苏科版七年级数学上册 有理数单元常考概念选择题练习(含答案)
苏科版七年级上册《第2章-有理数》单元检测训练卷
苏科版七年级上册《第2章有理数》单元检测训练卷一、选择题(共10小题)1.在﹣,﹣|﹣6|,﹣(﹣5),﹣33,(﹣11)2,﹣20%,0,﹣22中正数的个数是()A.2个B.3个C.4个D.5个2.下列说法中不正确的是()A.﹣3表示的点到原点的距离是|﹣3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数绝对值一定相等3.下列各对数中,互为相反数的是()A.﹣|﹣7|和+(﹣7)B.+(﹣10)和﹣(+10)C.(﹣4)3和﹣43D.(﹣5)4和﹣544.下列说法:①几个有理数的积是0,其中至少有一个有理数为0;②一个有理数的倒数等于它本身,则这个有理数是±1;③任何有理数的平方都是正数;④﹣1的奇数次幂等于﹣1.其中正确的个数是()A.1B.2C.3D.45.下列计算正确的是()A.﹣32=9 B.C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣36.已知m是有理数,下列四个式子中一定是正数的是()A.|m|+2 B.|m| C.m﹣3 D.﹣|m|7.如果有理数a,b满足a+b>0,ab<0,则下列式子正确的是()A.当a>0,b<0时,|a|>|b| B.当a<0,b>0时,|a|>|b|C.a>0,b>0 D.a<0,b<08.5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了()A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律9.若x为有理数,则丨x丨﹣x表示的数是()A.正数B.非正数C.负数D.非负数10.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费()A.64元B.66元C.72元D.96元二、填空题(共8小题)11.把下列各数填在相应的大括号中.8,,0.275,0,,﹣6,﹣0.25,|﹣2|.正整数集合:{_________,…};整数集合:{_________,…};负整数集合:{_________,…};正分数集合:{_________,…}.12.把﹣22,(﹣2)2,﹣|﹣2|,按从小到大的顺序排列是_________.13.既不是正数也不是负数的数是_________;最大的负整数是_________,最小的正整数是_________;平方等于它本身的数是_________.14.如果x<0,y>0且x2=4,y2=9,则x+y=_________.15.大于﹣4而小于+3的整数是__________________.16.﹣43中幂的指数是_________,底数是_________,结果是_________.17.若﹣1<n<0,则n、n2、的大小关系是_________.18.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:_________×_________+_________=502.三、解答题(共9小题,满分48分)19.(5分)(﹣125)÷17+(+315)÷17﹣(﹣166)÷17﹣()20.(5分)[﹣32×()2]÷().21.(5分)数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?22.(5分)小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?23.(5分)阅读下列材料:计算:50÷(﹣+).解法一:原式=50÷﹣50÷+50÷=50×3﹣50×4+50×12=550.解法二:原式=50÷(﹣+)=50÷=50×6=300.解法三:原式的倒数为(﹣+)÷50=(﹣+)×=×﹣×+×=故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法_________是错误的.在正确的解法中,你认为解法_________最简捷.然后,请你解答下列问题:计算:()÷().24.(5分)观察下列各式:①9×0+1=1;②9×1+2=11;③9×2+3=21;④_________;⑤9×4+5=41;….(1)请你在横线上填上适当的算式;(2)按此规律,第6个式子是什么?第100个式子呢?第2 011个式子呢?25.(6分)小红爸爸上星期买进某公司股票1 000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五每股涨跌+4 ﹣1 ﹣6(1)通过上表你认为星期三收盘时,每股是多少元?(2)本周内每股最高是多少元?26.(6分)请先观察下面的等式:①32﹣12=8=8×1;②52﹣32=16=8×2:③72﹣52=24=8×3;④92﹣72=32=8×4…(1)请写出第⑦、⑩个等式;(2)通过观察,你能发现什么规律?猜想并写出第n个等式;(3)请你用上述规律计算2 0132﹣2 0112的值.27.(6分)相传宋朝文学家苏东坡有一次画了一幅《百鸟归巢》,并且给这幅画题了一首诗:天生一只又一只,三四五六七八只,凤凰何少鸟何多,啄尽人间千石谷.这首诗既然是题“百鸟图”,全诗却不见“百”字的踪影,你也许会问,画中到底是100只鸟还是8只鸟呢?不要急,请把诗中出现的数字写成一行:1 1 3 4 5 6 7 8然后,你动动脑筋,在这些数字之间加上适当的运算符号就会有100出现了,应该加上哪些运算符号呢?苏科版七年级上册《第2章有理数》2013年单元检测训练卷(一)参考答案与试题解析一、选择题(共10小题)1.在﹣,﹣|﹣6|,﹣(﹣5),﹣33,(﹣11)2,﹣20%,0,﹣22中正数的个数是()A.2个B.3个C.4个D.5个考点:正数和负数;相反数;绝对值.专题:应用题.分析:先把每个数进行化简,再进行判断即可得出答案.解答:解:﹣=﹣,﹣|﹣6|=﹣6,﹣(﹣5)=5,﹣33=﹣27,(﹣11)2=121,﹣20%=﹣0.2,0既不是正数也不是负数,﹣22=﹣4,故正数有2个.故选A.点评:本题主要考查了正负数的判断,注意要先进行化简,难度适中.2.下列说法中不正确的是()A.﹣3表示的点到原点的距离是|﹣3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数绝对值一定相等考点:绝对值.专题:计算题.分析:A、根据绝对值的意义可知:|a|在数轴上表示a的点到原点的距离,即可判断本选项不符合题意;B、可举一个反例,若这个有理数为0,由0的绝对值还是0,而0不为正数,本选项符合题意;C、根据绝对值的意义可知:在数轴上表示的这个点到原点的距离,由距离恒大于等于0得到不符合题意;D、根据相反数的定义可知只有符合不同的两个数互为相反数,可知互为相反数的两数到原点的距离相等,即两数的绝对值相等,不符合题意.解答:解:A、根据绝对值的意义|﹣3|表示在数轴上表示﹣3的点到原点的距离,故本选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,本选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值为非分数,故不可能为负数,本选项正确,不符合题意;D、根据相反数的定义可知:只有符合不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,本选项正确,不符合题意.故选B.点评:此题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,掌握绝对值的意义是解本题的关键.3.下列各对数中,互为相反数的是()A.﹣|﹣7|和+(﹣7)B.+(﹣10)和﹣(+10)C.(﹣4)3和﹣43D.(﹣5)4和﹣54考点:有理数的乘方;相反数.分析:先根据绝对值的性质,化简符号的方法,乘方的意义化简各数,再根据相反数的定义判断.解答:解:∵(﹣5)4+(﹣54)=0,∴(﹣5)4和﹣54互为相反数.故选D.点评:主要考查了相反数的概念、绝对值的化简以及乘方的意义.4.下列说法:①几个有理数的积是0,其中至少有一个有理数为0;②一个有理数的倒数等于它本身,则这个有理数是±1;③任何有理数的平方都是正数;④﹣1的奇数次幂等于﹣1.其中正确的个数是()A.1B.2C.3D.4考点:有理数的乘方;倒数;有理数的乘法.专题:计算题.分析:①几个有理数的积是0,其中至少有一个有理数为0,本选项正确;②一个有理数的倒数等于它本身,则这个有理数是±1,本选项正确;③任何有理数的平方都是非负数,不光是正数,本选项错误;④﹣1的奇数次幂等于﹣1,本选项正确.解答:解:①几个有理数的积是0,其中至少有一个有理数为0,本选项正确;②一个有理数的倒数等于它本身,则这个有理数是±1,本选项正确;③任何有理数的平方都是非负数,包括正数和0,本选项错误;④﹣1的奇数次幂等于﹣1,本选项正确.故选C.点评:此题考查了有理数的乘方,倒数,以及有理数的乘法,熟练掌握运算法则是解本题的关键.5.下列计算正确的是()A.﹣32=9 B.C.(﹣8)2=﹣16 D.﹣5﹣(﹣2)=﹣3考点:有理数的混合运算.专题:计算题.分析:本题可按照有理数的混合运算法则进行运算,从而选出正确的答案.解答:解:A、﹣32=﹣9,故本选项错误;B、(﹣)÷(﹣4)=,故本选项错误;C、(﹣8)2=64,故本选项错误;D、正确.故选D.点评:本题主要考查了有理数的混合运算,应多加练习.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.6.已知m是有理数,下列四个式子中一定是正数的是()A.|m|+2 B.|m| C.m﹣3 D.﹣|m|考点:非负数的性质:绝对值.分析:根据非负数的性质对各选项分析判断后利用排除法求解.解答:解:A、∵|m|≥0,∴|m|+2≥2,是正数,故本选项正确;B、m=0时,|m|=0,既不是正数也不是负数,故本选项错误;C、m≤3时,m﹣3≤0,不是正数,故本选项错误;D、﹣|m|≤0,不是正数,故本选项错误.故选A.点评:本题主要考查了绝对值非负数的性质,举反例排除是本题的最大特点.7.如果有理数a,b满足a+b>0,ab<0,则下列式子正确的是()A.当a>0,b<0时,|a|>|b| B.当a<0,b>0时,|a|>|b|C.a>0,b>0 D.a<0,b<0考点:有理数大小比较;有理数的加法;有理数的乘法.分析:根据有理数的加法法则(同号两数相加,取原来的复合式,并把绝对值相加,异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小的绝对值小)和有理数的乘法法则进行判断即可.解答:A、∵a+b>0,∴当a>0,b<0时,|a|>|b|,故本选项正确;B、∵a+b>0,∴当a<0,b>0时,|a|<|b|,故本选项错误;C、∵ab<0,∴a b一正一负,故本选项错误;D、∵a+b>0,∴不能a b都是负数,当a b都是负数时a|b<0,故本选项错误.故选A.点评:本题考查了有理数的加法和乘法的应用,主要考查学生的理解能力和辨析能力.8.5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了()A.加法交换律B.加法结合律C.分配律D.加法的交换律与结合律考点:有理数的加法.分析:本题需先根据加法的交换律、加法的结合律等知识点进行判断,即可求出答案.解答:解:根据意义得:5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9),故用了加法的交换律与结合律.故选D.点评:本题主要考查了有理数的加法,在解题时要根据加法的交换律、加法的结合律等知识点进行判断是本题的关键.9.若x为有理数,则丨x丨﹣x表示的数是()A.正数B.非正数C.负数D.非负数考点:合并同类项;绝对值.分析:先根据绝对值的定义化简丨x丨,再合并同类项.解答:解:(1)若x≥0时,丨x丨﹣x=x﹣x=0;(2)若x<0时,丨x丨﹣x=﹣x﹣x=﹣2x>0;由(1)(2)可得丨x丨﹣x表示的数是非负数.故选D.点评:解答此题要熟知绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费()A.64元B.66元C.72元D.96元考点:有理数的混合运算.专题:应用题.分析:本题中的应交煤气费=不超过60立方米的费用+超过60立方米的费用.解答:解:这个月甲用户应交煤气费=60×0.8+(80﹣60)×1.2=48+24=72(元).故选C.点评:本题考查了有理数的混合运算在实际生活中的应用.二、填空题(共8小题)11.把下列各数填在相应的大括号中.8,,0.275,0,,﹣6,﹣0.25,|﹣2|.正整数集合:{8,|﹣2|,…};整数集合:{8,0,﹣6,|﹣2|,…};负整数集合:{﹣6,…};正分数集合:{,0.275,…}.考点:有理数.分析:根据正整数、整数、负整数、正分数的定义分别找出相应的数即可.解答:解:正整数集合:8,|﹣2|;整数集合:8,0,﹣6,|﹣2|;负整数集合:﹣6;正分数集合:,0.275.故答案为:8,|﹣2|;8,0,﹣6,|﹣2|;﹣6;,0.275.点评:此题考查了有理数,用到的知识点是有理数的分类:有理数,注意不要漏数.12.把﹣22,(﹣2)2,﹣|﹣2|,按从小到大的顺序排列是﹣22<﹣|﹣2|<﹣<(﹣2)2.考点:有理数的乘方;有理数大小比较.分析:先根据平方法则及绝对值的性质计算出﹣22,(﹣2)2,﹣|﹣2|的值,再比较各数的大小即可.解答:解:∵﹣22=﹣4,(﹣2)2=4,﹣|﹣2|=﹣2,﹣4<﹣2<﹣<4,∴﹣22<﹣|﹣2|<﹣<(﹣2)2.点评:此题比较简单,考查的是有理数比较大小的方法,解答此题的关键是熟知以下知识:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数相比较,绝对值大的反而小.13.既不是正数也不是负数的数是0;最大的负整数是﹣1,最小的正整数是1;平方等于它本身的数是1、0.考点:有理数;有理数的乘方.分析:根据0的特点、正整数和负整数的性质,平方的性质填空即可.解答:解:既不是正数也不是负数的数是0;最大的负整数是﹣1;最小的正整数是1;平方等于它本身的数是1和0;故答案为:0,﹣1,1,1、0.点评:此题考查了有理数,用到的知识点是有理数的基础知识和0的特点、正整数和负整数的性质,平方的性质,需要熟练记准记熟.14.如果x<0,y>0且x2=4,y2=9,则x+y=1.考点:平方根;有理数的加法;有理数的乘方.专题:计算题.分析:x2=4即x是4的平方根,因而根据x<0,y>0且x2=4,y2=9,就可确定x,y的值,进而求解.解答:解:∵x2=4,y2=9,∴x=±2,y=±3,又∵x<0,y>0,∴x=﹣2,y=3,∴x+y=﹣2+3=1.故答案为:1.点评:本题主要考查了平方根的意义,根据条件正确确定x,y的值是解题关键.15.大于﹣4而小于+3的整数是﹣3,﹣2,﹣1,0,1,2±3,±4,±5.考点:有理数大小比较;绝对值.分析:根据有理数的大小比较法则得出即可;求出绝对值不小于2.1且不大于5.3的整数有±3,±4,±5,填上即可.解答:解:大于﹣4而小于+3的整数是﹣3,﹣2,﹣1,0,1,2,绝对值不小于2.1且不大于5.3的整数是±3,±4,±5,故答案为:﹣3,﹣2,﹣1,0,1,2,±3,±4,±5.点评:本题考查了绝对值和有理数的大小比较的应用,主要考查学生运用法则进行比较的能力,注意:绝对值是3的数有3和﹣3两个.16.﹣43中幂的指数是3,底数是4,结果是﹣64.考点:有理数的乘方.专题:计算题.分析:根据幂的定义找出指数,底数,计算得到结果即可.解答:解:﹣43中幂的指数是3,底数是4,结果是﹣64.故答案为:3;4;﹣64.点评:此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.17.