用列举法求概率——树状图法
九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)
知识与
技能
能通过树状图法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果.
过程与
方法
通过自主探究,合作交流的过ห้องสมุดไป่ตู้,感悟数形结合的思想,提高思维的条理性,提高分析问题和解决问题的能力。
通过画树状图求概率的过程提高学习兴趣,感受数学的简捷美,以及数学应用的广泛性。
ﻬ
情感态度与价值观
1。用列举法求概率的基本步骤是什么?
2。列举一次试验的所有可能结果时,学过哪些方法?
3。同时抛掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是多少?
4。随机掷一枚均匀的硬币两次,一枚硬币正面向上,一枚硬币反面向上的概率是多少?
抢答题:
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形。游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?
四、巩固提高,完善新知
1。抛掷三枚质地均匀的硬币,三枚正面朝上的概率是多少?为什么?
2。将分别标有数字1,2,3的三张质地、规格和背面均相同的卡片洗匀后,背面朝上放在桌子上。随机地抽取一张作为十位数字,不放回,再抽取一张作为个位数字,试用树状图探究:组成的两位数恰好是偶数的概率为多少?
3.箱子中装有3个只有颜色不同的球,其中2个是白球、1个是红球,3个人依次从箱子中任意摸出1个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是多少?
25。2.2用列举法求概率
课标依据
能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果。
树状图法求概率
树状图法求概率
拓
展
当一次试验需要两步完成或者试验的结果需由两个 因素决定时,用树状图列举法可以吗?
(2013年)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到 古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一 个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择 古隆中为第一站的概率是多少? 解:李老师先选择,然后儿子选择,画出树状图如下:
课堂练习
1、(2012年)襄阳市教育局为提高教师业务素质,扎实开展了“课 内比教学”活动。在一次数学讲课比赛中,每个参赛选手都从两个分别 标有“A”、“B”内容的签中,随机抽取一个作为自己的讲课内容,某 校有三个选手参加这次讲课比赛,请你求出这三个选手中有两个抽中内 容“A”,一个抽中内容“B”的概率。 2、(2014年)从长度分别为2,4,6,7的四条线段中随机抽取三 条,能构成三角形的概率是多少?
树状图法求概率
复习回顾
解:列表如下:
乙 甲
剪刀
(剪刀,剪刀) (剪刀,锤子) (剪刀,布)
锤子
(锤子,剪刀) (锤子,锤子) (锤子,布)
布
(布,剪刀) (布,锤子) (布,布)
剪刀 锤子 布
由上表可知,甲和乙猜拳所有可能的结果有9种,其中甲获胜 (记为事件A)的结果有3 种,所以甲获胜的概率为:
本题中元音字母:
A 、E、I
辅音字母:
B 、C、D、H
在这个试验中,一个结果由几个因素决定 ?
当一次试验涉及3个因素或3个以上的因素时,列表法 能胜任吗?
树状图法求概率
解决问题
(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?
新听课记录2024秋季九年级人教版数学上册第二十五章概率初步《用列举法求概率:画树状图求概率》
听课记录:2024秋季九年级人教版数学上册第二十五章概率初步《用列举法求概率:画树状图求概率》教学目标(核心素养)1.知识与技能:学生能够理解并掌握通过画树状图来列举所有可能结果,进而求解某一事件概率的方法。
2.过程与方法:通过案例分析、动手实践,培养学生分析问题、构建数学模型的能力,以及运用树状图进行概率计算的技能。
3.情感态度价值观:激发学生对概率学习的兴趣,培养严谨的数学思维习惯和解决问题的能力。
导入教师行为:•展示一个涉及两步或多步随机事件的实例,如“抛掷一枚质地均匀的硬币两次,求两次都正面朝上的概率”。
•引导学生思考如何有效地列举出所有可能的结果,并提问:“有没有一种直观的方法可以帮助我们更清晰地看到所有可能的情况?”•引出画树状图的概念,解释其在列举复杂随机事件所有可能结果中的优势。
学生活动:•思考教师提出的问题,尝试在脑海中构想如何列举所有可能的结果。
•对教师提出的画树状图的方法表示好奇,准备学习这一新的解题工具。
过程点评:导入环节通过实际问题的引入,自然激发了学生的学习兴趣和探究欲望,同时巧妙地引出了本节课的主题——画树状图求概率,为后续学习做好了铺垫。
教学过程教师行为:•详细讲解画树状图的步骤:首先明确随机试验的每一步骤及其所有可能的结果,然后按照顺序将这些结果以树状图的形式画出来,最后根据树状图列举出所有可能的结果组合。
