集成运算放大器的六个特性
第11章 集成运算放大器及其应用
上式表明,差动放大电路的差模电压放大倍数和 单管放大电路的电压放大倍数相同。多用一个放大管 后,虽然电压放大倍数没有增加,但是换来了对零漂 的抑制。这正是差动放大电路的优点。
差动放大电路对共模输入信号的放大倍数叫做共 模电压放大倍数,用Auc表示,可以推出,当输入共 模信号时,Auc为
Au c u o u C1 u C 2 0 0 ui c ui1 ui1
由于集成运放的电压放大倍数Ao d和输入电阻Ri d 都非常大(理想情况下,两者约等于∞),于是可以 推得 u u
i i 0
注意:“虚短”和“虚断”是理想运放工作在线 性区时的两个重要特点。这两个特点常常作为今后分 析运放应用电路的出发点,因此必须牢固掌握。
(2)集成运放工作在非线性区的特性 如果运放的工作信号超出了线性放大范围,则输 出电压与输入电压不再满足式(11-1),即uo不再随 差模输入电压(u+ - u -)线性增长,uo将达到饱和。 此时集成运放的输出电压uo只有两种取值:或等于运 放的正向最大输出电压+UOM,或等于其负向最大输 出电压-UOM,具体为 当u + >u - 时,uo = +UOM 当u + <u - 时,uo = -UOM 另外,因为集成运放的输入电阻Ri d很大,故在 非线性区仍满足输入电流等于零,即式(11-3)对非 线性工作区仍然成立。
有时,为了简化起见,常常不把恒流源式差动放 大电路中恒流管T3的具体电路画出,而采用一个简化 的恒流源符号来表示,如图11-7所示。
二、输出级——功率放大电路 集成运放的输出级是向负载提供一定的功率,属 于功率放大,一般采用互补对称的功率放大电路。 1. 功率放大电路的特点 (1)因为信号的幅度放大在前置电路中已经完成, 所以功率放大电路对电压放大倍数并无要求。由于射 极输出器的输出电流较大,能使负载获得较大输出功 率,并且它的输出电阻小,带负载能力强,因此通常 采用射极输出器作为基本的功率放大电路。不过单个 的射极输出器对信号正负半周的跟随能力不同,在实 用的功率放大电路中大多采用双管的互补对称电路形 式。
集成运算放大器的特性及应用
“
l
UT2 H
0
‰
集成运放作为通用性很强 的有源器件 , 可用来
⑤
一
④ 【 , 2⑨ Nhomakorabea图 7 电 压 传 输 特 性
实现信号的运算 、 交换 、 处理、 产生等 , 还可用于产生 正弦或非正弦信号 , 不仅在模拟 电路 中得到广泛 的 应用 , 而且在脉冲数字 电路中也 日益得到广泛 的应 用 , 为组 成 电子 系统 的基 本 功 能 单元 。随着 科 技 成
放大 电路 的频率特性由电阻 R和电容 C决定 , 起 负反馈的作用 。
j
—
| “u i + — 【 n ,
C ’_
Uo M
图 3 电压 传 输 特性
此 时分析 电路 时应遵 循两 个法 则 H : ]
①“ 虚短” 法则 :由于理想运放开 环差模增益
A ∞ , 以有 : 所
摘
要 :集成运算放大器是放 大电路 中非常重要 的元 器件 ,可靠性 高,使用方便 ,随着技 术指
标的不断提 高,它可当作理想器件来处理.不会造成不 可允许的误 差。在 学习时应熟练掌握 它 的线性与非线性特性以及其在信号的运算、处理和电路 的比较分析等方面的相关应用。
关 键词 :集 成运放 ;线性非 线性 特性 ;应 用
图 1 集 成 运 放 组 成 框 图
1 示 。一般 输入 级采 用差 分 放大 电路使 得 输 入 电 所 阻大 、 失调 和零 漂小 ; 中间级采 用 电压放 大倍 数大 的
共射放大电路 , 输出级为使输出电阻小 、 带负载能力 强, 常采用互补推挽乙类放大电路 ; 偏置 电路为各级 提供稳 定 的 静 态 工 作 电 流 , 般 采 用 电 流 源 电路 。 一 理想集成运放 的工作区域分为线性和非线性两部分 , 其参数应满足条件 : J①开环差模电压增益 A 一∞, ②差模输入电阻 一 ∞, ③输出电阻 尺 , 。 ④共模