若﹣1<n<0,则n、n2、的大小关系是<n<n2.考点:有理数大小比较.分析:在n的范围内取n=﹣,求出每个式子的值,再比较即可.解答:解:∵﹣1<n<0,∴取n=﹣,即n=﹣,n2=,=﹣2,∴<n<n2.故答案为:<n<n2.点评:本题考查了有理数的大小比较的应用,主要考查学生的计算能力和辨析能力.18.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:48×52+4=502.考点:规律型:数字的变化类.专题:规律型.分析:观察上面等式的规律,若第1个数为n,则第二个数为n+4,第三个数为4,第四个数为(n+2)2,由此规律代入即可.解答:解:第n个式子为n(n+4)+4=(n+2)2,由题意得n+2=50,则n=48,代入得,48×+4=502,故答案为48,52,4.点评:本题考查了数字的变化规律,得出第n个式子的表达式是解决此题的关键.三、解答题(共9小题,满分48分)19.(5分)(﹣125)÷17+(+315)÷17﹣(﹣166)÷17﹣()考点:有理数的混合运算.专题:计算题.分析:先算除法,再算加减即可.解答:解:原式=﹣+++==21.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.20.(5分)[﹣32×()2]÷().考点:有理数的混合运算.专题:计算题.分析:根据有理数混合运算的顺序依次进行计算即可.解答:解:原式=[﹣9×]×(﹣)=(﹣)×(﹣)=.点评:本题考查的是有理数的混合运算,即有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.(5分)数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?考点:数轴;相反数.专题:计算题.分析:根据A点表示+7,C点与A点的距离为2,可求得C点对应数为+5或+9,又B、C两点所表示的数是相反数,从而可求得答案.解答:解:∵A点表示+7,C点与A点的距离为2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.点评:本题考查了数轴及相反数的知识,属于基础题,比较简单,注意对基础概念的掌握.22.(5分)小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?考点:有理数的加减混合运算;正数和负数.专题:计算题.分析:(1)根据题意画出即可;(2)计算2+1即可求出答案;(3)求出每个数的绝对值,相加即可求出答案.解答:(1)解:能,如图:(2)解:2+|﹣1|=3,答:小彬家距中心广场3千米.(3)解:|2|+|1.5|+|4.5|+|1|=9,答:小明一共跑了9千米.点评:本题考查了有理数的加减运算,正数和负数,绝对值等知识点的应用,进而此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.23.(5分)阅读下列材料:计算:50÷(﹣+).解法一:原式=50÷﹣50÷+50÷=50×3﹣50×4+50×12=550.解法二:原式=50÷(﹣+)=50÷=50×6=300.解法三:原式的倒数为(﹣+)÷50=(﹣+)×=×﹣×+×=故原式=300.上述得出的结果不同,肯定有错误的解法,你认为解法一是错误的.在正确的解法中,你认为解法三最简捷.然后,请你解答下列问题:计算:()÷().考点:有理数的除法.专题:阅读型.分析:上述得出的结果不同,肯定有错误的解法,我认为解法一是错误的.在正确的解法中,你认为解法三最简捷;利用乘法分配律求出原式倒数的值,即可求出原式的值.解答:解:上述得出的结果不同,肯定有错误的解法,我认为解法一是错误的.在正确的解法中,你认为解法三最简捷;原式的倒数为(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣14,则原式=﹣.故答案为:一;三.点评:此题考查了有理数的除法,弄清题意是解本题的关键.24.(5分)观察下列各式:①9×0+1=1;②9×1+2=11;③9×2+3=21;④9×3=4=31;⑤9×4+5=41;….(1)请你在横线上填上适当的算式;(2)按此规律,第6个式子是什么?第100个式子呢?第2 011个式子呢?考点:规律型:数字的变化类.分析:(1)根据第一个数是9×(1﹣0)再加1,第二个数是9×(2﹣1)再加2,得出第四个数是9×(4﹣1)再加4即可;(2)根据(1)得出的规律第n个式子是9×(n﹣1)+n,代入计算即可.解答:解:(1)∵:①9×0+1=1;②9×1+2=11;③9×2+3=21;∴④9×3=4=31;(2)根据(1)可得:第n个式子是9×(n﹣1)+n,则第6个式子是9×5+6=51;第100个式子是9×99+100=991;第2011个式子是9×2010+2011=20101.故答案为:9×3=4=31.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的规律是第n个式子是9×(n﹣1)+n.25.(6分)小红爸爸上星期买进某公司股票1 000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五每股涨跌+4 ﹣1 ﹣6(1)通过上表你认为星期三收盘时,每股是多少元?(2)本周内每股最高是多少元?考点:有理数的加减混合运算;正数和负数;有理数大小比较.专题:计算题.分析:(1)根据题意列出相应的算式,计算即可得到结果;(2)根据表格得出本周二每股价格最高,求出最高价格即可.解答:解:(1)根据题意得:27+4+4.5﹣1=34.5(元),则星期三收盘时,每股是34.5元;(2)由本周内每日该股票的涨跌情况可看出,本周内周二每股价格最高,为35.5元.点评:此题考查了有理数的加减混合运算的应用,正数与负数,以及有理数的大小比较,弄清题意是解本题的关键.26.(6分)请先观察下面的等式:①32﹣12=8=8×1;②52﹣32=16=8×2:③72﹣52=24=8×3;④92﹣72=32=8×4…(1)请写出第⑦、⑩个等式;(2)通过观察,你能发现什么规律?猜想并写出第n个等式;(3)请你用上述规律计算2 0132﹣2 0112的值.考点:规律型:数字的变化类.分析:(1)通过观察可得第⑦个等式为:152﹣132=56=8×7;第⑩个等式:212﹣192=80=8×10;(2)通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n;(3)根据发现的规律计算即可.解答:解:(1)第⑦个等式为:152﹣132=56=8×7;第⑩个等式:212﹣192=80=8×10;(2)通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n;(3)2 0132﹣2 0112=8×1006=8048.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的关键规律是:(2n+1)2﹣(2n﹣1)2=8n.27.(6分)相传宋朝文学家苏东坡有一次画了一幅《百鸟归巢》,并且给这幅画题了一首诗:天生一只又一只,三四五六七八只,凤凰何少鸟何多,啄尽人间千石谷.这首诗既然是题“百鸟图”,全诗却不见“百”字的踪影,你也许会问,画中到底是100只鸟还是8只鸟呢?不要急,请把诗中出现的数字写成一行:1 1 3 4 5 6 7 8然后,你动动脑筋,在这些数字之间加上适当的运算符号就会有100出现了,应该加上哪些运算符号呢?考点:有理数的混合运算.专题:应用题.分析:根据有理数混合运算的法则进行计算即可.解答:解:由有理数混合运算的法则可知:1+1+3×4+5×6+7×8=100.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.参与本试卷答题和审题的老师有:sks;HJJ;zhjh;lantin;ZJX;CJX;HLing;wdxwwzy;zhqd;jpz;zjx111;wzl1014;冯延鹏;星期八(排名不分先后)菁优网2014年7月23日。
苏科版七年级上册数学第2章 有理数含答案
苏科版七年级上册数学第2章有理数含答案一、单选题(共15题,共计45分)1、在下列各数:3.1415926,,0.2,,,中无理数的个数有()A.2个B.3个C.4个D.5个2、下列四个数中,绝对值最小的数是A.-2B.0C.1D.73、在3.14,,,π,,0.1010010001…中,无理数有()A.1个B.2个C.3个D.4个4、下列各数中是无理数的是().A.3B.C.D.5、数轴上的点A到原点的距离是5,则点A表示的数为()A.-5B.5C.5或-5D.2.5或-2.56、一个有理数和它的相反数之积一定为()A.正数B.非正数C.负数D.非负数7、有理数在数轴上的位置如图所示,则下列结论中正确的是()A. B. C. D.8、地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×10 6平方千米B.14.8×10 7平方千米C.1.48×10 8平方千米D.1.48×10 9平方千米9、下列运算正确的是()A. B. C. D.10、计算:23=()A.5B.6C.8D.911、如图所示,a,b是有理数,则式子|a|+|b|+∣a+b∣+∣b-a∣化简的结果为()A.3a+bB.3a-bC.3b+aD.3b-a12、据统计,中国每年浪费的食物总量折合粮食约500亿kg,这个数据用科学记数法表示为()A. B. C. D.13、如图,O为原点,数轴上A,B,O,C四点,表示的数与点A所表示的数是互为相反数的点是()A.点BB.点OC.点AD.点C14、如图所示的数轴上,被叶子盖住的点表示的数可能是()A.﹣1.3B.1.3C.3.1D.2.315、下列算式中,计算结果是负数的是().A. B. C. D.二、填空题(共10题,共计30分)16、若=a +d +( b)+( c),则的值是________.17、点A,B,C,D在数轴上的位置如图所示,其中表示﹣2的相反数的点是________ .18、将按由小到大顺序排列是________19、小华的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作________万元.20、用“>”或“<”填空:﹣________﹣﹣|﹣π|________﹣3.14.21、若有理数a,b满足|a+3|+(b﹣2)2=0,则a b=________.22、请写出一个不同于的无理数,使它与的积为有理数,则这个无理数可以是________(写出一个即可).23、在0.6,﹣0.4,,﹣0.25,0,2,﹣中,整数有________ ,分数有________ .24、计算:|- |+ + +| -2|=________ .25、在学习了有理数的混合运算后,小明和小刚玩算“24点”游戏.游戏规则:从一副扑g牌(去掉大,小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌必须用一次且只能用一次,可以加括号),使得运算结果为24或﹣24.其中红色扑g牌代表负数,黑色扑g代表正数,J,Q,K分别代表11,12,13.小明抽到的四张牌分别是黑桃1,黑桃3,梅花4,梅花6(都是黑色扑g牌).小明凑成的等式为6÷(1﹣3÷4)=24,小亮抽到的四张牌分别是黑桃7、黑桃3、梅花7、梅花3(都是黑色扑g牌):请写出小亮凑成的“24点”等式________.三、解答题(共5题,共计25分)26、计算:-32-(-2)3+|-1-0.5|×27、若a,b,c分别为三角形的三边,化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|.28、把下列各数分别填入相应的集合里-4, , , 0, -3.14, 717, -(+5) +1.88,⑴正有理数集合:{________…}⑵负数集合:{________…}⑶整数集合:{________ …}⑷分数集合:{________…}29、在如图所示的5×5的正方形网格中,每个小正方形的边长均为1,按下列要求画图或解答;(1)画一条线段AB使它的另一端点B落在格点上(即小正方形的顶点),且AB=2;(2)以(1)中的AB为边画一个等腰△ABC,使点C落在格点上,且另两边的长都是无理数;(3)△ABC的周长为多少,面积为多少.30、把下列各数填入相应集合内:,,4, 1.101001000…,,π,0,3%,,-|-3|,整数集合:{ …}分数集合:{ …}无理数集合:{ …}正数集合:{…}参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、B5、C6、B7、B9、A10、C11、D12、C13、A14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
2020年苏科版七年级数学上册第2章 有理数单元测试题(有答案)
苏教版七年级上册数学第二单元单元测试卷一、单选题(共12题;共24分)1. ( 2分) ﹣2018的倒数是()A. 2018B.C. ﹣2018D.2. ( 2分) 3的相反数是()A. B. 3 C. ﹣3 D. ±3. ( 2分) 作为世界文化遗产的长城,其总长大约为6700000m。
数据6700000用科学记数法表()A. 6.7×106B. 67×105C. 0.67×107D. 6.7×1074. ( 2分) ﹣5的绝对值是()A. 5B. ﹣5C.D. -5. ( 2分) 某汽车参展商为参加第8届中国(长春)国际汽车博览会,印制了105 000张宣传彩页.105000这个数字用科学记数法表示为()A. 10.5×104B. 1.05×105C. 1.05×106D. 0.105×1066. ( 2分) 如果a与﹣2互为相反数,那么a等于()A. ﹣2B. 2C. ﹣D.7. ( 2分) 据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船(中共一大会址).数据2500万用科学记数法表示为()A. 2.5×108B. 2.5×107C. 2.5×106D. 25×1068. ( 2分) 若x是有理数,则x2+1一定是()A. 等于1B. 大于1C. 不小于1D. 不大于19. ( 2分) 下列计算正确的是()A. (﹣2)﹣(﹣5)=﹣7B. (+3)+(﹣6)=3C. (+5)﹣(﹣8)=﹣3D. (﹣5)﹣(﹣8)=310. ( 2分) 下列说法正确的是()A. 正数和负数互为相反数B. -a的相反数是正数C. 任何有理数的绝对值都大于它本身D. 任何一个有理数都有相反数11. ( 2分) 为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是( )A. 32019-1B. 32018-1C.D.12. ( 2分) 2016年某省人口数超过105 000 000,将这个数用科学记数法表示为()A. 0.105×109B. 1.05×109C. 1.05×108D. 105×106二、填空题(共11题;共22分)13. ( 2分)的倒数是________;的相反数是________.14. ( 2分) 绝对值小于3的所有负整数的和为________,积为________。
苏教版七年级数学上册 第二章《有理数》选择、填空专题练习(含答案)