•示范如何为上述硬币抛掷问题画树状图,并引导学生观察树状图,理解其结构。
•提供多个类似的例题,如“从两个不同袋子中各抽取一个球,求抽到特定颜色组合的概率”,让学生分组尝试画树状图并求解概率。
•在学生解题过程中,教师巡回指导,关注学生是否正确理解了树状图的构建方法,并适时给予帮助和纠正。
学生活动:•认真听讲,理解画树状图的步骤和原理。
•积极参与例题的分析和解答,动手尝试画树状图,并计算相应事件的概率。
•在小组内分享自己的解题思路和树状图,讨论并解决遇到的问题。
过程点评:教学过程注重学生的动手实践和合作交流,通过教师示范、学生操作、小组讨论等多种方式,使学生充分理解了画树状图求概率的方法。
知识卡片-列表法与树状图法
列表法与树状图法能量储备在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性的大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.注意:(1)用列举法求概率时,各种情况出现的可能性必须相同;(2)全面列举出所有可能的结果,各种情况不能重复,也不能遗漏;(3)所求概率是一个准确数,一般用分数表示.通关宝典★基础方法点方法点1:利用概率公式计算某个事件发生的概率时,可利用列表法或画树状图法找全所有可能出现的情况,并将可能出现的全部的结果数作为分母.例1袋中有大小相同、标号不同的白球2个,黑球2个.(1)从袋中连取2个球后不放回,取出的2个球中有1个白球,1个黑球的概率是多少?(2)从袋中有放回地取出2个球的顺序为黑、白的概率是多少?解:(1)根据题意列表如下:共有12种等可能情况,符合题意的有8种,故有1个白球,1个黑球的概率P =812=23. (2)画树状图如图所示.共有16种等可能情况,符合条件的有4种,故取球顺序为黑、白的概率P =416=14. ★ ★ 易混易误点易混易误点1:研究所有等可能结果时重复或遗漏例2 从装有两个红球、两个黄球(每个球除颜色外其他均相同)的袋中任意取出两个球,取出一个红球和一个黄球的概率是( )A.13B.23C.14D.12解析:我们不妨把四个球分别记为红1,红2,黄1,黄2,从中摸出两个球的所有可能结果为(红1,红2),(红1,黄1),(红1,黄2),(红2,黄1),(红2,黄2),(黄1,黄2),共6种,其中一红一黄共有4种,故其概率P =46=23.故选B . 答案:B分析:本题易错误地认为任意取出两个球,共可能出现“两红”“两黄”“一红一黄”三种可能的结果,所以任意取出两个球,取得一个红球和一个黄球的概率为13. 易混易误点2:不能准确区分放回抽样与不放回抽样对事件发生概率的影响例2 有完全相同的4个小球,上面分别标有数字1,-1,2,-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后不放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m ,n ,以m ,n 分别作为一个点的横坐标与纵坐标,求点(m ,n)不在第二象限的概率.解:用列表法.可以看出,共有12种等可能的情况,其中点(m,n)不在第二象限的有8种情况,所以点(m,n)不在第二象限的概率P=812=23.,注意:对于某一关注的结果,放回抽样与不放回抽样是完全不同的,本题易忽视“不放回”这一条件而错误地列出如下表格求错概率.蓄势待发考前攻略考查用列表法或画树状图法求事件的概率是中考的必考内容,命题形式有填空题、选择题、解答题,难度适中.试题常用的背景有摸球、抽取卡片、转转盘、掷骰子等富有生活气息及与社会生活息息相关的内容,是中考的命题趋势,要引起重视.完胜关卡。
北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习
第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。
优秀课件九年级数学上册:25.2 用树状图法求概率 树状图 课件 (共17张PPT)
作业
习题25.2 第4,5题
六、拓展延伸
1.小明是个小马虎,晚上睡觉时将两双不同 的袜子放在床头,早上起床没看清随便穿了 两只就去上学,问小明正好穿的是相同的一 双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
开始
A1
A2 B1 B2 A2 B1 B2 A1 A2 B1
A1 B1 B2
12
有两个元音字母(记为事件B)的结果有4个,所以 1 4 P(B)= =
12
3
有三个元音字母(记为事件C)的结果有1个,所以 1 P(C)= 12 (2)全是辅音字母(记为事件D)的结果有2个,所以 P(D)= 2 = 1
12 6
.
画树状图求概率的基本步骤: (1)明确一次试验的几个步骤及顺序; (2)画树形图列举一次试验的所有可能结果; (3)试验的所有可能结果数n,数出随机事件A 包含的结果数m; (4)计算随机事件的概率
25.2. 用列举法求概率
(画树状图法求概率)
一.复习提问,巩固旧知
.
问题1.列举一次试验的所有可能结果时,学过哪些方法? 直接列举法. 列表法. 问题2.用列举法求概率的基本步骤是什么?
