湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

合集下载

(新课标)2020版高考数学专题三立体几何第1讲空间几何体的三视图、表面积及体积课件文新人教A版

(新课标)2020版高考数学专题三立体几何第1讲空间几何体的三视图、表面积及体积课件文新人教A版

空间几何体的三视图(基础型) [知识整合]
一个物体的三视图的排列规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主) 视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对 正、高平齐、宽相等”.
[考法全练] 1.一个简单几何体的正视图、侧视图如图所示,则其俯视图可能是( )
面 ABCD 是正方形且和球心 O 在同一平面内,当此四棱锥的体积取得最大值时,
其表面积等于 8+8 3,则球 O 的体积等于( )
A.323π
B.32
2π 3
C.16π
16 2π D. 3
【解析】 (1)如图,由题意知圆柱的中心 O 为这个球的球心,于是, 球的半径 r=OB= OA2+AB2= 12+( 3)2=2.故这个球的表面 积 S=4π r2=16π .故选 D.
(2)求空间几何体体积的常用方法 ①公式法:直接根据相关的体积公式计算. ②等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容 易,或是求出一些体积比等. ③割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算 体积的几何体.
[对点训练] 1.(2019·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之 一圆弧),则该几何体的表面积为( )
第二部分 高考热点 分层突破
专题三 立体几何 第1讲 空间几何体的三视图、表面积及体积数学 Nhomakorabea01
做高考真题 明命题趋向
02
研考点考向 破重点难点
03
练典型习题 提数学素养
[做真题] 1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分 叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构 件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 ()

高优指导2020高考数学二轮复习 专题六 立体几何 第一讲 空间几何体及三视图课件 理

高优指导2020高考数学二轮复习 专题六 立体几何 第一讲 空间几何体及三视图课件 理

12345
解析:由几何体的三视图可知,该几何体是一个沿旋转轴作截面,截取的半个 圆锥,底面半径是 1,高是 2,所以母线长为 5.所以其表面积为底面半圆面积 和圆锥的侧面积的一半以及截面三角形的面积的和,即12π+12π× 5 + 12×2×2=2+1+2 5π.故选 A. 答案:A
12345
3.(2013 广东高考,理 5)某四棱台的三视图如图所示,则该四棱台的体积是 ()
12345
方法二:由四棱台的三视图,可知原四棱台的直观图如图所示.
在四棱台 ABCD-A1B1C1D1 中,四边形 ABCD 与四边形 A1B1C1D1 都为正 方形,AB=2,A1B1=1,且 D1D⊥平面 ABCD,D1D=2.分别延长四棱台各个侧棱 交于点 O,设 OD1=x,因为△OD1C1∽△ODC,所以������������������������1 = ���������1���������������1,即������+������2 = 12,解得 x=2.������������������������������ -������1������1������1������1 =V 棱锥 O-ABCD-������棱锥������-������1������1������1������1 = 13×2×2×4-13×1×1×2=134. 答案:B
A.4
B.134
C.136
D.6
解析:
12345
方法一:由三视图可知,原四棱台的直观图如图所示,其中上、下底面分别是
边长为 1,2 的正方形,且 DD1⊥面 ABCD,上底面面积 S1=12=1,下底面面积 S2=22=4.
又∵DD1=2,∴V 台=13(S1+ ������1������2+S2)h=13(1+ 1 × 4+4)×2=134.