第二章《有理数》选择、填空专题练习一.选择题1.下面几个数中,属于正数的是()A.3 B.﹣0.5 C.﹣10 D.02.上升5cm,记作+5cm,下降6cm,记作()A.6cm B.﹣6cm C.+6cm D.负6cm3.下列数是无理数的是()A.πB.C.D.04.如图,数轴上A,B两点之间表示的整数共有()A.5个B.6个C.7个D.8个5.﹣8的相反数是()A.﹣8 B.C.8 D.﹣6.﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣7.|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣8.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣19.已知a<0,ab<0,化简|a﹣b﹣1|﹣|2+b﹣a|的结果是()A.1 B.3 C.﹣1 D.﹣310.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和11.若a≠0,b≠0,则代数式的取值共有()A.2个B.3个C.4个D.5个12.若|a﹣b|=1,|b+c|=1,|a+c|=2,则|a+b+2c|等于()A.3 B.2 C.1 D.013.比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣314.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)15.计算+++++……+的值为()A.B.C.D.16.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大17.﹣|﹣|的负倒数是()A.B.C.D.18.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×10619.遗爱湖有5400亩,15亩=10000平方米,用科学记数法表示遗爱湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米20.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为()A.4.07×105元B.4.07×106元C.4.07×107元D.4.07×108元21.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F (n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201822.小明编制了一个计算程序.当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和.若输入﹣1,并将所显示的结果再次输入,这时显示的结果应当是()A.2 B.3 C.4 D.523.定义一种运算:C=,则C=()A.10 B.C.D.2024.定义运算a⊗b=a(1﹣b),则下面的结论正确的是()A.2⊗(﹣2)=﹣2 B.a⊗b=b⊗aC.若a+b=0,则(a⊗a)+(b⊗b)=2ab D.若a⊗b=0,则a=025.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元二.填空题26.如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.27.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.28.﹣2018的绝对值是.29.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.30.若x是实数,则y=|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为.31.设abcd是一个四位数,a、b、c、d是阿拉伯数字,且a≤b≤c≤d,则式子|a﹣b|+|b﹣c|+|c ﹣d|+|d﹣a|的最大值是.32.计算:|﹣3|﹣1=.33.计算1+4+9+16+25+…的前29项的和是.34.从1,4,7……295,298(隔3的自然数)中任选两个数相加,和的不同值有个.35.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.36.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为元.37.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为.38.定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.39.按照如图的操作步骤,若输入x的值为2,则输出的值是.(用科学计算器计算或笔算)40.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.答案与解析一.选择题1.【分析】根据正数和负数的定义可直接解答.【解答】解:根据正数和负数的定义可知,四个选项中只有A符合题意.故选:A.【点评】此题考查的知识点是正数和负数,解答此题要熟知正数和负数的概念:大于0的数叫正数,小于0的数为负数,0既不是正数也不是负数.2.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可知上升为+,则下降为﹣,所以下降6cm,记作﹣6cm.故选答案B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:、、0是有理数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【分析】首先正确估算﹣2和﹣2的范围,再进一步找到之间的整数.【解答】解:∵6<<7,∴4﹣2<5,∴数轴上点A和点B之间表示整数的点有﹣1,0,1,2,3,4共6个.故选:B.【点评】此题考查了无理数的估算以及数轴上的点和数之间的对应关系,关键是能够根据一个数的平方正确估算无理数的大小,结合数轴确定两点之间的整数.5.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.6.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.7.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.8.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.9.【分析】根据绝对值的性质即可求出答案.【解答】解:由于a<0,ab<0,∴b>0,∴a﹣b﹣1<0,2+b﹣a>0,∴原式=﹣(a﹣b﹣1)﹣(2+b﹣a)=﹣a+b+1﹣2﹣b+a=﹣1故选:C.【点评】本题考查绝对值的性质,解题的关键是熟练运用绝对值的性质,本题属于基础题型.10.【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11.【分析】本题可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【解答】解:由分析知:可分4种情况:①a>0,b>0,此时ab>0所以=1+1+1=3;②a>0,b<0,此时ab<0所以=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0所以=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0所以=﹣1+1﹣1=﹣1;综合①②③④可知:代数式的值为3或﹣1.故选:A.【点评】本题主要考查了绝对值的运用,绝对值都为非负数.这一点必须牢记.12.【分析】把a+c写成a﹣b+b+c,然后根据绝对值的性质求出a﹣b、b+c,再求出a+c,然后代入代数式根据绝对值的性质解答即可.【解答】解:|a+c|=|a﹣b+b+c|=2,∵|a﹣b|=1,|b+c|=1,∴a﹣b=b+c=1或a﹣b=b+c=﹣1,①a﹣b=b+c=1时,a+c=2,所以,|a+b+2c|=|a+c+b+c|=|1+2|=3,②a﹣b=b+c=﹣1时,a+c=﹣2,所以,|a+b+2c|=|a+c+b+c|=|﹣1﹣2|=3,故|a+b+2c|=3.故选:A.【点评】本题考查了绝对值,熟记性质并观察已知条件的特征求出a﹣b=b+c=1或a﹣b=b+c=﹣1是解题的关键.13.【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.15.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.【点评】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.16.【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.【点评】此题主要考查了有理数的加法和乘法法则,熟记法则是解本题的关键.17.【分析】根据相反数,倒数的定义,负倒数是相反数的倒数.【解答】解:﹣|﹣|=﹣,﹣的负倒数是.故选:B.【点评】主要考查相反数,倒数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.19.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5400÷15×10000=3600000=3.6×106,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:四千零七十万元,则此营业额可表示为4.07×107元,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.22.【分析】先根据显示屏的结果总等于所输入有理数的平方与1之和这个条件,由此得出显示屏的结果,即可得出正确结论.【解答】解:∵当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,∴若输入﹣1,则显示屏的结果为(﹣1)2+1=2,再将2输入,则显示屏的结果为22+1=5.故选:D.【点评】本题主要考查了有理数的混合运算,在解题时要注意这个计算程序的条件.23.【分析】根据题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:==10,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】根据定义的运算方法逐一运算,【解答】解:A、2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,此选项不正确;B、a⊗b=a(1﹣b),b⊗a=b(1﹣a),a⊗b=b⊗a只有在a=b时成立,此选项不正确;C、a+b=0,a=﹣b,(a⊗a)+(b⊗b)=a(1﹣a)+b(1﹣b)=a+b﹣a2﹣b2=2ab,此选项正确;D、a⊗b=0,a(1﹣b)=0,a=0或b=1,此选项不正确.故选:C.【点评】此题主要考查了有理数的混合运算,理解和掌握新运算的计算方法是解决问题的关键.25.【分析】认真分析表格,弄清返购物券的标准与使用购物券的条件,从而确定最佳方案.【解答】解:∵买化妆品不返购物券,∴先购买鞋,利用所得购物券再买衣服,需要现金(280+220)元,得到200购物券,利用购物券,现金100元,购买化妆品即可.张阿姨购买这三件物品实际所付出的钱的总数为:280+220+100=600元.故选:B.【点评】此题为实际应用题,与生活比较接近,此类题目更能激发学生的学习兴趣.也是中考中的热点题型.二.填空题26.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.28.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:2018【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.29.【分析】分三种情况:x<﹣1;﹣1≤x≤4;x>4;去绝对值后解方程即可求解.【解答】解:x<﹣1时,﹣x﹣1﹣x+4=7,解得x=﹣2;﹣1≤x≤4时,x+1﹣x+4=7,方程无解;x>4时,x+1+x﹣4=7,解得x=5.故答案为:﹣2或5.【点评】考查了绝对值,注意分类思想的运用,是中档题型.30.【分析】分6个区域:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55;比较最小值,即可求得答案.【解答】解:(1)当x≤1,原式=1﹣x+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=55﹣15x,则x=1时,有最小值40;(2)当1<x≤2时,原式=x﹣1+2(2﹣x)+3(3﹣x)+4(4﹣x)+5(5﹣x)=53﹣13x,则x=2时,有最小值27;(3)当2<x≤3时,原式=x﹣1+2(x﹣2)+3(3﹣x)+4(4﹣x)+5(5﹣x)=45﹣9x,则x=3时,有最小值18;(4)当3<x≤4时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(4﹣x)+5(5﹣x)=27﹣3x,则x=4时,有最小值15;(5)当4<x≤5时,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(5﹣x)=5x﹣5,则y没有最小值;(6)当x>5,原式=x﹣1+2(x﹣2)+3(x﹣3)+4(x﹣4)+5(x﹣5)=15x﹣55,则y没有最小值;故当x=4时,|x﹣1|+2|x﹣2|+3|x﹣3|+4|x﹣4|+5|x﹣5|的最小值为15.故答案为:15.【点评】此题考查了绝对值的最值问题.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.31.【分析】若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,再代入计算即可求解.【解答】解:若使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1即可,同时为使|c﹣d|最大,则c应最小,且使低位上的数字不小于高位上的数字,故c=1,此时b只能为1,所以此数为1119,|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的最大值=0+0+8+8=16.故答案为:16.【点评】此题考查了绝对值,要使|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|的值最大,则最低位数字最大d=9,最高位数字最小a=1,再根据低位上的数字不小于高位上的数字解答.32.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.33.【分析】根据每一项分别是12、22、32、42、52可找到规律,整理可得原式关于n的一个函数式,即可解题.【解答】解:12+22+32+42+52+…+292+…+n2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n﹣1)n+n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n﹣1)n]=+{(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[(n ﹣1)•n•(n+1)﹣(n﹣2)•(n﹣1)•n]}=+[(n﹣1)•n•(n+1)]=,∴当n=29时,原式==8555.故答案为8555.【点评】本题考查了学生发现规律并且整理的能力,本题中整理出原式关于n的解析式是解题的关键.34.【分析】两个数相加最小的和是1+4=5,最大的和是295+298=593,和也是隔3的自然数,根据等差数列通项公式求出项数即可求解.【解答】解:1+4=5,295+298=593,和是隔3的自然数,n=(593﹣5)÷3+1=588÷3+1=197.故答案为:197.【点评】考查了有理数的加法,等差数列通项公式,关键是求出两个数相加最小的和,以及最大的和.35.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4×…×(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∵1×2×3×4=24,∴m=4,故答案为:4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.36.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:300亿元=3×1010元.故答案为:3×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.37.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.【点评】本题考查了有理数的混合运算以及解一元一次方程,依照新运算的定义找出关于x 的一元一次方程是解题的关键.39.【分析】将x=2代入程序框图中计算即可得到结果.【解答】解:将x=2代入得:3×(2)2﹣10=12﹣10=2.故答案为:2.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.40.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.。
