溶液吸附法测定比表面

合集下载

溶液吸附法测固体比表面积

溶液吸附法测固体比表面积

实验五 溶液吸附法测固体比表面积一、实验目的:1.了解溶液吸附法测定固体比表面的优缺点。

2.掌握溶液吸附法测定固体比表面积的基本原理和测定方法。

3.用亚甲基蓝水溶液吸附法测定活性碳、硅藻土、碱性层析氧化铝比表面积。

二、实验原理:① Langmuir 吸附定律:在一定温度下以及一定的浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,与固体对气体的吸附很相似,可用Langmuir 单分子层吸附模型来处理。

Langmuir 吸附理论的基本假定是:a) 固体表面是均匀的;b) 吸附是单分子层吸附;c) 被吸附在固体表面上的分子相互之间无作用力;d) 吸附剂一旦被吸附质覆盖就不能被再吸附;e) 吸附平衡时,吸附和脱附建立动态平衡;f) 吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。

根据以上假定,推导出吸附方程:设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有?)c (kr= kN (1-为吸附速率常数) 吸附速率: 1 1吸? = rkN(k 为脱附速率常数)脱附速率: -1 -1脱?? N = N (1-k )c 当达到吸附平衡时: r= r 即 k -11 脱吸Kc :由此可得 (1)吸 θ? 1?Kc 吸式中K=k/k 称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温11-吸度,K 值越大,固体对吸附质吸附能力越强。

若以q表示浓度c 时的平衡吸附量,吸? =q/: q 以q 表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则?? q 代入式(1)得)(2 式中:K 为吸附作用的平衡常数,也称为吸附系数,与吸附质、吸附剂性质及温度有关,其值越大,则表示吸附能力越强;q 为平衡吸附量,1g 吸附剂达吸附平衡时,吸附的溶质的物质的量(mg/g );q 为饱和吸附量,1g 吸附剂的表面∞上盖满一层吸附质分子时所能吸附的最大量(mg/g );c 为达到吸附平衡时,溶 质在溶液本体中的平衡浓度。

溶液吸附法测定比表面实验原理的讨论式教学

溶液吸附法测定比表面实验原理的讨论式教学

溶液吸附法测定比表面实验原理的讨论式教学李垒*,潘湛昌,胡光辉(广东工业大学轻工化工学院,广东广州510006)[摘要]本文介绍讲授溶液吸附法测定比表面实验原理教学中所采用的讨论式教学方法。

从朗格缪尔基本假设出发,较为详细地推导出固体比表面的计算公式为:S=N0AG/MW,由此得出溶液吸附法测定固体比表面的方法。

通过对相对误差公式ΔS/S=ΔG/G+ΔA/A+ΔW/W的分析,得出本实验误差的主要来源为ΔG/G。

[关键词]比表面测定;溶液吸附法;讨论式教学;误差分析[中图分类号]O643.11 [文献标识码]A [文章编号]1007-1865(2021)03-0196-01 Discussion Teaching on Experimental Principle of Specific Surface DeterminationLi Lei*, Pan Zhanchang, Hu Guanghui(School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China) Abstract: The discussion teaching method is introduced in experiment principle teaching of specific surface measurement by solution adsorption. Based on Langmuir's basic hypothesis, the calculation formula of solid surface is deduced in detail: S=N0AG/MW. A solution adsorption method for the determination of solid surface was obtained. Through the analysis of relative error formula: ΔS/S=ΔG/G+ΔA/A+ΔW/W. The major sources of error in this experiment is ΔG/G.Keywords: specific surface determination;solution adsorption;discussion teaching;error analysis比表面积是粉末及多孔材料的一个重要特征参数,在催化、气体吸附分离等方面有着广泛应用。

实验十二 溶液吸附法测定固体比表面积(讲义)

实验十二 溶液吸附法测定固体比表面积(讲义)

实验十二 溶液吸附法测定固体比表面积一、目的要求1. 学会用亚甲基蓝水溶液吸附法测定活性炭的比表面积。

2. 了解朗格缪尔(Langmuir)单分子层吸附理论及溶液法测定比表面积的基本原理。

二、实验原理:水溶性染料的吸附已应用于测定固体比表面积,在所有的染料中亚甲基蓝具有最大的吸附倾向。

研究表明,活性炭在一定温度和浓度范围内,对亚甲基蓝可以进行单分子的饱和吸附,符合Langmuir 吸附理论。

Langmuir 吸附理论的基本假定是:固体表面是均匀的,吸附是单分子层吸附,吸附剂一旦被吸附质覆盖就不能再吸附,在吸附平衡时,吸附和脱附建立动态平衡,有如下等温吸附方程:式中Γ∞——为饱和吸附量,即每克吸附剂(活性炭)上被吸附质铺满单分子层吸附质(亚甲基蓝)分子时的吸附量,mol*g -1;Γ——为溶液在吸附质(亚甲基蓝)平衡浓度c (mol*L -1)时的吸附量,mol*g -1;K 为与吸附和脱附平衡常数有关的常数,其值决定于吸附剂和吸附质的本性及温度。

将此式整理得:以1/Γ对1/c 作图得一直线,由此直线的斜率和截距可求得Γ∞。

若每个吸附质分子在吸附剂上所占据的面积为a ,则吸附剂的比表面积可以按照下式计算:S =Γ∞La式中S 为吸附剂比表面积,m 2*g -1;L 为阿伏加德罗常数,6.02*1023mol -1,a 为每个亚甲基蓝分子在活性炭上所占据的面积,39*10-20 m 2。

亚甲基蓝的结构为:∞∞=+1111ΓΓΓK c ΓΓ1Kc Kc∞=+阳离子大小为17.0 ×7.6× 3.25 ×10-30 m3。

亚甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20m2,侧面吸附投影面积为75×10–20m2,端基吸附投影面积为39×10–20m2。