2020版高考数学大二轮文科通用版 教师课件:专题四 第1讲 空间几何体及三视图

2020版高考数学大二轮文科通用版 教师课件:专题四 第1讲 空间几何体及三视图

其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何
体的体积为
.
解析:在正方体中还原该几何体,如图所示.
该几何体的体积 V=43-1×(2+4)×2×4=40.
2
答案:40
5.(2019天津,文12)已知四棱锥的底面是边长为 2 的正方形,侧棱长
均为 5 .若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另
1.旋转体的侧面积和表面积
名称 图形
表面积
圆柱
S=2π r2+2π rl =2π r(r+l)
侧面积 S 侧=2π rl
圆锥
S=π r2+π rl =π r(形 圆台 球
表面积
S=π (r'2+r2+ r'l+rl)
侧面积 S 侧=π (r+r')l
S=4π R2
2.柱体、锥体、台体、球体的体积公式
答案:(1)B (2)C
考点1 考点2 考点3 考点4
考点1 考点2 考点3 考点4
角度二 空间几何体的体积
例3(1)(2018浙江,3)某几何体的三视图如图所示(单位:cm),则该几
何体的体积(单位:cm3)是( )
A.2 B.4 C.6 D.8
(2)(2018全国Ⅱ,文16)已知圆锥的顶点为S,母线SA,SB互相垂直,SA
A.2 3 B.2 2 C.2 D. 3
考点1 考点2 考点3 考点4
解析:(1)如图,三棱锥 A-BCD 即为所求几何体,根据题设条件,知 辅助的正方体棱长为 2,CD=1,BD=2 2,BC= 5,AC=2,AB=3,AD= 5, 则最长棱为 AB,长度为 3.

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

2020高考数学核心突破《专题5 立体几何 第1讲 空间几何体的三视图、表面积与体积》

专题五 第1讲1.(教材回归)一个几何体的三视图如图所示,则该几何体的表面积为( D )A .3πB .4πC .2π+4D .3π+4解析 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S =2×12×π×12+π×1×2+2×2=3π+4.故选D.2.(2017·山东烟台模拟)一个几何体的三视图如图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为( A )A .163-16π3B.163-16π3C .83-8π3D.83-8π3解析 由三视图可知,几何体为一个棱长为4的正三棱柱去掉了一个内切圆柱.V三棱柱=⎝⎛⎭⎫12×4×4×sin 60°×4=16 3.在俯视图中,设内切圆半径为r ,则内切圆圆心与各顶点连接分三角形为3个全等的小三角形,由三角形面积可得12×4×4×sin 60°=3×⎝⎛⎭⎫12×4×r ,解得r =233.故V 圆柱=πr 2h =π×⎝⎛⎭⎫2332×4=16π3.∴几何体的体积V =V 三棱柱-V 圆柱=163-16π3.故选A.3.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( D )A.18 B.17 C.16 D.15解析 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D -ABC .设正方体的棱长为a ,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.4.(考点聚焦)一个四面体的三视图如图所示,则该四面体的表面积是( B )A .1+ 3B .2+3C .1+2 2D .2 2解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连结SO ,BO ,则SO ⊥AC ,∴SO ⊥平面ABC ,∴SO ⊥BO .又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3.5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( D )A.32π3 B .4π C .2πD.4π3解析 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r =⎝⎛⎭⎫222+⎝⎛⎭⎫222=1,球的体积V =4π3r 3=4π3.故选D.6.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( D )A .963B .163C .24 3D .48 3解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2. 所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2,所以a =43, 所以V =34×(43)2×4=48 3.故选D. 7.(书中淘金)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,BD ,DE ,DF ,则几何体EFC 1DBC 的体积为( A )A .66B .68C .70D .72解析 如图,连接DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1DBC 的体积为66.8.(2017·湖北八校联考)如图,网格纸上小正方形的边长为1,粗线画的是某多面体的三视图,则该多面体的外接球的表面积为__41π__.解析 由三视图可知该几何体是如图所示的三棱锥A -BCD ,将该三棱锥放在棱长为4的正方体中,E 是棱的中点,所以三棱锥A -BCD 和三棱柱EFD -ABC 的外接球相同.设外接球的球心为O ,半径为R ,△ABC 的外接圆的圆心是M ,则OM =2.在△ABC 中,AB =AC =25,由余弦定理得cos ∠CAB =AC 2+AB 2-BC 22AC ·AB =20+20-162×25×25=35,所以sin ∠CAB =45,由正弦定理得2CM =BC sin ∠CAB =5,则CM =52.所以R =OC =OM 2+CM 2=412,则外接球的表面积为S =4πR 2=41π.9.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 83π m 3.解析 由三视图知该几何体由两个相同的圆锥和一个圆柱组成.其中,圆锥的底面半径和圆柱的底面半径均为1,圆锥的高均为1,圆柱的高为2.因此该几何体的体积为V =2×13π×12×1+π×12×2=83π (m 3).10.(数学文化)我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠基成立积,缘幂势既同,则积不容异:”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等,其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如图中正方体ABCD -A 1B 1C 1D 1,求图中四分之一的圆柱体BB 1C 1-AA 1D 1和四分之一圆柱体AA 1B 1-DD 1C 1公共部分的体积V ,若图中正方体的棱长为2,则V =163.(在高度h 处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S 1,截得正方体所得面积为S 2,截得四棱锥C 1-ABCD 所得面积S 3,S 1=R 2-h 2,S 2=R 2,S 3=h 2,S 2-S 1=S 3)解析 由题意可知,用平行于底面的平面截得的面积满足S 2-S 1=S 3,其中S 1表示两个圆柱的公共部分的截面面积,S 2表示截得正方体的截面面积,S 3表示截得锥体的截面面积.由祖暅原理可知:正方体体积减去两个圆柱的公共部分体积等于锥体体积,即23-V =13×22×2,即V =23-13×22×2=163.。

