全等三角形-挖掘隐含条件证全等三角形

合集下载

2015年北师大五数下11全等三角形复习课件(高效)

2015年北师大五数下11全等三角形复习课件(高效)

A
C
D
牛刀小试
如图,已知点D在AB上,点E在AC上,BE和CD相 A 交于点O,AB = AC,∠B = ∠C. 求证:BD = CE
证明 :在△ADC和△AEB中
∠A=∠A(公共角) AC=AB(已知) ∠C=∠B(已知) ∴△ADC≌△AEB(ASA) ∴AD=AE(全等三角形的对应边相等)
B
D
O
E
C
又∵AB=AC(已知)
∴AB-AD=AC-AE即BD=CE(等式性质)
知识回顾---AAS
1、两个角和其中一个角的对边对应相等的两个三角形 全等---AAS A 2、数学语言表达
在△ABC和△DEF中 ∠A=∠D (已知)
∠B=∠E(已知 ) BC=EF(已知 ) ∴ △ABC≌△DEF(AAS)
寻找对应元素的规律:
1、有公共边的,公共边是对应边; 2、有公共角的,公共角是对应角; 3、有对顶角的,对顶角是对应角; 4、两个全等三角形最大的边是对应边,最小的边是对 应边;
5、两个全等三角形最大的角是对应角,最小的角是对 应角;
知识回顾---SSS
1、三边对应相等的两个三角形全等.---SSS 2、数学语言表达:
方法总结---证明两个三角形全等的基本思路
1、已知两边 找第三边 (SSS) 找夹角 (SAS) 找是否有直角 (HL)
找这边的另一个邻角(ASA) 已知一边和它的邻角 找这个角的另一个边(SAS) 2、已知一边一角 找这边的对角 (AAS) 已知一边和它的对角 找一角(AAS) 已知角是直角,找一边 (HL) 3、已知两角 找两角的夹边(ASA) 找夹边外的任意边(AAS)
A
在△ABC与△DEF中
B

全等三角形性质和判定方法的应用课件

全等三角形性质和判定方法的应用课件
回顾与梳理
全等三角形的性质 全等三角形的判定方法
学习目标
1、掌握全等三角形性质和判定方法。 2、运用全等三角形的性质与判定方 法解决实际问题。
课堂流程
1、学习活动一:挖掘“隐含条件”判全等 2、学习活动二:添条件判全等 3、当堂检测
隐含条件1:公共边
已知 AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由。
隐含条件3:对顶角
如图,AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD的长。
解: 在△AOB和△COD中
∠A=∠C
∠AOB=∠COD
OB=OD
∴△AOB≌△COD(AAS)
∴ CD=AB=3cm(全等三角形的对应边相等)
跟踪训练
1、已知:AB=DC,AD=BC。求证:∠A=∠C
解: 在△ABC和△DCB中
AB =DC
AC
=DB
BC =CB
∴△ABC≌△DCB(SSS)
隐含条件2:公共角
已知 AB=AC,AD=AE,∠B=200,CD=5cm.求∠C和BE的长
解: 在△ABE和△ACD中
B D
AB =AC A=A AE =ADOAFra bibliotekE C
∴△ABE≌△ACD(SAS)
∴∠C=∠B=200 BE=CD=5
学习活动二:添条件判全等
2、已知 AC=FE,∠C=∠E, 要使△ABC≌△DEF,还需添加一
个条件,这个条件可以是: ______________
AAS: ∠EDF=∠CBA ∠ADE=∠CBF DE∥CB
SAS: CB=DE ASA: ∠A=∠F AC∥EF
学习活动二:添条件判全等
3、已知 ∠C=∠E, ∠EDF=∠CBA,要使△ABC≌△DEF,还需添 加一个条件,这个条件可以是: ____________

(完整版)全等三角形证明方法(最新整理)

(完整版)全等三角形证明方法(最新整理)

全等三角形的证明方法一、三角形全等的判定:(1)三组对应边分别相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).二、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的高对应相等;(4)全等三角形的对应角的角平分线相等;(5)全等三角形的对应边上的中线相等;三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