对于非石墨型的活性炭,亚甲基蓝是以端基吸附取向,吸附在活性炭表面,因此a=39 ×10–20m2。

实验4溶液吸附法测定固体比表面积

实验4溶液吸附法测定固体比表面积

实验四溶液吸附法测定固体比表面一、实验目的1、了解溶液吸附法测定固体比表面的原理和方法。

2、用溶液吸附法测定活性炭(硅藻土、碱性层析氧化铝)的比表面。

3、掌握分光光度计工作原理及操作方法。

二、实验原理1、朗伯-比尔定律(光吸收原理)根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比:A = lg(l0/I) =abc式中:A :吸光度;Io:入射光强度;I:透射光强度;a:摩尔吸收系数,与吸收物质的性质及入射光的波长入有关;b:液层厚度;c:溶液浓度。

一般来说光的吸收定律可适用于任何波长的单色光,但同一种溶液在不同波长所测得的吸光度不同,如果把吸光度A对波长入作图可得到溶液的吸收曲线,为了提高测量的灵敏度,工作波长一般选在A值最大处。

亚甲基蓝溶液在可见区有二个吸收峰:445nm和665nm,但在445nm处活性炭吸附对吸收峰有很大的干扰,固本实验选用的工作波长为665nm。

2、亚甲基蓝结构及吸附特征亚甲基蓝具有以下矩形平面结构:阳离子大小为17.0 >7.6 >3.25 X0-3O m3o亚甲基蓝的吸附有三种取向:平面吸附投影面积为135X10-20m2,侧面吸附投影面积为75X10-20m2,端基吸附投影面积为39X0-20m2。

对于非石墨型的活性炭,亚甲基蓝是以端基吸附取向,吸附在活性炭表面。

3、朗格缪尔(Langmuir)单吸附理论朗格缪尔吸附理论的基本假设是:固体表面是均匀的,吸附时单分子层吸附,吸附剂一旦被吸附质覆盖就不能再吸附,在吸附平衡时,吸附和脱附建立动态平衡;吸附平衡前,吸附速率与空白表面积成正比,解吸速率与覆盖度成正比。

水溶性染料的吸附已经应用于测定固体表面积比表面,在所有的染料中亚甲基蓝具有最大的吸附倾向。

研究表明,在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附,符合朗格缪尔吸附理论。

但当原始溶液的浓度过高时,会出现多分子层吸附,而如果平衡浓度过低,吸附又不能达到饱和,因此原始溶液的浓度以及平衡后的浓度应选择在适当的范围。

实验七 溶液吸附法测定固体比表面积

实验七  溶液吸附法测定固体比表面积

实验七溶液吸附法测定固体比表面积一、实验目的1.用次甲基蓝水溶液吸附法测定颗粒活性碳的比表面。

2.了解Langmuir单分子层吸附理论及溶液法测定比表面的基本原理。

3.了解722型光电分光光度计的基本原理并熟悉其使用方法。

二、实验原理根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比:A=lg(I0/I)=KCL式中A为吸光度,I0为入射光强度,I为透射光强度,K为消光系数,c为溶液浓度,L为液层厚度。

一般来说光的吸收定律可适用于任何波长的单色光,但同一种溶液在不同波长所测得的吸光度不同,如果把吸光度A对波长λ作图可得到溶液的吸收曲线,为了提高测量的灵敏度,工作波长一般选在A值最大处。

次甲基蓝在可见区有两个吸收峰,445nm和Array 665nm;但在445nm处,活性碳吸附对吸收峰有很大的干扰,故本实验选用的工作波长为665nm。

水溶液染料的吸附已用于固体比表面的测定,在所有染料中次甲基蓝具有最大的吸附倾向。

研究表明,在一定的浓度范围之内,大多数固体对次甲基蓝的吸附是单分子吸附,即符合朗格缪尔型(图7—1)。

但当原始溶液的浓度过高时,会出现多分子层吸附,而如果平衡后的浓度过低,吸附又不能达到饱和,因此原始溶液的浓度以及吸附平衡后的浓度都应选择在适当的范围之内,本实验原始溶液的浓度为0.2%左右,平衡溶液浓度不小于0.1%。

次甲基蓝具有以下矩形平面结构:阳离子大小为17.0×7.6×3.25×10-30m2。

次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10-20m2;侧面吸附投影面积为75×10-20m2;端基吸附投影面积为39×10-20m2;;对于非石墨型的活性碳,次甲基蓝是以端基吸附取向。

根据实验结果推算,在单层吸附的情况下,1毫克次甲基蓝复盖的面积可按2.45米2计算。

物理化学 溶液吸附法测定固体物质的比表面

物理化学 溶液吸附法测定固体物质的比表面

四 数据处理与实验结论表一 溶液吸附法测定固体物质的比表面数据记录编号硅胶重量(mg)亚甲基蓝溶液浓度(mg/ml) 光密度标准曲线查得的浓度平衡溶液浓度C(mg/ml) 吸附亚甲基蓝质量△W(mg) 2 0 0.0050 0.100 3 0 0.0075 0.158 4 0 0.0100 0.215 5 00.0125 0.280 图一吸附剂的比表面①平面吸附投影面积S=△WAN AWM=0.0006*1.35*10−18*6.022*1023/0.0486*373.88=26.845②侧面吸附投影面积 S=△WAN AWM =0.0006*7.52*10−19*6.022*1023/0.0486*373.88=14.95 ③端基吸附投影面积S=△WAN AWM=0.0006*3.95*10−19*6.022*1023/0.0486*373.88=7.85由上表得△W=0.6五.实验讨论实验中测定吸光度与标准溶液的浓度的关系时得到吸光度与浓度的标准工作曲线y = 23.28x - 0.0129 R= 0.9990≈1 所以曲线拟合性较好。

六.思考题1公式(9-1)的应用要求的条件?测量比表面较大的试样所得的结果较为满意2产生实验结果的偏差荡后吸取清液时为什么不能吸取上硅胶?实验要测量的是硅胶吸附后的甲基蓝溶液的浓度,吸上硅胶可能会导致硅胶中的甲基蓝重新析出,影响光密度和实验结果。

3比表面的测定与温度,吸附质的浓度,吸附平衡的时间有什么关系?温度高时吸附量低,反而吸附量高,吸附质的浓度至少要能满足吸附剂达到饱和吸附时所需的浓度但溶液不能太浓,否则会出现多层吸附震荡要达到饱和吸附时所需时间,吸附剂颗粒大小不要相差太大。