16集成运算放大器
IIB=(IB1+IB2)/2
输入信号为零时,两个输入端的静态基极电流 的平均值。 愈小愈好。 6. 差模输入电阻rid
rid= Uid /△Ii
7. 共模抑制比
Ad AC
K CMR
K CMR (dB) 20lg
Ad AC
( 分贝 )
KCMR越大,说明差放分辨 差模信号的能力越强,而抑制 共模信号的能力越强。 8. 最大共模输入电压UICM 是指运放输入级正常工作时所能承受的共模输入 电压最大值。超出此值,运放的共模抑制性能下降 ,甚至造成器件损坏(更准确的说,应该是不能正 常放大)。
二、集成电路的分类
大类分: 模拟集成电路 数字集成电路
模拟集成电路: 集成运算放大器, 集成功放, 集成稳压电源, 集成模数A/D转换, 数模D/A转换及各种专用的模拟集成电路。 数字集成电路: 门电路,触发器,计数器,存贮器,微处理器等电路。 而集成运放只是集成电路中的一种,但却是应用最 为广泛的一种。由于最初用于作运算用,所以称为集成 运算放大器,而现在的功能已经远远超过了当时的功能,
从而得到了广泛的应用。
三、集成电路的特点:
1、制造容量大于2000PF的电容元件很困难, 如需大电容必须外接,所以集成运放都采用直接 耦合放大电路。 2、制造太大和太小的电阻不经济,占用硅 面积大。一般R的范围为100Ω ~30KΩ ,大电阻 用恒流源代替。 3、集成工艺是做的元件愈单纯愈好做。 4、元件的精度低,但对称性好,温度特性好。
17.1.4 理想运算放大器及其分析依据 u– 1. 理想运算放大器 2. 电压传输特性 uo= f (ui) u+ 3. 理想运放工作 在线性区的两个特点
– +
电工学II——集成运放电路(10章)
结论:
(1) Auf为负值,即 uo与 ui 极性相反。因为 ui 加在反相输入 端。
(2) Auf 只与外部电阻 R1、RF 有关, 与运算放大器本身参数 无关。 (3) | Auf | 可大于 1,也可等于 1 或小于 1 。
(4) 因u–= u+= 0 , 所以反相输入端“虚地”。 (5) 输入电阻 ri = R1;输出电阻ro=0.
例:电路如下图所示,已知 R1= 10 k ,RF = 50 k 。
求:1. Auf 、R2 ;
2. 若 R1不变,要求Auf为 – 10,则RF 、 R2 应为 多少?
RF
+ ui – R1 R2 – +
D
解:1. Auf = – RF R1
+
+ uo –
= –50 10 = –5 R2 = R1 RF
uo=(VC1+DVC1)-(VC2+DVC2)=0 注意:单端输出,无法抑制零点漂移
动态分析 1.共模信号 u11=u12 大小相等、极性相同 输出电压恒为零(不具备放 大能力)
u11 + 差分放大原理电路 R2
+UCC
R1 RC + T1 RC uo T2 R1 + R2 u 12 -
2.差模信号
输出端与运放电路 反相输入端的关系
平衡电阻 R2 = R1 // RF
输入电压加在了同相输入端,输出 电压对地为正
输出电压作用到该连接地的电路上, 在R1右端产生电压u-, 构成电压串联负反馈
uo RF Auf =1+ ui R1
uo RF 同相比例运算放大系数 Auf =1+ ui R1
集成运算放大器
A/D转换方法
– 计数法 速度慢 – 双积分式A/D转换器 精度高、干扰小 速度慢 – 逐次逼近式A/D转换器 原理同计数式相似,只是从最高位开始,通过试探值来计数。
例1:ADC0804 (8位,100us,转换精度 ±1LSB,内带可控三态门)。
例2:ADC570 (输入电压:0~10V 或 -5V~+5V)