(必考题)七年级数学上册第一单元《有理数》-选择题专项知识点(含答案解析)
一、选择题1.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列分数不能化成有限小数的是( )A .625B .324C .412D .116C 解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A 、625的分母中只含有质因数5,所以625能化成有限小数; B 、31248=,18的分母中只含有质因数2,所以324能化成有限小数; C 、41123=,13的分母中含有质因数3,所以412不能化成有限小数; D 、116的分母中只含有质因数2,所以116能化成有限小数. 故选:C .【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.4.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.5.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.6.若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5± A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.7.若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0 B.a+b=1C.|a|+|b|=0 D.|a|+b=0A解析:A【解析】a,b互为相反数0a b⇔+=,易选B.8.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 3 C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.9.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克B.-0.02克C.0克D.+0.04克B 解析:B【解析】-0.02克,选A.10.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.11.下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-abD解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.12.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.13.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.14.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.15.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为()A.109.01510⨯B.39.01510⨯C.29.01510⨯D.109.0210⨯ C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 17.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 18.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.19.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 20.2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( )A .0.15×105B .15×103C .1.5×104D .1.5×105C 解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】15000用科学记数法表示是1.5×104.故选C .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13, 故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.22.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C 解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 23.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .12C 解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C .【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.24.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.25.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积( ) A .缩小到原来的12 B .扩大到原来的10倍 C .缩小到原来的110D .扩大到原来的2倍A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a ,另一个因数为b∴两数乘积为ab 根据题意,得1110202ab ab = 故选A .【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可. 26.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数. 27.13-的倒数的绝对值( )A .-3B .13-C .3D .13C 解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.28.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 29.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.30.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.。
第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)
第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、下列计算正确的是()A.2﹣(﹣1)3=2﹣1=1B.74﹣4÷70=70÷70=1C.D.2 3﹣3 2=8﹣9=﹣12、下列说法中,不正确的是()A.平方等于本身的数只有0和1B.正数的绝对值是它本身,负数的绝对值是它的相反数C.两个负数,绝对值大的负数小D.0除以任何数都得03、数1,0,,﹣2中最大的是()A.1B.0C.D.﹣24、下列计算错误的是()A.- 3÷(-)=9B.()+(- )=C.- (-2) 3=8 D.︳-2-(-3)︳=55、一根1m长的小棒,第一次截去它的三分之一,第二次截去剩下的三分之一,如此截下去,第五次后剩下的小棒的长度是()A.()5mB.[1﹣()5]mC.()5mD.[1﹣()5]m6、计算的值是()A.0B.-1C.1D.27、设x是有理数,那么下列各式中一定表示正数的是()A.2008xB.x+2008C.|2008x|D.|x|+20088、若四个互不相等的整数的积为6,那么这四个整数的和是()A.-1或5B.1或-5C.-5或5D.-1或19、计算的结果是()A. B. C. D.10、比1小2的数是()A.-1B.-2C.-3D.111、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时;爸爸那端着地,已知爸爸的体重为70kg,妈妈的体重为50kg,那么小明的体重可能是()A.18kgB.22kgC.28kgD.30kg12、计算(﹣5)×(﹣1)的结果等于()A.5B.﹣5C.1D.﹣113、数据1950000用科学记数法表示为()A.1.9×10 5B.1.95×10 6C.1.95×10 7D.0.195×10 814、-3的相反数是()A. B.3 C. D.015、计算:(﹣3)4=( )A.﹣12B.12C.﹣81D.81二、填空题(共10题,共计30分)16、在﹣2、0、1、﹣1这四个数中,最大的有理数是________.17、比较大小(1)﹣2________2;(2)﹣1.5________0;(3)________ .18、﹣的相反数的倒数是________.19、在数轴上表示a、b两数的点如图所示,则________.20、地球七大洲的总面积约为149 480 000Km²,如对这个数据精确到百万位可表示为是________ .21、-(-2)的相反数是________.22、已知8×32=2n,则n的值为________.23、废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为________立方米.24、比较大小:-0.3 ________ .25、若a,b互为相反数,c,d互为倒数,x的绝对值等于2,则x2+5(a+b)-8cd=________.三、解答题(共5题,共计25分)26、﹣22+|5﹣8|+24÷(﹣3)27、已知b的倒数与a互为相反数,c,d互为倒数,m的绝对值为4,求5(a+ 2)+6cd﹣7m的值.28、若与是互为相反数,求①的值;②的值.29、画一条数轴,把下列各数表示在数轴上,并用“”连接:3,,,0.5,.30、在数轴上表示下列各数,并比较各数大小,再用“>”连接起来.-2.5, 0, |2|, - , -1, +参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、D5、C6、A7、D8、D9、D11、A12、A13、B14、B15、D二、填空题(共10题,共计30分)16、17、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
《常考题》初中七年级数学上册第一单元《有理数》经典练习题(含答案解析)(1)
一、选择题1.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定2.已知︱x︱=4,︱y︱=5且x>y,则2x-y的值为()A.-13 B.+13 C.-3或+13 D.+3或-13.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数4.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+5.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是() A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)46.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 37.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|8.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 29.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多1010.如果向右走5步记为+5,那么向左走3步记为( )A .+3B .-3C .+13D .-1311.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m 12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 13.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0 14.把实数36.1210-⨯用小数表示为() A .0.0612 B .6120 C .0.00612 D .612000 15.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数二、填空题16.23(2)0x y -++=,则x y 为______.17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.18.若两个不相等的数互为相反数,则两数之商为____.19.把35.89543精确到百分位所得到的近似数为________.20.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.21.点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.22.在数轴上,距离原点有2个单位的点所对应的数是________.23.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 24.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 25.用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位). 26.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题27.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?28.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?29.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 30.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-。
