0.9)与最大反应
旗开得胜速度为0.1时的底物浓度([S]0.1)二者的比值[S]0.9/[S]0.1应该为()
A、>81;
B、=81;
C、<81;
D、无法确定
⒐以Hill系数判断,则具负协同效应的别构酶()
A、n>1;
B、n=1;
C、n<1;
D、n≥1;
E、n≤1。