高三数学二轮复习:立体几何

高三数学二轮复习:立体几何
板块三 专题突破 核心考点
专题四 立体几何
第1讲 空间几何体
[考情考向分析]
1.以三视图为载体,考查空间几何体面积、体积的计算. 2.考查空间几何体的侧面展开图及简单的组合体问题.
内容索引
热点分类突破 真题押题精练
热规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视 图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图 的宽度一样.即“长对正、高平齐、宽相等”. 2.由三视图还原几何体的步骤 一般先依据俯视图确定底面再利用正(主)视图与侧(左)视图确定几何体.
跟踪演练3 (1)(2018·咸阳模拟)在三棱锥P-ABC中,PA⊥平面ABC,
AB⊥BC,若AB=2,BC=3,PA=4,则该三棱锥的外接球的表面积为
A.13π C.25π
B.20π
√D.29π
解析 答案
(2)(2018·四川成都名校联考)已知一个圆锥的侧面积是底面积的2倍,
√ 记该圆锥的内切球的表面积为S1,外接球的表面积为S2,则SS12 等于
例3 (1)(2018·百校联盟联考)在三棱锥P-ABC中,△ABC和△PBC均为
边长为3的等边三角形,且PA=326 ,则三棱锥P-ABC外接球的体积为
13 13 A. 6 π
10 10 B. 3 π
√C.5
15 2π
55 D. 6 π
解析 答案
(2)(2018·衡水金卷信息卷)如图是某三棱锥的三视
跟踪演练1 (1)(2018·衡水模拟)已知一几何体的正(主)视图、侧(左)视 图如图所示,则该几何体的俯视图不可能是

解析 答案
(2)(2018·合肥质检)在正方体ABCD-A1B1C1D1中,E是棱 A1B1的中点,用过点A,C,E的平面截正方体,则位于 截面以下部分的几何体的侧(左)视图为

