高中数学排列与组合综合测试卷

合集下载

2024全国高考真题数学汇编:排列、组合与二项式定理章节综合

2024全国高考真题数学汇编:排列、组合与二项式定理章节综合

2024全国高考真题数学汇编排列、组合与二项式定理章节综合一、单选题1.(2024全国高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2024北京高考真题)在 4x的展开式中,3x的系数为()A.6B.6 C.12D.12二、填空题3.(2024天津高考真题)在63333xx的展开式中,常数项为.4.(2024上海高考真题)在(1)nx 的二项展开式中,若各项系数和为32,则2x项的系数为.5.(2024全国高考真题)1013x的展开式中,各项系数中的最大值为.6.(2024全国高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于12的概率为.7.(2024全国高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.参考答案1.B【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率81=243P.解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24 ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243.故选:B 2.A【分析】写出二项展开式,令432r,解出r 然后回代入二项展开式系数即可得解.【详解】 4x 的二项展开式为 442144C C1,0,1,2,3,4r rrr rr r T x xr,令432r,解得2r ,故所求即为 224C 16 .故选:A.3.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x的展开式的通项为63636216633C 3C ,0,1,,63rrr r r r r x T xr x,令 630r ,可得3r ,所以常数项为0363C 20 .故答案为:20.4.10【分析】令1x ,解出5n ,再利用二项式的展开式的通项合理赋值即可.【详解】令1x ,(11)32n ,即232n ,解得5n ,所以5(1)x 的展开式通项公式为515C rr r T x ,令52r -=,则3r ,32245C 10T x x .故答案为:10.5.5【分析】先设展开式中第1r 项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x,010r 且r Z ,设展开式中第1r 项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r,294334r r,即293344r ,又r Z ,故8r ,所以展开式中系数最大的项是第9项,且该项系数为28101C 53.故答案为:5.6.715【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b ,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120 种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b ,故2()3c a b ,故32()3c a b ,故323a b c a b ,若1c ,则5a b ,则 ,a b 为: 2,3,3,2,故有2种,若2c ,则17a b ,则 ,a b 为: 1,3,1,4,1,5,1,6,3,4,3,1,4,1,5,1,6,1,4,3,故有10种,当3c ,则39a b ,则 ,a b 为:1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, 2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c ,则511a b ,同理有16种,当5c ,则713a b ,同理有10种,当6c ,则915a b ,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为 22101656 ,故所求概率为56712015.故答案为:7157.24112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124 种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152******** .故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.。

高二数学排列与组合单元测试1

高二数学排列与组合单元测试1

高二数学排列与组合单元测试1高二数学排列与组合单元测试(一)命题人:沈红刚一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求,请将正确选项的代号填入答题卡的相应位置.)1.用数字1,2,3,4,5能够组成没有重复数字,同时比20000大的五位偶数共有( ) A .96个 B .24个 C .32个 D .36个2.从1,3,5,7,9中任取3个数字, 从2,4,6,8中任取2个数字, 一共能够组成无重复数字的五位数的个数是 ( )A . 3254C CB .3254A AC . 325545C C AD .325545C C A +3.某人制定了一项旅行打算,从7个旅行都市中选择5个进行游玩。

假如A 、B 为必选都市,同时在游玩过程中必须按先A 后B 的次序通过A 、B 两都市(A 、B 两都市能够不相邻),则有不同的游玩线路 ( ) A .120种 B .240种 C .480种 D .600种 4.从编号分别为:1110987654321、、、、、、、、、、的共11个球中,取出5只球,使5只球的编号之和为奇数,其方法总数为 ………………………………( ) A 、200 B 、230 C 、236 D 、2065、4名大夫分配到3个医疗队,每队至少去1名,则不同的分配方案有 …………( ) A 、36种 B 、72种 C 、108种 D 、144种6、设集合A={1,2,3,4},m 、n ∈A ,则方程122=+ny m x 表示焦点位于x 轴上的椭圆有 A 、6个 B 、8个 C 、12个 D 、16个7.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子,每个盒内放一个球,若恰好有三个球的编号与盒子编号相同,则不同的投放方法的种数为: A . 6种 B . 10种 C . 20种 D . 30种8.北京《财宝》全球论坛期间,某高校有14名理想者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )A .12441412833C C C A B .124414128C A A C .124414128C C C D .12443141283C C C A 9.如图,某伞厂生产的“太阳”牌太阳伞的伞蓬是由太阳光的七种颜色组成,七种颜色分别涂在伞蓬的八个区域内,且恰有一种颜色涂在相对区域内,则不同的颜色图案的此类太阳伞至多有 ( )A . 40320种B . 5040种C . 20210种D . 2520种10.将4个不同的小球放入甲、乙两个盒子中,每盒至少放一个小球,现有不同的放置方法,甲列式子:112432C C ⨯;乙列式子:123444C C C ++;丙列式子:421-;丁列式子:222422C A A ,其中列式正确的是 A .甲 B .乙 C .丙 D .丁11、若集合},,{z y x M =,集合}1,0,1{-=N ,f 是从M 到N 的映射,则满足0)()()(=++z f y f x f 的映射有………………………………( )甲乙丙丁A 、6个 B 、7个 C 、8个 D 、9个12.某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、副书记和组织委员,同时规定:上届任职的甲、乙、丙三人不能连任原职,则不同的任职结果有( )二.填空题(本大题4小题,每小题3分,共12分) 13 在△AOB 的边OA 上有5个点,边OB 上有6个点,加上O 点共12个点,以那个12点为顶点的三角形有 个14、设含有5个元素的集合的全部子集数为S ,其中由2个元素组成的子集的个数是T ,则ST的值为_______________。

高考数学 排列、组合和二项式定理单元测试卷.doc

高考数学 排列、组合和二项式定理单元测试卷.doc

排列、组合和二项式定理单元测试卷(满分:150分时间:1)一、选择题(本大题共12小题,每小题5分,共60分)1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁不能排在一起,则不同的排法共有()A.12种B.C.24种D.48种答案:C解析:甲、乙捆绑后与第5种商品排列有A22种,产生的三个空排丙、丁,有A23种,再排甲、乙有A22种,共有A22A23A22=24种.故选C.2.直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有()A.25个B.36个C.100个D.225个答案:D解析:从构成矩形的四条边入手,可以从6条竖着的直线中任取两条,共有C26种选法;再从6条横着的直线中任取两条直线,共有C26种选法,所以可构成矩形C26·C26=225(个).故选D.3.二项式(a+2b)n中的第二项系数是8,则它的第三项的二项式系数为()A.24 B.18C.16 D.6答案:D解析:由通项公式知,T2=T1+1=C1n a n-1(2b)1=2C1n a n-1b,依题意2C1n=8,∴n=4.∴C2n=C24=6.4.(·珠海模拟)已知(x+1)15=a0+a1x+a2x2+…+a15x15,则a0+a1+a2+…+a7等于() A.215B.214C.28D.27答案:B解析:∵a0+a1+a2+…+a15=C015+C115+C215+…+C1515=215.∴a0+a1+a2+…+a7=1 2×215=214.故选B.5.(·南宁市质检)在北京奥运会期间,某志愿者小组有12名大学生,其中男生8名,女生4名,从中抽取3名学生组成礼宾接待小组,则选到的3名学生中既有男生又有女生的不同选法共有()A.108种B.160种C.164种D.216种答案:B解析:从12名学生中随机抽取1名男生和2名女生的选法数C18C24,从12名学生中随机抽取2名男生和1名女生的选法数C28C14,所以选到的3名学生中既有男生又有女生的不同选法共有C18C24+C28C14=160种.6.(·珠海模拟)在(1-x3)(1+x)10的展开式中,x5的系数为()A.297 B.C.252 D.-45答案:B解析:∵(1+x)10=C010110x0+C110x1+C210x2+C310x3+C410x4+C510x5+…=1+10x+45x2+…+252x5+…∴(1-x3)(1+x)10的展开式中,x5的系数为252-45=故选B.7.(1+3x)6(1+14x)10的展开式中的常数项为()A.1 B.46 C.4245 D.4246答案:D解析:(1+3x )6的通项公式为C r 6x r 3,(1+14x)10的通项公式为C k10x -k 4,由r 3+(-k 4)=0,得⎩⎪⎨⎪⎧ r =0k =0,⎩⎪⎨⎪⎧ r =3k =4,⎩⎪⎨⎪⎧r =6k =8共三项,所以常数项为C 06C 010+C 36C 410+C 66C 810=4246.故选D. 8.(·太原市测试)有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .480 答案:C解析:若取出的球的标号为1,2,3,4,则共有C 12C 12C 12C 12A 44=384种不同的排法;若取出的球的标号为1,1,4,4,则共有A 44=24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 44=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是384+24+24=432,故应选C.9.甲、乙、丙三名同学在课余时间负责一个计算机房的周一至周六值班工作,每天一人值班,每人值班两天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( )A .36种B .42种C .50种D .72种 答案:B解析:(1)当甲值周六时,再为甲选一天有C 14种,为乙选两天有C 24种,则共有C 14C 24=24种,(2)当甲不值周六时,为甲选两天,有C 24种,为乙选两天有C 23种,则共有C 24C 23=18种,所以共有24+18=42种.故选B.10.若(1+x )n +1的展开式中含x n -1的系数为a n ,则1a 1+1a 2+…+1a n的值为( )A.n n +1B.2n n +1C.n (n +1)2D.n (n +3)2答案:B解析:由题意可得a n =C n -1n +112=C 2n +1=(n +1)·n 2, ∴1a n =2n (n +1)=2·(1n -1n +1), ∴1a 1+1a 2+…+1a n =2⎝⎛⎭⎫11-12+12-13+…+1n -1n +1 =2⎝⎛⎭⎫1-1n +1=2nn +1.故选B. 11.(·昆明市质检)某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有( )A .56种B .68种C .74种D .92种 答案:D解析:本题是计数问题,根据特殊(或受限)元素进行分类,如本题属于“多面手”问题,根据划左舷中有多面手人数的多少进行分类:划左舷中没有“多面手”的选派方法有C 36种,有一个“多面手”的选派方法有C 12C 23C 35种,有两个“多面手”的选派方法有C 13C 34种,即共有0+12=92(种).故选D.12.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .A 412B .A 212·A 212C .C 212·C 212D .C 412 答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C 412,则由这四点确定的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C 412.故选D.二、填空题(本大题共4小题,每小题5分,共13.在(x -12x )9的展开式中,x 3的系数为________(用数字作答).答案:-212解析:T k +1=C k 9x 9-k (-12x )k =C k 9x 9-k(-12)k x -k =C k 9x 9-2k(-12)k , 令9-2k =3,得k =3,∴T 4=C 39x 3·(-12)3=84×(-18)x 3=-212x 3, ∴x 3的系数为-212.14.已知(1+x )+(1+x )2+(1+x )3+…+(1+x )8=a 0+a 1x +…+a 8x 8,则a 1+a 2+a 3+…+a 8=________.答案:502解析:令x =1得a 0+a 1+a 2+…+a 8=2+22+23+…+28=2(1-28)1-2=29-2=510.令x =0,得a 0=8,∴a 1+a 2+…+a 8=502. 15.(·陕西理)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成,如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)答案:96解析:先安排最后一棒(A 12),再安排第一棒(A 12),最后安排中间四棒(A 44),∴不同的传递方案有A 12A 12A 44=96(种).16.⎝⎛⎭⎫ax -1x 8的展开式中x 2的系数是70,则实数a 的值为________.答案:±1解析:T k +1=C k 8(ax )8-k(-1x)k =C k 8a 8-kx 8-k -k 2(-1)k , 令8-k -k2=2,得k =4,∴C 48a 4(-1)4=70,∴a 4=1,∴a =±1. 三、解答题(本大题共6小题,共70分)17.(本小题满分10分)在一块10垄并排的田地中,选2垄分别种植A 、B 两种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的种植方法共有多少种?解法一:(图示法)如图(1),用并排一行的10个小矩形表示10垄田地,小矩形内加“○”表示选中,具体画出有6种选取方法.再对每种选取方式分别种植A 、B 两种作物,有A 22种种植方法.故共有6A 22=12种种植方法.(1)(2)解法二:(图象法)设并排10垄田地依次编号为1,2,3,…,10,所选的垄田地为a 、b ,根据题设条件,得⎩⎪⎨⎪⎧|a -b |≥7,1≤a ≤10,a ∈N ,1≤b ≤10,b ∈N .问题的解化为不等式组的整数解的个数.如图(2)所示,满足不等式组的解为坐标平面aOb 内标有“·”号的整点,数整点个数有12个,故符合题意的选垄方法有12种.18.(本小题满分12分)已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.解:(1)通项公式为T r +1=C r n x n -r 3(-12)r x -r3=C r n(-12)r x n -2r3, 因为第6项为常数项,所以r =5时, 有n -2r 3=0,即n =10.(2)令n -2r 3=2,得r =12(n -6)=2,∴所求的系数为C 210(-12)2=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2r3∈Z0≤r ≤10r ∈Z令10-2r 3=k (k ∈Z ),则10-2r =3k ,即r =5-32k , ∵r ∈Z ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8. 所以第3项,第6项与第9项为有理项,它们分别为T 3=454x 2,T 6=638,T 9=45256x -2.19.(本小题满分12分)球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分,欲将此十球中的4球击入袋中,但总分不低于5分,则击球方法有几种?解:设击入黄球x 个,红球y 个符合要求,则有⎩⎪⎨⎪⎧x +y =4,2x +y ≥5(x ,y ∈N ),由题意,得1≤x ≤4, ∴⎩⎪⎨⎪⎧ x =1,y =3,⎩⎪⎨⎪⎧ x =2,y =2,⎩⎪⎨⎪⎧ x =3,y =1,⎩⎪⎨⎪⎧x =4,y =0.相应每组解(x ,y ),击球方法数分别为C 14C 36,C 24C 26,C 34C 16,C 44C 06.∴共有不同击球方法数为C 14C 36+C 24C 26+C 34C 16+C 44C 06=195.本小题满分12分)(1)求证:nn +1≤2(n ∈N *);(2)求证:(1+x )n +(1-x )n <2n ,其中|x |<1,n ≥2,n ∈N *.证明:(1)要证n n +1≤2(n ∈N *),只需证n +1≤2n 即可.∵2n =(1+1)n =C 0n +C 1n +…+C n n ≥C 0n +C 1n =1+n ,∴n n +1≤2(n ∈N *),当n =1时等号成立.(2)(1+x )n +(1-x )n =2(1+C 2n x 2+C 4n x 4+…+C 2k n ·x 2k+…).∵|x |<1,∴0<x 2k <1. ∴(1+x )n +(1-x )n <2(1+C 2n +C 4n +…+C 2kn +…)=2·2n -1=2n ,成立. 21.(本小题满分12分)已知(a 2+1)n 展开式中的各项系数之和等于(165x 2+1x)5的展开式的常数项,而(a 2+1)n的展开式的系数最大的项等于54,求a 的值.解:由(165x 2+1x)5,得T r +1=C r 5(165x 2)5-r (1x)r =(165)5-r ·C r 5·x 20-5r2,令T r +1为常数项,则r =0, 所以r =4,常数项T 5=C 45×165=16. 又(a 2+1)n 展开式中的各项系数之和等于2n ,由此得到2n =16,n =4.所以(a 2+1)4展开式中系数最大项是中间项T 3=C 24a 4=54.所以a =±3. 22.(本小题满分12分)4个男同学和3个女同学站成一排. (1)若3个女同学必须排在一起,则有多少种不同的排法? (2)若任何两个女同学彼此不相邻,则有多少种不同的排法?(3)若其中甲、乙两同学之间必须恰有3人,则有多少种不同的排法? (4)若甲、乙两人相邻,但都不与丙相邻,则有多少种不同的排法?(5)若女同学从左到右按高矮顺序排,则有多少种不同的排法?(3个女生身高互不相等)解:(1)3个女同学是特殊元素,我们先把她们排好,共有A 33种排法;由于3个女同学必须排在一起,我们可视排好的女同学为一整体,再与男同学排队,这时是5个元素的全排列,应用A 55种排法.由乘法原理,有A 33A 55=7同排法.(2)先将男生排好,共有A 44种排法;再在这4个男生的中间及两头的5个空当中插入3个女生,有A 35种方法.故符合条件的排法共有A 44A 35=1440种.(3)甲、乙2人先排好,有A 22种排法;再从余下的5人中选3人排在甲、乙2人中间,有A 35种排法;这时把已排好的5人视为一个整体,与最后剩下的2人再排,又有A 33种排法;这样,总共有A 22A 35A 33=7同排法.(4)先排甲、乙和丙3人以外的其他4人,有A 44种排法;由于甲、乙要相邻,故再把甲、乙排好,有A 22种排法;最后把甲、乙排好的这个整体与丙分别插入原来排好的4人的空当中,有A25种排法;这样,总共有A44A22A25=960种不同排法.(5)从7个位置中选出4个位置把男生排好,有A47种排法;然后再在余下的3个位置中排女生,由于女生要按高矮排列,故仅有一种排法.这样共有A47=840种不同排法.。