4亚甲基蓝吸附投影面积A对测定比表面有什么影响?如何测定?S=△WAN A亚甲基蓝吸附吸附于吸附剂上有三种取向,平面吸附投影侧面吸附投影端基吸附WM投影。

不同投影方式有不同的面积,从而影响比表面。

溶液吸附法测量固体物质的比表面积(详细参考)

溶液吸附法测量固体物质的比表面积(详细参考)

实验十 溶液吸附法测量固体物质的比表面积一、实验目的:1.了解溶液吸附法测定固体比表面的原理和方法。

2.用溶液吸附法测定活性炭的比表面。

3.掌握分光光度计工作原理及操作方法。

二、实验原理:本实验采用溶液吸附法测定固体物质的比表面。

在一定温度下,固体在某些溶液中吸附溶质的情况可用Langmuir 单分子层吸附方程来处理。

其方程为KcKcm+Γ=Γ1式中:Γ为平衡吸附量,单位质量吸附剂达吸附平衡时,吸附溶质的物质的量(mol ·g-1);Γm 为饱和吸附量,单位质量吸附剂的表面上吸满一层吸附质分子时所能吸附的最大量(mol ·g-1);c 为达到吸附平衡时,吸附质在溶液本体中的平衡浓度(mol ·dm-3);K 为经验常数,与溶质(吸附质)、吸附剂性质有关。

吸附剂比表面S 比 : S 比 =ΓmLA式中:L 是阿伏加德罗常数;A 是每个吸附质分子在吸附剂表面占据的面积。

配制不同吸附质浓度c0的样品溶液,测量达吸附平衡后吸附质的浓度c ,用下式计算各份样品中吸附剂的吸附量mVc c )(0-=Γ 式中:c0是吸附前吸附质浓度(mol ·dm-3);c 是达吸附平衡时吸附质浓度(mol ·dm-3);V 是溶液体积(dm3);m 是吸附剂质量(g )。

Langmuir 方程可写成Kc cm m Γ+Γ=Γ11 根据改写的Langmuir 单分子层吸附方程,作Γc~c 图,为直线,由直线斜率可求得Γm甲基兰的摩尔质量为373.9g ·mol -1。

假设吸附质分子在表面是直立的,A 值取为1.52×10-18m 2。

三、实验步骤:1.样品活化2.溶液吸附取5只洗净的干燥的带塞锥形瓶编号,分别用分析天平准确称取活化过的活性炭0.1g ,至于瓶中,分别配置五种浓度的次甲基蓝50ml ,振荡4-6h ,分别移取滤液2ml 放入250ml 容量瓶中,并定容,待用; 3.原始溶液处理4.次甲基蓝标准溶液的配制用移液管分别移取0.4、0.6、0.6、1.0、1.2、1.4ml 的0.3126×10-3mol/L 标准次甲基蓝溶液于100ml 容量瓶中,用蒸馏水稀释至刻度,待用; 5.工作波长的选择:665nm 6.测量吸光度四、数据记录及处理:1.实验基础数据2.作A-CA3.求次甲基蓝原始溶液的浓度和平衡溶液的浓度 C 将实验测定的稀释后原始溶液的吸光度,从 A —C 工作曲线上查得对应的浓度,然后乘以稀释倍数 100,即为原始溶液的浓度;计算得:0.0019 mol/L 将实验测定的各个稀释后的平衡溶液吸光度,从 A —C 工作曲线上查得对应的浓度,然 4.计算吸附溶液的初始浓度 C 05.计算吸附量由平衡浓度 C 及初始浓度 C 0数据,由Γ=(C-C 0)V/m6.作朗缪尔吸附等温线:以Γ 为纵坐标,C 为横坐标0.0400.0420.0440.0460.0480.0500.0520.0540.0560.0580.060吸附量ΓC/(mol/L)7.求饱和吸附量作C/Γ-C 图,由图求得饱和吸附量Γ∞。

实验十八溶液吸附法测定固体的比表面积一、目的1用次甲基蓝水溶液

实验十八溶液吸附法测定固体的比表面积一、目的1用次甲基蓝水溶液

一、目的1.用次甲基蓝水溶液吸附法测定颗粒活性炭的比表面积2.了解Langmuir 单分子层吸附理论3.了解溶液法测定比表面的基本原理二、原理根据光吸收定律,当入射光为一定波长的单色光时,其溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比式中A 为吸光度,I 0为入射光强度,I 为透射光的强度,a 为吸光系数,l 为光径长度或液层厚度,c 为溶液的浓度。

实验表明,次甲基蓝溶液在可见区有两个吸收峰:445nm 和665nm ,但在445nm 处活性炭吸附对吸收峰有很大的干扰,故本实验选用的工作波长为665nm 。

水溶性染料的吸附已应用于测定固体比表面,在所有的染料中次甲基蓝具有最大的吸附倾向,研究表明,在一定浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,符合Langmuir 吸附理论。

设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,则有:吸附质分子(在溶液) 吸附质分子(在固体表面)吸附速率解吸速率当达到动态平衡时所以式中称为吸附平衡常数,a 逾大,固体对吸附质的吸附能力逾强。

若以Γ表示浓度c 时的平衡吸附量,以Γ∞表示全部吸附位被占据的单分子层吸附量,即饱和吸附量,则代入(18-1)式有变为直线形式可得吸附 k 1 解吸 k -1 A I I a l c ==lg 0 r k N c r k N a d =-=-111()θθ实验十八 溶液吸附法测定固体的比表面积Γ Γ ∞ Γ ∞ Γ Γ Γ ∞ Γ ∞作c /Γ~c 图,从其斜率可求得Γ∞,再结合截距便得到k 吸 ,Γ∞指每克吸附剂饱和吸附吸附质的物质的量,若每个吸附质分子在吸附剂上所占据的面积为σA ,则吸附剂的比表面(s )可以按下式计算式中L 为Avogadro 常数。

次甲基蓝是一个具有矩形结构的分子:阳离子的大小为17.0×7.6×3.25×10-30m 3,次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10-20m 2,侧面吸附投影面积为75×10-20m 2,端基吸附投影面积为39 ×10-20m 2,对于非石墨型的活性炭,次甲基蓝是以端基吸附取向,吸附在活性炭表面,因此σA =39×10-20m 2。