2020年高三数学总复习专题三:立体几何

2020年高三数学总复习专题三:立体几何

专题三立体几何第1讲空间几何体的三视图、表面积及体积[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019三棱锥的外接球、球的体积·T12空间几何体的结构特征、直观图、几何运算、数学文化·T16空间两直线的位置关系的判定·T8简单几何体的组合体、长方体和棱锥的体积·T16 2018空间几何体的三视图、直观图及最短路径问题·T7圆锥的性质及侧面积的计算·T16三视图与数学文化·T3与外接球有关的空间几何体体积的最值问题·T10 2017空间几何体的三视图与直观图、面积的计算·T7空间几何体的三视图及组合体体积的计算·T4球的内接圆柱、圆柱的体积的计算·T8(1)“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第12或16题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.考点一空间几何体的三视图、直观图与截面图[例1](1)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(2)(2019·江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是()A.52B. 2C.355D.32(3)(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32 [解析] (1)由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.故选A.(2)在棱长为2的正方体中还原该四面体P ­ABC 如图所示,其中最短的棱为AB 和BC ,最长的棱为PC .因为正方体的棱长为2,所以AB =BC=2,PC =3,所以该四面体最长的棱长与最短的棱长的比值为32.故选D.(3)如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin 60°=334.故选A. [答案] (1)A (2)D (3)A[解题方略]1.识别三视图的步骤(1)应把几何体的结构弄清楚或根据几何体的具体形状,明确几何体的摆放位置;(2)根据三视图的有关规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面;(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置;(3)确定几何体的直观图形状.3.由几何体的部分视图判断剩余的视图的思路先根据已知的一部分视图,还原、推测直观图的可能形状,然后再找其剩下部分视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.4.常见三类空间几何体的截面图轴截面、横截面与斜截面:利用截面图可将空间问题转化为平面问题解决.[多练强化]1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON2=22+42=2 5.故选B.2.已知球O是正三棱锥A-BCD的外接球,BC=3,AB=23,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面中面积最小的截面圆的面积是________.解析:如图,设△BCD的中心为点O 1,球O的半径为R,则A,O,O1三点共线.连接O1D,O1E,OD,OE,则O1D=3,AO1=AD2-O1D2=3.在Rt△OO1D中,R2=3+(3-R)2,即R=2,所以OO1=1.在△O1DE中,DE=23BD=2,∠O1DE=30°,所以由余弦定理得O1E=3+4-2×3×2× cos 30°=1.所以OE= 2.过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为22-(2)2=2,所以截面圆的面积为2π.答案:2π考点二 几何体的表面积与体积题型一 求空间几何体的表面积[例2] (1)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体,如图所示,四边形ABCD 为矩形,棱EF ∥AB .若此几何体中,AB =4,EF =2,△ADE 和△BCF 都是边长为2的等边三角形,则该几何体的表面积为( )A .8 3B .8+8 3C .62+2 3D .8+62+2 3(2)我国古代数学名著《算法统宗》中有如下问题:“今有倚壁外角堆米,下周九十尺,高十二尺.”其意思为:在屋外墙角处堆放米(其三视图如图所示),米堆底部的弧长为90尺,米堆的高为12尺.圆周率约为3.若将此堆米用草席盖上,则此草席的面积至少约为(计算结果保留整数,如544≈23,550≈23)( )A .250平方尺B .990平方尺C .1 035平方尺D .518平方尺[解析] (1)如图所示,取BC 的中点P ,连接PF ,则PF ⊥BC ,过F 作FQ ⊥AB ,垂足为Q .因为△ADE 和△BCF 都是边长为2的等边三角形,且EF ∥AB ,所以四边形ABFE 为等腰梯形,FP =3,则BQ =12(AB -EF )=1,FQ = BF 2-BQ 2=3,所以S 梯形EFBA =S 梯形EFCD =12×(2+4)×3=33, 又S △ADE =S △BCF =12×2×3=3,S 矩形ABCD =4×2=8, 所以该几何体的表面积S =33×2+3×2+8=8+8 3.故选B.(2)由三视图可知,米堆为圆锥的34,其中,圆锥的高为12尺,底面圆的周长的34为90尺.设圆锥的底面半径为r ,则34×2πr =90,由π≈3可得,r =20. 所以圆锥的母线长为202+122=544≈23(尺).