(1)列举出一次试验的所有可能结果; (2)数出事件A包含的结果数m,试验的所有可能结果数n; m P ( A ) (3)计算概率 n
m P ( A) n
四、巩固练习
经过某十字路口的汽车,它可能继续 直行,也可能向左转或向右转,如果这三种 可能性大小相同,当有三辆汽车经过这个 十字路口时,求下列事件的概率 (1)三辆车全部继续直行;
(2)两辆车向右转,一辆车向左转;
(3)至少有两辆车向左转
解:根据题意,可以画以下树状图:
用列举法求概率---画树状图法(2步或3步及以上概率)
25.2(3)用列举法求概率---画树状图法(2步或3步及以上概率)一.【知识要点】1.画树状图法(2步或3步及以上概率)二.【经典例题】1.一个不透明的口袋里装有分别标有汉字“美”、“丽”“四”、“川”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任选一个球,球上的汉字刚好是“四”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 1.(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明).2. 有四个一模一样的小球,上面分别标有-2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b 能使关于x 的一元二次方程()0112=++-bx x a 有实数根的概率为_______。
3. 有甲、乙、丙3个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm 、5cm 、7cm ;乙盒子中装有2张卡片,卡片上分别写着2cm 、5cm ;丙盒子中装有2张卡片,卡片上分别写着5cm 、7cm 。
所有卡片的形状、大小都完全相同。
现随机从甲、乙、丙三个盒子中各取出一张卡片放在一起,用卡片上标明的数量分别作为一条线段的长度。
(1)请用树状图的方法求这三条线段能组成三角形的概率。
(2)求这三条线段能组成直角三角形的概率。
4.(绵阳2019年第20题11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.5.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球出颜色外无其他差别,分别从每个口袋中随机摸出1个球.(1)摸出的2个球都是白球的概率为__________.(2)下列事件中,概率最大的是( )A.摸出的两个球的颜色都相同.B.摸出的两个球的颜色不相同.C.摸出的两个球中至少有1个红球.D.摸出的两个球中至少有1个白球.6.(2020年绵阳期末第20题)(本题满分12分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a ,b ),其中第一枚骰子的点数记为a ,第二枚骰子的点数记为b .(1)用列举法或树状图法求(a ,b )的结果有多少种?(2)求方程02=++a bx x 有实数解的概率.三.【题库】【A 】【B 】1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A. 14B. 12C. 34D. 562.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率为__________.3. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作把作为点的横、纵坐标.(1)请你通过列表法或画树状图求点的个数;(2)求点在函数的图象上的概率.【C 】1.田忌赛马的故事为我们所熟知,小亮与小齐学习概率初步知识后设计如下游戏:小亮手中有方块10,8,6三张扑克牌,小齐手中有方块9,7,5三张扑克牌,每人从各自手中取一张牌进行比较,数据大的为本“局”获胜,每次取的牌不能放回,若本局采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,则小齐本次比赛获胜的概率是 ( )A.16B.12C.19D.13 2.某校甲乙丙丁四名同学在运动会上参加4x100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是____________.3.(11分)每年3月12日,是中国的植树节。
25.2用列举 法求概率——树状图法
白菜 芹菜 油菜
米饭 馒头 米饭 馒头 米饭馒头
第一种搭配 鸡肉 鸡肉 鸡肉 鸡肉 鸡肉 鸡肉 白菜 白菜 芹菜 芹菜 油菜 油菜 米饭 馒头 米饭 馒头 米饭 馒头Leabharlann 米饭馒头 米饭馒头 米饭 馒头
牛肉 牛肉 牛肉 牛肉 牛肉 牛肉 白菜 白菜 芹菜 芹菜 油菜 油菜 米饭 馒头 米饭 馒头 米饭 馒头
(2)由图中可以看出,有3种情况是丙比乙先出场的,所以, P(丙比乙先出场) 3 1 。
62
1.求概率常用的方法有哪些吗?各有哪些优点?
(1)直接列举法 当一个事件涉及因素较少可以通过直接 列举法, (2)列表法 当一个事件要涉及两个因素并且可能出现的 结果数目较多时,通常采用列表法, (3)画树状图法 当一次试验要涉及三个或更多的因素( 或步骤)时,可采用“树状图法”。
有几步; 2.把每一步 可能产生的 结果列为一 层,画出树
状图; 3.沿着树杈 列出所有可 能的结果; 4.确定总的 结果,以及 符合条件的
结果数; 5.计算概率.
甲 乙
丙
A
B
C D E C DE
H I HI H I H I HI H I
(1)只有一个元音字母的结果有5个,即ACH,
ADH,BCI,BDI,BEH。所以 P(一个元音)=
全部为元音字母的的结果(蓝色)只有1中, 即AEI,所以
P(三个元音)=
用树状图列出 的结果看起来 一目了然,当 事件要经过多 次步骤(三步 以上)完成时, 用这种树形图 的方法求事件 的概率很有效.
(2)全是辅音字母的结果共有2个:BCH,BDH,
所以
P(三个辅音)=
用树形图求概率的基本步骤
1.明确试验的几个步骤及顺序; 2.画树形图列举试验的所有等可能的结果; 3计算得出m,n的值; 4.计算随机事件的概率.
九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版
∵共有 4 种等可能的结果,两次传球后, 球恰在 B 手中的只有 1 种情况,∴两次传球 后,球恰在 B 手中的概率为14.
(2)画树状图得:
∵共有 8 种等可能的结果,三次传球后,球恰在 A 手中的有 2 种情况, ∴三次传球后,球恰在 A 手中的概率为28=14.
摸到相同颜色的小球的概率.(请结合树状图或列表解答)
8.(1)设袋子中白球有 x 个,根据题意,得x+x 1=23,解得 x=2,经检验, x=2 是原分式方程的解,∴袋子中白球有 2 个. (2)画树状图得:
∵共有 9 种等可能的结果,两次都摸到相同颜色的小球的有 5 种情况, ∴两次都摸到相同颜色的小球的概率为59.
13.某市初中毕业女生体育中考考试项目有四项,其中“立定跳
远”“1 000米跑”“篮球运球”为必测项目,另一项从“掷实心
球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实 心球”或“一分钟跳绳”中选择同一个考试项14目的概率是________.
14.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行 涂色,每个区域必须涂色并且只能涂一种颜色,请用树状图法求A, C两个区域所涂颜色不相同的概率.
共 8 种情况,完全相同的有 2 种,则 P(完全相同)=28=14. 1
(3)2n-1.
(请用“画树状图”的方法给出分析过程,并求出结果)
15.画树状图为:
共有 8 种等可能的结果数,其中至少有两瓶为红枣口味的结果数为 4, 所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.