高中数学排列综合测试题(含答案)

高中数学排列综合测试题(含答案)

高中数学排列综合测试题(含答案)高中数学排列综合测试题(含答案) 选修2-3 1.2.1第2课时排列2一、选择题1.下列各式中与排列数Amn不相等的是()A.n(n-1)!(n-m)!B.(n-m+1)(n-m+2)(n-m+3)…nC.nn-m+1An-1nD.A1nAm-1n-1[答案] C[解析] 由排列数公式易知A、B、D都等于Amn,故选C. 2.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中奇数的个数为()A.36 B.30C.40 D.60[答案] A[解析] 奇数的个位数字为1、3或5,偶数的个位数字为2、4.故奇数有35A35=36个.3.上午要上语文、数学、体育和外语四门功课,而体育教师因故不能上第一节和第四节,则不同排课方案的种数是() A.24 B.22C.20 D.12[答案] D[点评] 可用直接法求解:个位数字是0时有A45种;个位数字是5时,首位应用1、2、3、4中选1个,故有4A34种,共有A45+4A34个.6.6人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为()A.A66 B.3A33C.A33A33 D.4!3![答案] D[解析] 甲、乙、丙三人站在一起有A33种站法,把3人作为一个元素与其他3人排列有A44种,共有A33A44种.故选D.7.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684[答案] C[解析] “不能都站在一起”与“都站在一起”是对立事件,由间接法可得A66-A33A44=576.[点评] 不能都站在一起,与都不相邻应区分.8.由数字1、2、3、4、5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有()A.56个 B.57个C.58个 D.60个[答案] C[解析] 首位为3时,有A44个=24个;首位为2时,千位为3,则有A12A22+1=5个,千位为4或5时有A12A33=12个;首位为4时,千位为1或2,有A12A33=12个,千位为3时,有A12A22+1=5个.由分类加法计数原理知,共有适合题意的数字24+5+12+12+5=58(个).9.用0、1、2、3、4、5组成没有重复数字的6位数,其中个位数字小于十位数字的六位数共有()A.300个 B.464个C.600个 D.720个[答案] A[解析] 解法1:确定最高位有A15种不同方法.确定万位、千位、百位,从剩下的5个数字中取3个排列,共有A35种不同的方法,剩下两个数字,把大的排在十位上即可,由分步乘法计数原理知,共有A15A35=300(个).解法2:由于个位数字大于十位数字与十位数字小于个位数字的应各占一半,故有12A15A55=300(个).10.(2019广东理,8)为了迎接2019年广州亚运会,某大楼安装了5个彩灯,它们闪亮的顺序不固定.每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒 B.1200秒C.1195秒 D.1190秒[答案] C[解析] 由题意每次闪烁共5秒,所以不同的闪烁为A55=120秒,而间隔为119次,所以需要的时间至少是5A55+(A55-1)5=1195秒.[点评] 本题情景新颖,考查了排列知识在生活中的应用以及运用数学知识解决实际问题的能力、分析解决问题的能力.二、填空题11.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.[答案] 24[解析] “每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空档中即可.有A34=24种不同坐法.12.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有________个.[答案] 448[解析] 千位数字比个位数字大2,有8种可能,即(2,0),(3,1)…(9,7)前一个数为千位数字,后一个数为个位数字.其余两位无任何限制.共有8A28=448个.13.7个人排一排,甲不在排头、乙不在排尾、丙不在正中间的排法有________种?[答案] 456[解析] 由题意知有A77-3A66+3A45-A44=456种.14.(2019浙江理,17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有________种(用数字作答).[答案] 264[解析] 由条件上午不测“握力”,则4名同学测四个项目,则A44;下午不测“台阶”但不能与上午所测项目重复,如甲乙丙丁上午台阶身高立定肺活量下午,下午甲测“握力”乙丙丁所测不与上午重复有2种,甲测“身高”“立定”、“肺活量”中一种,则33=9,故A44(2+9)=264种.三、解答题15.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?(以上两个题只列出算式)[解析] (1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有A25A66种排法.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有(A88-A45A44)种.16.六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站右端,也不站左端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解析] (1)解法一:因甲不站左右两端,故第一步先从甲以外的5个人中任选二人站在左右两端,有A25种不同的站法;第二步再让剩下的4个人站在中间的四个位置上,有A44种不同的站法,由分步乘法计数原理共有A25A44=480种不同的站法.解法二:因甲不站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A14种不同的站法;第二步再让余下的5个人站在其他5个位置上,有A55种不同的站法,故共有A14A55=480种不同的站法.解法三:我们对6个人,不考虑甲站位的要求,做全排列,有A66种不同的站法;但其中包含甲在左端或右端的情况,因此减去甲站左端或右端的排列数2A55,于是共有A66-2A55=480种不同的站法.(2)解法一:首先考虑特殊元素,让甲、乙先站两端,有A22种不同的站法;再让其他4个人在中间4个位置做全排列,有A44种不同的站法,根据分步乘法计数原理,共有A22A44=48种不同的站法.解法二:“位置分析法”,首先考虑两端2个位置,由甲、乙去站,有A22种站法,再考虑中间4个位置,由剩下的4个人去站,有A44种站法,根据分步乘法计数原理,共有A22A44=48种不同的站法.(3)解法一:“间接法”,甲在左端的站法有A55种,乙在右端的站法有A55种,而甲在左端且乙在右端的站法有A44种,故共有A66-2A55+A44=504种不同的站法.解法二:“直接法”,以元素甲的位置进行考虑,可分两类:a.甲站右端有A55种不同的站法;b.甲在中间4个位置之一,而乙不在右端,可先排甲后排乙,再排其余4个,有A14A14A44种不同的站法,故共有A55+A14A14A44=504种不同的站法.17.用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.[解析] (1)各个数位上的数字允许重复,故由分步乘法计数原理,45555=2500(个).(2)方法一:先排万位,从1,2,3,4中任取一个有A14种填法,其余四个位置四个数字共有A44种,故共有A14A44=96(个).方法二:先排0,从个、十、百、千位中任选一个位置将0填入有A14种方法,其余四个数字全排有A44种方法,故共有A14A44=96(个).(3)构成3的倍数的三位数,各个位上数字之和是3的倍数,将0,1,2,3,4按除以3的余数分成3类,按取0和不取0分类:①取0,从1和4中取一个数,再取2进行排,先填百位A12,其余任排有A22,故有2A12A22种.②不取0,则只能取3,从1或4中再任取一个,再取2然后进行全排为2A33,所以共有2A12A22+2A33=8+12=20(个).(4)考虑特殊位置个位和万位,先填个位,从1、3中选一个填入个位有A12种填法,然后从剩余3个非0数中选一个填入万位,有A13种填法,包含0在内还有3个数在中间三位置上全排列,排列数为A33,故共有A12A13A33=36(个).18.由1、2、3、4、5五个数字组成没有重复数字的五位数排成一递增数列,则首项为12 345,第2项是12 354,…直到末项(第120项)是54 321.问:(1)43 251是第几项?(2)第93项是怎样的一个五位数?[分析] 43 251以前的数都比43 251小,而以后的数都比43 251大,因此比43 251小的个数加1就是43 251的项数.反过来,从总个数中减去比43 251大的数的个数也是43 251的项数.先算出比第93项大的数的个数,从总个数中减去此数,再从万位数是5的个数,逐步缩小直到第93项数为止,从而可得第93项那个数.[解析] (1)由题意知,共有五位数为A55=120(个).比43 251大的数有下列几类:①万位数是5的有A44=24(个);②万位数是4,千位数是5的有A33=6(个);③万位数是4,千位数是3,百位数是5的有A22=2(个),比43 251大的数共有A44+A33+A22=32(个),43 251是第120-32=88(项).(2)从(1)知万位数是5的有A44=24(个),万位数是4,千位数是5的有A33=6(个).但比第93项大的数有120-93=27(个),第93项即倒数第28项,而万位数是4,千位数是5的6个数是45 321、45 312、45 231、45 213、45 132、45 123,由此可见第93项是45 213.。