①积极发现隐含条件:公共角对顶角公共边②观察发现等角等边:等边对等角同角的余角相等同角的补角相等等角对等边等角的余角相等等角的补角相等③推理发现等边等角:图1:平行转化图2 :等角转化图3:中点转化图4 :等量和转化图5:等量差转化图6:角平分线性质转化图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化图11:等段转化四、构造辅助线的常用方法:1、关于角平分线的辅助线:当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构造全等:如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

八年级数学上册 第十二章 全等三角形 12.2 三角形全等的判定 第3课时 运用“角边角”和“角角边

八年级数学上册 第十二章 全等三角形 12.2 三角形全等的判定 第3课时 运用“角边角”和“角角边
证明:先证∠ACB=∠DCE,再由互补证∠DEC = ∠B,从而证△ ABC≌△DEC.
17
8. 如图,在四边形 ABCD 中,AD∥BC,EF 过 AC 的中点 O,分别交 AD,BC 于点 E,F.
(1)求证:OE=OF; (2)若直线 EF 绕点 O 旋转一定角度后,与 AD,BC 分别交于点 E′,F′,仍有 OE′=OF′吗?为什么? (3)EF 绕点 O 旋转到何处时,线段 EF 最短?
∠2.又∵∠1=∠2,
∴∠1=∠BEO,∴∠AEC=∠BED.
∠A=∠B,
在△ AEC 和△ BED 中,
AE=BE, ∠AEC=∠BED,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED , ∴EC = ED , ∠C = ∠BDE.
在△ EDC 中,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE
第十二章 全等三角形 12.2 三角形全等的判定
第3课时 运用“角边角”和“角角边” 证三角形全等
1
三角形全等的判定方法三: 两角和它们的夹边对
应相等 的两个三角形全等(简写为“ 角边角 ”或
“ ASA ”).由于三角形的内角和为 180° ,所以,
我们也可以得到:两个角和其中一个角的对边对应相

=∠C=69°.
6
知识点 利用“AAS”判定三角形全等
4. 如图,C,B 是线段 AD 上的两点,已知 AM=CN,
∠A=∠DCN,下列条件中不能判定△ ABM≌△CDN 的
是( C )
A.∠M=∠N
B.AC=BD
C.BM=DN
D.BM∥DN
7
5. 如图,已知△ ABC 的六个元素,则对于甲、乙、 丙三个三角形,判断正确的是( C )

关注全等三角形的隐含条件

关注全等三角形的隐含条件

关注全等三角形的隐含条件初学三角形全等,同学们往往找不出证明两个三角形全等的条件,其中一个重要的原因就是忽视了全等三角形中的隐含条件.隐含条件一般可分为下列四种类型:一、公共边例1 如图1,AD//BC 且AD=BC ,试问△ACD 与△CAB 全等吗?为什么?分析:通过AD//BC ,可得出∠DAC=∠BCA ,两个三角形有一边一角对应相等了,再加上公共边AC=CA ,就可证出两个三角形全等.解:因为AD//BC 所以∠DAC=∠BCA . 在△ACD 和△CAB 中⎪⎩⎪⎨⎧=∠=∠=CA AC BAC DAC BC AD ∴△ACD ≌△CAB (SAS ) 二、公共角例2 如图2,AB=AC ,∠B=∠C ,试问AD 与AE 相等吗?分析:AD 与AE 分别在△ADB 和△AEC 中,要证明AD=AE ,必须证明这两个三角形全等,已经有一边一角对应相等,再加上公共角∠A ,就可以判定这两个三角形全等.解:AD 与AE 相等理由如下: 在△ADB 和△AEC 中⎪⎩⎪⎨⎧∠=∠=∠=∠A A AC AB C B ∴△ADB ≌△AEC (ASA )∴AD=AE (全等三角形的对应边相等) 三、对顶角例3:要测出一池塘两端A 、B 的距离,如图3,设计如下方案:先在平地上取一点可以直接到达A 、B 的点C ,连接AC 并延长到D ,使CD=AC ,连接BC 并延长到E ,使CE=BC ,最DCBA图1EDCBA图2后测出DE 的长即为A 、B 之间的距离,为什么?分析:已知两边对应相等,再找夹角.根据对顶角相等,用SAS 公理即可证明两个三角形全等.解:在△ABC 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=CE BC DEC ACB CD AC ∴△ABC ≌△DEC (SAS )∴AB=DE (全等三角形的对应边相等) 四、客观规律例4:中午12点时,操场上垂直于地面竖立着两根一样长的竹竿,如图4,它们的影长相等吗?分析:这道题已知AB=A ˊB ˊ,∠ABC=∠A ′B ′C ′=90°,还容易忽视的一个客观规律那就是太阳光线可以看成是平行的.解:因为AC//A ′C ′ 所以∠ACB=∠A ′C ′B ′ 在△ABC 和△A ′B ′C ′中⎪⎩⎪⎨⎧''='''∠=∠︒='''∠=∠B A AB B C A ACB C B A ABC 90 ∴△ABC ≌△A ′B ′C ′(AAS ) ∴AB= A ′B ′ 即它们的影长相等.EDCBA图3C ′B ′A ′C BA图4。

