复变函数论第三版课后习题答案
复变函数论第三版课后习题答案[1]
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3iz e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论_钟玉泉_第三版_高教_答案_清晰版
z0
, 因此总可以选取 Argzn 的一个值 arg z n . 当
n N 时,有 arg z n 0 ( ) ,因 0 时, ( ) 0 .因而, 总可以选取 ,
使 ( ) 小于任何给定的 0 , 即总有 arg z arg z 0 . 因此 f ( z ) 在 z 0 连 续. 综上讨论得知, f ( z ) 除原点及负实轴上的点外处处连续. 14. 证 明 : 由 于 f ( z ) 的 表 达 式 都 是 x, y 的 有 理 式 , 所 以 除 去 分 母 为 零 的 点
y 0 y x 1 0 arg( z 1) 0 arctan (4)由 4 得 x 1 4 即 2 x3 2 x3 2 Re z 3
可知 z 点的轨迹是一梯形(不包括上,下边界);不是区域. (5) z 点的轨迹是以原点为圆心,2 为半径以及(3,0)为圆心,1 为半径得两闭圆的 外部.是区域. (6) z 点的轨迹的图形位于直线 Im z 1 的上方(不包括直线 Im z 1 )且在以原点 为圆心,2 为半径的圆内部分(不包括圆弧);是区域. (7) z 点的轨迹是 arg z
2
2
z1 z 2 z1 z 2
2
2
2( z1 z 2 )
2
2
几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第 4 题知 z1 z 2 z1 z 2 由题目条件
2 2
2( z1 z 2 )
2
2
z1 z 2 z 3 0 知 z1 z 2 z 3
z 0 , f ( z ) 是连续的,因而只须讨论 f ( z ) 在 z 0 的情况.
复变函数与积分变换(第三版)答案
A.可去奇点B本性奇点
C.极点D奇点但非孤立奇点
二、填空题(4×5ቤተ መጻሕፍቲ ባይዱ20)
1. 的解析区域是_____.
2.若 ,则
3.函数 的傅立叶变换是_____.
4.调和函数 的共轭调和函数是_________.
5.设 ,则
三.计算题(12×4=48)
1.计算 。
2.求函数 在 的泰勒展式,并表明泰勒级数的收敛圆盘。
复变函数
习题1
习题二
习题三
习题四
习题五
习题八
习题九
2.
3.
8.
常考习题附录
一.选择题(4×5=20)
1.下列点集是复平面单连通区域的是:
A. B. C. D.
2.下列函数在整个z平面解析的是:
A. B. C. D.
3..函数项级数 收敛半径是:
A.0 B. 1 C. D.
4.已知函数 的Laplace变换是 ,那么 的Laplace逆变换是
3.计算积分 ,其中C: 。
4.求积分 。
四.证明题(12分)
1.设幂级数 在 条件收敛,则级数的收敛半径为
复变函数论第三版课后习题答案[1]
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=± 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案
第一章习题解答〔一〕1.设z =z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版钟玉泉第二章
如果函数 f (z)在区域 D内每一点解析, 则称 f (z)在区域 D内解析. 或称 f (z)是 区域 D内的一 个解析函数(全纯函数或正则函数).
2. 奇点的定义
若函数 f (z )在点 z 0不解析,但在 z 0 的任一邻域内总 有f (z )的解析点,则称 z 0 为函数f (z ) 的奇点.
dw f (z0 ) z f (z0 ) dz, 即
f
( z0
)
dw dz
z z0
函数w f (z)在 z0 可导与在 z0 可微是等价的.
如果函数 f (z)在区域 D内处处可微, 则称
8 f (z)在区域 D内可微.