物理化学-实验三十:溶液吸附法测定固体比表面积

物理化学-实验三十:溶液吸附法测定固体比表面积

实验三十 溶液吸附法测固体比表面积一、实验目的1.用次甲基兰水溶液吸附法测定颗粒活性炭的比表面积。

2.了解朗缪尔单分子层吸附理论及用溶液法测定比表面的基本原理。

二、实验原理在一定温度下.固体在某些溶液中的吸附与固体对气体的吸附很相似,可用朗缪尔(Langmuir )单分子层吸附方程来处理。

Langmuir 吸附理论的基本假定是:固体表面是均匀的.吸附是单分子层吸附,被吸附在固体表面上的分子相互之间无作用力,吸附平衡是动态平衡;根据以上假定.推导出吸附方程1KcKc∞Γ=Γ+ (1)式中11k K k -=——吸附作用的平衡常数,也称吸附系数,与吸附质、吸附剂性质及温度有关,其值愈大,则表示吸附能力愈强,具有浓度倒数的量纲。

Γ——平衡吸附量,1g 吸附剂达吸附平衡时,吸附溶质的物质的量(mol ·g -1); ∞Γ——饱和吸附量,1g 吸附剂的表面上盖满一层吸附质分子时所能吸附的最大量(mol ·g -1)。

c ——达到吸附平衡时.溶质在溶液本体中的平衡浓度(mol ·L -1)。

将式(1)整理,得1111K c∞∞=+ΓΓΓ (2) 以1Γ对1c作图得一直线,由此直线的斜率和截距可求得∞Γ和常数K 。

根据∞Γ的数值A N A S ∞Γ比= (3)式中 A N ——阿伏加德罗常数;A ——吸附质分子的截面积(m 2); 活性炭是一种固体吸附剂,而作为染料的次甲基兰具有最大的吸附倾向。

研究表明,在一定的浓度范围内,大多数固体对次甲基兰的吸附是单分了层吸附符合朗缪尔吸附理论。

本实验以活性炭为吸附剂,将定量的活性炭与一定量的几种不同浓度的次甲基兰相混,在常温下振荡,使其达到吸附平衡。

用分光光度计测量吸附前后次甲基兰溶液的浓度。

从浓度的变化可以求出每克活性炭吸附次甲基兰的吸附量Γ。

0()c c Vm-Γ=(4) 式中 V ——吸附溶液的总体积(L);m ——加入溶液的吸附剂质量(g);c 和0c ——平衡浓度和原始浓度(mol ·L -1)。

实验七溶液吸附法测固体的比表面

实验七溶液吸附法测固体的比表面

实验七 溶液吸附法测固体的比表面一 实验目的1. 了解溶液吸咐法测定比表面的基本原理。

2. 掌握722型分光光度计的原理并熟悉其使用方法。

3. 掌握用亚甲基蓝水溶液测定颗粒活性碳比表面的方法。

二 实验原理根据比耳光吸收定律,当入射光为一定波长的单色光时,某溶液的消 光值与溶液中有色物质的浓度及液层的厚度成正比。

A =log(I0 / I)=K c lA为消光值或吸光度,I0和I分别为入射光强度和透过光强度,K为消光系数,c为溶液浓度,l为液层厚度。

T =(I / I0),称为透射比。

同一溶液在不同波长所测得的消光值不同。

将消光值A对波长λ作图,可得到溶液的吸收曲线。

为提高测量的灵敏度,工作波长一般选择在A值最大处。

亚甲基蓝在可见光区有两个吸收峰:445nm和665nm。

在445nm处,活性碳吸附对吸收峰有很 大干扰,故本实验选用665nm为工作波长。

在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附,即符合朗格缪尔型。

若溶液浓度过高,会出现多分子层吸附,若溶液浓度过低,吸附又不能饱和。

本实验原始溶液浓度为0.2%左右,平衡溶液浓度不小于0.1%。

亚甲基蓝具有矩形平面结构。

阳离子大小为17.0×7.6×3.25A3。

亚甲基蓝的吸附有三种取向:平面吸附投影面积为135A2;侧面吸附投 影 面积为75A2;端基吸附投影面积为39.5A2。

对于非 石墨型的活性碳,亚甲基蓝可能不是平面吸附而是 端基吸附。

实验表明,在单分子层吸附的情况下,亚甲基蓝覆盖面积为:2.45×103m2·g-1。

溶液吸附法测定固体比表面,简便易行,但其测量误差较大,一般为10%左右。

三 仪器药品722型分光光度计1套;100ml容量瓶3只;100ml碘定量瓶2只;50ml移液管1只;1ml带刻度移液管2只;玻璃漏斗1只;颗粒状非石墨型活性碳亚甲基蓝溶液:0.2%原始溶液;0.0100%标准溶液。

溶液吸附法测量固体物质的比表面

溶液吸附法测量固体物质的比表面

溶液吸附法测量固体物质的比表面一、实验目的1、了解溶液吸附法测量固体物质的比表面的原理方法;2、用溶液吸附法测定活性炭的比表面;3、掌握分光光度计的原理及使用方法。

二、实验原理1、平衡吸附量T、吸附剂比表面S的关系固体在某些溶液中吸附溶质的情况与固体对气体的吸附很相似,可用Langmuir方程来处理:T=Tm某Kc/(1+Kc)T为平衡吸附量mol/g,Tm为饱和吸附量mol/g,c为平衡浓度mol/l,K为经验常数。