第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)
第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上的点A所表示的数为a,化简|a|+|1﹣a|的结果为()A.1B.2a﹣1C.2a+1D.1﹣2a2、绝对值大于1而小于4的整数有()个A.1B.2C.3D.43、如图,数轴上A,B两点分别对应实数a,b,则下列结论错误的是( )A. B. C. D.4、下列说法中①是负数;②是二次单项式;③倒数等于它本身的数是;④若,则;⑤由变形成,正确个数是( )A.1个B.2个C.3个D.4个5、下列各式正确的是()A. B. C. D.6、根据如图所示的程序计算,若输入x的值为1,则输出y的值为().A.0B.2C.-2D.47、若x的相反数是2,│y│=3,则│x+y│的值为( )A.5B.-5C.-5或1D.以上都不对8、下列实数中,有理数是( ).A. B. C. D.3.141599、下列各数中,绝对值最大的是()A.2B.-1C.0D.-310、有理数a,b在数轴上的位置如图所示,下列结论中正确的是()A.-b>aB.-a<bC.b>aD.∣a∣>∣b∣11、下列说法正确的有()个①规定了原点,正方向和单位长度的直线叫数轴;②最小的整数是0;③正数,负数和零统称整数;④数轴上的点都表示有理数A.0B.1C.2D.312、下列四个运算中,结果最小的是()A.-1+(-2)B.1-(-2)C.1×(-2)D.1÷(-2)13、下列实数中,−、、、-3.14,、、0、0.3232232223…(相邻两个3之间依次增加一个2),无理数的个数是()A.1个B.2个C.3个D.4个14、在-1.732,,π, 3, 2+ ,3.212212221…,3.14这些数中,无理数的个数为( )A.5B.2C.3D.415、在下列各数中,你认为是无理数的是()A. B. C. D.二、填空题(共10题,共计30分)16、“*”是规定的一种运算法则:a*b=a2﹣2b.那么2*3的值为________ ;若(﹣3)*x=7,那么x=________17、a的相反数是一,则a的倒数是________.18、已知a,b互为相反数,c,d互为倒数,,则的值是________.19、太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是________℃.20、如图,四个有理数在数轴上的对应点分别为M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是________.21、有六张完全相同的卡片,其正面分别标有数字:﹣2,,π,0,,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是________.22、计算:﹣22﹣(﹣2)2=________23、小明的妈妈在超市买了一瓶消毒液,发现在瓶上印有这样一段文字:“净含量(750±5)ml”,这瓶消毒液至少有________mL.24、-(-4)= ________.25、﹣1的绝对值是________.三、解答题(共5题,共计25分)26、计算:-32×(5-3)-(-2)2÷l-4l27、根据试验测定,高度每增加100米,气温大约下降0.6 ,小王是一名登山运动员,他在攀登山峰的途中发回信息,报告他所在的位置的气温是-15 ,若此时地面温度为3 ,则小王所在位置离地面的高度是多少米?28、如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1小于2的有理数.请你在数轴上表示出一范围,使得这个范围同时满足以下三个条件:(1)至少有100对相反数和200对倒数;(2)有最大的负整数;(3)这个范围内最大的数与最小的数表示的点的距离大于4但小于5.29、规定一种新运算:=a-b+c, =-xz+(w-y)求 + 的值。
2019年苏科新版数学七年级上册《第2章有理数》单元测试卷(解析版)
2019年苏科新版数学七年级上册《第2章有理数》单元测试卷一.选择题(共15小题)1.如果盈利2元记为“+2元”,那么“﹣2元”表示()A.亏损2元B.亏损﹣2元C.盈利2元D.亏损4元2.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等3.如图,数轴上的A、B、C三点所表示的数分别为a,b,c,点A与点C到点B的距离相等,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边4.相反数等于其本身的数是()A.1B.0C.±1D.0,±15.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是()A.正数B.负数C.零D.不能确定和的符号6.已知|a+3|+|b﹣1|=0,则a+b的值是()A.﹣4B.4C.2D.﹣27.的倒数是()A.B.﹣C.2019D.﹣20198.绝对值小于5的所有整数的和为()A.0B.﹣8C.10D.209.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有10.在3.14,,,﹣,2π,中,无理数有()个.A.1个B.2个C.3个D.4个11.下列实数,﹣,0.,,,(﹣1)0,﹣,0.1010010001中,其中无理数共有()A.2个B.3个C.4个D.5个12.在下列五个数中①,②,③,④0.777…,⑤2π,是无理数的是()A.①③⑤B.①②⑤C.①④D.①⑤13.在1.732,﹣,,,3﹣,3.02中,无理数的个数是()A.1B.2C.3D.414.在实数﹣1.414,,π,3.,2+,3.212212221…,3.14中,无理数的个数是()个.A.1B.2C.3D.415.下列实数中,无理数是()A.2B.﹣C.3.14D.二.填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高m.17.在有理数集合中,最小的正整数是,最大的负整数是.18.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是.19.请写出一个比3大比4小的无理数:.20.请写出一个无理数.21.下列各数中:0.3、、π﹣3、、3.14、1.51511511…,有理数有个,无理数有个.三.解答题(共3小题)22.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点0最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?23.(1)将下列各数填入相应的圈内:2,5,0,1.5,+2,﹣3.(2)说出这两个圈的重叠部分表示的是什么数的集合:.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.2019年苏科新版数学七年级上册《第2章有理数》单元测试卷参考答案与试题解析一.选择题(共15小题)1.如果盈利2元记为“+2元”,那么“﹣2元”表示()A.亏损2元B.亏损﹣2元C.盈利2元D.亏损4元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利2元记为“+2元”,∴“﹣2元”表示亏损2元.故选:A.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是﹣1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等【分析】根据有理数的定义和特点,绝对值、互为相反数的定义及性质,对选项进行一一分析,排除错误答案.【解答】解:A、0的绝对值是0,故选项A错误;B、没有最大的负有理数也没有最小的负有理数,故选项B错误;C、没有最大的有理数,也没有最小的有理数,故选项C错误;D、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D正确.故选:D.【点评】本题考查了绝对值的几何意义及互为相反数的两个数在数轴上的位置特点,以及有理数的概念,难度适中.3.如图,数轴上的A、B、C三点所表示的数分别为a,b,c,点A与点C到点B的距离相等,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.4.相反数等于其本身的数是()A.1B.0C.±1D.0,±1【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数的定义,则相反数等于其本身的数只有0.故选:B.【点评】主要考查了相反数的定义,要求掌握并灵活运用.5.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是()A.正数B.负数C.零D.不能确定和的符号【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:∵一个正数的绝对值小于另一个负数的绝对值,∴两数和一定是负数.故选:B.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.已知|a+3|+|b﹣1|=0,则a+b的值是()A.﹣4B.4C.2D.﹣2【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,a+3=0,b﹣1=0,解得a=﹣3,b=1,所以,a+b=﹣3+1=﹣2.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.的倒数是()A.B.﹣C.2019D.﹣2019【分析】根据倒数的定义解答.【解答】解:的倒数是=2019.故选:C.【点评】考查了倒数的定义,考查了学生对概念的记忆,属于基础题.8.绝对值小于5的所有整数的和为()A.0B.﹣8C.10D.20【分析】找出绝对值小于5的所有整数,求出之和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,之和为0.故选:A.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.9.在π,,1.732,3.14四个数中,无理数的个数是()A.4个B.3个C.2个D.没有【分析】根据无理数的定义得到无理数有π,共两个.【解答】解:无理数有:π,故选:C.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.10.在3.14,,,﹣,2π,中,无理数有()个.A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:﹣,2π共2个.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.11.下列实数,﹣,0.,,,(﹣1)0,﹣,0.1010010001中,其中无理数共有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣,共有3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.在下列五个数中①,②,③,④0.777…,⑤2π,是无理数的是()A.①③⑤B.①②⑤C.①④D.①⑤【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:=2,所给数据中无理数有:①,⑤2π.故选:D.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是熟练掌握无理数的三种形式.13.在1.732,﹣,,,3﹣,3.02中,无理数的个数是()A.1B.2C.3D.4【分析】根据无理数就是无限不循环小数即可解答.【解答】解:在1.732,﹣,,,3﹣,3.02中,无理数有:﹣,,3﹣共3个.【点评】此题主要考查了无理数的定义.判断一个数是否是无理数时,可紧密联系无理数的概念以及无理数常见的几种形式进行判断.14.在实数﹣1.414,,π,3.,2+,3.212212221…,3.14中,无理数的个数是()个.A.1B.2C.3D.4【分析】无理数常见的三种类型(1)开不尽的方根(2)特定结构的无限不循环小数(3)含有π的绝大部分数,如2π.【解答】解:﹣1.414是有限小数,是有理数,是无理数,π是无理数,3.无限循环小数是有理数,2+是无理数,3.212212221…是无限不循环小数是无理数,3.14有限小数是有理数.故选:D.【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.15.下列实数中,无理数是()A.2B.﹣C.3.14D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、2是整数,是有理数,选项不符合题意;B、﹣是分数,是有理数,选项不符合题意;C、3.14是有限小数,是有理数,选项不符合题意;D、是无理数,选项符合题意.故选:D.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:开方开不尽的数,如等;无限不循环小数,如0.1010010001…等;字母表示的无理数,如π等.二.填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高2055m.【分析】根据正负数的意义,把比海平面低记作“﹣”,则比海平面高可记作“+”,求高度差用“作差法”,列式计算.【解答】解:吐鲁番盆地低于海平面155米,记作﹣155m,则南岳衡山高于海平面1900米,记作+1900米;∴衡山比吐鲁番盆地高1900﹣(﹣155)=2055(米).【点评】先根据数的意义确定两个读数,再列式计算.17.在有理数集合中,最小的正整数是1,最大的负整数是﹣1.【分析】根据正整数和负整数的定义来得出答案.正整数:+1,+2,+3,…叫做正整数.负整数:﹣1,﹣2,﹣3,…叫做负整数.特别注意:0是整数,既不是正数,也不是负数.【解答】解:在有理数集合中,最小的正整数是1,最大的负整数是﹣1.故答案为1;﹣1.【点评】本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.18.在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是﹣3.【分析】设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.【解答】解:设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,所以,点A表示的数是﹣3.故答案为:﹣3.【点评】本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.19.请写出一个比3大比4小的无理数:π.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【解答】解:比3大比4小的无理数很多如π.故答案为:π.【点评】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.请写出一个无理数.【分析】根据无理数定义,随便找出一个无理数即可.【解答】解:是无理数.故答案为:.【点评】本题考查了无理数,牢记无理数的定义是解题的关键.21.下列各数中:0.3、、π﹣3、、3.14、1.51511511…,有理数有3个,无理数有3个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可得到正确答案.【解答】解:0.3、=2、3.14这三个数是有理数,π﹣3、、1.51511511…这三个数是无理数,故答案为3、3.【点评】此题主要考查了无理数和有理数的知识点,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.三.解答题(共3小题)22.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点0最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?【分析】(1)把爬过的路程记录相加,即可得解;(2)求出各段距离,然后根据正负数的意义解答;(3)求出爬行过的各段路程的绝对值的和,然后解答即可.【解答】解:(1)5﹣3+10﹣8﹣6+12﹣10,=27﹣27,=0,所以,蜗牛最后能回到出发点;(2)蜗牛离开出发点0的距离依次为:5、2、12、4、2、10、0,所以,蜗牛离开出发点0最远时是12厘米;(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|,=5+3+10+8+6+12+10,=54厘米,∵每爬1厘米奖励一粒芝麻,∴蜗牛一共得到54粒芝麻.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.23.(1)将下列各数填入相应的圈内:2,5,0,1.5,+2,﹣3.(2)说出这两个圈的重叠部分表示的是什么数的集合:正整数.【分析】按照有理数的分类填写:有理数,整数,分数.【解答】解:(1);(2)由图形可得,两个圈的重叠部分表示的是正整数的集合.【点评】本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.【分析】先设=,再由已知条件得出,a2=5b2,又知道b是整数且不为0,所以a不为0且为5的倍数,再设a=5n,(n是整数),则b2=5n2,从而得到b也为5的倍数,与a,b是互质的正整数矛盾,从而证明了答案.【解答】解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.【点评】本题考查了无理数的概念,解题的关键是根据所给事例模仿去做,做到举一反三.。