全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇

全等三角形数学教案优秀5篇更多全等三角形数学教案资料,在搜索框搜索全等三角形数学教案篇1教学目标一、学问与技能1、了解全等形和全等三角形的概念,把握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并把握全等三角形的对应边相等,对应角相等。

教学难点正确查找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以查找全等三角形的对应点、对应边、对应角。

课前预备:老师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:老师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,样子和大小都相同。

你还能说一说自己身边还有哪些样子和大小都相同的图形吗?[学生举例,集体评析] 动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形] 刚才大家所举的各种各样的样子大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

(三)全等三角形的定义动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。

《全等三角形》数学教学PPT课件(6篇)

《全等三角形》数学教学PPT课件(6篇)
加深理解
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text

初二数学全等三角形教案(五篇)

初二数学全等三角形教案(五篇)

初二数学全等三角形教案〔五篇〕初二数学全等三角形教案篇一1.定义:能够的两个三角形叫全等三角形。

2.全等三角形的性质,全等三角形的判定方法见下表。

一。

挖掘“隐含条件〞判全等如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)1.如图AB=CD,AC=BD,那么△ABC≌△DCB吗?说说理由。

变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD2.如图点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.假设∠B=20°,CD=5cm,那么∠CD的度数与BE的长。

3.如图假设OB=OD,∠A=∠C,假设AB=3cm,求CD的长。

变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD 二。

添条件判全等1.如图,AD平分∠BAC,要使△ABD≌△ACD,根据“SAS〞需要添加条件;根据“ASA〞需要添加条件;根据“AAS〞需要添加条件。

2.AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是。

三。

熟练转化“间接条件〞判全等1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?3.“三月三,放风筝〞,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。

稳固练习:如图,在中,,沿过点B的一条直线BE折叠,使点C恰好落在AB变的中点D处,那么∠A的度数。

4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D1.(2022攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。

所添条件为全等三角形是△≌△2.如图,AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE3.如图,AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L 的垂线,垂足分别为M、N(1)你能找到一对三角形的全等吗?并说明。

初二数学知识点:全等三角形

初二数学知识点:全等三角形

初二数学知识点:全等三角形
初二数学知识点:全等三角形
大家都知道,能够完全重合的两个三角形叫做全等三角形(congruent triangles)。

那么接下来的全等三角形知识请同学认真记忆了。

一、知识框架:
二、知识概念:
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
3.全等三角形的判定定理:
⑴边边边():三边对应相等的两个三角形全等.
⑵边角边():两边和它们的夹角对应相等的两个三角形全等.
⑶角边角():两角和它们的夹边对应相等的两个三角形全等.
⑷角角边():两角和其中一个角的对边对应相等的两个三角形
全等.
⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.
4.角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的'内部到角的两边距离相等的点在角的平分线上.
5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.。

全等三角形解题方法与技巧

全等三角形解题方法与技巧

“三步曲”证全等牢记判定定理:SSS SAS ASA AAS HL一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离出基本图形)二看条件:(一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。

)1、利用公共边(或公共角)相等例1:如图1,AB DC,AC DB,△ABC≌△DCB全等吗?为什么?练习1:已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上一点。