易知草席的面积为圆锥的侧面积的34,即34×π×20×23=34×3×20×23=45×23=1035(平方尺).故选C.[答案](1)B(2)C[解题方略]求几何体的表面积的方法1.求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点.2.求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.题型二求空间几何体的体积[例3](1)(2019·天津高考)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.(2)(2019·江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为2,下底为4的直角梯形,俯视图是一个边长为4的等边三角形,则该几何体的体积为______.[解析](1)法一:由题意知圆柱的高恰为四棱锥的高的一半,圆柱的底面直径恰为四棱锥的底面正方形对角线的一半.因为四棱锥的底面正方形的边长为2,所以底面正方形对角线长为2,所以圆柱的底面半径为12.又因为四棱锥的侧棱长均为5,所以四棱锥的高为(5)2-12=2,所以圆柱的高为1.所以圆柱的体积V=π⎝⎛⎭⎫122·1=π4.法二:如图所示,在四棱锥V-ABCD中,O为正方形ABCD的中心,也是圆柱下底面的中心,由四棱锥底面边长为2,可得OC=1.设M为VC的中点,过点M作MO1∥OC交OV于点O1,则O1即为圆柱上底面的中心.∴O 1M =12OC =12,O 1O =12VO . ∵VO = VC 2-OC 2=2, ∴O 1O =1. 可得V 圆柱=π·O 1M 2·O 1O =π×⎝⎛⎭⎫122×1=π4. (2)把三视图还原成几何体ABC -DEF ,如图所示,在AD 上取点G ,使得AG =2,连接GE ,GF ,则把几何体ABC -DEF 分割成三棱柱ABC -GEF 和三棱锥D -GEF ,所以V ABC ­DEF =V ABC ­GEF +V D ­GEF =43×2+13×43×2=3233. [答案] (1)π4 (2)3233[解题方略]求空间几何体体积的常用方法公式法直接根据常见柱、锥、台等规则几何体的体积公式计算 等积法 根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等割补法 把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体1.(2019·重庆市学业质量调研)已知某几何体的三视图如图所示,则该几何体的体积为( )A.323B .643 C.1283 D .1603 解析:选B 由三视图知,该几何体是一个正方体切去四个三棱锥后所得的,其直观图如图中ABCD 所示,由三视图知正方体的棱长为4,正方体的体积为4×4×4=64,切去三棱锥的长、宽、高均为4,体积为13×12×4×4×4=323,所以所求几何体的体积为64-4×323=643.故选 B. 2.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .3034B .6034C .3034+135D .135 解析:选A 由菱形的对角线长分别是9和15,得菱形的边长为 ⎝⎛⎭⎫922+⎝⎛⎭⎫1522=3342,则这个棱柱的侧面积为4×3342×5=3034.故选A. 3.已知直四棱柱ABCD -A 1B 1C 1D 1的所有棱长都是1,∠ABC =60°,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,点H 在线段OB 1上,OH =3HB 1,点M 是线段BD 上的动点,则三棱锥M -C 1O 1H 的体积的最小值为________.解析:V 三棱锥M -C 1O 1H =V 三棱锥C 1­MO 1H =13×S △M O 1H ×h (h 为C 1到平面BDD 1B 1的距离),由已知可得C 1O 1⊥平面BDD 1B 1,又直四棱柱的所有棱长都为1,且∠ABC =60°,所以A 1B 1C 1D 1是菱形,C 1O 1=12,所以V 三棱锥M -C 1O 1H =13×12×12×O 1H ×h ′,其中h ′为M 到直线O 1H 的距离,O 1H 是定值,所以h ′最小时,V 三棱锥M -C 1O 1H 最小.如图,延长O 1H 交B 1B 于点F ,交OB 的延长线于点N ,连接OO 1,因为B 1H HO =13,所以B 1O 1NO =13,NO =332,NB =3,NO 1=1+⎝⎛⎭⎫3322=312,O 1H =14×312=318,M 到直线O 1H 的距离的最小值即B 到直线O 1H 的距离,NF =(3)2+⎝⎛⎭⎫232=3+49=313,所以h ′=3×23313=29331,所以(V 三棱锥M -C 1O 1H )min =112×318×29331=348. 答案:348考点三 与球有关的切、接问题题型一 外接球[例4] (2019·全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26πD .6π[解析] 因为点E ,F 分别为PA ,AB 的中点,所以EF ∥PB ,因为∠CEF =90°,所以EF ⊥CE ,所以PB ⊥CE .取AC 的中点D ,连接BD ,PD ,易证AC ⊥平面BDP ,所以PB ⊥AC ,又AC ∩CE =C ,AC ,CE ⊂平面PAC ,所以PB ⊥平面PAC .所以PB ⊥PA ,PB ⊥PC ,因为PA =PB =PC ,△ABC 为正三角形,所以PA ⊥PC ,即PA ,PB ,PC 两两垂直,将三棱锥P ­ABC 放在正方体中如图所示.