16.甲、乙、丙、丁四名运动员参加4×100米接力赛,如果甲必须 安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( C )
人教版九年级数学上册用列举法求概率之树状图法-老师版
解:(1)两个骰子的点数相同(记为事件A) ∴P(A)=6/36=1/6(2)两个骰子点数之和是9(记为事件B) ∴ P(B)=4/36=1/9(3)至少有一个骰子的点数为2 (记为事件C) ∴ P(C)=11/361.用树状图法求三步试验的概率【例1】(2015•绵阳模拟)甲、乙、丙三个人打乒乓球,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两人先打,如果三个人手心或手背都向上则重来,则甲乙两先打的概率为()A.B.C.D.总结:画树状图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树状图列举一次试验的所有可能结果;(3)明确随机事件A,数出所求事件发生的可能结果m,以及所有可能发生的试验结果n;(4)计算随机事件的概率P A=mn ().练1(2015•塘沽区三模)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种的可能性相同,则两辆汽车经过十字路口全部继续直行的概率为______.2.用树状图法求有放回、无放回摸球试验的概率【例2】(2015•大兴区一模)布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红﹣黄﹣蓝”的概率是()A.B.C.D.总结:以摸球为背景考查概率知识是一种常见题型,解答此类问题时,首先必须弄清楚摸球后有无放回,有放回与无放回对概率的影响不同:(1)第一次无放回,第二次只能从第一次剩下的球里面摸球,不能出现两次摸球是同一个球的情况;(2)有放回摸球,两次摸到的球可能是同一个,与无放回摸球相比,多了两次都是同一个球的情况;(3)分清楚有无放回后,利用画树状图的方法分析所有等可能的结果及所关注的结果,在此基础上计算出概率.练2(2015•宿迁)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为_______;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.3.用树状图法求配套问题的概率【例3】(2011•盐城)小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、黑色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.总结:用列表法或树状图法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=mn.一.选择题1.(2015•福州校级模拟)有一个从袋子中摸球的游戏,小红根据游戏规则,作出了如下图所示的树形图,则此次摸球的游戏规则是()A.随机摸出一个球后放回,再随机摸出1个球B.随机摸出一个球后不放回,再随机摸出1个球C.随机摸出一个球后放回,再随机摸出3个球D.随机摸出一个球后不放回,再随机摸出3个球2.(2014•江阴市校级二模)如图,一只蚂蚁在如图所示位置向上爬,在树枝上寻觅食物,假定蚂蚁在每一个岔路口都会随机的选择一条路径,那么这只蚂蚁爬到树枝头A和E的概率的大小关系是()A.A的概率大B.E的概率大C.同样大D.无法比较二.填空题3.(2015•温州)一个不透明的袋中只装有1个红球和2个篮球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是______.4.(2015•红桥区一模)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为______.5.(2013•黄石)甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是________.三.解答题6.(2016•贵阳模拟)体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少(用树状图表示或列表说明);(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.7.(2015•酒泉)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.8.(2015•连云港)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x||x|=4|x|=31≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?9.(2015•安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.10.(2015•黄石)父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性是否会增大?请说明理由.11.(2015•东莞)老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.典例探究答案:【例1】】分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲乙两先打的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有8种等可能的结果,甲乙两先打的有2种情况,∴甲乙两先打的概率为:=.故选C.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.练1.分析:画出树状图,然后根据概率公式解答即可.解答:解:根据题意,画出树状图如下:一共有9种情况,两辆汽车经过十字路口全部继续直行的有1种情况,所以,P(两辆汽车经过十字路口全部继续直行)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.【例2】分析:列举出所有情况,看球的顺序依次是“红﹣黄﹣蓝”的情况数占所有情况数的多少即可.解答:解:共有27种情况,球的顺序依次是“红﹣黄﹣蓝”的情况数有1种,所以概率为.故选A.点评:考查用列树状图的方法解决概率问题;得到球的顺序依次是“红﹣黄﹣蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.练2.分析:(1)直接利用概率公式求出摸出红球的概率;(2)利用树状图得出所有符合题意的情况,进而理概率公式求出即可.解答:解:(1)从袋中随机摸出1个球,摸出红球的概率为:=;故答案为:;(2)如图所示:,所有的可能有12种,符合题意的有10种,故两次摸到的球颜色不相同的概率为:=.【例3】分析:先画出树状图展示所有可能的6种结果,找出取出红色水笔和白色橡皮占1种,然后根据概率的概念求解即可.解答:解:画树状图:共有6种等可能的结果,其中取出红色水笔和白色橡皮占1种,∴出红色水笔和白色橡皮配套的概率=.点评:本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P A=mn ().点评:此题主要考查了树状图法求概率,根据题意利用树状图得出所有情况是解题关键.练3.分析:(1)首先分别用A,B表示两支不同的笔,分别用a,b,c,d表示四个不同的笔帽,然后根据题意画树状图,由树状图求得所有等可能的结果;(2)由(1)中的树状图求得取出的笔和笔帽恰好配套的情况,再利用概率公式即可求得答案.解答:解:(1)分别用A,B表示两支不同的笔,分别用a,b,c,d表示四个不同的笔帽,画树状图得:则共有8种等可能的结果;(2)∵取出的笔和笔帽恰好配套的有2种情况,∴取出的笔和笔帽恰好配套的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.课后小测答案:一.选择题1.分析:根据树形图,可得此次摸球的游戏规则是:随机摸出一个球后放回,再随机摸出1个球.解答:解:观察树形图可得:袋子中共有红、黄、蓝三个小球,此次摸球的游戏规则为:随机摸出一个球后放回,再随机摸出1个球.故选A.点评:此题考查了用树状图法求概率的知识.注意掌握试验是放回实验还是不放回实验.2.