求证:EB=ED。

DA E CB2、利用对顶角相等例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗?练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。

求证:∠ACE=∠BDF 。

3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由.练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

AED CBA BCDEFO4、利用平行线的性质得出同位角、内错角相等例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数.练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E、G ,试在图中找出三对全等三角形,并对其中一对给出证明。

(二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。

基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。

例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F. 求证:ABC DEF △≌△.例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 .例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .图1图2D CE A BCEBFDAFEDCAB G H练习1:已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E,OF ⊥CD 于F。

13章全等三角形

13章全等三角形

2,如图,D,E是△ABC中BC边上 ,如图, , 是 中 边上 两点, 两点,AD=AE. . 欲证: 欲证:△ABE≌△ACD,还应补 ≌ , 充哪些条件? 充哪些条件? AD=AE 1=∠2 (AS) ∠ ∠ ) SAS
BE=CD
ASA ∠BAE=∠CAD ∠
1 2
∠ AAS ∠B=∠C
小 结
二,基础知识复习: 基础知识复习:
1,如图,列出使△ABD≌△ACD的条件. ,如图, 的条件. ≌
隐含条件: 隐含条件:AD=AD(公共边) (公共边)
SSS AD=AD AB=AC BD=CD ∠ SAS AD=AD ∠1=∠2 AB=AC
AD=AD ∠3=∠4 BD=CD ∠ ∠ ∠ ASA ∠1=∠2 AD=AD ∠3=∠4 ∠ ∠ AAS ∠1=∠2 ∠B=∠C AD=AD ∠B=∠C ∠3=∠4 AD=AD ∠ ∠
1,三角形全等的判定方法 2,证明三角形全等的思路
作 业
1,完成第4,5题的证明; , 题的证明; 2,一课一练: ,一课一练:
31~ P31~32 一顾: 知识回顾:
1,全等三角形的定义 能够完全重合的两个三角形 叫全等三角形. 叫全等三角形 2,全等三角形的性质 全等三角形的对应边相等. 全等三角形的对应边相等 全等三角形的对应角相等. 全等三角形的对应角相等 3,判定两个三角形全等的方法 SSS SAS ASA AAS HL(Rt△) ( △

全等三角形的判定(总复习)

全等三角形的判定(总复习)
8
8.“三月三,放风筝”如图(6)是小东同 学自己做的风筝,他根据AB=AD,BC=DC, 不用度量,就知道∠ABC=∠ADC。请用 所学的知识给予说明。
解: 连接AC
在△ABC和△ADC中, AB=AD(已知) BC=DC(已知) AC=AC(公共边)
∴△ADC≌△ABC(SSS)
∴ ∠ABC=∠ADC (全等三角形的对应角相等)
2
一、挖掘“隐含条件”判全等
1.如图(1),AB=CD,AC=BD,则 △ABC≌△DCB吗?说说理由 B
A
D
2.如图(2),点D在AB上,点E在AC上,CD与 A O BE相交于点O,且AD=AE,AB=AC.若 E ∠B=20°,CD=5cm,则 C 5cm 20 ° 图(2) ∠C= ,BE= .说说理由. A D 3.如图(3),AC与BD相交于O,若OB=OD, 3cm ∠A=∠C,若AB=3cm,则CD= . O 说说理由. B C 图(3)
A D
B
E
C
F
5
三、熟练转化“间接条件”判全等 A
F 6如图,AE=CF,∠AFD=∠CEB,DF=BE, △AFD与△ CEB全等吗?为什么? 解答 7.如图(5)∠CAE=∠BAD,∠B=∠D, AC=AE,△ABC与△ADE全等吗? 解答 为什么? E A B
D E C B D
C 8.“三月三,放风筝”如图(6)是小东同学自己 做的风筝,他根据AB=AD,BC=DC,不用度量, 就知道∠ABC=∠ADC。请用所学的知识给予 说明。 解答
全等三角形的判定
1
三角形全等的4个种判定公理:
SSS(边边边) SAS(边角边) ASA(角边角) AAS(角角边)
有两角和及其中 有三边对应相 有两边和它们的 有两角和它们的夹 一个角所对的边对 等的两个三角形 夹角对应相等的 边对应相等的两个 应相等的两个三角 全等. 两个三角形全等. 三角形全等. 形全等.