因为AB =2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P -ABC的外接球的半径R =62,所以球O 的体积V =43πR 3=43π⎝⎛⎭⎫623=6π.故选D. [答案] D[解题方略] 解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.题型二 内切球[例5] 已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B .4π3 C.2π3 D .π2 [解析] 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C. [答案] C[解题方略]求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.题型三 与球有关的最值问题[例6] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A .12 3 B .18 3 C .24 3 D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B. [答案] B[解题方略]多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[多练强化]1.已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A .83π B .323π C .16π D .32π解析:选B 设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R=2,所以所求球的体积V =43πR 3=43π×23=323π.故选B. 2.(2019·福建五校第二次联考)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的直径为______.解析:如图,设BC 的中点为D ,B 1C 1的中点为D 1,连接DD 1,取其中点O ′,连接AD ,A 1D 1,则DA =DB =DC ,D 1A 1=D 1B 1=D 1C 1,且DD 1垂直于直三棱柱的上、下底面,所以点O ′到直三棱柱的各个顶点的距离相等,即点O ′为直三棱柱的外接球的球心O ,连接OB ,则球O 的直径为2BO =2BD 2+DO 2=2 ⎝⎛⎭⎫522+⎝⎛⎭⎫12×122=13. 答案:133.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积为______.解析:由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC=2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π. 答案:6423π直观想象——三视图中相关问题的求解[典例] 已知某几何体的三视图如图所示,则该几何体的体积等于( )A .2π+4B .4π+2 C.2π3+4 D .4π3+8 [解析] 由三视图可知,该几何体的直观图为左侧半球、中间正方体、右侧圆锥的组合体.其中,半球的半径r 1与圆锥的底面半径r 2相等,皆为1,即r 1=r 2=1,正方体的棱长a =2,圆锥的高h =2.所以半球的体积V 1=12×4π3r 31=12×4π3×13=2π3, 正方体的体积V 2=a 3=23=8,圆锥的体积V 3=13×πr 22h =13×π×12×2=2π3. 所以该组合体的体积V =V 1+V 2+V 3=2π3+8+2π3=4π3+8.故选D.[答案] D[素养通路]本题以组合体的三视图为背景,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.[专题过关检测]A组——“12+4”满分练一、选择题1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为()解析:选A由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A.故选A.2.(2019·福州市质量检测)棱长为1的正方体ABCD-A1B1C1D1木块的直观图如图所示,平面α过点D且平行于平面ACD1,则该木块在平面α内的正投影面积是()A.3B.32 3C. 2 D.1解析:选A棱长为1的正方体ABCD-A1B1C1D1木块在平面α内的正投影是三个全等的菱形,如图,正投影可以看成两个边长为2的等边三角形,所以木块在平面α内的正投影面积是2×12×2×2×32= 3.故选A.3.已知矩形ABCD,AB=2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所成几何体的侧面积分别记为S1,S2,则S1与S2的比值等于()A.12B .1C .2D .4 解析:选B 设BC =a ,AB =2a ,所以S 1=2π·a ·2a =4πa 2,S 2=2π·2a ·a =4πa 2,S 1∶S 2=1.故选B.4.设球O 是正方体ABCD -A 1B 1C 1D 1的内切球,若平面ACD 1截球O 所得的截面面积为6π,则球O 的半径为( )A.32 B .3 C.32D . 3解析:选B 如图,易知B 1D 过球心O ,且B 1D ⊥平面ACD 1,不妨设垂足为M ,正方体棱长为a ,则球半径R =a 2,易知DM =13DB 1,∴OM =16DB 1=36a ,∴截面圆半径r =⎝⎛⎭⎫a 22-OM 2=66a ,由截面圆面积S =πr 2=6π,得r =66a =6,a =6,∴球O 的半径为R =a 2=3.故选B. 5.