分析:分别求出到达树枝A与树枝E的概率,然后再比较大小.解答:解:蚂蚁到达树枝A的概率是×=,蚂蚁到达树枝E的概率是×=,∵<,∴蚂蚁爬到树枝头E的概率大.故选B.点评:本题主要考查了概率公式,用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.二.填空题3.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机从袋中摸出两个球,颜色是一红一蓝的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一蓝的有4种情况,∴随机从袋中摸出两个球,颜色是一红一蓝的概率是:=.故答案为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.分析:先利用树状图展示所有16种等可能的结果数,再找出两次摸出球的颜色不同的结果数,然后根据概率公式求解.解答:解:共有16种结果,两次都摸到白球的有4种结果,则概率是=.故答案是:.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求解.5.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与m、n满足|m ﹣n|≤1的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,m、n满足|m﹣n|≤1的有10种情况,∴甲、乙两人“心有灵犀”的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.三.解答题6.分析:(1)列举出所有情况,看足球踢到了小华处的情况数占所有情况数的多少即可;(2)可设球从小明处先开始踢,得到3次踢球回到小明处的概率,进而根据树状图可得球从其他2位同学处开始,3次踢球回到小明处的概率,比较可得可能性最小的方案.解答:解:(1)如图:∴P(足球踢到小华处)=(2)应从小明开始踢如图:若从小明开始踢,P (踢到小明处)==同理,若从小强开始踢,P (踢到小明处)=若从小华开始踢,P (踢到小明处)=(理由3分)点评:考查用列树状图的方法解决概率问题;分类得到3次踢球踢到小明处的情况数是解决本题的难点;用到的知识点为:概率等于所求情况数与总情况数之比.7.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.第一次第二次x 2+1 ﹣x 2﹣2 3x 2+1﹣x2﹣23点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是2时,|x|=0,不会有奖.解答:解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是2时,|x|=0,不会有奖.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.分析:(1)首先分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,然后根据题意画树状图,再由树状图求得所有等可能的结果与爸爸吃前两个汤圆刚好都是花生馅的情况,然后利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与爸爸吃前两个汤圆都是花生的情况,再利用概率公式即可求得给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的概率,比较大小,即可知爸爸吃前两个汤圆都是花生的可能性是否会增大.解答:解:(1)分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,∴爸爸吃前两个汤圆刚好都是花生馅的概率为:=;(2)会增大.理由:分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有20种等可能的结果,爸爸吃前两个汤圆都是花生的有6种情况,∴爸爸吃前两个汤圆都是花生的概率为:=>;∴给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性会增大.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.分析:(1)根据题意可得此题是放回实验,即可补全树状图;(2)由树状图可求得所有等可能的结果与小明同学两次抽到卡片上的数字之积是奇数的情况,再利用概率公式即可求得答案.解答:解:(1)补全小明同学所画的树状图:(2)∵共有9种等可能的结果,小明同学两次抽到卡片上的数字之积是奇数的有4种情况,∴小明同学两次抽到卡片上的数字之积是奇数的概率为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.12.分析:(1)用完全列举法得到选考结果为AC,AD,BC,BD;(2)根据概率公式求解;(3)用1、2、3、4分别表示AC、AD、BC、BD,先利用树状图法展示所有16种等可能的结果数,找出甲、乙两个考生选考结果完全相同的结果数,然后根据概率公式求解.解答:解:(1)如果考生随机选考,共有4种不同的选考结果,它们是AC,AD,BC,BD;(2)恰好选中掷实心球和篮球运球投篮的概率,即P(AC)=;(3)用1、2、3、4分别表示AC、AD、BC、BD,画树状图为:共有16种等可能的结果数,其中甲、乙两个考生选考结果完全相同的占4种,所以甲、乙两个考生选考结果完全相同的概率==.点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B概率.。
25.2.2用列举法求概率2--三步概率(树状图)(定稿)
25.2用列举法求概率2—三步概率(树状图)编制: 校对:目标:理解并掌握用树状图求概率的方法经历用画树状图法求概率的学习过程,使学生明白在不同情境中分析事件发生的多种可能性通过求概率的数学活动,体验不同的数学问题采用不同的数学方法重点:理解树状图的应用方法及条件,用画树状图的方法求概率。
难点:用树状图列举各种可能性的结果,求实际问题中的概率。
经典例式例1.为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练。
球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.(1)求请用树状图列举出三次传球的所有可能情况;(2)传球三次后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大.【变式练习1】1.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用“√”表示)或“淘汰”(用“×”表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.习题精练:1.从甲地到乙地有a,b,c 三条道路可走,小王、小李、小张都任选一条道路从甲地到乙地.则恰有两人走同一条a 道路的概率是( ) A.32 B.31 C.61 D.92 2.用“绵阳”、“平安”、“创建”三个词语组句子,那么能够组成“绵阳平安创建”或“创建平安绵阳”的概率是( ) A.61 B.41 C.31 D.21 3.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长正好构成等边三角形的概率是( ) A.91 B.271 C.95 D.31 4.一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.5.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人。
用列举法求概率——树状图法
《用列举法求概率(2)》教学设计本课是初中人教版九年级上册第25章《概率初步》第二节《用列举法求概率》的第二课时内容。
一、内容和内容分析1、内容:用列举法(树状图)求简单随机事件的概率2、内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法求出随机事件发生的概率。
这是初中学生求概率最主要的方法之一。
当每次试验涉及两个因素时,用列表法能更清晰,不重不漏地列举出试验的所有结果,当每次试验涉及三个及更多因素时,用树状图能更清晰,不重不漏地列举出试验的所有结果。