高中数学单元检测卷——排列、组合、二项式定理

高中数学单元检测卷——排列、组合、二项式定理

高中数学单元检测卷——排列、组合、二项式定理(考试时间:90分钟满分:120分)一、选择题:共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(2015·陕西西安模拟)将甲、乙、丙等六人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为()A.18B.15C.12D.92.(2015·山东泰安模拟)从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y=ax2+bx+c的系数a,b,c,则可以组成顶点在第一象限且过原点的抛物线条数为()A.6B.20C.100D.1203.(2015·新课标全国卷Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.604.(2015·河南洛阳高三期中)若的展开式中各项系数的和为2,则该展开式中常数项为()A.-40B.40C.-20D.205.(2015·陕西西安模拟)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A.10种B.20种C.36种D.52种6.(2015·浙江重点中学协作体高三第一次适应性测试)将二项式的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有________个.()A.3B.4C.5D.67.(2015·宁夏银川模拟)有6个座位连成一排,现有3人就坐,则恰有两个空位相邻的不同坐法有()A.36种B.48种C.72种D.96种8.(2015·陕西西安铁一中、铁一中国际合作学校高二下学期第二次月考)2个男生和5个女生排成一排,若男生不能排在两端又必须相邻,则不同的排法总数为()A.480B.720C.960D.14409.(2015·宁夏银川一中高三三模)将4名学生分别安排到甲、乙、丙三地参加社会实践活动,每个地方至少安排一名学生参加,则不同的安排方案共有()A.36种B.24种C.18种D.12种10.(2015·湖南雅礼中学模拟)某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16C.24D.3211.(2014·河南三门峡模拟)已知展开式中的常数项为()A.-160π3B.-120π3C.2πD.160π312.(2015·四川成都外国语学校高三11月月考)某校周四下午第三、四两节是选修课时间,现有甲、乙、丙、丁四位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第三、四两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有________种.()A.20B.19C.16D.15二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(2015·广东中山高三上学期期末)在二项式的展开式中,含x4的项的系数是________.14.(2015·浙江重点中学协作体高三第一次适应性测试)设ABCDEF为正六边形,一只青蛙开始在顶点A处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D点,则停止跳动;若5次之内不能到达D点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共________种.15.(2015·湖南师大附中高三上学期第二次月考)将6位志愿者分成4组,其中两组各2人,另两组各1人,分赴4个不同的学校支教,则不同的分配方案共有________种.(用数字作答)16.(2015·北京模拟)有4名同学参加唱歌、跳舞、下棋三项比赛,每项比赛至少有1人参加,每名同学只参加一项比赛,另外甲同学不能参加跳舞比赛,则不同的参赛方案的种数为________(用数字作答).三、解答题:本大题共4个小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.17.(2015·吉林长春外国语学校高三期中)某站针对2014年“中国好声音”歌手A、B、C三人进行上网投票,结果如下表.(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.(2)若在参加活动的20岁以下的人中,用分层抽样的方法抽取7人作为一个总体,从7人中任意抽取3人,用随机变量X表示抽取出3人中支持B的人数,写出X的分布列并计算E(X),D(X).18.(2015·重庆杨家坪中学高三下学期第一次月考)(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.①求恰有两个区域用红色鲜花的概率;②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).19.(2015·陕西西安铁一中、铁一中国际合作学校高二下学期第二次月考)设m,n∈N,f(x)=(1+x)m+(1+x)n.(1)当m=n=7时,f(x)=a7x7+a6x6+…+a1x+a,求a+a2+a4+a6.(2)当m=n时,f(x)展开式中x2的系数是20,求n的值.(3)f(x)展开式中x的系数是19,当m,n变化时,求x2系数的最小值.20.(2015·山东菏泽二模)已知在的展开式中,第6项为常数项.(1)求n.(2)求含x2的项的系数.(3)求展开式中所有的有理项.参考答案1.【解析】若甲、乙在高一年级,则丙一定在高二年级,此时不同的安排种数为3种;若甲、丙在高一年级,则乙一定在高二年级,此时不同的安排种数为3种;若甲在高一年级,乙、丙在高二年级,此时不同的安排种数为3种,所以共有9种不同的安排种数.【答案】D2.【解析】分三步:第一步,c=0只有1种选法;第二步,确定a,a只能从-2,-1中选一个,有2种不同的选法;第三步,确定b,b只能从1,2,3中选一个,有3种不同的选法.根据分步乘法计数原理得1×2×3=6种不同的选法.【答案】A【答案】C4.【解析】令x=1,则有1+a=2,得a=1,故二项式为故其常数项为【答案】B5.【解析】1号盒子可以放1个或2个球,2号盒子可以放2个或3个球,所以不同的放球方法有10(种).【答案】A【答案】A7.【解析】恰有两个空位相邻,相当于两个空位与第三个空位不相邻,先将3人排列,然后插空,从而共有(种)坐法.【答案】C8.【解析】把2名男生看成1个元素,和5个女生可作6个元素的全排列.又2名男生的顺序可调整,共有种方法,去掉其中男生在两端的情形共种,故总的方法种数为【答案】C9.【解析】先将4名学生分成3组,每组至少1人,有种不同的分组方法,再把这3组人安排到甲、乙、丙三地,共种不同的方法,根据分步乘法计数原理,不同的安排方案共有种.【答案】A10.【解析】将空位插到三个人中间,三个人有两个中间位置和两个两边位置就是将空位分为四部分,五个空位四分只有1,1,1,2空位无差别,只需要=6,根据分步空位2分别占在四个位置就可以有四种方法,另外三个人排列A33计数可得共有4×6=24.【答案】C【答案】A12.【解析】枚举可得,有下列的开课方案:(1)第五节:甲,乙,第六节:甲,乙;(2)第五节:甲,乙,第六节:甲,丙或丁(两种);(3)第五节:甲,乙,第六节:乙,丙或丁(两种)(4)第五节:甲,丙(丁),第六节:甲,乙(两种);(5)第五节:乙,丙(丁),第六节:甲,乙(两种);(6)第五节:甲,乙,第六节:丙,丁;(7)第五节:甲,丙,第六节:甲,丁;(8)第五节:甲,丙,第六节:乙,丁;(9)第五节:乙,丙,第六节:甲,丁;(10)第五节:乙,丙,第六节:乙,丁;(11)第五节:甲,丁,第六节:甲,丙;(12)第五节:甲,丁,第六节:乙,丙;(13)第五节:乙,丁,第六节:甲,丙;(14)第五节:乙,丁,第六节:乙,丙;(15)第五节:丙,丁,第六节:甲,乙.综上所述,一共有19种开课方案.【答案】B13.【解析】含x4的项是第三项,系数为【答案】1014.【解析】青蛙不能经过跳1次、2次或4次到达D点.故青蛙的跳法只有下列两种.(1)青蛙跳3次到达D点,有ABCD,AFED两种跳法.(2)青蛙一共跳5次后停止,那么,前3次的跳法一定不到达D,只能到达B或F,则共有AFEF,AFAF,ABAF,ABCB,ABAB,AFAB这6种跳法.随后的两次跳法各有4种,比如由F出发的有:FEF,FED,FAF,FAB共4种.因此这5次跳法共有6×4=24种不同跳法.所以,一共有2+24=26种不同跳法.【答案】2615.【解析】根据题意,先将6人按2-2-1-1分成4组,有种分组方法,再对应分配到4个不同学校,有种方法,则共有45×24=1080种方法.【答案】108016.【解析】首先把4名同学转化为3名同学,然后分给3个比赛项目,则每个比赛项目至少有一名同学参加,不同参加方案的种数有但要去掉甲同学参加跳舞比赛方案的种数有,所以该比赛不同的参赛方案的种数有36-12=24.【答案】2417.【解】(1)∵利用分层抽样的方法抽取n个人时,从“支持A”的人中抽取了6人,18.【解】(1)根据分步计数原理,摆放鲜花的不同方案有4×3×2×2=48种.(2)①设M表示事件“恰有两个区域用红色鲜花”,如图,当区域A、D同色时,共有5×4×3×1×3=180种;当区域A、D不同色时,共有5×4×3×2×2=240种.因此,所有基本事件总数为180+240=420种.由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为420(种).它们是等可能的.又因为A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种.因此,事件M包含的基本事件有36+36=72种.所以②随机变量ξ的分布列如下表:。

高中数学排列组合专题练习题

高中数学排列组合专题练习题

高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。

所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。

2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。

若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。

所以共有\(2×6×4 = 48\)种排法,故选 B。

3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。

偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。

0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。

此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。

高中数学排列组合专项练习(后附答案)

高中数学排列组合专项练习(后附答案)

排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。

高三数学单元测试(排列、组合、二项式定理)-数学试题

高三数学单元测试(排列、组合、二项式定理)-数学试题

高三数学单元测试(排列、组合、二项式定理)-数学试题一、选择题:本大题共24小题,第1—10小题每小题4分,第11—24小题每小题5分,共110分.在每小题给出的四个选项中,只有一项是符合题目要求的.width=46 valign=top >题号width=22 valign=top >1width=22 valign=top >2width=22 valign=top >3width=22 valign=top >4width=25 valign=top >5width=22 valign=top > 6width=22 valign=top > 7width=25 valign=top > 8width=26 valign=top > 9width=26 valign=top > 10width=32 valign=top > 11width=26 valign=top > 12width=32 valign=top > 13width=26 valign=top > 14width=32 valign=top > 15width=46 valign=top > 答案width=22 valign=top > width=22 valign=top > width=22 valign=top > width=22 valign=top > width=25 valign=top > width=22 valign=top > width=22 valign=top > width=25 valign=top > width=26 valign=top >width=26 valign=top > width=32 valign=top > width=26 valign=top > width=32 valign=top > width=26 valign=top > width=32 valign=top >width=46 valign=top > 题号width=22 valign=top > 16width=22 valign=top > 17width=22 valign=top >18width=22 valign=top >19width=25 valign=top >20width=22 valign=top >21width=22 valign=top >22width=25 valign=top >23width=26 valign=top >24width=174 colspan=6 rowspan=2 valign=top >width=46 valign=top >答案width=22 valign=top >width=22 valign=top >width=22 valign=top >width=22 valign=top >width=25 valign=top >width=22 valign=top >width=22 valign=top >width=25 valign=top >width=26 valign=top >(1)集合A中有8个元素,集合B中有2个元素.现建立从A到B的映射,且B中每一个元素都有原象,则共有不同的映射种数为(A)254 (B)64 (C)62(D)256(2)8个人排成一排,甲、乙、丙三人中有两个相邻,但三个人不同时相邻,则满足这些条件的排列种数为(A)(B)(C)(D)(3)七个人坐成一排,要调换其中三个人的位置,其余四个人位置不动,不同的调换方法为(A)70种(B)60种(C)75种(D)80种(4)4813除以7所得余数为(A)2 (B)4(C)6(D)8(5)大于1000且小于10000的数中,各位数字不同且个位数与千位数之差的绝对值为2的整数共有(A)672个(B)784个(C)840个(D)896个(6)将20件相同的物品分给4个学生,要求每个学生至少得3件,共有分法种数为(A)(B)(C)(D)(7)身高不等的7名同学站成一排,要求正中间的最高,从中间向两边看,一个比一个矮。

排列组合的试题及答案高中

排列组合的试题及答案高中

排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。

如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。

2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。

二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。

但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。

4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。

三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。

然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。

所以至少有1名女性员工的组合数为 252 - 1 = 251。

高中数学_排列组合100题(附解答)

高中数学_排列组合100题(附解答)