例3. 8位以上A/D转换器和系统连接。 ADC1210:12位,100us,启动端SC,结束转换CC。
例4. ADC0809: 逐次逼近式8通道8位ADC。
同时有模拟电路和数字电路的系统中地 线的连接
模拟电路 ADC DAC 数字电路
模拟电路 AGND
数字电路 DGND
模拟地
公共接地点
if RF
R1 R2
R3 RP
- +
u0
ui 1 ui 2 ui 3 uo R1 R2 R3 Rf 可得: uo R f ( ui 1 ui 2 ui 3 ) R1 R2 R3 若R1=R2=R3=R,则 u R f ( u u u ) o i1 i2 i3 R
集成运算放大器
1.集成运算放大器概述
集成运算放大器是一种高电压增益、高输入电阻和低输出 电阻的多级直接耦合放大电路,一般由四部分组成:
输入级:一般是差动放大 器,利用其对称特性可以 提高整个电路的共模抑制 比和电路性能,输入级有 反相输入端“-”、同相 输入端“+”两个输入端; 中间级:的主要作用是
3、差动比例运算电路
R1=R2,R’=RF Uo=-RF/R1(Ui1-Ui2)
差动比例运算电路 又称减法运算电路
电子技术基础第五章集成运算放大器
2.差模交流信号分析 :
2.差模交流信号分析 : 画出对差模交流信号的交流通路
理想的直流电压源短路 关键是此处对Ree的处理。 在以前画交流通路时,线性电阻在交流通路中保留,阻值 为线性电阻的交流电阻,因为是线性的,所以交流电阻与 直流电阻相等。
A u c(单 u u o ic ) c 1 1 (b R rb )e 2 R c ()1 e R e2 -R R e ce
4 对任意信号的分析方法
ui1=uic+uid/2 ui2=uic-uid/2 uic = (ui1+ui2)/2 uid=ui1-ui2 uid1= -uid2= uid /2
差模信号和共模信号
• 差模信号:有用的信号,包含着信息,要进行 放大的。
• 共模信号:人为引入的一个信号,不是要放大 的,而是用来描述零漂的大小。直接描述、测 量零漂很麻烦,要先后测量两种不同的环境温 度下的静态工作点,求取它们的差值。从另外 一个角度:在同样的环境温度下,在输入端施 加共模信号,测量输出端的信号,求取共模放 大倍数。
2.1差模输入双端输出
某瞬间的真实方向
uid = uid1-uid2 uid1= -uid2
Ree上交流压降为0。 因此,画差模交流信号交流通路时,Ree可视为短路,
即两管的发射极直接接地。
由uc1= -uc2可知RL两端电位一端为正,一端为负,RL的中点应 是地电位,即每管对地的负载电阻为RL/2.
(5)不能制造电感,如需电感,也只能外接。
(6)一般无二极管,用三极管代替(B、C 极接在一起)。
集成运放的组成:输入级
集成运算放大器的典型结构及特点
集成运算放大器的典型结构及特点
一、集成运放的典型结构运放的典型电路通常有三级放大电路组成。
运放输入级:—差分放大(差动放大器)电路,该级要求有低温漂,高共模抑制比和高输入电阻特性。
中间放大级:通常采纳CE(CS)放大电路,运算放大器的增益主要由这一级担当,所以这一级要有很高的电压增益。
输出级:采纳互补对称式射极跟随器结构。
输出级要求能驱动较大的负载,有肯定的输出电流和输出电压,因此,对该级要求具有低输出电阻。
二、集成运放的主要特点
1. 它具有“二高一低”特性的线性组件。
即高增益、高输入电阻、低输出电阻的多级直接耦合放大器。
2. 为保证有合适的静态工作点,并低功耗,电路采纳微电流源作为偏置,放大电路负载采纳有源负载,以提高电压增益。
3. 在抱负条件下,集成运算放大器可以看成一个电压掌握电压源来等效(VCVS)。
集成运放的电路符号:
在低频小信号的条件下,运算放大器可用右边低频小信号模型等效。
在抱负条件下有:Rid→∞,Rod→0,Aod→∞。