2021-2022学年苏科版七年级数学第一学期第二章有理数单元测试题 含答案
有理数单元测试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.在﹣,0,﹣|﹣5|,﹣0.6,2,﹣(﹣),﹣10中负数的个数有()A.3 B.4 C.5 D.62.下列说法中,①分数都是有理数;②两数之和为正,则两数均为正;③0是单项式;④一条直线就是一个平角.正确的说法的个数是()A.1 B.2 C.3 D.43.点A、B、C、D在数轴上的位置如图所示,表示的数是负数的点是()A.A B.B C.C D.D4.下列各数中是无理数的是()A.﹣3 B.πC.9 D.﹣0.115.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列,正确的是()A.﹣b<﹣a<a<b B.﹣b<a<﹣a<b C.﹣a<﹣b<a<b D.﹣b<b<﹣a<a6.﹣的绝对值是()A.B.C.D.7.下列运算中,结果最小的是()A.1﹣(﹣2)B.1﹣|﹣2| C.1×(﹣2)D.1÷(﹣2)8.如果a、b互为相反数,c、d互为倒数,x的绝对值等于2,那么cdx2﹣a﹣b的值是()A.4 B.﹣4 C.4或﹣4 D.无法确定二、填空题(共8小题)9.下列各数:27,,0.333…,﹣4π,1.3030030003…,3.1415926中,无理数的个数是.10.如图,数轴上的点A所表示的数为a,化简|a|﹣|a﹣2|的结果为.11.已知实数x,y满足|x﹣5|+=0 那么代数式()2008的值为.12.已知|x|=3,|y|=7,且x+y>0,则x﹣y的值等于.13.如图所示的是一个正方体的展开图,它的每一个面上都写有一个数,并且a与相对面的数互为相反数;b与相对面的数互为倒数;c与相对面的数和为33.那么a+b+c=.14.如图,有理数a在数轴上的位置如图所示,则a、、|a|、a2从小到大的顺序是.(用“<”号连接)15.对于整数a,b,c,d,符号表示运算ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.16.如图,根据图中的运算程序进行计算,当输入x=3,y=2时,输出的结果为.三、解答题(共9小题)17.计算:(1)(+4)×(+3)÷(﹣);(2)(+10)﹣(+1)+(﹣2)﹣(﹣5);(3)(﹣24)×(﹣+);(4)﹣12+(﹣6)×(﹣)﹣8÷(﹣2)3.18.计算下列各题(1)(﹣2)3﹣|2﹣5|﹣(﹣15);(2)(﹣+﹣+)÷(﹣);(3)﹣32﹣[(1)3×(﹣)﹣6÷|﹣|];(4)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13).19.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:二三四五六站次人数下车(人)3610719上车(人)1210940(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?20.十几年前我国曾经流行有一种叫“二十四点”的数学趣味算题,方法是给出1~13之间的自然数,从中任取四个,将这四个数(四个数都只能用一次)进行“+”“﹣”“×”“÷”运算,可加括号使其结果等于24.例如:对1,2,3,4可运算(1+2+3)×4=24,也可以写成4×(1+2+3)=24,但视作相同的方法.现有郑、付两同学的手中分别握着四张扑克牌(见下图);若红桃♥、方块♦上的点数记为负数,黑桃♠、梅花♣上的点数记为正数.请你对郑、付两同学的扑克牌的按要求进行记数,并按前面“二十四点”运算方式对郑、付两同学的记数分别进行列式计算,使其运算结果均为24.(分别尽可能提供多种算法)依次记为:﹣、、﹣、依次记为:、﹣、﹣、.(1)帮助郑同学列式计算:﹣﹣﹣(2)帮助付同学列式计算:﹣﹣.21.阅读下列材料:现规定一种运算:=ad﹣bc.例如:=1×4﹣2×3=4﹣6=﹣2;=4x ﹣(﹣2)×3=4x+6.按照这种规定的运算,请解答下列问题:(1)=(只填结果);(2)已知:=1.求x的值.(写出解题过程)22.十一黄金周(7天)期间,49中学7年7班某同学计划租车去旅行,在看过租车公司的方案后,认为有以下两种方案比较适合(注:两种车型的油耗相同):周租金(单位:元)免费行驶里程(单位:千米)超出部分费用(单位:元/千米)A型1600100 1.5 B型2500220 1.2解决下列问题:(1)如果此次旅行的总行程为1800千米,请通过计算说明租用哪种型号的车划算;(2)设本次旅行行程为x千米,请通过计算说明什么时候费用相同.23.观察下列等式:=1﹣,=,=,将以上三个等式两边分别相加得:++=1﹣=1﹣=.(1)猜想并写出:=.(2)直接写出计算结果:+++…+=;(3)探究并计算:①.②.24.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.25.(材料阅读)数轴是数学学习的一个很重要的工具,利用数轴可以将数与形完美结合.通过数轴我们可发现许多重要的规律:①绝对值的几何意义:一般地,若点A、点B在数轴上表示的有理数分别为a,b,那么A、B两点之间的距离表示为|a﹣b|,记作AB=|a﹣b|,|3﹣1|则表示数3和1在数轴上对应的两点之间的距离;又如|3+1|=|3﹣(﹣1)|,所以|3+1|表示数3和﹣1在数轴上对应的两点之间的距离;②若数轴上点A、点B表示的数分别为a、b,那么线段AB的中点M表示的数为.(问题情境)如图,在数轴上,点A表示的数为﹣20,点B在原点右侧,表示的数为b,动点P从点A出发以每秒2个单位长度的速度沿数轴正方向运动,同时,动点Q从点B出发以每秒3个单位长度的速度沿数轴负方向运动,其中线段PQ的中点记作点M.(综合运用)(1)出发12秒后,点P和点Q相遇,则B表示的数b=;(2)在第(1)问的基础上,当时,求运动时间;(3)在第(1)问的基础上,点P、Q在相遇后继续以原来的速度在这条数轴上运动,但P、Q两点运动的方向相同.随着点P、Q的运动,线段PQ的中点M也相应移动,问线段PQ的中点M能否与表示﹣2的点重合?若能,求出从P、Q相遇起经过的运动时间;若不能,请说明理由.有理数单元提优测试卷参考答案一、单选题(共8小题)1.【答案】B【解答】解:﹣|﹣5|=﹣5,﹣(﹣)=,故负数有﹣,﹣|﹣5|,﹣0.6,﹣10,共4个.故选:B.2.【答案】B【解答】解:①分数都是有理数,说法正确;②两数之和为正,则两数不一定均为正,如2+(﹣1)=1,故原说法错误;③0是单项式,说法正确;④一条直线不是一个平角,因为平角有顶点,原说法错误,故原说法错误.正确的说法有①③共2个.故选:B.3.【答案】A【解答】解:根据数轴得:A表示的数为负数.故选:A.4.【答案】B【解答】解:A、﹣3,是有理数,不合题意;B、π,是无理数,符合题意;C、9,是有理数,不合题意;D、﹣0.11,是有理数,不合题意;故选:B.5.【答案】B【解答】解:∵a<0<b,且﹣a<b,∴﹣a>0,﹣b<0,∵﹣a<b,∴﹣b<a,∴﹣b<a<﹣a<b.故选:B.6.【答案】C【解答】解:﹣的绝对值是|﹣|=;故选:C.7.【答案】C【解答】解:A、原式=1+2=3;B、原式=1﹣2=﹣1;C、原式=﹣2;D、原式=﹣;其中结果最小的是﹣2.故选:C.8.【答案】A【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,|x|=2,∴cdx2﹣a﹣b=1×22﹣0=4﹣0=4.故选:A.二、填空题(共8小题)9.【答案】2个【解答】解:27,,0.333…,﹣4π,1.3030030003…,3.1415926中,无理数有﹣4π,1.3030030003…,一共有2个.故答案为:2个.10.【答案】2【解答】解:由数轴知:1<a<2,∴a﹣2<0,∴|a|﹣|a﹣2|=a﹣(a﹣2)=a﹣a+2=2.故答案为:2.11.【答案】1【解答】解:∵|x﹣5|+=0,∴x=5,y=﹣4,则原式=1.故答案为:1.12.【答案】-4或-10【解答】解:∵|x|=3,|y|=7∴x=3或x=﹣3;y=7或y=﹣7,又∵x+y>0,∴当x=3,y=7时,x﹣y=3﹣7=﹣4;当x=﹣3,y=7时,x﹣y=﹣3﹣7=﹣10;故答案为:﹣4或﹣10.13.【答案】 14【解答】解:由正方体的表面展开图的“相间、Z端是对面”可得,“a”与“8”相对,“b”与“4”相对,“c”与“25”相对,∵a与相对面的数互为相反数;b与相对面的数互为倒数;c与相对面的数和为33.∴a=﹣8,b=,c=8∴a+b+c=,故答案为:.14.【答案】 1a<a<a2<|a|【解答】解:取a=﹣,则=﹣2,|a|=,a2=(﹣)2=,∵﹣2<﹣<,∴<a<a2<|a|,故答案为:<a<a2<|a|.15.【答案】±4【解答】解:由题意得,1<1×5﹣xy<3,即1<5﹣xy<3,∴,∵x、y均为整数,∴xy为整数,∴xy=3,∴x=±1时,y=±3;x=±3时,y=±1;∴x+y=1+3=4或x+y=﹣1﹣3=﹣4,故答案为±4.16.【答案】1【解答】解:由图中所提供的运算程序,可得输出的结果为x2+y2﹣2xy,即(x﹣y)2,当x=3,y=2时,原式=32+22﹣2×3×2=1,故答案为:1.三、解答题(共9小题)17.【解答】解:(1)原式=12×(﹣)=﹣18;(2)原式=10﹣1﹣2+5=12;(3)原式=(﹣24)×﹣(﹣24)×+(﹣24)×=﹣16+15﹣12=﹣13;(4)原式=﹣1+3﹣8÷(﹣8)=﹣1+3+1=3.18.【解答】解:(1)(﹣2)3﹣|2﹣5|﹣(﹣15)=(﹣8)﹣3+15=(﹣8)+(﹣3)+15=4;(2)(﹣+﹣+)÷(﹣)=(﹣+﹣+)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)+×(﹣24)=12+(﹣20)+9+(﹣10)=﹣9;(3)﹣32﹣[(1)3×(﹣)﹣6÷|﹣|]=﹣9﹣[()3×(﹣)﹣6÷]=﹣9﹣[×(﹣)﹣6×]=﹣9﹣(﹣﹣9)=﹣9++9=;(4)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13)=(2+5)×(﹣1)+[(﹣2)+(﹣)]×13=7×(﹣)+(﹣3)×13=(﹣10)+(﹣39)=﹣49.19.【解答】解:(1)19﹣[(12﹣3)+(10﹣6)+(9﹣10)+(4﹣7)]=19﹣[9+4﹣1﹣3]=19﹣9=10答:本趟公交车在起点站上车的人数是10人.(2)由(1)知起点上车10人(10+12+10+9+4)×2=45×2=90(元)答:此趟公交车从起点到终点的总收入是90元.20.【答案】【第1空】-9【第2空】7【第3空】-6【第4空】2【第5空】7【第6空】-13【第7空】-5【第8空】3【第9空】(-9+7-2)×(-6)【第10空】[-5×(-13)+7]÷3【解答】解:依次记为:﹣9、7、﹣6、2;依次记为:7、﹣13、﹣5、3.(1)(﹣9+7﹣2)×(﹣6)=(﹣4)×(﹣6)=24;(2)[﹣5×(﹣13)+7]÷3=(65+7)÷3=72÷3=24.故答案为:﹣9,7,﹣6,2;7,﹣13,﹣5,3;(﹣9+7﹣2)×(﹣6);[﹣5×(﹣13)+7]÷3.21.【答案】4【解答】解:(1)根据题中的新定义得:原式=2+6×=2+2=4;故答案为:4;(2)由题意得:﹣=1,去分母,得:3x﹣5(x﹣3)=15,去括号,得:3x﹣5x+15=15,移项及合并,得:﹣2x=0,系数化为1,得:x=0.22.【解答】解:(1)若租用A型车,所需费用为:1600+(1800﹣100)×1.5=4150,若租用B型车,所需费用为:2500+(1800﹣220)×1.2=4396,∵4396>4150∴选择A型号车划算;(2)若租用A型车,所需费用为:1600+1.5(x﹣100)=1.5x+1450,若租用B型车,所需费用为:2500+1.2(x﹣220)=1.2x+2236,当1.5x+1450=1.2x+2236,即x=2620时,租用A型车和B型车费用相同.23.【答案】【第1空】12020-12021【第2空】20192020【解答】解:(1)=﹣;故答案为:﹣;(2)+++…+=1+﹣+﹣+…+﹣=1﹣=;故答案为:;(3)①=(1﹣+﹣+﹣+…+﹣+﹣)=(1﹣)=;②=(1﹣﹣++﹣﹣++﹣+…+﹣﹣+)=×(1﹣﹣+)=.24.【解答】解:(1)由题意得:a,b,c三个有理数都为负数或其中一个为负数,另两个为正数.①当a,b,c都是负数,即a<0,b<0,c<0时,则:++=﹣﹣﹣=﹣1﹣1﹣1=﹣3;②当a,b,c有一个为负数,另两个为正数时,设a>0,b>0,c<0,则:++=++=1+1﹣1=1所以:++的值为﹣3或1.(2)因为|a|=9,|b|=4,所以a=±9,b=±4,因为a<b,所以a=﹣9,b=±4,所以a﹣2b=﹣9﹣2×4=﹣17或a﹣2b=﹣9﹣2×(﹣4)=﹣1.答:a﹣2b的值为﹣17或﹣1.25.【答案】40【解答】解:(1)由题意(2+3)×12=b﹣(﹣20),解得b=40,故答案为40.(2)设运动时间为t秒.由题意:60﹣(2+3)t=×60或(2+3)t﹣60=×60,解得t=8或16.答:运动时间为8秒或16秒时,PQ=AB.(3)能.点P、Q在相遇点表示的数为﹣20+12×2=4,设从点P、Q相遇起经过的时间为t秒时,线段PQ的中点M与﹣2重合.由题意,P,Q必须同时向左运动,可得=﹣2,解得t=,答:从P、Q相遇起经过的运动时间为.1、三人行,必有我师。
【精选】苏科版数学七年级上册 有理数单元练习(Word版 含答案)
轴正方向运动.点 为 的中点,点 在 上,且
,设运动时间为
.