中学数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)822x x ⎛⎫- ⎪⎝⎭绽开式中10x 项的系数为____________﹒ (2)52123x x ⎛⎫- ⎪⎝⎭绽开式中3x 项的系数为____________﹒ (3)53212x x ⎛⎫+ ⎪⎝⎭绽开式中常数项为____________﹒ 3. (1)()82x y z +-绽开式中332x y z 项的系数为____________﹒(2)()532x y z -+绽开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的全部自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(留意:外套可穿也可不穿﹒)9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒ 10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满意T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌闲聊﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒15. 10132⎛⎫ ⎪ ⎪⎝⎭绽开式中﹐各实数项和为____________﹒17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的全部数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列)19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒(2)不是5的倍数也不是7的倍数者共有____________个﹒(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒(2)不含1元硬币的换法有____________种﹒23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的绽开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字嬉戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x x =≤≤為正整數為正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒(4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒29. ()10222x x -+除以()31x -所得的余式为____________﹒ 30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)31. 如图﹐则(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒33. ()1001k k x =-∑绽开式中5x 的系数为____________﹒34. 绽开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒38. 很多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒39.如圖,有三組平行線,每組各有三條直線,則(1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今日小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐假如考虑上下的次序﹐则可作成____________种不同的讯号﹒43.如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒(2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒46. 2颗苹果﹐3颗番石榴﹐4颗菠萝﹐将9颗水果随意装入4个不同的箱子﹐水果全装完每个箱子至少装一颗水果有____________种方法﹒(同种水果视为同物)47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满意14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推想n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名老师中选派4名老师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的绽开式﹒4. 试求()421x -的绽开式﹒5. 从SENSE 的5个字母中任取3个排成一列﹐问有几个排法?6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖ (1) (2) (3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()n x y +绽开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种?(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖ (1)(2)15. 如图﹐由A 至B 走快捷方式﹐不能穿越斜线区﹐有多少种走法﹖16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满意12031,2311n n n nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成果是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖(2)有几个3的倍数﹖(3)改完考卷后发觉由小到大排列的第12个数正是全班的平均成果﹐请问班上的平均成果是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满意递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项na (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复运用(1)可作成多少个﹖ (2)其总和若干﹖5678192028. 妈妈桌球俱乐部拟购买8把桌球拍以供遗忘携带球拍的会员运用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖ (1) (2)31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复运用﹐则涂法各有多少种﹖ (1) (2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转)(1)(2)(3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒(2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形安排﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋竞赛﹐已知某班级有42位同学参赛﹐其中有34位同学参与围棋竞赛﹐而两种棋赛都参与的同学有15人﹒试问此班有多少位同学参与象棋竞赛?38. 求()321x x ++的绽开式中2x 的系数﹒39. 求()322x x -+的绽开式中4x 的系数﹒40. 求240的正因子个数﹒41. 自甲地到乙地有电车路途1条﹐公交车路途3条﹐自乙地到丙地有电车路途2条﹐公交车路途2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路途中﹐电车与公交车路途各选一次﹐则有几种不同的路途支配?42. 某班实行数学测验﹐测验题分A ﹐B ﹐C 三题﹒结果答对A 题者有15人﹐答对B 题者有19人﹐答对C 题者有20人﹐其中A ﹐B 两题都答对者有10人﹐B ﹐C 两题都答对者有12人﹐C ﹐A 两题都答对者有8人﹐三题都答对者有3人﹒试问A ﹐B ﹐C 三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形: 設n a 是第n 圖需用到的白色地磚塊數﹒ (1)寫下數列n a 的遞迴關係式﹒ (2)求一般項n a ﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班支配2人﹐共有几种分法?(2)若甲乙两班各支配3人﹐丙丁两班各支配1人﹐共有几种分法?46. 求满意12320003000n nn nn C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社支配两天一夜的渡假行程﹐其中来回渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种支配法﹖49. 老师想从10位干部中选出3人分别担当班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 假如某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲支配呢﹖一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 26622. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29.2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 21 39. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6.(1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)57 20. 52 21.101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =; (2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 18000 36.(1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44. (1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒ 2. (1)设第1r +项为10x 项﹐则()()882816222rrr r r r r C xC x x x ---⎛⎫-=- ⎪⎝⎭163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒ (2)设第1r +项为3x 项﹐则()55255102112233r rrr r r rr Cx C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rrr r rrr Cx C xx x ----⎛⎫= ⎪⎝⎭15503r r ⇒-=⇒=﹐∴常数项为523240C =﹒(2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒ 6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒7. 83563!P =﹒8. ()542160⨯⨯+=﹒ 9. ∵12n n a a n +=+﹐ ∴2121a a =+⨯ 3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐∴210010010039903a =-+=﹒ 10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e 1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()()333223114514524511H H C H H C H H ⨯-⨯---⨯()67564545323228C C C C =⨯-⨯--=﹒7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒ 15. 绽开后各实数项和为24681086421010101010024681111122222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10101012C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒12=-+﹐ ∴实数项和为12-﹒16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅∴1213n n a a -=+⋅⋅⋅⋅⋅⋅-()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐表示数列1n n a a +-为首项23﹐公比23的等比数列﹐()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐ ∴()(){}4,4A B A B ⋃-⋂=-﹒ 18. 1234 3214 2134 3241 2314 3421 2341 43211到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒(3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒ 20.7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐ ()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐x0 1 2 3 4 5 y 0~10 0~8 0~6 0~4 0~20 z 50~0 40~0 30~0 20~0 10~0共119753136+++++=种﹒②二个50⇒1种﹒ ∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐x0 1 2 y23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒(2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=正整數S x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐令()222212232336x k k ==⨯⨯=⨯⨯=﹐则()()(){}22261,62,,616,⋂=⨯⨯⨯S T∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒ 27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒(3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦ 5558332771111=+-=﹒ (4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂ 5558332771111=+-=﹒ 28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒30.①B ﹑D 同﹐54143240,A B D C E ⨯⨯⨯⨯=②B ﹑D 異﹐54333540,A B D C E ⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒ 31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒ 如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +绽开式中15x 项系数∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒33.()()()()10121111kk x x x x =-=-+-+-+∑……()101x +-()()()11111111111x x x x⎡⎤----⎣⎦==--﹐绽开式中5x 系数即为()1111x --绽开式中6x 系数﹐ ∴所求为()61161462C --=-﹒ 34. ()()20200.9910.01=⎡+-⎤⎣⎦()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦ 3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯= 左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:aa 排法有3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒ ↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再支配4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒ 50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名老师中选出4名老师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名老师中选出2人去参与研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名老师中选出4名老师去参与研习﹐故选法有64C 种﹒综合这两种情形﹐从8名老师中选派4名老师的选法共有562425C C +=种﹒而选出4名老师后﹐分别支配到4个城市去研习﹐则支配的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路随意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒ (2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y ⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白1322313.⇒共種(2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐其次位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-()10111c =-=-﹐∵()1011x +绽开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+绽开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒→有363⨯⨯个→有123⨯⨯个→有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐ 故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =-5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 依据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必需异号﹐且,a b 皆不等于0﹒我们以a 的正负情形探讨如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→ 54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a =24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D ⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒ 34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐ 丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积绽开﹐得()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒由于上式中A 部分的各项次数均超过2次﹐因此全部绽开式中2x 的系数﹐就是B 部分的绽开式中的2x 系数﹒ 又B 部分的绽开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐ 故全部绽开式中2x 的系数为6﹒ 39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积绽开得()()()()()()()()()()332112323232323212322222A B xx C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+绽开式中B 部分各项次数低于4次﹐因此要计算绽开式中4x 的系数只要计算A 部分各项绽开式即可﹐又A 部分绽开式为()()()()32132320122C x x C x x -+-()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+故4x 的系数为9﹒40. 将240作质因子分解﹐得411240235=⨯⨯﹒因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐ 所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒ 利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒ 41. 依题意图示如下:其中实线表电车路途﹐虚线表公交车路途﹒因为电车与公交车路途各选一次﹐所以路途支配可分成以下二类: (1)先电车再公交车:利用乘法原理﹐得有122⨯=种路途﹒ (2)先公交车再电车:利用乘法原理﹐得有326⨯=种路途﹒ 由加法原理得知﹐共有268+=种路途支配﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒ 利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂151920101283=++---+27=﹒ 故三题中至少答对一题者有27人﹒ 43.設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂ ()n A B C +⋂⋂﹐得()15012010030205010280n A B C ⋃⋃=++---+=﹒故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发觉图形每次均增 加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等 差数列﹐故()81553n a n n =+-⨯=+﹒(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒ 45. (1)先将这8位转学生分成四堆﹐每堆2人﹐ 再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒(2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒ 46. 因为01232n n n n n n n C C C C C +++++=﹐ 所以1230221n n n nn n n n C C C C C ++++=-=-﹒即原式可改写为2000213000n <-<﹐即200123001n <<﹐得11n =﹒ 47. (1)3119911!559!2!H C ===组﹒ (2)338936628H H C -===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种支配法﹒ 49. 10310!10987207!P ==⨯⨯=种选法﹒ 50. 由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲支配﹒。

高三数学排列组合综合应用试题答案及解析

高三数学排列组合综合应用试题答案及解析

高三数学排列组合综合应用试题答案及解析1.用数字1,2,3,4可以排成没有重复数字的四位偶数,共有____________个.【答案】12【解析】由题意,没有重复数字的偶数,则末位是2或4,当末位是时,前三位将,,三个数字任意排列,则有种排法,末位为时一样有种,两类共有:种,故共有没有重复数字的偶数个.【考点】排列组合.2.在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为()A.24B.36C.48D.60【答案】D【解析】先排3个女生,三个女生之间有4个空,从四个空中选两个排男生,共有=72(种),若女生甲排在第一个,则三个女生之间有3个空,从3个空中选两个排男生,有=12(种),∴满足条件的出场顺序有72-12=60(种)排法,选D.3. 20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.【答案】120【解析】先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有=120(种)方法.4.将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有()A.18种B.36种C.48种D.60种【答案】D【解析】由题意知A,B,C三个宿舍中有两个宿舍分到2人,另一个宿舍分到1人.若甲被分到B宿舍:(1)A中2人,B中1人,C中2人,有=6种分法;(2)A中1人,B中2人,C中2人,有=12种分法;(3)A中2人,B中2人,C中1人,有=12种分法,即甲被分到B宿舍的分法有30种,同样甲被分到C宿舍的分法也有30种,所以甲不到A宿舍一共有60种分法,故选D.5.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有()A.8种B.10种C.12种D.32种【答案】B【解析】从A到B若路程最短,需要走三段横线段和两段竖线段,可转化为三个a和两个b的不同排法,第一步:先排a有种排法,第二步:再排b有1种排法,共有10种排法,选B项.6. 5位同学站成一排准备照相的时候,有两位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么两位老师与同学们站成一排照相的站法总数为()A.6B.20C.30D.42【答案】D【解析】因为五位学生已经排好,第一位老师站进去有6种选择,当第一位老师站好后,第二位老师站进去有7种选择,所以两位老师与学生站成一排的站法共有6×7=42种.7.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种【答案】C【解析】从6名男医生中选出2名有种不同选法,从5名女男医生中选出2名有种不同选法,根据分步计数乘法原理可得,组成的医疗小组共有15×5=75种不同选法.【考点】计数原理和排列组合.8. [2014·南京模拟]用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)【答案】14【解析】分类讨论:若2出现一次,则四位数有C14个;若2出现二次,则四位数有C24个;若2出现3次,则四位数有C34个,所以共有C14++=14个.9.[2014·郑州模拟]将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.【答案】360【解析】将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有种取法;第2步,在余下的5名教师中任取2名作为一组,有种取法;第3步,余下的3名教师作为一组,有种取法.根据分步乘法计数原理,共有=60种取法.再将这3组教师分配到3所中学,有=6种分法,故共有60×6=360种不同的分法.10. [2013·浙江高考]将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).【答案】480【解析】如图六个位置.若C放在第一个位置,则满足条件的排法共有种情况;若C放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A,B,再在余下的3个位置排D,E,F,共·种排法;若C放在第3个位置,则可在1,2两个位置排A,B,其余位置排D,E,F,则共有·种排法或在4,5,6共3个位置中选2个位置排A,B,再在其余3个位置排D,E,F,共有·种排法;若C在第4个位置,则有+种排法;若C在第5个位置,则有种排法;若C在第6个位置,则有种排法.综上,共有2(+++)=480(种)排法.11.[2013·怀化模拟]将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种【答案】B【解析】先将1,2捆绑后放入信封中,有种方法,再将剩余的4张卡片放入另外两个信封中,有种方法,所以共有=18(种)方法.12.从6名教师中选4名开发A、B、C、D四门课程,要求每门课程有一名教师开发,每名教师只开发一门课程,且这6名中甲、乙两人不开发A课程,则不同的选择方案共有()A.300种 B.240种 C.144种 D.96种【答案】B【解析】依题意可得从除甲、乙外的四位老师中任取一位开发A课程共有种,再从剩下的5位老师中分别选3位开发其他项目共有.所以完成该件事共有种情况.【考点】1.排列组合问题.2.有特殊条件要先考虑.13.某写字楼将排成一排的6个车位出租给4个公司,其中有两个公司各有两辆汽车,如果这两个公司要求本公司的两个车位相邻,那么不同的分配方法共有________种.(用数字作答)【答案】24【解析】此问题相当于将4个公司全排列,因为,则此问题的不同分配方法共有24种。

高中试卷-专题27 排列与组合(含答案)

高中试卷-专题27 排列与组合(含答案)