相对于直接列举,表格和树状图列举体现了分步分析对思考较复杂问题时所起到的作用。
相对于列表,用树状图解决任意多步完成的试验,具有更广泛的适应性。
画树状图只要将试验涉及的“步”写成竖列,再分步把每一步的所有结果写在对应的横行中,就能不重不漏地列举试验的所有结果。
这种分步分析问题的方法将在高中乘法计数原理的学习中进一步应用。
另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。
通过分步分析的应用,学生将体会“分步”策略对解决复杂问题所起到的重要作用。
体会用数学模型解决实际问题的过程。
二、教学问题诊断分析学生已经理解了列举法求概率的含义,会用列表法处理涉及两个步骤的试验。
但对较复杂的问题学生可能不会从中提取数学模型,无法做到“分步”分析。
对涉及三个及以上步骤的试验,学生没有更好的列举方法,无法做到清晰明了,不重不漏。
因此在教学中需要教师的引导。
对“规律”“方法”的教学,教师都应当精心设计“导学”的问题或环节,引导学生思考,逐层推进,体现学生学习的主体性。
在教学中学生容易出现的问题是没有真正理解树状图的用法,无法区分“分几步”与“每步可能的结果”,虽然能够通过模仿解决一些简单问题,但无法灵活使用树状图解决具有较复杂背景的题目。
三、教学目标的设计1、课程目标①知识技能:Ⅰ.会用树状图法列举试验的所有结果并正确计算概率;Ⅱ.正确认识在什么条件下选择那种常用方法(直接列举,列表,树状图)。
25.2用列举法求概率画树状图法求概率((教案))
-复合事件的列举:指导学生如何将复合事件分解为若干个简单事件,以及如何整合不同简单事件的概率。
-树状图法求解概率:重点在于教授学生如何构建树状图,并通过树状图来分析事件发生的所有可能性。
-树状图的构建:强调树状图的逻辑结构,以及如何从初始事件出发,逐步展开所有分支。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是指某个事件在所有可能事件中发生的频率或可能性。它是帮助我们量化不确定性,进行合理决策的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过列举法或树状图法求解一个实际问题,展示概率在实际中的应用,以及如何帮助我们解决问题。
此外,学生在构建树状图时,对于如何正确地表示事件之间的分支关系显得有些吃力。我意识到,这里我需要给出更清晰的指导,比如通过逐步引导的方式,让学生在课堂上一起参与构建,而不是仅仅观看我在黑板上演示。
我还观察到,在小组讨论环节,有些学生显得不够积极。为了鼓励他们更主动地参与进来,我打算在下次课堂上尝试一些互动性更强的教学方法,比如角色扮演或者辩论赛,让每个学生都能在活动中找到自己的位置,发挥自己的作用。以下核心素养:
1.数据分析观念:通过列举法和树状图法求解概率问题,提高学生分析数据、处理信息的能力,使其能够从实际问题中抽象出数学模型。
2.逻辑推理能力:在求解过程中,引导学生运用逻辑推理,分析事件之间的关联,培养学生严谨的逻辑思维。
3.数学抽象能力:让学生在列举和画树状图的过程中,提高对事件抽象和概括的能力,形成数学模型。
在教学过程中,教师需要针对这些重点和难点,通过直观的例子、互动讨论和反复练习,帮助学生深入理解核心知识,并克服学习中的困难。
画树状图求概率-(列表法)
1.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少? 解:剪刀一A ,石头一B ,布一C ,画出树形图如下:由树形图可知,三人随机出拳的所有可能情况有27种,每种情况出现的可能性相同,其中,(1)不分胜负的有:AAA ,BBB ,CCC ,ABC ,共4个,P (三人不分胜负);274=(2)一人胜二人负的有:ACC ,AAB ,ABA ,BAA ,BBC ,CBB ,CAC ,CCA ,BCB ,共9个,P (一人胜二人负).31279==2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转. 解:画出树形图:由树形图可知,三辆车在十字路口随机选择的情况共有27种,每种情况出现的可能性大小相同,其中,(1)三辆车全部继续直行的结果只有一个,P (三辆车全部继续直行);271= (2)两辆车向右转,一辆车向左转的结果有3个,P (两辆车向右转,一辆车向左转);91273==(3)至少有两辆车向左转的结果有7个,P (至少有两辆车向左转).277= 3.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数的和是5; (2)至少有一个骰子的点数为5. 解:列表如下: 第2个 第1个 1234561 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A )的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41369=. (2)至少有一个骰子的点数为5(记为事件B )的结果有11个,所以P(B)=1136.4.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.解:(1)画树形图来找出所有可能情况.甲摸得球的颜色:乙摸得球的颜色或用列表法思考所有情况.列表如下:乙甲白红黑白 白,白 红,白 黑,白 红 白,红 红,红 黑,红 黑白,黑红,黑黑,黑(2)由树形图可得,该试验的所有可能情况有9种,其中乙摸到与甲相同颜色球有三种情况,每种情况出现的机会均等,乙取胜的概率为⋅=31935.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明. 解:(1)每个小球被摸到的机会均等,故P (摸到蓝色小球)⋅=31(2)列表思考所有可能情况:小李小王红 黄 蓝 红 红,红 红,黄 红,蓝 黄 黄,红 黄,黄 黄,蓝 蓝蓝,红蓝,黄蓝,蓝由上表可知小王和小李先后摸球的所有情况有9种,每种情况出现的可能性相同,其中小王赢的情况有3种,小李赢的情况有6种. ∴P (小王赢),3193== P (小李赢) ,3296==∵∴此游戏规则对双方是不公平的.6.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:列表考虑所有可能情况:转盘A两个数字之积转盘B-1 0 2 11 -1 02 1-2 2 0 -4 -2-1 1 0 -2 -1由列表可知,由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,∴P(小力获胜),127=P(小明获胜).125=∴这个游戏对双方不公平.7.从3名男生和2名女生中随机抽取2012年伦敦奧运会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)5名学生中有2名女生,所以抽取1名,恰好是女生的概率为25;(2)共有20种情况树状图如图DJ4,恰好是1名男生和1名女生的情况数有12种,所以概率为35.图DJ48.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数的和是5;(2)至少有一个骰子的点数为5.解:列表如下:可能性相等.由所列表格可以发现:(1)两个骰子的点数的和是5满足两个骰子的点数相同(记为事件A)的结果有4个,即(4,1),(3,2),(2,3),(4,1),所以P(A)=41.369(2)至少有一个骰子的点数为5(记为事件B)的结果有11个,所以P(B)=1136.9.在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.小明先从袋中随机摸出一个小球,记下数字后不再放回,再从袋中剩下的3个小球中又随机摸出一个小球,记下数字.请用列表或画树状图的方法求出先后摸出的两个小球上的数字和为奇数的概率是多少?解:(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=.10.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 解:(1)10,50; (2)解:树状图如下:从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=. 11.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.