第12章《全等三角形》全章教案(11页,含反思)

第12章《全等三角形》全章教案(11页,含反思)

第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。

初二几何: 第四讲:全等三角形的判定

初二几何: 第四讲:全等三角形的判定
SSS(边边边) SAS(边角边) ASA(角边角) AAS(角角边)
有两角和及其中 有三边对应相 有两边和它们的 有两角和它们的夹 一个角所对的边对 等的两个三角形 夹角对应相等的 边对应相等的两个 应相等的两个三角 全等. 两个三角形全等. 三角形全等. 形全等.
8
例、如图,已知AB=AC,AD=AE,AB、DC相交于
C
友情提示:公共边,公共角, 对顶角这些都是隐含的边,角相等的条件!
10
二.添条件判全等
B
4、如图,已知AD平分∠BAC, A D 要使△ABD≌△ACD, • 根据“SAS”需要添加条件 AB=AC ; C ∠BDA=∠CDA • 根据“ASA”需要添加条件 ; • 根据“AAS”需要添加条件 ∠B=∠C ;
A
D
E C
14
7.如图(5)∠CAE=∠BAD,∠B=∠D, AC=AE,△ABC与△ADE全等吗?为什么? B 解:∵ ∠CAE=∠BAD(已知) D E ∴ ∠CAE+∠BAE=∠BAD+∠BAE
(等量减等量,差相等)
C
A
即∠BAC=∠DAE 在△ABC和△ADE中, ∠B=∠D(已知) ∠BAC=∠DAE(已证) AC=AE(已知) ∴△ABC≌ △ADE (AAS)
A D
B
E
C
F
12
A
D
F E C B D A
三、熟练转化“间接条件”判全 等
6如图,AE=CF,∠AFD=∠CEB,DF=BE, B △AFD与△ CEB全等吗?为什么? 解答 7.如图(5)∠CAE=∠BAD,∠B=∠D, E AC=AE,△ABC与△ADE全等吗? 解答 为什么? C 8.“三月三,放风筝”如图(6)是小东同学自己 做的风筝,他根据AB=AD,BC=DC,不用度量, 就知道∠ABC=∠ADC。请用所学的知识给予 说明。 解答

新人教版八年级上册《全等三角形》知识点归纳总结

新人教版八年级上册《全等三角形》知识点归纳总结

全等三角形一、知识要点:(一)全等变换:只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。

全等变换包括以下三种:1、平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

2、对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

3、旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

(二)全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

(三)全等三角形的性质:全等三角形的对应角相等、对应边相等。

二、题型分析:题型一:考察全等三角形的定义例题:下列说法正确的是()A、全等三角形是指形状相同的两个三角形 C、全等三角形的周长和面积分别相等C、全等三角形是指面积相等的两个三角形D、所有的等边三角形都是全等三角题型二:考察全等三角形之间的关系——传递性例题:如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC和△DEF不全等,△DEF 和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)题型三:根据三角形全等求角例1:△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.例2:如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A、120°B、70°C、60°D、50°第二节三角形全等的判定一、知识要点:(一)三角形全等的判定公理及推论有:1、“边角边”简称“SAS”2、“角边角”简称“ASA”3、“边边边”简称“SSS”4、“角角边”简称“AAS”5、斜边和直角边相等的两直角三角形(HL)。

注:边边角和角角角不成立。

例谈一般三角形全等证明

例谈一般三角形全等证明

例谈一般三角形全等的证明三角形全等问题是教课、考试的要点,而关于初学者来说,仍是有好多问题的。

经过探究,我总结出一些方法经验,供大家参照。

要想证明两个一般三角形全等,能够从以下三个方面入手。

1.明确方法边角边(SAS)角边角(ASA)或角角边(AAS)边边边(SSS)究竟选择哪一种方法,要联合题目中已给的条件(是边还是角),进一步判断还需要什么条件(是边仍是角)。