①请直接用含 的代数式表示点 , 对应的数;
②当
时,求 的值.
【答案】 (1)-12;5
(2)解:① 对应的数是
, 对应的数是
;
②
,
,
,
,
由
,得
,
由
,得
,
故当
秒或
秒时,
.
【解析】【解答】解:(1) 点 对应的数为 ,
,
,
点 对应的数是:
;点 对应的数是:
的值.
【答案】 (1)
;
(2)
;
(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( - ) +…+
=.
【解析】【解答】解:(1)第 5 个等式:a5=
,
故答案为
.
( 2 )an=
,
故答案为
.
【分析】(1)根据前四个式子的规律,就可列出第 5 个等式,计算可求解。
(3)根据(2)方法去绝对值,分为 3 种情况去绝对值符号,计算三种不同情况的值,最
后讨论得出最小值.
2.已知 , , 三点在数轴上对应的位置如图如示,其中点 对应的数为 2,
,
.
(1)点 对应的数是________,点 对应的数是________; (2)动点 , 分别同时从 , 两点出发,分别以每秒 8 个单位和 3 个单位的速度沿数
(2)根据以上规律,就可用含 n 的代数式表示出第 n 个代数式。
(3)根据以上的规律,可得出 a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+
最新苏科版七年级上册数学 有理数单元练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.4.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.5.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.6.如图A在数轴上对应的数为-2.(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.【答案】(1)2(2)解:,∴B点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A,B两点间距离是14个单位长度.(3)解:运动后的B点在A点右边4个单位长度,设经过t秒长时间A,B两点相距4个单位长度,依题意有3t=14-4,解得x= ;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有3t=14+4,解得x=6.∴经过秒或6秒长时间A,B两点相距4个单位长度.【解析】【解答】解:(1)-2+4=2,故点B所对应的数是2;【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解.7.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.8.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;9.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.10.如图,点A、B、C在数轴上表示的数分别是-3、1、5。
苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)
苏科版七年级数学上册 第二单元有理数单元测试卷一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.中国是世界上最早认识和应用负数的国家,比西方早一千多年,负数最早记载于下列哪部著作中( )A .B .C .D .2.数轴的原型来源于生活实际,数轴体现了( )的数学思想,是我们学习和研究有理数的重要工具. A .整体B .方程C .转化D .数形结合3.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯4.如图,关于A 、B 、C 这三部分数集的个数,下列说法正确的是( )A .A 、C 两部分有无数个,B 部分只有一个0 B .A 、B 、C 三部分有无数个 C .A 、B 、C 三部分都只有一个D .A 部分只有一个,B 、C 两部分有无数个5.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1ab=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a ba b+的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( ) A .0个B .1个C .2个D .3个6.(2019·江西省大吉山中学初一期末)当使用计算器的键,将1156的结果切换成小数格式19.16666667,则对应这个结果19.16666667,以下说法错误的是( )A .它不是准确值B .它是一个估算结果C .它是四舍五入得到的D .它是一个近似数7.设n 是自然数,则()()2112nn +-+-的值为( )A .1B .-1C .0D .1或-18.如图,数轴上A ,B 两点所表示的数互为倒数,则关于原点的说法正确的是( )A .一定在点A 的左侧B .一定与线段AB 的中点重合C .可能在点B 的右侧D .一定与点A 或点B 重合9.)“!”是一种运算符号,并且1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4, 则20182017!!的值是( ) A .1 B .2016 C .2017 D .201810.数32019・72020・132021的个位数是 ( ) A .1B .3C .7D .911.有一张厚度为0.1毫米的纸片,对折1次后的厚度是20.1⨯毫米,继续对折,2次,3次,4次……假设这张纸对折了20次,那么此时的厚度相当于每层高3米的楼房层数约是( )(参考数据:1021024=, 2021048576=) A .3层B .20层C .35层D .350层12.若a ,b 为有理数,下列判断正确的个数是( )(1)12a ++总是正数;(2)()224a ab +-总是正数;(3)()255ab +-的最大值为5;(4)()223ab -+的最大值是3.A .1B .2C .3D .4二、填空题13.若()2320m n -++=,则m+2n 的值是______。
苏教版七年级上册数学第一章有理数复习测试题及答案
一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(A)(B) (C)(D)2、大于–3。
5,小于2.5的整数共有()个。
(A)6 (B)5 (C)4 (D)33、已知数在数轴上对应的点在原点两侧,并且到原点的位置相等;数是互为倒数,那么的值等于( )(A)2 (B)–2 (C)1 (D)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(A)同号,且均为负数(B)异号,且正数的绝对值比负数的绝对值大(C)同号,且均为正数(D)异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A、1B、2C、3D、46、如果一个数的相反数比它本身大,那么这个数为()A、正数B、负数C、整数D、不等于零的有理数7、下列说法正确的是()A、几个有理数相乘,当因数有奇数个时,积为负;B、几个有理数相乘,当正因数有奇数个时,积为负;C、几个有理数相乘,当负因数有奇数个时,积为负;D、几个有理数相乘,当积为负数时,负因数有奇数个;8、在有理数中,绝对值等于它本身的数有( )A。
1个B。
2个 C. 3个 D.无穷多个9、下列计算正确的是( )A.-22=-4 B。
-(-2)2=4 C。
(-3)2=6 D.(-1)3=110、如果a〈0,那么a和它的相反数的差的绝对值等于( )A.aB.0C.—a D。
—2a二、填空题:(每题2分,共42分)1、。
2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b = .小明计算出2*5=-4,请你帮小刚计算2*(—5)=.3、若,则= ;4、大于-2而小于3的整数分别是_________________、5、(-3。
2)3中底数是______,乘方的结果符号为______。
苏教版七年级数学上册第二章有理数单元测试及答案
七年级数学第二章有理数单元测试之杨若古兰创作姓名得分1、52-的绝对值是,52-的相反数是,52-的倒数是.2、某水库的水位降低1米,记作 -1米,那么 +1.2米暗示.3、数轴上暗示有理数-3.5与4.5两点的距离是.4、已知|a -3|+24)(+b =0,则2003)(b a +=. 5、已知p 是数轴上的一点4-,把p 点向左挪动3个单位后再向右移1个单位长度,那么p 点暗示的数是______________. 6、最大的负整数与最小的正整数的和是_________ . 7、()1-2003+()20041-= .8、若x 、y 是两个负数,且x <y ,那么|x||y| 9、若|a|+a =0,则a 的取值范围是 10、若|a|+|b|=0,则a =,b =二、精心选一选:(每小题3分,共24分.请将你的选择答案填鄙人表中.)1( )A 0B -1C 1D 0或12、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 53、计算:(-2)100+(-2)101的是( )A 2100B -1C -2D -21004、两个负数的和必定是( )A 负B 非负数C 非负数D 负数5、已知数轴上暗示-2和-101的两个点分别为A ,B ,那么A ,B 两点间的距离等于( )A 99B 100C 102D 103 6、31-的相反数是( )A -3B 3C 31 D31-7、若x >0,y <0,且|x|<|y|,则x +y 必定是( )A 负数B 负数C 0D 没法确定符号8、一个数的绝对值是3,则这个数可所以( )A 3B 3-C 3或3- D31 9、()34--等于( ) A12-B 12C 64- D6410、,162=a 则a 是( ) A 4或4- B4-C 4D 8或8-三、计算题(每小题4分,共32分)1、()26++()14-+()16-+()8+2、()3.5-+()2.3-()5.2--()8.4+-3、()8-)02.0()25(-⨯-⨯4、⎪⎭⎫⎝⎛-+-127659521()36-⨯ 5、 ()1-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷3114310 6、8+()23-()2-⨯7、81)4(2033--÷- 8、100()()222---÷⎪⎭⎫ ⎝⎛-÷32四、(5分)m =2,n =3,求m+n 的值五、(5分)已知a 、b 互为相反数,c 、d 互为负倒数(即1cd =-),x 是最小的正整数.试求220082008()()()x a b cd x a b cd -+++++-的值六、(6分)出租车司机小李某天下战书运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,此日下战书他的行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6(1)将最初一位乘客送到目的地时,小李距下战书出车时的出发点多远?(2)若汽车耗油量为3升/千米,此日下战书小李共耗油多少升?七、(7分)毕节倒天河水库的警戒水位是4.73米,下表记录的是今年某一周内的水位变更情况,取河流的警戒水位作为0点,而且上周末(礼拜六)的水位达到警戒水位,正号暗示水位比前一天上升,负号暗示水位比前一天降低.(本题10分)⑴本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?⑵ 与上周末比拟,本周末河流的水位是上升了还是降低了?⑵以警戒水位作为零点,用折线统计图暗示本周的水位情况.