(1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3) 1234 第一次摸球 第二次摸球 010 20 30 102030 100 20 30 103040 0 10 30 20203050 20 300 10 503040第一次第二次 和解:(1)P (两数相同)=13.(2)P (两数和大于10)=49.12.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球. (1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率. 解:(1)根据题意列表如下:(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种, 所以,P (两个数字之积是奇数)21126==. 13.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A .打扫街道卫生;B .慰问孤寡老人;C .到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容. (1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率. 解:(1)画树状图分析如下:树形图6 76 -276 7 76 -2 -2 -2(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==.14.把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P ,3296)(==牌面数字不同P . ∵31<32,∴此游戏规则不公平,小李赢的可能性大.15.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,3 4 53 (3,3) (3,4) (3,5)4 (4,3) (4,4) (4,5) 5(5,3) (5,4) (5,5)小李小王再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16种.∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平. 16.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由. 解:树状图为: 或列表为:开始红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝由上述树状图或表格知:所有可能出现的结果共有16种. ∴P (小明赢)=63168=,P(小亮赢)=105168=. ∴此游戏对双方不公平,小亮赢的可能性大.17.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是________; (2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是________; (3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.解:(1)12.(2)13. (3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.∴P (4的倍数)41164==. 18.除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 4 4开始否相等,并说明理由.解:摸出两个异色小球的概率与摸出两个同色小球的概率不相等. 画树状图如下(画出一种情况即可):∴摸出两个异色小球的概率为59,摸出两个同色小球的概率49.19.一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同.(1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.解:(1)p (一个球是白球)=23. (2)树状图如下(列表略):开始∴P (两个球都是白球)2163==.20.小明和小亮利用三张卡片做游戏,卡片上分别写有A ,B ,B .这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.红 白 白 红红 白 白 红红 白 白 白开始 或红 红 白 白红红 白 白红红 白红开始 白2红白1 白1红白2 白1白2 红解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小明胜的概率为,∵ ≠ ,∴这个游戏对双方不公平21.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为,两数之积为负的情况有5种,则两数之积为为负的概率为.≠,因此该游戏不公平。
概率讲义(树状图和列表法)
概率知识点1 树状图(或列表法)的使用对于简单的概率类题型我们可以通过列举法,计算事件发生的频率的分析来估计事件发生的概率,但是对于可能情况较多的事件,我们可以通过用树状图或列表法来解决树状图法:①分层.分清事件发生的层次,哪些情况是第一层(第一次)发生的,哪些是第二层(第二次)发生的;②根据分层用树状图把每一层(每一次)表示出来,然后计算事件发生的概率;列表法:将前后两次发生的事件在表格中全部表达出来,在其中计算事件发生的次数,进而计算频率.例1.一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率为例2.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.21=63【解析】(1)树状图如图所示,选手一共有8种等可能的结果,分别为(√,√,√)、(√,√,×)、(√,×,√)、(√,×,×)、(×,√,√)、(×,√,×)、(×,×,√)、(×,×,×). 开始(2)由(1)得选手A 的结果共有8种等可能情况,其中晋级的情况有4种,故其概率为41=82例 3.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是无理数的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图的方法列出所有等可能的结果,并求出两次好抽取的卡片上的实数之差为有理数的概率.【解析】(1)∵在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,,∴从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是:23(2)画树状图得:∵共有6种等可能的结果,两次好抽取的卡片上的实数之差为有理数的有2种情况, ∴两次好抽取的卡片上的实数之差为有理数的概率为: 例4.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( )A .15B .25C .35D .45例5.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.例6.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 .例7.在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x ;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x 、y 确定的点(x ,y )在函数6y x =-+图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x 、y 满足xy>6,则小明胜;若x 、y 满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?例8.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x 2-3x+2=0的解的概率.。
九年级数学上册教学课件《用画树状图法求概率》
AB 甲
CD E乙
HI 丙
解:记取出的3个小球上恰好有1个、2个、3个元
音字母分别为事件A、B、C.