(2019·武汉市调研测试)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为CD 的中点,则三棱锥A ­BC 1M 的体积VA ­BC 1M =( )A.12 B .14C.16D .112解析:选C VA ­BC 1M =VC 1­ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.6.(2019·武汉市调研测试)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.23π B .43πC .2πD .25π解析:选B 由三视图知,该几何体是由两个底面半径为1,高为2的圆锥组成的,所以该几何体的体积V =2×13×12×π×2=4π3.故选B.7.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥的体积为( ) A. 6 B .66C .6D .2 6解析:选B 由△ABC ,△ACD ,△ADB 的面积分别为22,32,62,且AB ,AC ,AD 两两垂直,可得⎩⎪⎨⎪⎧12AB ·AC =22,12AD ·AC =32,12AB ·AD =62,三个式子相乘可得(AB ·AC ·AD )2=6,∴该三棱锥的体积V =13×12AB ·AC ·AD =66.故选B.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4 C.π2D .π4解析:选B 设圆柱的底面半径为r ,球的半径为R ,过圆柱的轴线作一截面,如图.由勾股定理得r =R 2-⎝⎛⎭⎫122=32.∴该圆柱的体积V =Sh =π×⎝⎛⎭⎫322×1=3π4.故选B.9.若一个球与四面体的六条棱都相切,则称此球为四面体的棱切球.已知正四面体的棱长为2,则它的棱切球的体积为( )A .3π54B .π6 C .π3D .3π2解析:选B 将棱长为2的正四面体放入棱长为1的正方体中,则正四面体的棱为正方体的面对角线,所以正四面体的棱切球即为正方体的内切球,则球的半径R =12,体积V=43πR 3=π6.故选B. 10.已知点A ,B ,C ,D 均在球O 上,AB =BC =3,AC =3.若三棱锥D -ABC 体积的最大值为334,则球O 的表面积为( )A .36πB .16πC .12πD .163π 解析:选B 设△ABC 的外接圆的半径为r ,∵AB =BC =3,AC =3,∴∠ABC =120°,∴2r =3sin 120°=23,∴S △ABC =334,△ABC 的外接圆的半径为 3.∵三棱锥D -ABC 的体积的最大值为334,∴点D 到平面ABC 的最大距离为3.设球O 的半径为R ,则r 2=R 2-(3-R )2,解得R =2,∴球O 的表面积为4πR 2=16π.故选B.11.已知一个半径为7的球中有一个各条棱长都相等的内接正三棱柱,则正三棱柱的体积是( )A .18B .16C .12D .8解析:选A 设正三棱柱的棱长为2a ,如图,取球心为O ,过点O 作OO ′垂直三棱柱的上底面于点O ′,连接点O ′与上底面顶点A 交对棱于点B .则AB =3a ,AO ′=233a ,OO ′=a .在Rt △OO ′A 中,由勾股定理,得OA 2=OO ′2+O ′A 2. ∵OA =7,∴7=a 2+43a 2=73a 2.整理得a 2=3,∴a = 3.∴棱长为2a =2 3.∴正三棱柱的体积V =12×23×23× sin 60°×23=18.故选A.12.(2019·福州市质量检测)如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2D .9π4解析:选C 正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C. 二、填空题13.(2019·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为______.解析:记所有棱长都是2的三棱锥为P -ABC ,如图所示,取BC 的中点D ,连接AD ,PD ,作PO ⊥AD 于点O ,则PO ⊥平面ABC ,且OP =63×2=233,故三棱锥P ­ABC 的体积V =13S △ABC ·OP =13×34×(2)2×233=13. 答案:1314.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为______.解析:依题意知,四棱锥M -EFGH 为正四棱锥,正方形EFGH 的边长为⎝⎛⎭⎫122+⎝⎛⎭⎫122=22,四棱锥M ­EFGH 的高为12,所以四棱锥M -EFGH 的体积为13×⎝⎛⎭⎫222×12=112. 答案:11215.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为______.解析:由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为π×32×5+12×43π×33=63π.答案:63π16.已知三棱锥P-ABC的四个顶点都在球O的表面上,PA⊥平面ABC,AB⊥BC,且PA=8.若平面ABC截球O所得截面的面积为9π,则球O的表面积为______.解析:设球O的半径为R,由平面ABC截球O所得截面的面积为9π,得△ABC的外接圆的半径为3.设该外接圆的圆心为D,因为AB⊥BC,所以点D为AC的中点,所以DC =3.因为PA⊥平面ABC,易证PB⊥BC,所以PC为球O的直径.又PA=8,所以OD=12PA =4,所以R=OC=42+32=5,所以球O的表面积为S=4πR2=100π.答案:100πB组——“5+3”提速练1.(2019·合肥市第二次质量检测)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对解析:选C由三视图知该几何体是一个四棱锥,它有一个侧面与底面垂直,且顶点在底面上的射影在底面的一条边的中点处,即如图所示的四棱锥S-ABCD,平面SCD⊥平面ABCD.