复变函数论
广西教育学院
二、解析函数的概念
1. 解析函数的定义 如果函数 f (z) 在 z0 及 z0 的某邻域内处处可导 ,
若 f (z ) = u (x, y ) + iv (x, y ) 在一点z = x + iy,可微,设
lim f (z + D z ) - f (z ) = f ' (z )
Dz? 0
Dz
(1)
设 Vz =Vx + iVy, f (z + Vz )- f (z ) = Vu + i Vv,
Vu = u (x + Vx, y + Vy )- u (x, y )
z
z
x iy
y , x iy
当点沿平行于实轴的方向(y 0)而使z 0时,
lim f lim f (z z) f (z) lim y 0,
z0 z z0
z
x0 x iy
y0
当点沿平行于虚轴的方向(x 0)而使z 0时,
[VIP专享]复变函数论第三版课后习题答案[1]46
第一章习题解答(一)1.设,求及。
z z Arcz 解:由于3z e π-==所以,。
1z =2,0,1,3Arcz k kππ=-+=± 2.设,试用指数形式表示及。
121z z ==12z z 12z z 解:由于6412,2i i z e z i e ππ-====所以()64641212222i i iiz z e eeeπππππ--===。
54()146122611222ii i i z e ee z e πππππ+-===3.解二项方程。
440,(0)z a a +=>解:。
12444(),0,1,2,3k i za e aek πππ+====4.证明,并说明其几何意义。
2221212122()z z z z z z ++-=+证明:由于2221212122Re()z z z z z z +=++ 2221212122Re()z z z z z z -=+- 所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又 )())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z 故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数论第三版课后习题答案[1]
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±L 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是接于单位圆1=z 的一个正三角形。
6.下列关系表示点z 的轨迹的图形是什么?它是不是区域。
(1) 1212,()z z z z z z -=-≠; 解:点z 的轨迹是1z与2z 两点连线的中垂线,不是区域。
(2)4z z ≤-; 解:令z x yi =+由(4)x yi x yi +≤-+,即2222(4)x y x y +≤-+,得2x ≤ 故点z 的轨迹是以直线2x =为边界的左半平面(包括直线2x =);不是区域。
(3)111z z -<+ 解:令z x yi =+,由11z z -<+,得22(1)(1)x x -<+,即0x >; 故点z 的轨迹是以虚轴为边界的右半平面(不包括虚轴);是区域。
(4)0arg(1),2Re 34z z π<-<≤≤且;解:令z x yi =+由0arg(1)42Re 3z z π⎧<-<⎪⎨⎪≤≤⎩,得0arg1423y x x π⎧<<⎪-⎨⎪≤≤⎩,即0123y x x <<-⎧⎨≤≤⎩ 故点z 的轨迹是以直线2,3,0,1x x y y x ====-为边界的梯形(包括直线2,3x x ==;不包括直线0,1y y x ==-);不是区域。
(5)2,1z z >>且-3; 解:点z 的轨迹是以原点为心,2为半径,及以3z =为心,以1为半径的两闭圆外部,是区域。
(6)Im 1,2z z ><且; 解:点z 的轨迹是位于直线Im 1z =的上方(不包括直线Im 1z =),且在以原点为心,2为半径的圆部分(不包括直线圆弧);是区域。
(7)2,0arg 4z z π<<<且;解:点z 的轨迹是以正实轴、射线arg 4z π=及圆弧1z =为边界的扇形(不包括边界),是区域。
(8)131,2222i z z i ->->且 解:令z x yi =+由1223122i z z i ⎧->⎪⎪⎨⎪->⎪⎩,得2211()2431()24x y x y ⎧+->⎪⎪⎨⎪+->⎪⎩ 故点z 的轨迹是两个闭圆221131(),()2424xy x y +-=+-=的外部,是区域。
7.证明:z 平面上的直线方程可以写成C z a z a =+(a 是非零复常数,C 是实常数) 证 设直角坐标系的平面方程为Ax By C +=将11Re (),Im ()22x z z z y z z z i==+==-代入,得C z B A z B A =-+-)i (21)i (21令)i (21B A a +=,则)i (21B A a -=,上式即为C z a z a =+。
反之:将,z x yi z x yi =+=-,代入C z a z a =+ 得()()a a x ia ia y c ++-= 则有Ax By C +=;即为一般直线方程。
8.证明:z 平面上的圆周可以写成0.Azz z z c ββ+++=其中A 、C 为实数,0,A β≠为复数,且2AC β>。
证明:设圆方程为22()0A x y Bx Dy C ++++=其中0,A ≠当224B D AC +>时表实圆;将2211,(),()22x y zz x z z y z z i+==+=-代入,得 11()()022Azz B Di z B Di z c +-+++=即0.Azz z z c ββ+++= 其中11(),()22B Di B Di ββ=+=- 且22211()444B D AC AC β=+>•=;反之:令,z x yi a bi β=+=+代入20()Azz z z c AC βββ+++=>得22()0,A x y Bx Dy C ++++=其中2,2B a B b == 即为圆方程。
10.求下列方程(t 是实参数)给出的曲线。
(1)t z i)1(+=; (2)t b t a z sin i cos +=;(3)t t z i+=; (4)22i t t z +=,解(1)⎩⎨⎧∞<<-∞==⇔+=+=t t y t x t y x z ,)i 1(i 。
即直线x y =。