专题27 排列与组合一、单选题1.(2020·山东省高二期中)若,则( )A .6B .7C .8D .9【答案】C 【解析】因为,所以,所以有,即,解得:.故选:C.2.(2020·山东省高二期中)若,则( )A .4B .6C .7D .8【答案】D 【解析】∵,∴,即,∴,故选:D .3.(2020·北京市鲁迅中学高二月考)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48【答案】A 【解析】法一:4人中至少有1名女生包括1女3男及2女2男两种情况,故不同的选派方案种数为.故选A.33210n n A A =n =33210n n A A =*3,n n N ³Î()()()()221221012n n n n n n ×-×-=×-×-()()22152n n -=-8n =3212n n n A C -=n =3221212n n nn A C C -==()()()112122n n n n n ---=´26n -=8n =法二:从4男2女中选4人共有种选法,4名都是男生的选法有种,故至少有1名女生的选派方案种数为-=15-1=14.故选A4.(2020·山东省高二期中)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有不同的选法种数为( )A .420B .660C .840D .880【答案】B 【解析】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,共有种选法,其中不含女生的有种选法,所以服务队中至少有1名女生的选法种数为.故选:B5.(2020·北京市鲁迅中学高二月考)用0,1,2,3,4,5这个数字,可以组成没有重复数字的四位数的个数是( )A .B .C .D .【答案】B 【解析】当四个数字中没有0时,没有重复数字的四位数有:种;当四个数字中有0时,没有重复数字的四位数有:种,两类相加一共有300种,故选B.6.(2020·北京大峪中学高二期中)5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( )A .240种B .120种C .96种D .480种【答案】A2286840A C ×=2264180A C =840180660-=636030024018045120A =1335180A A =【解析】由题先把5本书的两本捆起来看作一个元素共有种可能,这一个元素和其他的三个元素在四个位置全排列共有种可能,所以不同的分法种数为种,故选A.7.(2020·福建省高三二模(理))在“弘扬中华文化”的演讲比赛中,参赛者甲、乙、丙、丁、戊进入了前5名的决赛(获奖名次不重复).甲、乙、丙三人一起去询问成绩,回答者说:“第一名和第五名恰好都在你们三人之中,甲的成绩比丙好”,从这个回答分析,5人的名次排列的所有可能情况有( ).A .18种B .24种C .36种D .48种【答案】A 【解析】(1)当甲排第1名时,则第5名从乙、丙两个选一个,其它三名任意排列,;(2)当甲排第2,3,4名时,则第5名必排丙,第1名排乙,其它三名任意排列,;,故选:A.8.(2019·佛山市顺德区容山中学高二开学考试)高三某6个班级从“照母山”等6个不同的景点中任意选取一个进行郊游活动,其中1班、2班不去同一景点且均不去“照母山”的不同的安排方式有多少种( )A .B .C .D .【答案】D 【解析】1班、2班的安排方式有种,剩余4个班的安排方式有种,所以共有各安排方式,故选D .二、多选题9.(2020·南京市秦淮中学高二期中)下列各式中,等于的是( )A .B .C .D .【答案】AC 【解析】根据题意,依次分选项:2510C =4424A =1024240´=\313212N A ==\3236N A ==\12618N =+=2454C A 2456C 2454A A 2456A 25A 462456A !n 1n nA -1nn A +11n n nA --!mnm C对于,,故正确;对于,,故错误;对于,,故正确;对于,,故错误;故选:AC .10.(2020·江苏省高二期中)下列等式中,正确的是( )A .B .C .D .【答案】ABD 【解析】选项A ,左边==右边,正确;选项B ,右边左边,正确;选项C ,右边左边,错误;选项D ,右边左边,正确.故选:ABD11.(2020·山东省潍坊一中高二月考)某工程队有卡车、挖掘机、吊车、混凝土搅拌车4辆工程车,将它们全部派往3个工地进行作业,每个工地至少派一辆工程车,共有多少种方式?下列结论正确的有( )A .18B .C .D .【答案】CD 【解析】A 1(1)2!n nA n n n -=´-´¼¼´=AB 1(1)(1)2(1)!nn A n n n n +=+´´-´¼¼´=+B C 11(1)1!n n nA n n n --=´-´¼¼´=C D !!!mm mn nnA m C m A m ==D 11m m m n nn A mA A -++=11r r n n rC nC --=111111m m m m n n n n C C C C +--+--=++11mm n nm C C n m++=-()()()()()()()1!1!!!!!1!1!1!1!n m n n n n n n m m n m n m n m n m n m -+×+×+×=+×=--+-+-+-+()()1!1!n n m +=-+()()()()()()1!!!1!11!1!!!!n r n n n r r n r r r n r r n r -=×=×=×=-×--+-×-×-11m m mn n n C C C -+=+=¹()()()()()()()1!1!!1!1!1!1!!!m n m n n n m m n m m m n m n m m n m +×+=×===-+×--+××-×--×-11113213C C C C 122342C C A 2343C A根据捆绑法得到共有,先选择一个工地有两辆工程车,再剩余的两辆车派给两个工地,共有..故选:.12.(2020·临淄区英才中学高二期中)甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( )A .如果甲,乙必须相邻且乙在甲的右边,那么不同的排法有24种B .最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C .甲乙不相邻的排法种数为72种D .甲乙丙按从左到右的顺序排列的排法有20种【答案】ACD 【解析】A.甲,乙必须相邻且乙在甲的右边,可将甲乙捆绑看成一个元素,则不同的排法有种,故正确.B.最左端只能排甲或乙,最右端不能排甲,则不同的排法共有种,故不正确.C.甲乙不相邻的排法种数为种,故正确.D.甲乙丙按从左到右的顺序排列的排法有种,故正确.故选:ACD.点睛:排列组合中的排序问题,常见类型有:(1)相邻问题捆绑法;(2)不相邻问题插空排;(3)定序问题缩倍法(插空法);(4)定位问题优先法.三、填空题13.(2020·北京市鲁迅中学高二月考)人排成一排,其中甲、乙相邻的排法有______种(用数字作答)【答案】48【解析】因为甲、乙相邻,则利用捆绑法,看作一个人,则有种,再与其余3人看作4人全排列有种,234336C A ×=122342C C A 36=11113213C C C C 1836=¹CD 4424A =A 1311333323+=54A A A A A B 3234=72A A C 5533=20A A D 5222A =4424A =所以人排成一排,其中甲、乙相邻的排法有种,故答案为:4814.(2020·北京市鲁迅中学高二月考)5个人站成一排,其中甲、乙两人不相邻的排法有 种(用数字作答).【答案】72【解析】可分两个步骤完成,第一步骤先排除甲乙外的其他三人,有种,第二步将甲乙二人插入前人形成的四个空隙中,有种,则甲、乙两不相邻的排法有种.15.(2020·山东省高二期中)用1,2,3,4,5这5个数字组成的没有重复数字的四位数中,能被5整除的数的个数为______.(用数字作答)【答案】24【解析】由题意知,能被5整除的四位数末位必为5,只有1种方法,其它位的数字从剩余的四个数中任选三个全排列有,故答案为:2416.(2020·浙江省宁波诺丁汉附中高二期中)用0, 1, 2, 3, 4, 5这六个数字,可以组成______个无重复数字的三位数, 也可以组成______个能被5整除且无重复数字的五位数.【答案】100 216 【解析】第一个空:第一步,先确定三位数的最高数位上的数,有种方法;第二步,确定另外二个数位上的数,有种方法,所以可以组成个无重复数字的三位数;第二个空:被5整除且无重复数字的五位数的个数上的数有2种情况:当个数上的数字是0时,其他数位上的数有个;当个数上的数字是5时,先确定最高数位上的数,有种方法,而后确定其他三个数位上的数有种方法,所以共有个数,5242448A A ×=33A 24A 3234A A 72=34=432=24A ´´155C =255420A =´=520100´=455432120A =´´´=14C 4=3443224A =´´=24496´=根据分类计算原理共有个数.四、解答题17.(2020·江苏省扬州中学高二期中)有5名男生,4名女生排成一排.(1)从中选出3人排成一排,有多少种排法?(2)若4名女生互不相邻,有多少种不同的排法?【答案】(1)504(2)43200【解析】(1)由题意,有5名男生,4名女生排成一排,共9人从中选出3人排成一排,共有种排法;(2)可用插空法求解,先排5名男生有种方法,5个男生可形成6个空,将4个女生插入空中,有种方法故共有种方法18.(2020·黑龙江省铁人中学高二期中(理))从名运动员中选出人参加接力赛,分别求满足下列条件的安排方法种数:(1)甲、乙两人都不跑中间两棒;(2)甲、乙二人不都跑中间两棒.【答案】(1)144(2)336【解析】(1)先选跑中间的两人有种,再从余下的4人中选跑、棒的有,则共有种.(2)用间接法:“不都跑”的否定是“都跑”,所以用任意排法,再去掉甲、乙跑中间的安排方法种,故满足条件的安排方法有种.19.(2020·江苏省泰州中学高二期中)从5名男生和4名女生中选出4人参加辩论比赛.(1)如果男生中的甲与女生中的乙至少要有1人在内,那么有多少种不同选法?(2)如果4个人中既有男生又有女生,那么有多少种不同选法?【答案】(1)91种;(2)120种.【解析】12096216+=39504A =55A 46A 545643200A A =644100´24A 1424A 2244144A A =46A 2224A A 246224336A A A =-分析:(1)用间接法分析,先计算在9人中任选4人的选法数,再排除其中“甲乙都没有入选”的选法数,即可得答案;(2)用间接法分析,先计算在9人中任选4人的选法数,再排除其中“只有男生”和“只有女生”的选法数,即可得答案.详解:(1)先在9人中任选4人,有种选法, 其中甲乙都没有入选,即从其他7人中任选4人的选法有种, 则甲与女姓中的乙至少要有1人在内的选法有种.(2)先在9人中任选4人,有种选法,其中只有男生的选法有种,只有女生的选法有种,则4人中必须既有男生又有女生的选法有种.20.(2019·佛山市顺德区容山中学高二开学考试)以下问题最终结果用数字表示 (1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数?(2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数?【答案】(1)60 (2)72 (3)20【解析】(1)偶数末位必须为0,2,4对此进行以下分类:当末位是0时,剩下1,2,3,4进行全排列,=24当末位是2时,注意0不能排在首位,首位从1,3,4选出有种方法排在首位,剩下的三个数可以进行全排列有种排法,所以当末位数字是2时有=18个数.同理当末位数字是4时也有18个数,所以由0、1、2、3、4可以组成无重复数字的五位偶数有24+18+18=60个.(2)由1、2、3、4、5组成五位数一共有个.第一步,把2.3捆定,有种排法;第二步,捆定的2,3与1,4,5一起全排列,共有个数,49126C =4735C =1263591-=49126C =455C =441C =12651120--=44A 13A 33A 1333A A 5554321120A =´´´´=122A =44432124A =´´´=根据分步计数原理,2,3相邻的五位数共有=48个数,因此由1、2、3、4、5组成无重复数字且2、3不相邻的五位数共有个数.(3)把五位数每个数位看成五个空,数字4,5共有个,然后把数字1,2,3按照3,2,1的顺序插入,只有一种方式,根据分步计数原理,可知由1、2、3、4、5组成无重复数字且数字1,2,3必须按由大到小顺序排列的五位数为个.21.(2020·浙江省效实中学高二期中)(1)由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数共有几种?(2)我校高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,求不同的选取法的种数.【答案】(1)280种;(2)472种.【解析】(1)十位数字与千位数字之差的绝对值等于7,可得千位数字和十位数字的组合有五种,每种组合中百位和个位的数共有种组合,所以符合条件的四位数共有种.(2)情形一:不选三班的同学,从12个人中选出3人,有种选取方法,其中来自同一个班级的情况有种,则此时有种选取方法;情形二:选三班的一位同学,三班的这一位同学的选取方法有4种,剩下的两位同学从剩下的12人中任选2人,有种选取方法,则此时有种选取方法.根据分类计数原理,共有种选取方法.22.(2020·北京大峪中学高二期中)一场小型晚会有个唱歌节目和个相声节目,要求排出一个节目单.(1)个相声节目要排在一起,有多少种排法?(2)个相声节目彼此要隔开,有多少种排法?(3)第一个节目和最后一个节目都是唱歌节目,有多少种排法?12A 44A 1204872-=255420A =´=25120A ´=(1,8)(2,9)(7,0)(8,1)(9,2)2856A =285280A =312C 343C 33124322012208C C -=-=212C 2124264C =208264472+=3222(4)前个节目中要有相声节目,有多少种排法?(要求:每小题都要有过程,且计算结果都用数字表示)【答案】(1);(2);(3);(4).【解析】(1)将个相声节目进行捆绑,与其它个节目形成个元素,然后进行全排,所以,排法种数为种;(2)将个相声节目插入其它个节目所形成的个空中,则排法种数为种;(3)第一个节目和最后一个节目都是唱歌节目,则其它个节目排在中间,进行全排,由分步乘法计数原理可知,排法种数为种;(4)在个节目进行全排的排法种数中减去前个节目中没有相声节目的排法种数,可得出前个节目中要有相声节目的排法种数为.3487236108234242448A A =234323472A A =3233336A A =53353253212012108A A A -=-=。