S=Tm某L某AS为吸附剂比表面,L为阿伏伽德罗常数,A为每一个吸附质分子在吸附剂表面占据的面积。

c/T=c/Tm+1/(Tm某K)根据实验数据,做出c/T-c的图像,直线斜率可求出Tm。

综上计算可得,T=(c0-c)V/m,式中c0为吸附前吸附质的浓度,c为平衡时吸附质的浓度,V为溶液体积,m为吸附质量。

2、比表面积物理意义是通常称1g固体所占有的总表面积为该物质的比表面积S。

一般比表面积大、活性大的多孔物,吸附能力强。

活性炭具有很强的吸附能力原因活性炭是用木材、煤、果壳等含碳物质在高温缺氧条件下活化制成,它具有巨大的比表面积(500-1700m2/g)。

活性炭结在结构上有两大特点:一是内部与表面孔隙发达。

二是比表面积大。

孔隙结构越发达比表面积越大,其吸附功能越强。

2、分光光度计的使用开机预热30min。

调整波长665nm。

准备空白溶液、标准溶液、待测溶液分别装入同一规格的比色皿中,放于比色皿架内。

调整模式为\透射比\。

空白溶液置于测量位置,开仓门保证示数为0%,关闭仓门保证示数为100%,若不是,则手动调整。

重复数次。

调整模式为\吸光度\。

标准液、待测液分别置于测量位置,读取吸光度。

调整模式为“浓度直读”,标准液置于测量位置,调整示数为其浓度值或其浓度值的10n倍。

再次按下“模式键”,现实仍为“浓度直读”,测量待测液浓度。

三、仪器与试剂分光度光度计722型、恒温振荡器、锥形瓶(磨口100ml)、容量瓶(100ml,50ml)、移液管(10ml刻度、20ml、25ml)、活性炭、滴管、亚甲基蓝水溶液(10-3mol/l)。

【精品】实验二十七固液吸附法测定比表面(一)次甲基蓝在活性炭上

【精品】实验二十七固液吸附法测定比表面(一)次甲基蓝在活性炭上

实验二十七固液吸附法测定比表面一次甲基蓝在活性炭上的吸附【目的要求】1. 用溶液吸附法测定活性炭的比表面。

2. 了解溶液吸附法测定比表面的基本原理及测定方法。

【实验原理】比表面是指单位质量或单位体积的物质所具有的表面积其数值与分散粒子大小有关。

测定固体比表面的方法很多常用的有BET低温吸附法、电子显微镜法和气相色谱法但它们都需要复杂的仪器装置或较长的实验时间。

而溶液吸附法则仪器简单操作方便。

本实验用次甲基蓝水溶液吸附法测定活性炭的比表面。

此法虽然误差较大但比较实用。

活性炭对次甲基蓝的吸附在一定的浓度范围内是单分子层吸附符合朗格缪尔Langmuir吸附等温式。

根据朗格缪尔单分子层吸附理论当次甲基蓝与活性炭达到吸附饱和后吸附与脱附处于动态平衡这时次甲基蓝分子铺满整个活性炭粒子表面而不留下空位。

此时吸附剂活性炭的比表面可按下式计算6001045.2WGCCS 1 式中S0为比表面m2·kg-1C0为原始溶液的浓度C为平衡溶液的浓度G为溶液的加入量kgW为吸附剂试样质量kg2.45×106是1kg次甲基蓝可覆盖活性炭样品的面积m2·kg-1。

本实验溶液浓度的测量是借助于分光光度计来完成的根据光吸收定律当入射光为一定波长的单色光时某溶液的吸光度与溶液中有色物质的浓度及溶液的厚度成正比即AKCL。

式中A为吸光度K为常数C为溶液浓度L为液层厚度。

实验首先测定一系列已知浓度的次甲基蓝溶液的吸光度绘出A—C工作曲线然后测定次甲基蓝原始溶液及平衡溶液的吸光度再在A—C曲线上查得对应的浓度值代入1式计算比表面。

【仪器试剂】分光光度计1套振荡器1台分析天平1台离心机1台台秤0.1g1台三角烧瓶100mL3只容量瓶500mL4只、100mL5只。

次甲基蓝原始溶液2g·dm-3次甲基蓝标准溶液0.1g·dm-3 颗粒活性炭。

【实验步骤】1. 活化样品将活性炭置于瓷坩埚中放入500℃马福炉中活化1h或在真空箱中300℃活化1h然后置于干燥器中备用。

溶液吸附法测定固体比表面.pdf

溶液吸附法测定固体比表面.pdf
N0:阿伏加德罗常数 6.02 × 1023
Γ∞:饱和吸附量(mol/g)
A0 :一般直链脂肪酸分子的截面积为 24.3 × 10-20 m2
西安电子科技大学物理化学实验来自溶液吸附法测定固体比表面
三、实验内容
※准确配制不同浓度的醋酸溶液 ※活性炭对醋酸溶液的吸附 四、操作步骤 1.取5个洁净干燥带塞磨口的锥形瓶并编号,按比例准确配制不 同浓度的醋酸溶液。 2. 每瓶放入约一克活性炭(准确至毫克)。 3.将瓶子置于振荡器上,振荡30分钟,先取醋酸溶液较稀的进 行滴定,浓的溶液继续振荡,如此由稀到浓进行下面的分析. 4. 振荡完毕后,取下磨口瓶,用移液管吸取出所需体积(为了 避免带出碳粉,移液管下端可套上塞有少量棉花的橡皮管), 再用NaOH溶液滴定。
溶液吸附法测定固体比表面
溶液吸附法测定固体比表面
一、实验目的 1.了解测定颗粒活性碳比表面的方法。 2.掌握朗谬尔(Langmuir)吸附理论和比表面的 概念及计算。
西安电子科技大学物理化学实验
溶液吸附法测定固体比表面
二、实验原理
吸附能力的大小用平衡吸附量Γ(mol·g-1)表示
Γ = (c0 − c)V m
+Γ1∞
c
Γ = (c0 − c)V m
★c/Γ对c作图为一直线,从斜率可求得Γ∞ 从截距再结合Γ∞可求得K吸 据Γ∞和K吸值,可求任一平衡浓度时的吸附量
西安电子科技大学物理化学实验
溶液吸附法测定固体比表面
若每个吸附质分子在吸附剂表面上所覆盖的面积为A0,则吸 附剂的比表面S0:
S0=Γ∞N0A0
c0:溶液原始浓度(mol·L-1) c:吸附达平衡时,溶液的浓度(mol·L-1) V:吸附溶液的总体积(L) m:加入溶液中的吸附剂的质量(g)