(2)π20,sin cos sin i cos i ≤<⎩⎨⎧==⇔+=+=t t b y ta x tb t a y x z ,即为椭圆12222=+b y a x ;(3)⎪⎩⎪⎨⎧==⇔+=+=t y t x t t y x z 1i i ,即为双曲线1=xy ; (4)⎪⎩⎪⎨⎧==⇔+=+=22221i i t y t x t t y x z ,即为双曲线1=xy 中位于第一象限中的一支。
11.函数z w 1=将z 平面上的下列曲线变成w 平面上的什么曲线()iv u w iy x z +=+=,?(1)x y =; (2)()1122=+-y x解222211y x yiy x x iy x z w +-+=+==,2222,y x y v y x x u +-=+=,可得 (1)()vy x y y x y y x x u -=+--=+=+=222222是w 平面上一直线;(2)()21211222222=+⇔=+⇔=+-y x x x y x y x ,于是21=u ,是w 平面上一平行与v 轴的直线。
13.试证)arg (arg ππ≤<-z z 在负实轴上(包括原点)不连续,除此而外在z 平面上处处连续。
证 设z z f arg )(=,因为f (0)无定义,所以f (z )在原点z =0处不连续。
当z 0为负实轴上的点时,即)0(000<=x x z ,有 ⎩⎨⎧-=⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+=-+→→→→→ππππx y x y z y x x y x x z z arctan lim arctan lim arg lim 00000所以zz z arg lim 0→不存在,即z arg 在负实轴上不连续。
而argz 在z 平面上的其它点处的连续性显然。
14. 设00=≠z z求证()z f 在原点处不连接。
证 由于()01lim lim lim 42062400=+=+=→→=→x x x x x z f x x xy z()21lim lim 666003=+=→=→y y y z f y yx z( )⎪ ⎩⎪ ⎨ ⎧ + = , 0 , 6 2 3 y x xy z f可知极限()z fz0lim→不存在,故()z f在原点处不连接。
16. 试问函数f(z) = 1/(1 –z )在单位圆| z | < 1是否连续?是否一致连续?【解】(1) f(z)在单位圆| z | < 1连续.因为z在连续,故f(z) = 1/(1 –z )在\{1}连续(连续函数的四则运算),因此f(z)在单位圆| z | < 1连续.(2) f(z)在单位圆| z | < 1不一致连续.令z n= 1 – 1/n,w n= 1 – 1/(n + 1),n+.则z n, w n都在单位圆| z | < 1,| z n w n | 0,但| f(z n)f(w n)| = | n (n + 1) | = 1 > 0,故f(z)在单位圆| z | < 1不一致连续.[也可以直接用实函数f(x) = 1/(1 –x )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z)在E = { z | Im(z) = 0, 0 < Re(z) < 1 }上的限制即可.]17. 试证:复数列z n = x n + i y n以z0 = x0 + i y0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0为极限.【解】() 若复数列z n = x n + i y n以z0 = x0 + i y0为极限,则 > 0,N+,使得n > N,有| z n z0| < .此时有| x n x0| | z n z0| < ;| y n y0| | z n z0| < .故实数列{x n}及{y n}分别以x0及y0为极限.() 若实数列{x n}及{y n}分别以x0及y0为极限,则 > 0,N1+,使得n > N1,有| x n x0| < /2;N2+,使得n > N2,有| y n y0| < /2.令N = max{N1, N2},则n > N,有n > N1且n > N2,故有| z n z0| = | (x n x0) + i (y n y0)| | x n x0| + | y n y0| < /2 + /2 = .所以,复数列z n = x n + i y n以z0 = x0 + i y0为极限.20. 如果复数列{z n}合于lim n z n = z0,证明lim n (z1 + z2 + ... + z n)/n = z0.当z0时,结论是否正确?【解】(1) > 0,K+,使得n > K,有| z n z0| < /2.记M = | z1z0 | + ... + | z K z0 |,则当n > K时,有| (z1 + z2 + ... + z n)/n z0 | = | (z1z0) + (z2z0) + ... + (z n z0) |/n ( | z1z0 | + | z2z0 | + ... + | z n z0 |)/n= ( | z1z0 | + ... + | z K z0 |)/n + ( | z K +1z0 | + ... + | z n z0 |)/n M/n + (n K)/n · (/2) M/n + /2.因lim n (M/n) = 0,故L+,使得n > L,有M/n < /2.令N = max{K, L},则当n > K时,有| (z1 + z2 + ... + z n)/n z0 | M/n + /2 < /2 + /2 = .所以,lim n (z1 + z2 + ... + z n)/n = z0.(2) 当z0时,结论不成立.这可由下面的反例看出.例:z n = (1)n ·n,n+.显然lim n z n = .但k+,有(z1 + z2 + ... + z2k)/(2k) = 1/2,因此数列{(z1 + z2 + ... + z n)/n}不趋向于.[这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.] 2.如果ite z =,试证明(1)nt z z nn cos 21=+; (2)nt z z n nsin i 21=-解 (1)nt e e e e z z n n sin 21int int int int =+=+=+-(2)nt e e e e z z n n sin i 21int int int int =-=-=--4.设iy x z +=,试证yx z y x +≤≤+2。