1。
汽车电工电子技术第6章 集成运放
1.集成运算放大器特性与参数
2)主要特性
(2) 饱和区的特点 理想运放工作在饱和区时,“虚断”的概念依然成立,但
“虚短”的概念不再成立。这时
当u+>u-时,uO=+UOM 当u+<u-时,uO=-UOM
分析运放的应用电路时,首先将集成运放当作理想运 算放大器;然后判断其中的集成运放工作在线性区还是非 线性区。在此基础上分析具体电路的工作原理。
1)基本结构
集成运放的输入级有两 个输入端,其中一个输 入端的信号与输出信号 之间为反相关系,称为
反相输入端
u-
u+
同相输入端
_ ∞Ao 输出端
+
uO
+
反相输入端,另一个输入端的信号与输出信号之间为同相
关系,称为同相输入端,在图中用符号“+”标注。运放有 一个输出端。
1.集成运算放大器结构 2)封装形式
和“虚断”。即
u+≈u- i+= i-≈0 “虚短”表示集成运放的同相输入端与反相输入端的电 压近似相等,如同将该两点虚假短路一样。若运放其中一个 输入端接“地”,则有u+≈u-=0,这时称“虚地”。 “虚断”表示没有电流流入运放(因为理想运放的差模 输入电阻Rid→∞),如同运放的两个输入端被断开一样。
(7)电源电压UCC 一般都用对称的正、负电源同时供电
1.集成运算放大器特性与参数
2)主要特性
电压传输特性是指表示集成运放输出电压u0与输入电压ui之间关 系的特性曲线
线性区
饱和区
饱和区
1.集成运算放大器特性与参数
2)主线要特性性区
u0= A0 (u+-u-)= A0ui
集成运算放大器的特性及其在音频放大器中的应用(二)——开环增益特性和增益带宽积
图4 是一 个最 简单 的同相 放 .准 确的 闭环增益G r 可以用 下式表示 :
增 益 为 9d 0 B. 1 ‘2 0 e0 X) )
=
363 1 2 倍
图3 2一 个 用 运 算 放 大 器 和 两 个 电 阻 组
成 的 简 单 的 反 相 放 大 器 .通 常 在 计 算 该 电
路 的增 益时都 采用 G —
R /i o 的计 算 公 式 。但 R
是 当 考 虑 到 运 放 的 开 环 增 益 A 并 不 是 无 穷 v 大 . 会 对 闭 环 增 益 造
稳定性 ( 相对 于振荡 的富裕量 )
对 于运算 放 大器 来说 ,为 了实现 宽带 特性 、高速特 性 、高增 益带 宽积 .除 了在运 放 内部 电路 中采 取各 种措
施 .在运 放 的外部 电路 中还要 接 入相 位补 偿 电路 .为 了
工 作稳 定还对 增益 做 出了一 些 规定 。另外 ,由于 电容性
另外 .把 开 环 增 益 G和 频 带 B的积 称 为 增 益 带 宽 积 (B ) G 积 ,为 了方便 ,一 般 把G l : 的频 带 ( w)规 定 为增 B
、
开 环增 益 和 闭环 增 益
运 算放 大 器 的等效 电路有 好几 种 表 示方 式 .最 简 单
又能 说明 问题 的是图 l 所示 将差 动输入 的信 号 ( 同相输 入 端和反 向输入端 之间 的输入 电压差 )放大A 后输 出 的等 倍 效 电路 。这 里的A 倍增益 被称为开环 增益 。 用 运放 构成 的放大 电路 不 管是 同相 放 大 器还 是 反 向 放大器 .使用 时在输 出端 与输入端 之间一般 都有负反馈 环 路 设定有负 反馈环路 的电路增益称 为闭环增 益 闭环电路 的增益 可 以简单地 用输 入一 出 电阻的 比值 输 来求得 , 求得 的是开 环增 益 .理想 运放 的开 环增益应 为无
集成运算放大电路全篇
Y0 Y1 Y2 Y3 B
注:式中Aod为差模开环放大倍数。
二、 集成运放中的电流源电 路
4.2.1 基本电流源电路
一、镜像电流源
+VCC
IR
B IC0
T0
R 2IB
A
IB0
IB1