活性炭比表面测定一溶液吸附法-A

活性炭比表面测定一溶液吸附法-A

附量,以表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则: θ
=Γ /Γ∞
二、实验原理
1
K吸c K吸c
c
1
1
c
K 吸
(1-4)
二、实验原理
次甲基蓝的结构为:
阳离子大小为17.0 ×7.6× 3.25 ×10-30 m3 次甲基蓝的吸附有三种取向:平面吸附投影面积为135×10–20m2,侧面吸附 投影面积为75×10–20m2,端基吸附投影面积为39×10–20m2。对于非石墨型 的活性炭,次甲基蓝是以端基吸附取向,吸附在活性炭表面,因此σA=39 ×10–20m2。
二、实验原理
本实验溶液浓度的测量是借助于分光光度计来完成的。根据光吸收定律,当 入射光为一定波长的单色光时,某溶液的光密度与溶液中有色物质的浓度及 溶液的厚度成正比,即
(1-5) 其中: A ——吸光度; I ——透射光强度; I0 ——入射光强度; K — —吸收系数; C ——溶液浓度; L——溶液的光径长度。 一般说来,光的吸收定律能适用于任何波长的单色光,但对于一个指定的溶 液,在不同的波长下测得的吸光度不同。
四、实验步骤
表1-1 吸附试样配制比例
瓶编号
1
2
3
4
5
V(0.2%次甲基蓝 30 20 15 10 5 溶液)/mL
V(蒸馏水)/mL 20 30 35 40 45
四、实验步骤
四、实验步骤
6. 测量吸光度
选择透光率T%高的比色皿用作参比。因为次甲基具有吸附性,应按照从稀到浓的 顺序测定。
因本实验的标准溶液浓度范围太宽,所以工作曲线作两条:一是以B1#为参比,依 次测量B1#、B2#、B3#标准溶液的透光率T%;二是以B3#标准溶液为参比,测量 B3#、B4#、B5#、B6#标准溶液的透光率T%。

溶液吸附法测定细菌比表面积

溶液吸附法测定细菌比表面积

溶液吸附法测定细菌比表面积实验利用亚甲基蓝染料水溶液吸附法测定微生物的比表面,因为亚甲基蓝在所知的染料中具有最大的吸附倾向,可被大多数固体物质所吸附,在一定的条件下为单分子层吸附,即符合朗格谬尔吸附等温式。

根据单分子层次吸附理论,当吸附达到饱和时,吸附质分子铺满整个吸附表面而不留空位,此时1克吸附剂吸附吸附质分子所占的表面积,等于所吸附吸附质的分子数与每个分子在表面层所占面积的乘积。

即:WM A N W S A ⋅⋅⋅∆=式中:S :比表面cm 2/gA :亚甲基蓝分子平均截面积81.3×10-16cm 2(亚甲基蓝的平面吸附投影面积为135×10-20m 2 侧面吸附投影面积为75×10-20m 2 端基吸附投影面积为39×10-20m 2。

微生物吸附方式不知,所以取平均值计算) M :亚甲基蓝的摩尔质量373.9 NA :阿佛加德罗常数 W :微生物的湿重(克)ΔW :微生物饱和吸附时亚甲基蓝的重量(克) (V C C W ⋅-=∆)(0式中:C 0:吸附前溶液的浓度(g/L )C :吸附达单层饱和后溶液浓度(g/L ) V :溶液的体积(L )) 实验步骤:1、工作波长的选择:亚甲基蓝溶液在可见区有二个吸收峰445nm 和665nm 。

但在445nm 处活性炭吸附对吸收峰有很大的干扰 固本实验选用的工作波长为665nm 。

因为个实验仪器不同数值有浮动,所用某一待用标准溶液,以蒸馏水为空白液,在 650nm ~680nm 范围内测量吸光度,以最大吸收时的波长作为工作波长。

2、标准工作曲线绘制A .分取浓度为0.5g/L 的亚甲基蓝贮备液1、2、3、4、5、6ml 于100ml 容量瓶中,用蒸馏水稀释至刻度,摇匀,得不同浓度的标准液,在分光光度计上测定吸光度,最大波长处测吸光值以标准液(系列)浓度为横坐标,吸光度为纵坐标绘制标准工作曲线分取亚甲基蓝贮备液 (0.5g/L )1.002.003.004.005.006.00标准液浓度 (×mg/L )51015202530吸光度3、比表面的测定1)配制亚甲基蓝浓度为0.05g/L溶液准确分配浓度为0.5g/L亚甲基蓝贮备液10ml加到100ml容量瓶中,用水稀释至刻度,摇匀。

溶液吸附法测固体比表面积

溶液吸附法测固体比表面积

实验报告溶液吸附法测固体比表面积一、实验目的:1.用次甲基蓝水溶液吸附法测定颗粒活性炭的比表面积。

2.了解朗缪尔单分子层吸附理论及用溶液法测定比表面的基本原理。

二、实验原理见预习报告三.仪器和试剂:1、仪器722型光电分光光度计及其附件1台;康氏振荡器1台;容量瓶(500mL)6个;容量瓶(50mL,100mL)各5个;2号砂心漏斗1只,带塞锥形瓶(100mL)5个;滴管若干;移液管若干。

2、试剂次甲基蓝(质量分数分别为0.2%和0.1%的原始溶液和标准溶液);颗粒状非石墨型活性炭。

四、实验步骤:1.样品活化:将颗粒活性炭置于瓷坩埚中,放入500℃马弗炉中活化1h,然后置于干燥器中备用。

试验中用到的活性炭为颗粒状,已经由老师制备好,此步骤略去。

2.平衡溶液:取5个洁净干燥的100mL带塞锥形瓶,编号,分别准确称取活性炭约0.1g 置于瓶中,记录活性炭的用量。

按下表中的数据配制不同浓度的次甲基蓝溶液,然后塞上磨口瓶塞,放置在振荡器上振荡适当时间,振荡速率以活性炭可翻动为(实验所用振荡器100r左右为宜)吸附样品编号 1 2 3 4 5 V(w0.2%次甲基蓝溶30 20 15 10 5液)/mLV(蒸馏水)/mL 20 30 25 40 45 样品振荡达到平衡后,将锥形瓶取下,用玻璃漏斗(塞上棉花)过滤,得到吸附平衡后溶液。

分别量取滤液1g,放入500mL容量瓶中,并用蒸馏水稀释至刻度,待用。

3.原始溶液为了准确称取质量分数约为0.2%的次甲基蓝原始溶液(此浓度为一近似值,故需进一步测量),称取1g溶液放入500mL容量瓶中,并用蒸馏水稀释至刻度,待用。