高三数学排列组合综合应用试题

高三数学排列组合综合应用试题

高三数学排列组合综合应用试题1. 7个人排成一排,按下列要求各有多少种排法?(1)其中甲不站排头,乙不站排尾;(2)其中甲、乙、丙3人必须相邻;(3)其中甲、乙、丙3人两两不相邻;(4)其中甲、乙中间有且只有1人;(5)其中甲、乙、丙按从左到右的顺序排列.【答案】(1)3720种(2)720种(3)1440种(4)1200种(5)840种【解析】(1)方法一(直接法):如果甲站排尾,其余6人有种排法,如果甲站中间5个位置中的一个,而乙不站排尾,则有种排法,故共有排法+=3720种.方法二(间接法):7个人排成一排有种排法,其中甲在排头有种排法,乙在排尾有种排法,甲在排头且乙在排尾共有种排法,故共有排法--+=3720种.(2)(捆绑法)将甲、乙、丙捆在一起作为一个元素与其他4个元素作全排列有种,然后甲、乙、丙内部再作全排列有种,故有不同的排法=720种.(3)(插空法)先排甲、乙、丙外的4人有种排法,这四人之间及两端留出五个空位,然后把甲、乙、丙插入到五个空位中有种排法,故共有=1440种排法.(4)甲、乙两人有种排法,现从剩下的五人中选一个插入甲、乙中间,有种排法,然后再将这三人看作一个元素,和其他四个元素作全排列,有种排法,故共有=1200种排法.(5)七个人的全排列为,其中若只看甲、乙、丙不同顺序的排法有种排法,但只有一种顺序符合要求,故符合要求的不同排法有=840种.2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有A.60种B.70种C.75种D.150种【答案】C.【解析】由已知可得不同的选法共有,故选C.【考点】排列组合.3.把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有种.【答案】36【解析】先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有种摆法,又当A、B相邻又满足A、C相邻,有种摆法,故满足条件的摆法有种.【考点】排列组合,容易题.4.甲乙两人从4门课程中各选修两门,则甲乙所选的课程中至少有1门不相同的选法共有( )种A.30B.36C.60D.72【答案】A【解析】甲、乙所选的课程中至少有1门不相同的选法可以分为两类:(1)甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有种.(2)甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选一门作为相同的课程,有种选法;②甲从剩余的3门中任选1门乙从最后剩余的2门中任选1门有种选法,由分步计数原理此时共有种.综上,由分类计数原理,甲、所选的课程中至少有1门不相同的选法共有6+24=30种.【考点】计数原理,排列组合.5.设是的一个全排列,把排在左边且小于的数的个数称为的顺序数(),例如在排列6,4,5,3,2,1中,5的顺序数是1而3的顺序数是0.在的全排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数是( )A.48B.96C.144D.192【答案】C【解析】据题意,在8的左边有2个比8小的数,在7的左边有3个比7小的数,在5的左边有3个比5小的数.由于8是最大的数,故8必排在第3位,而7必须排在第5位:.若6在5的右边,则:,共有种;若6在5的左边,则5必在倒数第二位,,共有.所以总共有种.【考点】排列组合.6.一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种 .【答案】186【解析】设取红球个,白球个,则,取法为.【考点】古典概型.7.用0,1,2,3,4这五个数字组成没有重复数字的五位数中,奇数的个数是()A.24B.36C.48D.72【答案】B【解析】第一步排个位,有2种排法;第二步排万位,有3种排法;第三步排中间3位,有种排法.所以共有种排法.【考点】计数原理与排列.8.将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【答案】A【解析】先安排老师有=2种方法,再安排学生有=6,所以共有12种安排方案,选A.9. 8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.B.C.D.【答案】A【解析】8名学生共有种排法,把2位老师插入到9个空中有种排法,故共有种排法.10.在“学雷锋,我是志愿者”活动中,有名志愿者要分配到个不同的社区参加服务,每个社区分配名志愿者,其中甲、乙两人分到同一社区,则不同的分配方案共有()A.种B.种C.种D.种【答案】B【解析】由题意,将问题分成2步.第1步,甲乙分到3个社区中的1个社区,有种方法;第2步,将余下4个人分配到另外2个社区,有种方法,则最终不同的分配方案共有种.故选B.【考点】1.分步计数原理的应用;2.人员分配问题.11.某搬运工不慎将4件次品与6件正品混在一起,由于产品外观一样,需要用仪器对产品一一检测,直至找到所有次品为止,若至多检测6次就能找到所有次品,则不同的检测方法共有()种.A.1950B.2130C.7800D.8520【答案】D【解析】若恰好检测4次就能找到所有次品,不同的检测方法共有种;若恰好检测5次就能找到所有次品,不同的检测方法共有种;若恰好检测6次就能找到所有次品货所有正品,不同的检测方法共有.故满足条件的不同检测方法有种.【考点】排列组合.12.编号为1,2,3,4,5,6的六个同学排成一排,3、4号两位同学相邻,不同的排法()A.60种B.120种C.240种D.480种【答案】C【解析】将34看一个整体,连同1、2、5、6共5个元素进行全排列,共有5!种排法.由于3、4还要进行排列,故共有种排法.【考点】排列.13.科技活动后,名辅导教师和他们所指导的名获奖学生合影留念(每名教师只指导一名学生),要求人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______.(用数字作答)【答案】.【解析】由于学生与其指导老师相邻,先将学生与其指导教师进行捆绑,形成三个整体,考虑每个整体中教师与学生的顺序,以及三个整体的排列,因此共有种不同的站法种数.【考点】排列组合14.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字且能被3整除的四位数,这样的四位数有个.【答案】【解析】依题意,只需组成的四位数各位数字的和能被整除.将这六个数字按照被除的余数分类,共分为类:,,,若四位数含,则另外个数字为、之一、之一,此时有种;若四位数不含,则个数字为,此时有种,由分类计数原理,这样的四位数有个.【考点】排列和组合.15.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答).【答案】324【解析】∵个位、十位和百位上的数字之和为偶数,∴这三个数或者都是偶数,或者有两个奇数一个偶数.当个位、十位和百位上的都为偶数时,则①此三位中有0,则有·4=3×6×4=72(个);②此三位中没有0,则有·3=6×3=18(个).当个位、十位和百位上有两个奇数一个偶数时,则①此三位中有0,则有·4=3×6×4=72(个);②此三位中没有0,则有·3=162(个),∴总共有72+18+72+162=324(个).【方法技巧】1.解决排列组合综合问题,应遵循三大原则:先特殊后一般、先取后排、先分类后分步的原则.2.解决排列组合综合问题的基本类型基本类型主要包括:排列中的“在与不在”、组合中的“有与没有”,还有“相邻与不相邻”“至少与至多”“分配与分组”等.3.解决排列组合综合问题中的转化思想转化思想就是把一些排列组合问题与基本类型相联系,从而把问题转化为基本类型,然后加以解决.16.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36【答案】A【解析】从集合A,B,C中各取一个数有1×2×3=6种取法.其中1,1,5三数可确定空间不同点的个数为3个,另5种每种可确定空间不同点的个数都是6.所以可确定空间不同点的个数为3+5×6=33.17.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【答案】A【解析】【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余元素就可以确定了.解:先排第一列,由于每列的字母互不相同,因此共有3×2×1种不同的方法;再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法,因此共有3×2×1×2=12(种)不同的方法.18.某化工厂生产中需要依次投放2种化工原料,现已知有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲先投放,则不同的投放方案有()A.10种B.12种C.15种D.16种【答案】C【解析】分类完成此事,一类是使用甲原料,则不同的投放方案有1×3=3(种);一类是不使用甲原料,不同的投放方案有4×3=12(种);由分类加法计数原理可知,不同的投放方案有3+12=15(种).19.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数的个数为()A.11B.12C.13D.14【答案】D【解析】数字2出现一次的四位数有4个,数字2出现2次的四位数有6个,数字2出现3次的四位数有4个,故总共有4+6+4=14个.20.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【答案】B2=6种方法;②选1本画【解析】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C41=4种方法.所以不同的赠送方法共有6+4=10(种).册,3本集邮册送给4位朋友,有C421.将甲、乙、丙、丁、戊共五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,且甲不能被保送到北大,则不同的保送方案共有多少种().A.150B.114C.100D.72【答案】C【解析】先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1,或者3,1,1,所以共有=25种分组方法.因为甲不能去北大,所以有甲的那组只有交大和浙大两个选择,剩下的两组无约束,一共4种排列,所以不同的保送方案共有25×4=100种.22.某班有38人,现需要随机抽取5人参加一次问卷调查,抽到甲同学而未抽到乙同学的可能抽取情况有种. (结果用数值表示)【答案】【解析】甲乙是两个特殊的元素,甲抽到了,而乙未抽到,因此还要从余下的36人中抽4人,共有种抽法.【考点】组合.23.某高校从5名男大学生志愿者和4名女大学生志愿者中选出3名派到3所学校支教(每所学校一名志愿者),要求这3名志愿者中男、女大学生都有,则不同的选派方案共有 ().A.210种B.420种C.630种D.840种【答案】B【解析】从这9名大学生志愿者中任选3名派到3所学校支教,则有种选派方案,3名志愿者全是男生或全是女生的选派方案有+种,故符合条件的选派方案有-(+)=420种.24.数列共有12项,其中,,,且,则满足这种条件的不同数列的个数为()A.84B.168C.76D.152【答案】A【解析】∵,∴前一项总比后一项大一或小一,到中4个变化必然有3升1减,到中必然有5升2减,是排列组合的问题,∴.【考点】1.数列的递推公式;2.排列组合问题.25.桌面上有形状大小相同的白球、红球、黄球各3个,相同颜色的球不加以区分,将此9个球排成一排共有种不同的排法.(用数字作答)【答案】1680【解析】可以考虑将此9个球同色加以区分的排成一排,然后再加以区分,除以相同颜色的球的排列数即可.所以满足题意的排列种数共有.【考点】排列组合26.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800B.3600C.4320D.5040【答案】B【解析】先排除了舞蹈节目以外的5个节目,共种,把2个舞蹈节目插在6个空位中,有种,所以共有种.【考点】排列组合.27.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( )A.B.C.D.【答案】A【解析】先安排2,4,因为2,4不在个位和万位,所以2,4只能在十、百、千三个位置,①若2,4均为在百位,即2,4只占十位和千位,则数字5只能从个位和万位选择一个位置,这样共有个五位数;②若2,4某一个数字占据了百位,另一数字占据十位或千位,共有种可能,此时剩下的三个数字安排到余下的三个位置即可,这样的五位数就有个.由①②可知,这样的五位数一共有32个,故选A.【考点】排列组合综合.28. 2011年西安世园会组委会要派五名志愿者从事翻译、导游、礼仪三项工作,要求每项工作至少有一人从事,则不同的派给方案共有()A.25种B.150种C.240种D.360种【答案】B【解析】5个人全部参加工作,可以分先分组为2人、2人、1人或3人、1人、1人,故5个人全部工作共有安排方案种。

高中数学排列组合题目专项训练卷

高中数学排列组合题目专项训练卷

高中数学排列组合题目专项训练卷一、选择题1、从 5 名男生和 4 名女生中选出 4 人参加辩论比赛,如果男生中的甲和女生中的乙必须在内,有()种选法。

A 35B 21C 120D 60【解析】除甲、乙之外,从剩下 7 人中选 2 人,有 C(7, 2) = 21 种选法。

答案:B2、用 0 到 9 这 10 个数字,可以组成没有重复数字的三位数的个数为()A 648B 720C 810D 900【解析】百位不能为 0,有 9 种选择;十位有 9 种选择;个位有 8 种选择。

所以共有 9×9×8 = 648 个。

答案:A3、 5 个人排成一排,其中甲不在排头且乙不在排尾的排法有()A 120 种B 78 种C 72 种D 36 种【解析】5 个人全排列有 A(5, 5) = 120 种排法。

甲在排头有 A(4, 4) = 24 种排法,乙在排尾有 A(4, 4) = 24 种排法,甲在排头且乙在排尾有 A(3, 3) = 6 种排法。

所以甲不在排头且乙不在排尾的排法有 120 24 24 + 6 = 78 种。

答案:B4、从 6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有()A 280 种B 240 种C 180 种D 96 种【解析】从除甲、乙外的 4 人中选 1 人从事翻译工作,有 4 种选法;然后从剩下 5 人中选 3 人安排其余 3 项工作,有 A(5, 3) = 60 种安排方法。

所以共有 4×60 = 240 种选派方案。

答案:B5、某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个新节目。

如果将这两个节目插入原节目单中,那么不同插法的种数为()A 42B 30C 20D 12【解析】分两步,第一步先插入第一个节目,有 6 个位置可选;第二步插入第二个节目,有 7 个位置可选。

2023-2024学年高二数学真题汇编(人教A版2019)排列组合(解析版)

2023-2024学年高二数学真题汇编(人教A版2019)排列组合(解析版)