IC1 T1
UBE0= UBE1, β0=β1=β, IC0=IC1=IC= βIB , IC1为输出电流, IR为基准电流。
基准电流表达式:
IR
用
uP
集成运放组成方框图:
输入级
uN
中间级
输出级 uO
偏置电路
1) 输入级 又称前置级,常为双输入高性能差分放大电路(高Ri 、大Ad、 大KCMR、静态电流小)。输入级的好坏直接影响着集成运放的大多数性能 参数。
2) 中间级 主放大器,使集成运放具有较强的放大能力,多采用共射 (或共源)放大电路。放大管经常采用复合管,以恒流源做集电极负载。
R`3
C`1 R`3
2.1k
2.1k
R`5 240k
C`1
R`4 25k
R`5 240k
- +
R7 100k
-∞ A3
(以下电路同上,仅C1、C2 值不同,电路从略)
图5.6 十五段优质均衡器
(2) 当R4的滑动触头移到最左边时,其电路如图8.7(a)所示。
C1
R3
R3
C2 R5
R4 R5
-∞
R6
B点的电流方程为:
IR
IB2
IC
IC2
1 2
IC2
2
2
2 2
2
I
C
2
IC2
(1
[引言]理想集成运算放大器及其分析特点(精)
(vi1 vi2 )
图8.03
反相求和运算电路
当R1 R2 Rf 时,输出等于两输入反 相之和。
二、 同相输入求和电路
在同相比例运算电路的基础上,增加 一个输入支路,就构成了同相输入求和电 路,如图8.04所示。 因运放具有 虚断的特性, 对运放同相输
入端的电位可
用叠加原理求
得:
v O iR R iD R RI Se vI / VT vI RI S ln VT
1
图 8.3.2 指数运算电路
指数运算电路相当反对数运算电路。
[引言]:理想集成运算放大器及其分析特点 运算电路是集成运算放大器的基本应用电路,它是集成运放的 线性应用。讨论的是模拟信号的加法、减法积分和微分、对数和 反对数(指数)、以及乘法和除法运算。 1、集成运算放大器理想化的条件 为了分析方便,把运放均视为理想器件: (1)开环电压增益Av =∞ (2)差模输入电阻Rid =∞ (3)开环输出电阻RO =0 (4)共模抑制比KCMR =∞
当输入信号是阶跃直流电压VI时,即
1 VI vO vC vi dt t RC RC
4、 微分运算电路
微分运算电路如图8.1.8所示。
显然 vO iR R iC R dvC RC dt dvI RC dt
图 8.1.8 微分电路
8.3 对数和指数运算电路
2、理想集成运算放大器分析的特点 ⑴ 由于运算放大器的开环电压增益Av =∞,集成运放 两个输入端的电压通常接近于零,即vi=vN-vP≈0。理 想化为vN=vP,故称“虚短”。 ⑵ 由于运算放大器的差模输入电阻Rid =∞,集成运放 两个输入端几乎不取电流,即iI≈0。理想化为I+=I-=0, 故称“虚断”。
运算放大器简介
运算放大器简介运算放大器是运用得非常广泛的一种线性集成电路。
而且种类繁多,在运用方面不但可对微弱信号进行放大,还可做为反相、电压跟随器,可对电信号做加减法运算,所以被称为运算放大器。
不但其他地方应用广泛,在音响方面也使用得最多。
例如前级放大、缓冲,耳机放大器除了有部分使用分立元件,电子管外,绝大部分使用的还是集成运算放大器。
而有时候还会用到稳压电路上,制作高精度的稳压滤波电路。
各种运放由于其内部结构的不同,产生的失真成分也不同,所以音色特点也有一定的区别。
本来我们追求的是高保真,运放应该是失真最低,能真实还原音乐,没有个性的最好。
但是由于要配合其他音响部件如数码音源、后级功放管等如果偏干、偏冷则可搭配音色细腻温暖型的运放,而太过阴柔、偏软的则可搭配音色较冷艳、亮丽的运放,做到与整机配合,取长补短的最佳效果。
所以说并不是选择越贵的运放得到的效果就一定越好,搭配很重要,达到听感上最好才算达到目的。