2.找寻条件直接条件间接条件隐含条件所谓直接条件,就是题目中的已知,能够直接拿来用;间接条件是需要进一步的推导,用的是得出的结论;而隐含条件主假如图形中表现的。

3.套用格式__________=____________________=____________________=__________下边笔者主要就间接条件和隐含条件证明三角形全等列举几个例子。

1.间接条件C、D在同向来线上,AE=BF,CE=DF,AB=CD。

求证:△ACE≌△BDF剖析:从题目中给的条件,能够看出,AE=BF,CE=DF,是两个三角形的两组对应边,可作为直接条件使用;而AB=CD,不是两个三角形的对应边,不可以作为全等的条件使用,但经过察看,不难发现,在AB=CD的两边同时加上BC,就能获取AC=BD,两个三角形的对应边相等,从而切合“边边边”,获取ACE≌△BDF。

②已知:如图,点C、F在直线AD上,且AF=DC,AB=DE,BC=EF,尝试究AB与DE,BC与EF的地点关系,并说明原因。

剖析:从题目中给的条件,能够看出,AB=DE,BC=EF,是两个三角形的两组对应边,可作为直接条件使用;而AF=DC,不是两个三角形的对应边,不可以作为全等的条件使用,但经过察看,不难发现,在AF=DC的两边同时减去FC,就能获取AC=DF,两个三角形的对应边相等,从而切合“边边边”,获取△ACE≌△BDF。

1=∠2,BC=BD,试说明△ABC≌△DBE.剖析:联合图形,我们发现三角形全等的条件有两组对应边相等,即 AB=DB和BC=BD。

初二年级数学的知识点:全等三角形

初二年级数学的知识点:全等三角形

初二年级数学的知识点:全等三角形小编为大伙儿查找了初二年级数学的知识点:全等三角形的资料。

如有关心,期望大伙儿下次一定要扫瞄查字典数学网。

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个能够通过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)边角边简称SAS(2)角边角简称ASA(3)边边边简称SSS(4)角角边简称AAS(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的差不多方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回忆三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形动身,引出全等图形进而引出全等三角形。

通过直观的明白得和比较发觉全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探究中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

一样说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,事实上确实是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”因此也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副事实上的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:∵AC∥DF,∴∠ACB=∠DFE,(内错角相等) ∵BF=EC,∴BF-FC=CE-FC,即BC=EF,(等边减等边) 在△ABC和△DEF中 ∵∠ACB=∠DFE,∠A=∠D, BE=CF,
∴△ABC≌△DEF(AAS)
∴AB=DE.
练一练 1、如图,AB∥DC,AD∥BC,说出△ABD≌ △CDB的理由。
A
E
D
B
C
6
例题二
对顶角相等
1、已知:如图2,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E. 求证:AE=BE;
证明: 在Rt△ACE和Rt△BDE中,
∵∠AEC与∠BED是对顶角,
∴∠AEC=∠BED. ∵∠C=∠D=90°, AC=BD . ∴Rt△ACE ≌ Rt△BDE (AAS) ∴AE=BE.
SAS(边角边) 注意:只有一种定理
如何挖掘隐含条件
例题一
公共边(或公共角)相等
1、已知:如图1,在四边形ABCD中,AB=CB,AD=CD。求证:∠C=∠A.
证明:在△ABD与△CBD中 ∵ AB=CB,AD=CD,BD=BD(公共边) ∴ △ABD≌△CBD (SSS)
2、如图2,已知AD=AE,AB=AC,求证BE=CD。
B
E
C
F
2、如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2,求证BC=DE。 A
∠1 B
D
∠2 CE10 Nhomakorabea例题四
利用等边对等角或互补得角相等
如图4,已知 AB=AC,AD=AE.求证:BD=CE.
证明:∵AD=AE,∴∠ADE=∠AED(等边对等角)
∴∠ADB=∠AEC(互补角相等)
7
练一练
2、如图,在△ABC中,D是BC边上一点,连接AD,过点B作BE⊥AD于点E,过点C作 CF⊥AD交AD的延长线于点F,且BE=CF。求证:AD是△ABC的中线
A
E B D F
C
8
例题三
利用等边(等角)加(或减)等边,其和(或差)仍相等
1、如图3,AD// BC ,AD=BC,AE=FC,求证:BE//DF 证明:∵AE=FC,∴AE+EF=CF+EF,即AF=CE(等边相加) ∵AD//BC ∴∠A=∠C 又AD=BC ∴△ADF≌△CBE (SAS) ∴∠BEC=∠AFD ∴BE∥DF 2、如图所示,在△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC。
三角形的其中 两个角对应相 等,且对应相 等的角所对应 的边也对应相 等的两个三角 形全等
在直角三角形中, 一条斜边和一条直 角边对应相等的两 个直角三角形全等
总结:三角形全等的5个判定定理可以归纳为三个判定方法
三边
SSS(边边边) HL(勾股定理)
两角一边
ASA(角边角) AAS(角角边)
两边一角
归纳总结:
边如何找
1、角平分线上的点到角两边的距离相等 2、公共边是对应边; 3、垂直平分线上的点到线段两端点的距离相等;
4、若涉及中点、中位线时得到线段相等;
补充说明: 特殊几何图形的隐含条件
① 等腰三角形三边相等 ② 等边三角形三边相等 ③ 平行四边形、矩形对应边相等
④ 菱形、正方形四边相等
课后作业