4.次甲基蓝标准溶液的配制用移液管吸取0.5mL,1mL,1.5mL,2mL,2.5mL质量分数0.01%标准次甲基蓝溶液于100mL容量瓶中。

用蒸馏水稀释至刻度,即得2×10-6、4×10-6、6×10-6、8×10-6、10×10-6的标准溶液,待用。

溶液吸附法测定固体比表面积

溶液吸附法测定固体比表面积

实验五溶液吸附法测定固体比表面积一、实验目的了解Langmuir吸附理论及溶液法测定比表面积的基本原理二、实验原理比表面积是粉末及多孔性物质的一个重要特性参数。

它在催化、色谱、环保及纺织等生产和科研部门有着广泛的应用。

测定比表面积的方法有电子显微镜法、色谱法及BET法。

常用BET法(又分静态法和动态法),但仪器及数据处理复杂是其缺点。

而本法所用仪器简单,操作方便。

本实验采用亚甲蓝染料水溶液吸附法测定硅胶的比表面积,亚甲蓝具有很强的吸附倾向,可被大多数固体物质吸附,在一定条件下为单层吸附,该吸附具有Langmuir吸附特征。

根据Langmuir理论,当吸附达饱和时,吸附质(亚甲蓝)分子铺满整个吸附剂(硅胶)表面而不留下空位。

此时,单位质量的吸附质分子所占的面积就等于被吸附的吸附质的分子数与每个分子在表面层所占面积的乘积。

通常通过测定吸附质的重量而求得吸附质分子数。

按下式计算吸附剂的比表面积S(m2/g):S=Γ∞N A A/ΓM 5-1式中:M为吸附质分子量(亚甲蓝的分子量为373.88),N A为阿弗伽德罗常数(6.0222 ×1023),Γ为吸附剂的质量(g),Γ∞为吸附达饱和时吸附质的质量(g),A为吸附质(亚甲蓝)分子吸附投影面积。

亚甲蓝易溶于水呈天蓝色,在空气中较稳定,不易受吸附剂酸碱性的影响。

亚甲蓝水溶液在445nm和665nm处具有吸收峰,用紫外分光光度计测定吸附前后溶液吸收度值的变化,求出Γ∞。

由于亚甲蓝分子具有矩形结构,分子长16.0 Å,宽8.4 Å,最小的宽度为4.7 Å,如下图所示:它吸附于吸附剂上有三种取向,平面吸附投影面积为135 Å2,侧面吸附投影面积为75 Å2,端积吸附投影面积为39.5 Å2。

因此,对于不同吸附剂或同种吸附剂的不同条件,吸附取向不同,投影面积也不同,测得的A也不同。

所以实验时要严格控制实验条件的一致。

溶液吸附法测定比表面

溶液吸附法测定比表面

实验七:溶液吸附法测定比表面一、实验目的:1、用溶液吸附法测定颗粒活性炭的比表面;2、了解溶液吸附法测定比表面的基本原理;3、进一步熟悉722型分光光度计的使用;二、实验原理:(1) 比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。

测定固体物质比表面的方法很多,常用的有BET低温吸附法、电子显微镜法和气相色谱法等,不过这些方法都需要复杂的装置,或较长的时间。

而溶液吸附法测定固体物质比表面,仪器简单,操作方便,还可以同时测定许多个样品,因此常被采用,但溶液吸附法测定结果有一定误差。

其主要原因在于:吸附时非球型吸附层在各种吸附剂的表面取向并不一致,每个吸附分子的投影面积可以相差很远,所以,溶液吸附法测得的数值应以其它方法校正之。

然而,溶液吸附法常用来测定大量同类样品的相对值。

溶液吸附法测定结果误差一般为10%左右。

(2) 水溶性染料的吸附已广泛应用于固体物质比表面的测定。

在所有染料中,次甲基蓝具有最大的吸附倾向。

研究表明,在大多数固体上,次甲基蓝吸附都是单分子层,即符合朗格缪尔型吸附。

但当原始溶液浓度较高时,会出现多分子层吸附,而如果吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此,原始溶液的浓度以及吸附平衡后的溶液浓度都应选在适当的范围内。

本实验原始溶液浓度为0.2%左右,平衡溶液浓度不小于0.1%。

(3) 根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。

此时吸附剂活性炭的比表面可按式(1)计算:(1)式中,S为比表面(m·kg); C为原始溶液的质量分数; C为平衡溶液的质量分数; G为溶液的加入量(kg); W为吸附剂试样质量(k g); 2.45×10是1kg次甲基蓝可覆盖活性炭样品的面积(m·kg)。

(4)次甲基蓝分子的平面结构如图4.1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七:溶液吸附法测定比表面
一、实验目的:
1、用溶液吸附法测定颗粒活性炭的比表面;
2、了解溶液吸附法测定比表面的基本原理;
3、进一步熟悉722型分光光度计的使用;
二、实验原理:
(1) 比表面是指单位质量(或单位体积)的物质所具有的表面积,其数值与分散粒子大小有关。

测定固体物质比表面的方法很多,常用的有BET低温吸附法、电子显微镜法和气相色谱法等,不过这些方法都需要复杂的装置,或较长的时间。

而溶液吸附法测定固体物质比表面,仪器简单,操作方便,还可以同时测定许多个样品,因此常被采用,但溶液吸附法测定结果有一定误差。

其主要原因在于:吸附时非球型吸附层在各种吸附剂的表面取向并不一致,每个吸附分子的投影面积可以相差很远,所以,溶液吸附法测得的数值应以其它方法校正之。

然而,溶液吸附法常用来测定大量同类样品的相对值。

溶液吸附法测定结果误差一般为10%左右。

(2) 水溶性染料的吸附已广泛应用于固体物质比表面的测定。

在所有染料中,次甲基蓝具有最大的吸附倾向。

研究表明,在大多数固体上,次甲基蓝吸附都是单分子层,即符合朗格缪尔型吸附。

但当原始溶液浓度较高时,会出现多分子层吸附,而如果吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此,原始溶液的浓度以及吸附平衡后的溶液浓度都应选在适当的范围内。