如果是应用在低电压的模拟滤波电路中,还要选择对低电压工作性能良好的运放种类。
市面上的运放种类不下五六百种,GBW带宽在5M以上的也有三百多种,最高的已达300MHZ,转换速率在5V/us以上的也不下几百种,最高达3000V/us。
以上介绍的几种被音响发烧友们炒得火热的,其实还有大量未被大家熟知的上乘佳品可供选择,大家不必局限于以上几种。
一种运放型号的封装也可分为金封、陶封和塑封,一般来说金封、陶封的质量较好,塑封的品质稍差。
利益的驱使,什么都有假货,运放也不例外,市面上的假货不少,如果想便宜捡好货,那就要慧眼识珠了,不太在行的在购买时就要注意,宁可多花一块几毛,也要到信誉较好的商家去买。
低档运放JRC4558。
这种运放是低档机器使用得最多的。
现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。
不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。
集成运算放大器
功 率 放 大 电 路功率放大电路在多级放大电路的输出级,通常在大信号下工作,向负载提供尽可能大的功率,来推动负载工作。
功率放大电路的特点1. 在负载允许的失真限度内尽可能的提供最大输出功率2. 转换效率(直流电源供给功率)负载获得的功率VO P P )(=η高。
3. 非线性失真尽可能小。
4. 散热好功率放大电路的工作状态按三极管静态工作点Q 在输出特性曲线上所处位置的不同,功率放大电路分为甲类、甲乙类、乙类三种工作状态。
甲类当Q 点选择在交流负载线的中点时,信号整个周期内都有静态电流流过,这种工作状态称为甲类。
在甲类状态下,无论有无信号,电源提供的功率为C CC I U P =。
无输入信号,即静态时,电源提供的功率全部消耗在管子和电阻上。
有输入信号时,电源提供的功率一部分转化为有用的输出功率,信号越大,输出功率越大。
由于电流有较大的直流分量C I ,可以证明,甲类功率放大电路的效率理论上最高只能达到50%甲乙类为了提高效率,在电源电压C U 一定的条件下,可使Q 点沿交流负载线下移,使C I 减小,可得到如图所示的甲乙类工作状态。
若Q 下移到0≈C I ,此时静态管耗为最小,这种状态称为乙类。
功率放大电路工作在甲乙类和乙类,虽然降低了静态时的功耗,提高了效率,但却产生严重的波形失真。
乙类为了减小波形失真,在电路形式上一般可采用互补对称射极输出器的输出方式。
乙类互补对称功率放大电路如下图为乙类互补对称功率放大电路的原理图,图中T1为NPN 型晶体管,T2为PNP 型晶体管,它们的特性、参数对称。
电路为正、负电源供电,信号从基极输入,从发射极输出,为一对射极输出器。
静态时0=i u ,两管均处于截止状态,有021==B B I I ,021==C C I I ,所以发射极电位021==E E U U ,输出电压0=o u 。
动态时,在输入正弦交流电压i u 的正半周期T1导通,T2截止,流过负载电阻L R 的电流约为1C L i i =;在i u 的负半周期T1截止,T2导通,流过L R 的电流约为2C L i i =。
集成运算放大器
31
一、 镜像电流源电路
1、基本镜像电流源
设T1、T2的参数完全相同。
UBE1 = UBE2 = UBE,
IB1= IB2、IC1= IC2
基准电流
I REF
VCC
UBE R
IREF IC1 2IB IC(1 1 2 )
IC2= IC1≈ IREF
1 >>2 /β
1)输出电流IC2与基准电流 IREF相等。把IC2看作是 IREF的镜像——镜像电流源。
2) IC2的大小仅取决于VCC和R,与温度无关。 32
2、精密镜象电流源
精密镜象电流源和普通镜象电流源相比,其
精度提高了 倍。
由于有T3存在,IB3将 比镜象电流源的2IB小β3倍。 因此IC2和IREF更加接近。