归纳总结:
角如何找
1、有对顶角的,对顶角常是对应角; 2、涉及角平分线的,有两个角相等; 3、两直线平行的,内错角、同位角相等; 4、在直角三角形中,两锐角互余,同角的余角相等; 5、涉及高线,有两个90°角; 6、公共角是对应角; 补充说明: 特殊几何图形的隐含条件
① 等腰三角形两底角相等 ② 等边三角形三个角都等于60° ④ 正方形四个角都是直角=90° ③ 平行四边形、菱形,对角相等,邻角互补
1、如图1,AB=AC,∠B=∠C,你能证明△ABD≌△ACE吗?
2、如图2,已知点 在线段 上,BE=CF,AB∥DE,∠ACB=∠F.求证: △ABC≌△DEF .
课后作业
3、如图3,∠1=∠2,AD=AE ,AB=AC ,求证: ∠B=∠C.
4、如图4,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE.
A D F B C E
证明:在△ABE与△ACD中
∵ AD=AE,∠BAE=∠CAE(公共角),
AB=AC ∴ △ABE ≌△ACD (SAS)
5
练一练 1、如图,AB=CB,AD=CD,E是BD上任意一点,求证AE=CE。
A E
B
D
C
2、如图,已知AB=AC,BD⊥AC于D,CE⊥AB于E,求证:BD=CE
挖掘隐含条件证全等三角形
应用拓展课
知识回顾
三角形全等的5个判定定理
SSS (边边边) SAS (边角边) ASA (角边角) AAS HL (角角边) (斜边+任一直角边)
三边对应相等 的两个三角形 全等
三角形的其中 两条边对应相 等,且两条边 的夹角也对应 相等的两个三 角形全等
三角形的其中 两个角对应相 等,且两个角 夹的的边也对 应相等的两个 三角形全等
A 证明:∵BD=DC,∴∠DBC=∠DCB 又∵∠1=∠2,∴∠1+∠DBC=∠2+∠DCB,即∠ABC=∠ACB,(等角相加) ∴AB=AC
在△ABD和△ACD中
1 B D 2 ∵AB=AC,∠1=∠2,BD=DC ∴ △ABD≌△ACD,∴∠BAD=∠CAD 即AD平分∠BAC
C
9
练一练 1、如图:点E、C在线段BF上,BE=CF,AB=DE,AC=DF,求证:∠ABC=∠DEF。 A D
∵AB=AC,∴∠B=∠C(等边对等角), ∴△ABD≌△ACE (AAS) ∴BD=CE
练一练
如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BED=∠CED,求证: ∠ABE=∠ACE。
A
E
B
D
C
例题五
利用平行线的性质得出同位角、内错角相等
如图5, C、F在BE上, ∠A=∠D,AC//DF,BF=EC,求证:AB=DE .
相关文档
最新文档