一卷练透04排列组合月学情调研测试数学试题)故选:ACD .10.(江苏省扬州中学2022-2023学年高二下学期期中数学试题)现有4个编号为1,2,3,4的盒子和4个编号为1,2,3,4的小球,要求把4个小球全部放进盒子中,则下列结论正确的有()A .没有空盒子的方法共有24种B .可以有空盒子的方法共有128种C .恰有1个盒子不放球的方法共有144种D .没有空盒子且恰有一个小球放入自己编号的盒子的方法有8种【答案】ACD【分析】对于A :没有空盒则全排列,求解即可;对于B :有4个球,每个球有4种放法,此时随意放,盒子可以空也可以全用完,求解即可;对于C :恰有1个空盒,说明另外3个盒子都有球,而球共4个,必然有一个盒子中放了2个球,求解即可;对于D :没有空盒子且恰有一个小球放入自己编号的盒中,从4个盒4个球中选定一组标号相同的球和盒,另外3个球3个盒标号不能对应,求解即可.【详解】对于A :4个球全放4个盒中,没有空盒则全排列,共44A 24=种,故A 正确;对于B :可以有空盒子,有4个球,每个球有4种放法,共44256=种,故B 错误;对于C :恰有1个空盒子,说明另外3个盒子都有球,而球共4个,必然有1个盒子中放了2个球,先将4个盒中选1个作为空盒,再将4个球中选出2个球绑在一起,再排列共123443C C A 144=种,故C 正确;对于D :恰有一个小球放入自己编号的盒中,从4个盒4个球中选定一组标号相同得球和盒,另外3个球3个盒标号不能对应,则共14C 28⨯=种,故D 正确.故选:ACD .11.(浙江省杭州地区(含周边)重点中学2022-2023学年高二下学期期中联考数学试题)如图,在一广场两侧设置6只彩灯,现有4种不同颜色的彩灯可供选择,则下列结论正确的是()A .共有64种不同方案B .若相邻两灯不同色,正相对的两灯(如1、4)也不同色,且4种颜色的彩灯均要使用,则共有186种不同方案C .若相邻两灯不同色,正相对的两灯(如1、4)也不同色,且只能使用3种颜色的彩灯,则共有192种不同方案D .若相邻两灯不同色,正相对的两灯(如1、4)也不同色,且只能使用2种颜色的彩灯,则共有12种不同方案【答案】ACD【分析】根据题意,利用分步乘法和分类加法计数原理,结合排列组合的综合问题,依次推导、计算即可求解.【详解】对于选项A ,每个彩灯颜色都有4种选择,根据分步乘法原理得,有64444444⨯⨯⨯⨯⨯=种不同方案,故A 正确;对于选项B ,第一类:先从4种颜色的彩灯选出3种颜色的彩灯有安装在1,2,3号位,则有34A 24=种结果,使用1种剩余的颜色和前3种颜色的2种安装4,5,6号位彩灯时,有2133C C 9⋅=种结果,根据乘法原理得共有249216⨯=种不同的安装方法;第二类:先从4种颜色的彩灯选出2种颜色的彩灯有安装在1,2,3号位,则有24A 12=种结果,再安装4,5,6号位彩色灯,分两类:第一类,4,5,6号位只用1,2,3号位剩余的2种彩色灯,有2种结果,第二类,4,5,6号位用1,2,3号位剩余的2种彩色灯和前三个位置使用过的1种彩灯,有122222C A A 6⋅+=种结果,根据计数原理得共有()21224222A 2C A A 96⋅+⋅+=种不同的安装方法.由分类加法原理得共有21696312+=种不同的安装方案,故B 错误;对于选项C ,第一步:先从4种颜色的彩灯选出3种颜色的彩灯有安装在1,2,3号位,则有34A 24=种结果,第二步:分两类:第一类,4,5,6号位用1,2,3号位的3种彩色灯,有2种结果,第二类,4,5,6号位用1,2,3号位的2种彩色灯,有2132C C 6⋅=种结果,根据计数原理得共有()321432A 2C C 192⋅+⋅=种不同的安装方法.故C 正确;对于选项D ,第一步:从4种颜色的彩灯选出2种颜色的彩灯安装在1,2,3号位,则有2142C C 12⋅=种结果,第二步:安装4,5,6号位彩灯有1种,根据分步计数原理,可得有12112⨯=种不同的安装法,故D 正确;故选:ACD三、填空题:本题共3小题,每小题5分,共15分.即所有符合条件的二进制数()0152a a a ⋯的个数为10.所以所有二进制数()0152a a a ⋯对应的十进制数的和中,52出现25C 10=次,42,32…,12,02均出现24C 6=次,所以满足0152a a a a ⋯,,,中恰好有2个0的所有二进制数()0152a a a ⋯对应的十进制数的和为24302545C 2+2++2+2+C 2=631+1032=506⨯⨯ ().先选择一个非0数排在首位,剩余数全排列,共有1444C A 96⋅=种,其中2和0排在一起形成20和原来的20有重复,考虑2和0相邻时,且2在0的左边,共有4!24=种排法,其中一半是重复的,故此时有12种重复.其中2和3排在一起形成23和原来的23有重复,考虑2和3相邻时,且2在3的左边,共有1333C ×A 18=种排法,其中一半是重复的,故此时有9种重复.故共有9612975--=种.故答案为:506;75.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.(2)抽出的3件中恰有1件次品是指2件正品,1件次品,则有21102C C 90=种不同的抽法,(3)抽出的3件中至少有1件次品的抽法数,是在12件产品中任意抽出3件的抽法数,减去抽出的3件产品全是正品的抽法数,所以共有331210C C 220120100-=-=种不同的抽法.16.(江苏省宿迁市泗阳县2022-2023学年高二下学期期中数学试题)某医疗小组有4名男性,2名女性共6名医护人员,医护人员甲是其中一名.(1)若从中任选2人参加A ,B 两项救护活动,每人只能参加其中一项活动,每项活动都要有人参加,求医护人员甲不参加A 项救护活动的选法种数;(2)这6名医护人员将去3个不同的地方参与医疗支援,每人只能去一地,每地有2人前往,若2名女性不能去往同一个地方,求不同的分配方案种数.【答案】(1)25(2)72【分析】(1)分类,按甲是否参加活动分两类;(2)分步,第一步按排两名女性,第二步按排与女性同去的男性,第三步剩余的两名男性.【详解】(1)分两类:①甲参加B 项救护活动,再从其余5人中选一人参加A ,选法数为15C 5=,②甲不参加救护活动,则从其余5人中任选两人参加救护活动,选法数为25A 20=,所以共有选法种数为20+5=25;(2)分三步:第一步先安排两名女性医护人员有:23A ,第二步:安排两名女医护人员同去的男医护人员有:24A ,第三步:剩余两名男性医护人员去另外一地有:22C ,所以共有不同的分配方案数为:222342A A C 72=.17.(山东省泰安市2022-2023学年高二下学期期中数学试题)在混放在一起的6件不同的产品中,有2件次品,4件正品.现需要通过检测将其区分,每次随机抽取一件进行检测,检测后不放回,直到检测出2件次品或者检测出4件正品时检测结束.(1)若第二次抽到的是次品且第三次抽到的是正品,求共有多少种不同的抽法;(2)已知每检测一件产品需要100元费用,求检测结束时检测费用为400元的抽法有多少种?(要求:解答过程要有必要的说明和步骤)【答案】(1)120(2)96【分析】(1)由题意知,第一次抽到的必是正品,共抽取4次或5次检测结束,然后利用两个计数原理和排列组合数即可求解;(2)利用分类加法计数原理和排列组合的相关知识即可进行求解.【详解】(1)由题意知,第一次抽到的必是正品,共抽取4次或5次检测结束,第1次抽到的是正品有14C 种抽法;第2次抽到的是次品有12C 种抽法;第3次抽到的是正品有13C 种抽法;当抽取4次结束时,第4次抽到的必是次品,共有111423C C C 24=种抽法;当抽取5次结束时,若第4次抽到的是正品且第5次抽到的是正品,则共有11114232C C C C 48=种抽法;若第4次抽到的是正品且第5次抽到的是次品,则共有11114232C C C C 48=种抽法;综上,第二次抽到的是次品且第三次抽到的是正品共有120种抽法.(2)由题意知,检测费用为400元,说明一共抽取了4次检测结束,共有以下两种情况:①4次抽到的均为正品,共有44A 24=种抽法;②前3次抽到2件正品,1件次品,且第4次抽到的是次品,共有123243C C A 72⋅⋅=种抽法.所以,检测结束时,检测费用为400元的抽法共有96种.18.(湖北省武汉市东湖中学2023-2024学年高二上学期期中考试数学试题)为庆祝3.8妇女节,东湖中学举行了教职工气排球比赛,赛制要求每个年级派出十名成员分为两支队伍,每支队伍五人,并要求每支队伍至少有两名女老师,现高二年级共有4名男老师,6名女老师报名参加比赛.(1)一共有多少不同的分组方案?(2)在进入决赛后,每个年级只派出一支队伍参加决赛,在比赛时须按照1、2、3、4、5号位站好,为争取最好成绩,高二年级选择了A 、B 、C 、D 、E 、F 六名女老师进行训练,经训练发现E 不能站在5号位,若A 、B 同时上场,必须站在相邻的位置,则一共有多少种排列方式?【答案】(1)120(2)348【分析】(1)分成两组,根据是否平均分组分别写出即可;同时上场,则利用捆绑法,求解即可(iii )若E 在3号位,再将AB 全排列,且AB 可位于1,2号位或4,5号位,共有22A 2⨯种方式,再从CDF 中选两人进行排列,有23A 种方式,所以E 在2号位或3号位共有2223A 24A 2⨯=⨯种不同的方式;(iiii )若E 在4号位,将AB 全排列,且AB 可位于1,2号位或2,3号位,共有22A 2⨯种方式,再从CDF 中选两人进行排列,有23A 种方式,所以E 在4号位共有2223A 24A 2⨯=⨯种不同的方式.所以AB 上场且E 也上场共有36242424108+++=种不同的方式;③若AB 中有一人上场且E 上场:E 上场且不在5号位,则E 可位于1,2,3,4号位,有14C 种方式,再从AB 中选一人,有12C 种方式,AB 中的一人和CDF 共4人全排列,共44A 种方式,所以AB 中有一人上场且E 上场共有114424C C A 192⨯⨯=种不同的排列方式.综上所述,共有48108192348++=种排列方式.19.(湖北省宜昌市协作体2022-2023学年高二下学期期中联考数学试题)第18届亚足联亚洲杯将于2023年举行,已知此次亚洲杯甲裁判组有6名裁判,分别是,,,,,A B C D E F .(以下问题用数字作答)(1)若亚洲杯组委会邀请甲裁判组派裁判去参加一项活动,必须有人去,去几人由甲裁判组自行决定,问甲裁判组共有多少种不同的安排方法?(2)若亚洲杯组委会安排这6名裁判担任6场比赛的主裁判,每场比赛只有1名主裁判,每名裁判只担任1场比赛的主裁判,根据回避规则,其中A 不担任第一场比赛的主裁判,C 不担任第三场比赛的主裁判,问共有多少种不同的安排方法?(3)若亚洲杯组委会将这6名裁判全部安排到3项不同的活动中,每项活动至少安排1名裁判,每名裁判只参加1项活动,问共有多少种不同的安排方法?【答案】(1)63种(2)504种。

排列与组合训练题(7个题型) 高二下学期数学人教A版(2019)选择性必修第三册

排列与组合训练题(7个题型) 高二下学期数学人教A版(2019)选择性必修第三册

6.2排列与组合(7个题型)题型一:排列数与组合数的计算1.(多选)下列等式正确的是( )A .()111mm n n n A A +++=B .()()!2!1n n n n =--C .!m m n n A C n =D .11m m n n A A n m +=- 2.(多选题)对于,N m n *∈关于下列排列组合数,结论正确的是( )A .C C m n m n n -=B .11C C C m m m n n n -+=+C .A C A m m m n n m =D .11A (1)A m m n n m ++=+3.(多选题)下列等式正确的是( )A .111111m m mm n n n n C C C C +--+--=++ B .!m mn nA C n = C .22(2)(1)m m n n n n A A ++++=D .111r r r n n n C C C ---=+4.解下列不等式或方程(1)288A 6A x x -< (2)567117C C 10C m m m -=题型二:排列、分组1.将5本不同的数学用书放在同一层书架上,则不同的放法有( )A .50B .60C .120D .902.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( )A .120B .60C .40D .303按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)平均分成三份,每份2本;(3)分成三份,1份4本,另外两份每份1本;题型三:分组分配1.要安排4名学生到3个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.7种B.12种C.36种D.72种2安徽某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有()A.60种B.90种C.150种D.240种3.安徽省旅游产业发展大会于2020年6月11日~13日在赣州举行,某旅游公司为推出新的旅游项目,特派出五名工作人员前往赣州三个景点进行团队游的可行性调研.若每名工作人员只去一个景点且每个景点至少有一名工作人员前往,则不同的人员分配方案种数为()A.60 B.90 C.150 D.2404.某医院分配3名医生6名护士紧急前往三个小区协助社区做核酸检测.要求每个小区至少一名医生和至少一名护士.问共有多少种分配方案?()A.3180B.3240C.3600D.36605将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球3个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.150种C.120种D.240种6按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(2)平均分配给甲、乙、丙三人,每人2本;(3)甲、乙、丙三人中,一人得4本,另外两人每人得1本;题型四:间接法1.某高中从3名男教师和2名女教师中选出3名教师,派到3个不同的乡村支教,要求这3名教师中男女都有,则不同的选派方案共有()种A.9B.36C.54D.1082以长方体的顶点为顶点的三棱锥共有()个A.70 B.64 C.60 D.583.7名同学,其中4名男同学,3名女同学:(1)站成一排,甲、乙只能站在两端的排法共有多少种?(2)站成一排,甲、乙不能站在排头和排尾的排法共有多少种?1.个相同的小球放入A ,B ,C 三个盒子,每个盒子至少放一球,共有( )种不同的放法.A .60种B .36种C .30种D .15种2.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为( )A .720种B .420种C .120种D .15种3.方程123412x x x x +++=的正整数解共有( )组A .165B .120C .38D .354不定方程12x y z ++=的非负整数解的个数为( )A .55B .60C .91D .5405某地举办庆祝建党100周年“奋进新时代,学习再出发”的党史知识竞赛.已知有15个参赛名额分配给甲、乙、丙、丁四支参赛队伍,其中一支队伍分配有7个名额,余下三支队伍都有参赛名额,则这四支队伍的名额分配方案有__________种.题型六:插空法1.永州是一座有着两千多年悠久历史的湘南古邑,民俗文化资源丰富.在一次民俗文化表演中,某部门安排了《东安武术》、《零陵渔鼓》、《瑶族伞舞》、《祁阳小调》、《道州调子戏》、《女书表演》六个节目,其中《祁阳小调》与《道州调子戏》不相邻,则不同的安排种数为( )A .480B .240C .384D .14402.若用0,1,2,3,4,5这6个数字组成无重复数字且奇数数字互不相邻的六位数,则这样的六位数共有( )个A .120B .132C .144D .1563.7名同学,其中4名男同学,3名女同学站成一排,4名男同学都不能相邻,3名女同学也不能相邻的排法共有多少种?4.7名同学,其中4名男同学,3名女同学站成一排,甲、乙和丙三名同学都不能相邻的排法共有多少种?1.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为()A.72B.48C.24D.602.中国航天工业迅速发展,取得了辉煌的成就,使我国跻身世界航天大国的行列.中国的目标是到2030年成为主要的太空大国.它通过访问月球,发射火星探测器以及建造自己的空间站,扩大了太空计划.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种3.同宿舍六位同学在食堂排队取餐,其中A,B,C三人两两不相邻,A和D是双胞胎,必须相邻,则符合排队要求的方法数为()A.288B.144C.96D.724.站成一排,甲、乙两名同学必须相邻的排法共有多少种?5.站成一排,4名男同学必须站在一起,3名女同学也必须站在一起.6.站成一排,甲、乙两名同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?。