P(A)=
5 12
.
P(B)=
4 12
=
1 3
.
P(C)=
1 12 .
甲
A
B
乙
C DE
C DE
丙 HI HI HI HI HI HI
n
注意 用列表法或画树状图法求概率的前提: 1.可能出现的结果只有有限个; 2.各种结果出现的可能性大小相等.
思考
列表法和画树状图法的选用:
(1)当一次试验要涉及两个因素(或两个步骤), 且可能出现的结果数目较多时,可用“列表法”; (2)当一次试验要涉及三个或更多的因素(或步 骤)时,应采用“画树状图法”.
剪断的两张分别为B1,B2.
A2 B2
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1
B1
A2
B2
练习
【教材P139练习】
经过某十字路口的汽车,可能直行,也可能向左转或向
右转.如果这三种可能性大小相同,求三辆汽车经过这个十
字路口时,下列事件的概率:
(1)三辆车全部继续直行;
P(B)
3 6
1 2
.
拓展延伸
6. 两张图片形状完全相同,把两张图片全部从中间剪断, 再把四张形状相同的小图片混合在一起.从四张图片 中随机地摸取一张,接着再随机地摸取一张,则两张 小图片恰好合成一张完整图片的概率是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用列举法求概率(2)》教学设计
本课是初中人教版九年级上册第25章《概率初步》第二节《用列举法求概率》的第二课时内容。
一、内容和内容分析
1、内容:用列举法(树状图)求简单随机事件的概率
2、内容解析
在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法求出随机事件发生的概率。
这是初中学生求概率最主要的方法之一。
当每次试验涉及两个因素时,用列表法能更清晰,不重不漏地列举出试验的所有结果,当每次试验涉及三个及更多因素时,用树状图能更清晰,不重不漏地列举出试验的所有结果。
相对于直接列举,表格和树状图列举体现了分步分析对思考较复杂问题时所起到的作用。
相对于列表,用树状图解决任意多步完成的试验,具有更广泛的适应性。
画树状图只要将试验涉及的“步”写成竖列,再分步把每一步的所有结果写在对应的横行中,就能不重不漏地列举试验的所有结果。
这种分步分析问题的方法将在高中乘法计数原理的学习中进一步应用。
另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。
通过分步分析的应用,学生将体会“分步”策略对解决复杂问题所起到的重要作用。
体会用数学模型解决实际问题的过程。
二、教学问题诊断分析
学生已经理解了列举法求概率的含义,会用列表法处理涉及两个步骤的试
验。
但对较复杂的问题学生可能不会从中提取数学模型,无法做到“分步”分析。
对涉及三个及以上步骤的试验,学生没有更好的列举方法,无法做到清晰明了,不重不漏。
因此在教学中需要教师的引导。
对“规律”“方法”的教学,教师都应当精心设计“导学”的问题或环节,引导学生思考,逐层推进,体现学生学习的主体性。
在教学中学生容易出现的问题是没有真正理解树状图的用法,无法区分“分几步”与“每步可能的结果”,虽然能够通过模仿解决一些简单问题,但无法灵活使用树状图解决具有较复杂背景的题目。
三、教学目标的设计
1、课程目标
①知识技能:
Ⅰ.会用树状图法列举试验的所有结果并正确计算概率;
Ⅱ.正确认识在什么条件下选择那种常用方法(直接列举,列表,树状图)。
②数学思考与问题解决:
经历用树状图法求概率的学习过程,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决较复杂问题的能力。
③情感目标:
通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系。
体会数学在现实中的应用价值,培养缜密的思维习惯和良好的学习习惯。
2、教学的重点和难点
①教学重点:用树状图法列举各种可能的结果。
②教学难点:区分实际问题涉及到的“步”及“结果”。
四、教学过程的设计
1、教学方法:教师启发引导,学生观察、类比、合作、探究
教学用具:多媒体课件,学案
2
、假定从鸡蛋孵出母鸡和公鸡的可能性相同。
那么
是母鸡的概率
4、板书设计
课题:用列举法求概率(2)——树状图法 反馈练习 解:
五、教学反思
教学评价的方法,教师主要采用观察法和反馈法。
1、通过观察学生上课的反应、小组讨论的参与程度,学生在思考时面部表情,和自主分析的完成情况。
2、通过课堂练习的完成情况可以反馈得到关于这堂课教学效果的信息,具体而言就是学生在“综合运用已有知识解决问题” 这一能力的水平。
3、学生通过本课的学习,对照老师叙写的学习目标,反思自己完成学习目标的情况,可分为三个等级“完全掌握”,“明白但也不会应用”,“不明白”。
教师根据反馈的情况,可以大体的了解不同层次的学生在课堂学习的不同阶段的认知,及时调整教学方法。