ro Rc 10k
uo与ui同相位。
2)求KCMR 10 0.5 2 5.1
KCMR
Aud Auc
50 100 0.5
28
3)改接后,电路由单端输 入变成任意输入。
uid uA uB 8 2 sint mV
uic 12(uA uB)
504 2 sin t mV
Chapter 3 集成运算放大器
集成运放简介 集成运放的单元电路 通用型集成运算放大器 集成运放的主要参数 集成运算放大器的电压传输特性
和理想模型 专用型集成运算放大器
1
3.1 集成运放简介
3.1.1 简介
集成电路是60年代初期发展起来的。 采用半导体制造工艺,在一小块硅单晶片上制作 具有特定功能的电子线路。 集成电路分为:模拟集成电路与数字集成电路。 在模拟集成电路中,运算放大器(早期用于模 拟计算机的数学运算)发展最早,应用最广泛。随 着集成技术与集成工艺的迅速发展,其他类型的模 拟集成电路也取得了非常大的进展,如混频器、调 制器、宽带放大器、高频放大器、功率放大器、电 压比较器、A/D或D/A转换器等
电路中的集成运算放大器有哪些常见应用
电路中的集成运算放大器有哪些常见应用集成运算放大器(Operational Amplifier,简称OP-AMP)是一种高增益、差分输入的电子放大器,广泛应用于各种电路中。
其特点是具有高输入阻抗、低输出阻抗、高增益和宽带宽等特性,使其在电子电路中具有广泛的应用场景。
本文将介绍集成运算放大器的常见应用。
一、比较器应用集成运算放大器常用作比较器,将两个输入信号进行比较,并输出高电平或低电平信号。
比较器广泛应用于模拟量与数字量的转换电路、触发器电路和开关电路等。
由于集成运算放大器的开环增益极高,可以将其作为一个高增益的比较器来使用。
二、信号放大器应用集成运算放大器可以作为信号放大器,常常用于放大小信号。
在电子测量仪器、音频设备和放大器电路中,集成运算放大器可以将微弱的输入信号放大到足够的幅度,以便后续电路进行处理。
同时,由于集成运算放大器具有高输入阻抗和低输出阻抗的特点,可以有效地保持信号的稳定性和减小干扰。
三、滤波器应用集成运算放大器被广泛应用于滤波器电路中,用于实现不同类型的滤波功能。
通过合理设计电路参数,可以实现低通滤波、高通滤波、带通滤波和带阻滤波等不同的滤波效果。
这些滤波器常见于音频设备、无线通信电路和精确测量仪器等领域,用于滤除噪声、增强特定频率信号或去除干扰。
四、运算器应用集成运算放大器还可作为数学运算器,用于实现信号的数学运算。
比如,加法器、减法器和乘法器等。
在模拟计算系统、自动控制系统以及信号处理系统中,集成运算放大器可以实现各种数学运算,对输入信号进行处理和合成。
五、积分器和微分器应用集成运算放大器可以通过不同的电路连接方式构成积分器和微分器,用于实现信号的积分和微分运算。
积分器常用于测量仪器、自动控制系统和滤波器中,实现对信号的积分操作,从而得到积分结果。
微分器则在信号处理和自动控制系统中广泛使用,用于实现对信号的微分运算,反映信号变化率。
六、振荡器应用集成运算放大器还可作为振荡器的关键组件,用于产生稳定的振荡信号。
电路中的运算放大器有哪些特性
电路中的运算放大器有哪些特性电路中的运算放大器在电子领域中扮演着十分重要的角色。
它是一种用于放大模拟信号的器件,具有许多独特的特性。
本文将详细介绍电路中的运算放大器的特性。
一、增益特性运算放大器的主要功能是放大输入信号,所以其增益特性非常重要。
一般来说,运算放大器的增益非常大,在几千到几百万倍之间。
这种高增益可以有效地放大微弱的输入信号,以提供足够大的输出信号。
二、输入电阻和输出电阻运算放大器的输入电阻非常大,可以达到数十兆欧姆。
这样的高输入电阻意味着运算放大器对外部电路的负载影响非常小,保持了电路的稳定性。