2023高考数学组合与排列练习题及答案

2023高考数学组合与排列练习题及答案

2023高考数学组合与排列练习题及答案1. 一次选举中,有8名候选人,其中需要选出3名获胜者。

求不同的选举结果有多少种?解析:由于选出的是获胜者,所以选举结果是有顺序的组合。

根据组合公式,计算可得:C(8,3) = 8! / (3! * (8-3)!) = 56因此,不同的选举结果有56种。

2. 一个班级里有20名学生,其中10名男生和10名女生。

要从中选出一个由5名学生组成的代表团,其中至少有2名男生和2名女生。

求不同的代表团选择方案数目。

解析:根据要求,选出的代表团需要满足至少2名男生和2名女生。

我们可以分两种情况进行计算。

情况一:选出2名男生和3名女生C(10,2) * C(10,3) = 45 * 120 = 5400情况二:选出3名男生和2名女生C(10,3) * C(10,2) = 120 * 45 = 5400总共的选择方案数目为5400 + 5400 = 10800。

3. 在一家餐厅的菜单上有10道菜可供选择。

小明决定点一道主菜和两道配菜。

求小明所有的就餐选择方案数目。

解析:小明在就餐时,需要从10道菜中选择一道主菜和两道配菜。

我们可以使用排列组合的方法计算。

选择主菜的方式有10种,选择第一道配菜的方式有9种(因为已经选了主菜,所以剩余菜的数量为10-1=9),选择第二道配菜的方式有8种(由于已选主菜和一道配菜,所以剩余菜的数量为10-2=8)。

因此,总的选择方案数目为10 * 9 * 8 = 720。

4. 一位作家要将他的12本书按照一定的顺序排列在书架上。

其中有4本小说、3本传记和5本科普书。

求不同的排列方式数目。

解析:根据题目描述,我们需要将12本书按照一定的顺序排列。

由于书的种类不同,我们可以分别计算不同类别的排列方式,再将结果相乘。

小说的排列方式数目为4! = 24;传记的排列方式数目为3! = 6;科普书的排列方式数目为5! = 120。

因此,总的排列方式数目为24 * 6 * 120 = 172,800。

高二数学排列组合综合应用试题答案及解析

高二数学排列组合综合应用试题答案及解析

高二数学排列组合综合应用试题答案及解析1.用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A.48B.36C.28D.12【答案】C【解析】解:根据题意,在0,1,2,3,4中有3个偶数,2个奇数,可以分3种情况讨论:①、0被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有种情况;故0被奇数夹在中间时,有2×6=12种情况;②、2被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有种情况,其中0在首位的有2种情况,则有6-2=4种排法;故2被奇数夹在中间时,有2×4=8种情况;③、4被奇数夹在中间时,同2被奇数夹在中间的情况,有8种情况,则这样的五位数共有12+8+8=28种.【考点】排列、组合的应用.2.某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?【答案】108【解析】(1)排列与元素的顺序有关,而组合与顺序无关,如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同,才是不同的组合;(2)排列、组合的综合问题关键是看准是排列还是组合,复杂的问题往往是先选后排,有时是排中带选,选中带排;(3)对于排列组合的综合题,常采用先组合(选出元素),再排列(将选出的这些元素按要求进行排序)试题解析:用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法.第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.【考点】排列组合的综合应用.3.个人排成一行,其中甲、乙两人不相邻的不同排法共有A.B.C.D.【答案】C【解析】本题可用插空法,先排除甲、乙两人外的其余四人应为,剩余两人插在5个空中应为,甲、乙两人不相邻的不同排法共有.【考点】排列组合的有关内容.4.现有4个男生和3个女生作为7个不同学科的科代表人选,若要求体育科代表是男生且英语科代表是女生,则不同的安排方法的种数为_________(用数字作答).【答案】1440.【解析】由题意知,可分三步完成本件事情,第一步,选1男生为体育课代表,第二步,选1女生为英语课代表,剩下的5人进行全排列,最后根据分步计数原理得不同的安排方法的种数为.【考点】计数原理的应用.5.在所有两位数中,个位数字大于十位数字的两位数共有_________ 个.【答案】36【解析】当十位数字为1时有8个,当十位数字为2时有7个,…,当十位数字为8时有1个,当十位数字为9时有0个,所以共个数为8+7+…+2+1+0=36,答案为36.【考点】分步加法计数原理6.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个C.18个D.36个【答案】C【解析】完成这件事分为两步,第一步先排好1,2,3有种不同方法;第二步将第四个数(可以为1,2,3中的任一个)插到排好的3个数的4个间隔中,又同一数字不能相邻出现,所以每个数字只能放两个位置,有不同方法,这样每一个四位数都出现了两次,从而这样的四位数共有个,答案选C.【考点】记数原理与排列组合7.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.18种C.24种D.48种【答案】C【解析】分三步:把甲、乙捆绑为一个元素A,有种方法;然后A与戊形成三个“空”,有种方法;再将丙、丁插入空中有种方法.可知共有种不同的着舰方法.故选C【考点】简单排列组合问题;捆绑法和插空法的应用.8. 7颗颜色不同的珠子,可穿成种不同的珠子圈.【答案】360.【解析】由于环状排列没有首尾之分,将n个元素围城的环状排列剪开看成n个元素排成一排,即共有种排法.由于n个元素共有n种不同的剪法,则环状排列共有种排法,而珠子圈没有反正,故7颗颜色不同的珠子,可穿成种不同的珠子圈.故应填入:360.【考点】计数原理.9.已知100件产品中有97件正品和3件次品,现从中任意抽出3件产品进行检查,则恰好抽出2件次品的抽法种数是()A.B.C.D.【答案】C【解析】恰好抽出2件次品则有种,1件是正品种,所以任意抽3件恰好2件次品的抽法种数是。

高考数学排列组合试题

高考数学排列组合试题

第 1 页 共 1 页排列,组合练习题一、选择题1、在一个盒子里有6只不同的圆珠笔,从中任意抽取3枝,则有多少种不同的取法( )A 15B 20C 120D 6 2、现有4件不同款式的上衣与3件不同颜色的长裤,如果一条长裤和一件上衣配成一套,则不同选法是( )A 7B 64C 12D 81 3、集合{}2,1,0,1-=M 中任取两个不同元素构成点的坐标,则共有不同点的个数是( )A 4B 6C 9D 12 4、五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )A 1444C C 种B 1444C A 种 C 44C 种D 44A 种 5、某班有三个小组,分别有12人、10人和9人组成,现要选派不属于同一组的两人参加班际之间的活动,不同的选派方法共有 种.A 318B 465C 636D 930. 6、由0,1,2,3,4可以组成______________个小于300的三位数?A 24P B 25PC 242PD 252P7、从5位男教师和4位女教师中选出3位教师,要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A 35种B 70种C 105种D 140种8、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( ) A 140种 B 120种 C 35种 D 34种 二、填空题9、以正方体的顶点为顶点的等腰直角三角形的个数为_____________10、100件产品中恰好有98件合格产品,从中任意抽取2件,抽到次品的抽法有____________种11.由0,1,2,3,4这5个数字组成的无重复数字的四位数中,偶数有___________个 12、从集合{ P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任限2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是________.(用数字作答). 三、解答题13.一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?14(1)7位同学站成一排,共有多少种不同的排法? (2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法? (4)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种? (5)甲、乙两同学必须相邻的排法共有多少种? (6)甲、乙和丙三个同学都不能相邻的排法共有多少种?15、4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况有多少种?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学排列与组合综合测试卷(含解析)选修2-3 1.2.2第三课时排列与组合习题课一、选择题1.(2021山东潍坊)6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A.40B.50C.60D.70[答案]B[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,因此乘车方法数为252=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[答案]C[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻显现,如此的四位数有()A.6个B.9个C.18个D.36个[答案]C[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22C23=6(种)排法,因此共有36=18(种)情形,即如此的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人[答案]A[解析]设男生有n人,则女生有(8-n)人,由题意可得C2nC18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼能够一步上一级,也能够一步上两级,若规定从二楼到三楼用8步走完,则方法有() A.45种B.36种C.28种D.25种[答案]C[解析]因为108的余数为2,故能够确信一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司聘请来8名职员,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[答案]B[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由因此每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.组合数Crn(n1,n,rZ)恒等于()A.r+1n+1Cr-1n-1 B.(n+1)(r+1)Cr-1n-1C.nrCr-1n-1 D.nrCr-1n-1[答案]D[解析]∵Crn=n!r!(n-r)!=n(n-1)!r(r-1)![(n-1)-(r-1)]!=nrCr-1n-1,故选D.8.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为() A.33 B.34C.35 D.36[答案]A[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.9.(2021四川理,10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72 B.96C.108 D.144[答案]C[解析]分两类:若1与3相邻,有A22C13A22A23=72(个),若1与3不相邻有A33A33=36(个)故共有72+36=108个.10.(2021北京模拟)假如在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[答案]C[解析]先安排甲学校的参观时刻,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16A25=120种,故选C.二、填空题11.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_____ ___种.(用数字作答)[答案]2400[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,因此共有20210=2400(种)安排方法.12.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[答案]1260[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49C25C33=1260(种)排法.13.(2021江西理,14)将6位理想者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有___ _____种(用数字作答).[答案]1080[解析]先将6名理想者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26C 24A22A44=1 080种.14.(2021山东济宁)要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[答案]72[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,有432(12+11)=72种.三、解答题15.(1)运算C98100+C199200;(2)求20C5n+5=4(n+4)Cn-1n+3+15A2n+3中n的值.[解析](1)C98100+C199200=C2100+C1200=100992+200=4950+200=5150.(2)20(n+5)!5!n!=4(n+4)(n+3)!(n-1)!4!+15(n+3)(n+2),即(n+5)(n+4)(n+3)(n+2)(n+1)6=(n+4)(n+3)(n+2)(n+1)n6+15(n+3) (n+2),因此(n+5)(n+4)(n+1)-(n+4)(n+1)n=90,即5(n+4)(n+1)=90.因此n2+5n-14=0,即n=2或n=-7.注意到n1且nZ,因此n=2.[点拨]在(1)中应用组合数性质使问题简化,若直截了当应用公式运算,容易发生运算错误,因此,当mn2时,专门是m接近于n时,利用组合数性质1能简化运算.16.(2021东北师大附中模拟)有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,依照这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?[解析]因为相邻的两个二极管不能同时点亮,因此需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯方法.然后分步确定每个二极管发光颜色有222=8(种)方法,因此这排二极管能表示的信息种数共有C36222=160(种).17.按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.[解析](1)C212C410C66=13 860(种);(2)C412C48C44A33=5 775(种);(3)分两步:第一步平均分三组;第二步让三个小组分别进入三个不同车间,故有C412C48C44A33A33=C412C48C44=34 650(种)不同的分法.18.6男4女站成一排,求满足下列条件的排法共有多少种?(1)任何2名女生都不相邻有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?[解析](1)任何2名女生都不相邻,则把女生插空,因此先排男生再让女生插到男生的空中,共有A66A47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A99种排法,若甲不在末位,则甲有A18种排法,乙有A18种排法,其余有A88种排法,综上共有(A99+A18A18A88)种排法.方法二:无条件排列总数A1010-甲在首,乙在末A88甲在首,乙不在末A99-A88甲不在首,乙在末A99-A88甲不在首乙不在末,共有(A1010-2A99+A88)种排法.(3)10人的所有排列方法有A1010种,其中甲、乙、丙的排序有A33种,又对应甲、乙、丙只有一种排序,因此甲、乙、丙排序一定的排法有A 1010A33种.要练说,得练听。

听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。

我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。

当我发觉有的幼儿不用心听别人发言时,就随时夸奖那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们用心听,用心记。

平常我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,如此幼儿学得生动爽朗,轻松愉快,既训练了听的能力,强化了经历,又进展了思维,为说打下了基础。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

相关文档
最新文档