水位变更(米)日 一 二 三 四 五 六 八、(6分)观察以下各式:33332211123410016254544+++==⨯⨯=⨯⨯………1、计算 :33333123410++++⋅⋅⋅+的值2、试猜测333331234n ++++⋅⋅⋅+的值《有理数及其运算》单元测试卷卷参考答案一、耐心填一填:1、25、25、52-2、该水库的水位上升1.2米3、8 4、–1 5、–6 6、0 7、0 8、> 9、a ≤ 010、a = 0 b = 0二、填空题三、计算题1、解:原式= (26)(8)(14)(16)++++-+-2、解:原式= 5.3 3.2 2.5 4.8--+-= 34(30)+-= 5.3 2.5 3.2 4.8-+--= 4 = 2.88--= 10.8-3、解:原式= 200(0.02)⨯-4、解:原式=1557(36)(36)(36)(36)29612⨯--⨯-+⨯--⨯-= 4-= 18203021-+-+= 4841-+= 7-5、解:原式= 43(1)()()434-⨯-⨯-6、解:原式= 89(2)+⨯-= 43()⨯-=434-818= 3-43 = 10-7、解:原式= 11-⨯--8、解:原式08()648=10043÷-= 11-88 = 253-= 0 = 22四、解:∵2m=∴2m=±∵3n=∴3n=±当2,3==时m n+=+= 5m n23当2,3==-时m n+=+-= 1-m n2(3)当2,3=-=时m nm n+=-+= 1(2)3当2,3=-=-时m n+=-+-= 5-m n(2)(3)五、解:∵a、b互为相反数∴0+=a b∵c、d互为负倒数∴1cd=-∵x是最小的正整数∴1x=∴220082008-+++++-x a b cd x a b cd()()()=220082008-+-⨯++--1[0(1)]10[(1)]= 2六、解:(1)将最初一位乘客送到目的地时,小李距下战书出车时的出发点的地位:15+(-2)+5+(-1)+10+(-3)+(-2)+12+4+(-5)+6 =(15+5+10+12+4+6)+[(-2)+(-1)+(-3)+(-2)+(-5)] = 52+(-13)= 39即将最初一位乘客送到目的地时,小李距下战书出车时的出发点的东面39千米处(2)此日下战书小李共走了:= 15+2+5+1+10+3+2+12+4+5+6= 65若汽车耗油量为3升/千米,此日下战书小李共耗油65×3 = 195答:若汽车耗油量为3升/千米,此日下战书小李共耗油195礼拜二的实际水位是:74.41 +(- 礼拜五的实际水位是:74.37 +(- 礼拜六的实际水位是:74.01 +(-由上述计算可知:本周礼拜一河流的水位最高;礼拜日河流的水位最低;它们都位于警戒水位之上.(2)由(1)的计算可知本周末(礼拜六)河流的水位是74.00,而上周末(礼拜六)河流的水位是73.40.所以本周末(礼拜六)河流的水位是上升了.(3) 本周的水位绝对于警戒水位的水位见下表以警戒水位作为零点,用折线统计图暗示本周的水位情况为: 八、解:1、33333123410++++⋅⋅⋅+=22110(101)4⨯⨯+=11001214⨯⨯=3025 2、333331234n ++++⋅⋅⋅+=221(1)4n n +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数基本概念选择题一、有理数定义及运算法则1、在有理数中,不存在这样的数( )A . 既不是整数,也不是负数; B. 既不是正数,也不是负数;C .既是正数,又是负数; D. 既是分数,又是负数。
2、下列说法正确的是( )。
A .一个有理数不是正数就是负数; B .一个有理数不是整数就是分数;C . 整数是正整数和负整数的统称;D .有理数是指正有理数、负有理数、0、整数和分数这五类数。
3、a 为有理数,则下列说法正确的是( )。
A .a 为正数;B .a -为负数;C .a a -和一定有一个表示负数;D .a a -和是一对相反数。
4、若 a 是有理数, 则 4a 与 3a 的大小关系是( )。
A .4a > 3a B.4a = 3a C.4a < 3a D.不能确定5、若0a b •=,则有理数a b 、的关系是( )。
A .都是0;B .互为倒数;C .至少有一个数为0;D .一个是0,而另一个不是0。
6、如果a 是有理数,下列四种说法:(1)a 2和|a |都是正数;(2)|a |=-a ,那么a 一定是负数;(3) a 和-a 在数轴上的位置分别在原点的两侧;(4)实数a 的倒数是1a , 其中正确的个数是( )。
A. 0B. 1C.2D.37、有如下四个命题(结论):①两个符号相反的分数之间至少有一个正整数;②两个符号相反的分数之间至少有一个负整数;③两个符号相反的分数之间至少有一个整数;④两个符号相反的分数之间至少有一个有理数.其中真命题(正确结论)的个数为( )(A)1 (B)2 (C)3 (D)48、下列关于零的说法,正确的有()①自然数;②正数;③非正数;④有理数。
⑤最小的正数⑥最小的整数⑦最小的自然数⑧绝对值最小的数(A)4个(B)5个(C)6个(D)7个9、若两个有理数的和是正数,那么一定有结论()(A)两个加数都是正数;(B)两个加数有一个是正数;(C)一个加数正数,另一个加数为零;(D)两个加数不能同为负数10、若有两个有理数的积为正数,而它们的和为负数,则这两个数()。
A.都是正数; B.都是负数; C.一正一负; D.不能确定。
11、若五个有理数的积为负数,那么这五个数中()。
A.只有一个负数; B.至少有一个负数;C.都是负数; D.最多有三个负数。
12、下列说法正确的是()。
A. 0的倒数是0,0的相反数是0;B. 0没有倒数,但0的相反数是0;C.0没有相反数,但0的倒数是0;D.不能确定。
13、下列说法正确的是()A.两数相加,符号不变,并把绝对值相加;B.同号两数相加,取相同的符号,并把绝对值相加;C.异号两数相加,取较大的加数的符号;D.异号两数相加,用绝对值较大的数减去绝对值较小的数。
14、如果两个数的和是正数,那么()A.两个数都是正数; B.两个数中,一个正数,一个是0;C.两个数异号,但正数绝对值较大; D.以上三种情况都有可能。
15、两个非零有理数的和为零,则它们的商是()A.0; B. 1;C. -1; D.±1。
16、两个数相加,如果和小于每个加数,那么这两个数()。
A.都是正数; B.同为负数;C.至少有一个正数; D.至少有一个负数。
17、较小的数减去较大的数,所得的差一定是( )。
A. 0B. 正数C.负数D.0或负数18、若0a b +<,且()0a -->,则( )。
A. 0,0a b ><B. 0,0a b <>C. 0,0a b >>D. 0,0a b <<19、四个整数a 、b 、c 、d 各不相等,且9=⨯⨯⨯d c b a ,则d c b a +++等于( )。
A 、36B 、18C 、9D 、8二、数轴:三要素:原点、正方向、单位长度,缺一不可1、实数,a b 在数轴上的位置如图所示,则化简代数式a b a +-的结果是( )。
A.2a b +; B. 2b a -2、在数轴上表示有理数ab 和,如图所示,下列关系式子正确的是( )。
A .C .b a a b -<<-<; D . a b b a <<-<-。
3、数轴上有两个点为A 、B ,它们表示的数分别是x、y ,则A 、B 两点之间的距离可表示为( )。
A .x -y ;B .y -x ;C .y -x 或x y -;D .x y +。
4、在数轴上,点A 对应的数是-2006,点B 对应的数是+17,则A 、B 两点的距离是( )(A )1989 (B )1999 (C )2013 (D )20235、数轴上原点和原点左边的点表示的数为( )。
(A )负数; (B )正数;(C )非正数; (D )非负数。
6、下列说法正确的是( )。
A 比负数大的是正数B 若b a 〉 则a 是正数,b 是负数C 数轴上的点离原点越远数就越大D 若0a >则a 为正数;若0a <,则a 为负数7、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书 店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )。
A. 在家B. 在学校C. 在书店D. 不在上述地方8、数轴上的点A 、B 、C 、D 分别表示数a 、b 、c 、d ,已知A 在B 的右侧,C 在B 的左侧,D 在B 、C 之间,则下列式子成立的是( )。
A 、a <b <c <dB 、b <c <d <aC 、c <d <a <bD 、c <d <b <a9、一个数在数轴上对应的点与它的相反数在数轴上对应的点之间的距离为6,则此数为( )。
A .3±B .6±C .3D .6。
三、绝对值、相反数、倒数绝对值:数轴上点到原点的距离(几何意义) 非负性:a =x,a=±x ,绝对值等于本身是正数和0相反数:0的相反数为0 ,互为相反数的两个数和为0倒数:0没有倒数,互为倒数两个数乘积为1,倒数等于本身是±1科学计数法:a ×10n (1≤a <10)1、下列说法正确的是( )。
A、a -的相反数一定是a ;B、a 一定大于0;C、a -一定是负数; D、 m -的倒数一定是1m2、一个数的倒数为本身,则这个数为( )。
A .0B .1C .-1D .±1 3、已知3x =,6y =,且,x y 异号,则x y +的值为( )。
A .±9B .9C .9或3D .±34、如果一个数的平方与这个数的绝对值相等,那么这个数为( )A .0B .1C .-1D .0,1或-15、在数轴上,与表示数-1的点的距离等于5的点表示的数为( )。
A .4B .6C .±5D .4或-66、若3x =,2y =,且0x y +>,那么x y -的值为( )。
A .5或1B .1或-1C .5或-5D .-5或-17、如果这两个数的绝对值相等,则这两个数为( )。
A .相等B .互为相反数C .相等或互为相反数D .都为08、若0ab ≠,则a b a b +的值不可能是( )。
A .0B .1C .2D .-29、下列说法正确的是( )。
A .绝对值等于本身的数只有正数; B . 互为相反数的两个数的绝对值相等;C .不相等的两个数的绝对值不相等;D .绝对值相等的数一定相等。
10、在下列10、大小关系中,错误的是( )A .0.10>-B .30.3758->- C .5768< D .5567-<- 11、如果数a 的绝对值大于数b 的绝对值(即a b >),那么( )。
A .a b >B .b a >C .a 、b 异号D .不能确定。
12、如果a b c 、、为三个有理数,且0a b c =++,则( )A .三个数有可能同号;B .三个数一定都是0;C .一定有两个数互为相反数D .一定有一个数的相反数等于其余两个数的和。
13、已知00x y ><、,且x y <,则x y +是( )A .零B .正数C .负数D .非负数。
14、下列说法正确的是( )。
A .对于任意有理数a b 、,若0a b =+,则a b =;B .对于任意有理数a b 、,若0,00a b a b ≠≠+≠,则;C .对于任意有理数a b 、,若a b =,则0a b +=;D .若7a =,10b =,则17a b +=。
15如果m n m n +=+,则( )。
A .m n 、同号;B .m n 、异号;C .m n 、为任意有理数D .m n 、同号或m n 、中至少一个为零。
16、下列说法中,错误的是( )。
A .0也有相反数;B .符号不同的两个数互为相反数;C . 任何一个有理数都有相反数D .正数的相反数是负数。
17、一个数的相反数是非负数,那么这个数一定是( )。
A .正数;B . 负数;C . 非正数;D . 非负数。
18、下列说法正确的是( )。
A . 若0a >,则a a =,反之,若a a =,则0a >;B . 若a a =-,则a 必为负数;C . 绝对值不大于3的整数有6个,分别是±1,±2,±3;D . 任何有理数的绝对值都是非负数。
19、若a a -=,则a 的取值范围是( )。
A .0a <;B .0a >;C .0a ≥;D .0a ≤。
20、若a a -=-,则a 的取值范围是( )。
A .0a <;B .0a>; C .0a ≥; D .0a ≤。
21、若33x x -=-,则x 的取值范围是( )。
A .3x >;B .0x >;C .3x ≥;D .3x ≤。
22、若a 是有理数 ,则下面说法正确的是( )。
A .a 一定为正数;B .a -一定为负数;C .a -一定为负数;D .1a +一定为正数。
23、当x y =,则x y 与的关系是( )。
A .都是0;B .互为相反数;C .相等;D .相等或互为相反数。
参考答案一、有理数定义及运算法则1、在有理数中,不存在这样的数( C )B . 既不是整数,也不是负数; B. 既不是正数,也不是负数;C .既是正数,又是负数; D. 既是分数,又是负数。
2、下列说法正确的是( B )。
B .一个有理数不是正数就是负数; B .一个有理数不是整数就是分数;C . 整数是正整数和负整数的统称;D .有理数是指正有理数、负有理数、0、整数和分数这五类数。
3、a 为有理数,则下列说法正确的是( D )。