本实验原始溶液浓度为0.2%左右,平衡溶液浓度不小于0.1%。

(3) 根据朗格缪尔单分子层吸附理论,当次甲基蓝与活性炭达到吸附饱和后,吸附与脱附处于动态平衡,这时次甲基蓝分子铺满整个活性粒子表面而不留下空位。

此时吸附剂活性炭的比表面可按式(1)计算:
(1)
式中,S为比表面(m
·kg
); C为原始溶液的质量分数; C为平衡溶液的质量分数; G为溶液的加入量(kg); W为吸附剂试样质量(k g); 2.45×10
是1kg次甲基蓝可覆盖活性炭样品的面积(m
·kg
)。

(4)次甲基蓝分子的平面结构如图4.1所示。

阳离子大小为1.70×10
m×76×10
m×325×10
m。

次甲基蓝的吸附有三种趋向:平面吸附,投影面积为1.35×10-18 m
;侧面吸附,投影面积为7.5×10-19 m
;端基吸附,投影面积为39.5×10
m。

对于非石墨型的活性炭,次甲基蓝可能不是平面吸附,也不是侧面吸附,而是端基吸附根据实验结果推算,在单层吸附的情况下,1mg次甲基蓝覆盖的面积可按2.45 m
计算。

图 1 次甲基蓝分子的平面结构
(5) 本实验溶液浓度的测量是借助于分光光度计来完成的。

根据光吸收定律,当入射光为一定波长的单色光时,某溶液的光密度与溶液中有色物质的浓度及溶液的厚度成正比,即
其中: A ——吸光度; I ——透射光强度; I0 ——入射光强度; K ——吸收系数; C ——溶液浓度;L——溶液的光径长度。

一般说来,光的吸收定律能适用于任何波长的单色光,但对于一个指定的溶液,在不同的波长下测得的吸光度不同。

如果把波长λ对吸光度A作图,可得到溶液的吸收曲线,如图(2)所示。

为了提高测量的灵敏度,工作波长应选择在吸光度A值最大时所对应的波长。

对于次甲基蓝,本实验所用的工作波长为665nm。

实验首先测定一系列已知浓度的次甲基蓝溶液的吸光度,绘出A—C工作曲线,然后测定次甲基蓝原始溶液及平衡溶液的吸光度,再在A—C曲线上查得对应的浓度值,代入(1)式计算比表面。

三、实验步骤:
1、活化样品:将颗粒活性炭置于瓷坩埚中,放入马弗炉内,500℃下活化1h (或在真空烘箱中300℃活化1h),然后放入干燥器中备用;
2、取两只带塞磨口锥心瓶,分别加入准确称量过的约0.2g的活性炭(两份尽量平行),再分别加入50g(50ml)0.2%的次甲基蓝溶液,盖入磨口塞,轻轻摇动,其中一份放置1h,即为配制好的平衡溶液,另一份放置一夜,认为吸附达到平衡,比较两个测定结果。

3、配制次甲基蓝标准溶液:用移液管分别量取5ml、8ml、11ml、0.01%标准次甲基蓝溶液置于1000ml容量瓶中,用蒸馏水稀释至1000ml,记得到5×10
,8×10
、11×10
三种浓度的标准溶液。

4、平衡溶液处理:取吸附后平衡溶液约5ml,放入1000ml容量瓶中,用蒸馏水稀释至刻度。

5、选择工作波长:对于次甲基蓝溶液,吸附波长应选择655nm,由于各台分光光度计波长略有差别,所以,实验者应自行选取工作波长,用5×10
标准溶液在600nm-700nm范围测量吸光度,以吸光度最大时的波长作为工作波长。

6、测量溶液吸光度:以蒸馏水为空白溶液,分别测量5×10
,8×10
、11×10
三种浓度的标准溶液以及稀释前的原始溶液和稀释后的平衡溶液的吸光度。

每个样品须测得三个有效数据,然后取平均值。

四、数据处理:
1、记录数据:
不同浓度的次甲基蓝溶液的吸光度(A)
次甲基蓝溶液吸光度
A
1 2 3 平均
5×10
标准溶液
8×10
标准溶液
11×10
标准溶液
次甲基蓝原始溶液
达到吸附平衡后次甲基蓝溶液
24h后的平衡液
2、作工作曲线,将5×10
,8×10
、11×10
三种浓度的标准溶液的吸光度对溶液作图,即得一工作曲线
3、求次甲基蓝原始溶液浓度C0及平衡后溶液浓度C。

可由实验测得的次甲基蓝原始溶液和吸附达平衡后溶液的吸光度,从工作曲线上查得对应的溶液浓度C0和C。

4、根据公式1计算活性炭的比表面。

五、注意事项:
1、测定溶液吸光度时,须用滤纸轻轻擦干比色皿外部,以保持比色皿暗箱内干燥。

2、测定原始溶液和平衡溶液的吸光度时,应把稀释后的溶液摇匀再测。

3、活性炭颗粒要均匀,且三份称重应尽量接近。

六、思考题:
1、为什么次甲基蓝原始溶液浓度要选在0.2%左右,吸附后的次甲基蓝溶液浓度要在0.1%左右?若吸附后溶液浓度太低,在实验操作方面应如何改动?
答:次甲基蓝溶液具有最大的吸附倾向,原始溶液浓度较高时,会出现多分子层吸附,吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此选择这个适当的范围;若吸附后溶液浓度太低,则适当减少活性炭的量,增加原始次甲基蓝溶液的量。

2、用分光光度计测定次甲基蓝溶液浓度时,为什么要将溶液稀释到
1/1000000浓度才进行测量?
答:浓度过高将导致分光光度计穿不过,致使不能准确测量出其吸光度;
3、如何才能加快吸附平衡的速度?
答:适当提高温度;轻轻不断摇动溶液;可以尝试加入合适的催化剂;
4、吸附作用与哪些因素有关?
答: 1、物体表面积与电子亲和力;
2、温度:温度越高,吸附量越少;
3、压强:压强越大,吸附量越大;
4、固体本身的性质:比表面积越大,颗粒曲率半径越小,吸附量越大。

相关文档
最新文档