此外,运算放大器的输出电阻非常小,可以达到数十欧姆。
这种低输出电阻使得运算放大器能够驱动较大的负载,同时保持较低的输出电压失真。
三、输入偏置电流和输入偏置电压运算放大器的输入偏置电流非常小,一般在纳安级别。
这种小的输入偏置电流可以保持输入信号的准确性,降低对外部电路的影响。
此外,输入偏置电压也非常小,一般在微伏级别。
小的输入偏置电压可以减少输出信号的失真,并保持电路的精确性和可靠性。
四、频率响应特性运算放大器的频率响应特性是其另一个重要特点。
通常,运算放大器的增益随着频率的增加而降低,这是由于内部电容和频率补偿电路的存在导致的。
然而,一些特殊设计的运算放大器可以实现更宽的频率范围,并且在更高频率下保持较好的增益稳定性。
五、共模抑制比运算放大器的共模抑制比是其抑制输入信号中共同模式信号的能力。
较大的共模抑制比意味着运算放大器能够更好地抵抗来自外部干扰源的共同模式干扰。
一般来说,高质量的运算放大器具有较高的共模抑制比,提供更准确的放大结果。
六、温漂特性运算放大器的温漂特性是指其放大性能随着温度的变化而变化的程度。
高品质的运算放大器通常具有低温漂,其放大性能几乎不受温度变化的影响。
这种稳定的性能可以确保在不同温度条件下获得一致的放大结果。
综上所述,电路中的运算放大器具有增益特性高、输入电阻和输出电阻合适、输入偏置电流和输入偏置电压较小、频率响应范围较宽、共模抑制比高以及较低的温漂特性等独特的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成运算放大器简称运算放大器,是由多级直接耦合放大电路组成的高增益模拟集成电路。
与分离元件构成的电路相比,运算放大器具有稳定性好、电路计算容易、成本低等优点,因此得到广泛应用。
其可完成信号放大、信号运算、信号处理、波形变换等功能。
按性能可分为通用型、高阻型、高速型、低温漂型、低功耗、高压大功率型等多种产品。
1、最基本的运算放大器电路
典型的运算放大器是反相放大器,如图1所示。
输入信号V i是由“-”号端加入的,其输出电压V0和输入电压反相,电压增益为:G=V0÷V i=R2÷R1,故输出电压为:V0=-(R2÷R1)×V i
图1 反相放大器电路原理图
同相放大器,如图2所示。
输入信号Vi是由“-”号端加入的,其输出电压V0和输入电压同相,电压增益为:G=V0÷V i=1 (R2÷R1),故其输出电压为:V0=[1-(R2÷R1)]×V i。
所谓“同
相”和“反相”是指输入信号的极性相对于由它引起的输出信号的极性而言的。
图2 同相放大器电路原理图
2、运算放大器的特性
充分认识和理解运算放大器的特性,认为对学习和应用运算放大器以及仪表维修工作将是很有帮助的。
现简述如下:
①运算放大器两个输入端之间的电压总为零,这是运算放大器最重要的特性。
由于两个输入端之间的“虚短路”以及“输入阻抗非常大”,意味着运算放大器不需要输入电流,也可认为运算放大器的输入电流等于零。
②运算放大器的同相端电位等于反相端电位,即运算放大器工作正常时,两输入端有相同的直流电位。
前提是输出电压在直流电源的正电压和负电压之间,且输出电流小于运算放大器额定输出电流时。
③运算放大器的电压增益等于无限大,即可用很小的输入电压获得非常大的输出电压。
运算放大器通电后,只需在输入端两端加上毫伏级的电位,就可以很容易地使输出进入正的或负的饱和状态。
④运算放大器的输出阻抗Z=0,即在电路设计和电源所允许的范围内,可以从运算放大器输出端拉出电流,且在输出端不会出现明显的电压降。
⑤运算放大器可把输出电压的波动范围限制在直流电源的正电压和负电压之间,即运算放大
器具有电压限幅能力。
其输出电压的波动幅度取决于运算放大器的正直流电源电压值和负直流电源电压值。
⑥标准运算放大器的输出电流通常限制在10mA以内,运算放大器能自动把输出电流限制在安全工作区。