因为AD⊥DC,BC⊥DC,且平面SCD∩平面ABCD=DC,所以AD⊥平面SCD,BC⊥平面SCD,所以平面SAD⊥平面SCD,平面SBC⊥平面SCD.又由三视图知SC⊥SD,同时由AD⊥平面SCD,知AD⊥SC,又SD∩AD=D, 所以SC⊥平面SAD,所以平面SBC⊥平面SAD.综上可知,该多面体各表面所在平面互相垂直的有4对.故选C.2.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为( )A .1B .32C.92D .与M 点的位置有关解析:选B ∵BP PD 1=12,∴点P 到平面BCC 1B 1的距离是D 1到平面BCC 1B 1距离的13,即为D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M ­PBC =V P ­MBC =13×92×1=32.故选B.3.已知正方体ABCD -A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD -A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎤0,13 B .⎝⎛⎦⎤0,12 C.⎣⎡⎭⎫12,1D .⎣⎡⎦⎤12,23解析:选B 由题意,正方体ABCD -A 1B 1C 1D 1的棱长为1,如图所示,当点M 为线段BC 的中点时,截面为四边形AMND 1,当0<BM ≤12时,截面为四边形,当BM >12时,截面为五边形.故选B.4.已知直三棱柱ABC -A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为( )A .2 2B .3C .2 3D .4解析:选C 如图,不妨设N 在B 处,设AM =h ,CQ =m ,则MB 2=h 2+4,BQ 2=m 2+4,MQ 2=(h -m )2+4,由MB 2=BQ 2+MQ 2,得m 2-hm +2=0.Δ=h 2-8≥0⇒h 2≥8,该直角三角形斜边MB =4+h 2≥23,故该直角三角形斜边长的最小值为2 3.故选C.5.(2019·郑州市第二次质量预测)在△ABC 中,已知AB =23,BC =26,∠ABC =45°,D是边AC上的一点,将△ABD沿BD折叠,得到三棱锥A-BCD,若该三棱锥的顶点A在底面BCD上的射影M在线段BC上,设BM=x,则x的取值范围是() A.(0,23) B.(3,6)C.(6,23) D.(23,26)解析:选C将△ABD沿BD折起,得到三棱锥A-BCD,且点A在底面BCD上的射影M在线段BC上,所以在图b中,AM⊥平面BCD,MN,AN 都与BD垂直,因此,折叠前在图a中,AM⊥BD,垂足为N,在图a中可得当D点与C 点无限接近时,折痕BD接近BC,此时M与点M1无限接近.在图b中,由于AB是Rt△ABM的斜边,BM是直角边,所以BM<AB,由此可得BM1<BM<AB,因为在Rt△AM1B 中,BM1=AB cos 45°=23×22=6,所以6<BM<23,即6<x<2 3.故选C.6.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则四棱锥B-ACC1D的体积为________.解析:取AC的中点O,连接BO(图略),则BO⊥AC,所以BO⊥平面ACC1D.因为AB=2,所以BO= 3.因为D为棱AA1的中点,AA1=4,所以AD=2,所以S梯形ACC1D=12×(2+4)×2=6,所以四棱锥B-ACC1D的体积为13×6×3=2 3.答案:2 37.已知在正四棱锥S-ABCD中,SA=63,那么当该棱锥的体积最大时,它的高为________.解析:设正四棱锥的底面正方形的边长为a,高为h,因为在正四棱锥S-ABCD中,SA=63,所以a22+h2=108,即a2=216-2h2,所以正四棱锥的体积V S­ABCD=13a2h=72h-23h3,令y =72h -23h 3,则y ′=72-2h 2,令y ′>0,得0<h <6,令y ′<0,得h >6,所以当该棱锥的体积最大时,它的高为6.答案:68.(2019·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为⎝⎛⎭⎫13×32+12=233,则S 侧=3×12×2×233=23,S 底=12×3×2=3,所以三棱锥的表面积S 表=23+3=3 3.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S表·r =13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:334π81第2讲 空间位置关系的判断与证明[全国卷3年考情分析](1)高考对此部分的命题较为稳定,一般为“一小一大”或“一大”,即一道选择题(或填空题)和一道解答题或只考一道解答题.(2)选择题一般在第9~11题的位置,填空题一般在第14题的位置,多考查线面位置关系的判断,难度较小.(3)解答题多出现在第18或19题的第一问的位置,考查空间中平行或垂直关系的证明,难度中等.考点一 空间点、线、面的位置关系[大稳定——常规角度考双基]1.[命题真假的判定]已知直线m ,l ,平面α,β,且m ⊥α,l ⊂β,给出下列命题: ①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ; ③若m ⊥l ,则α⊥β;④若m ∥l ,则α⊥β. 其中正确的命题是( ) A .①④ B .③④ C .①②D .①③解析:选A 对于①,若α∥β,m ⊥α,则m ⊥β,又l ⊂β,所以m ⊥l ,故①正确,排除B.对于④,若m ∥l ,m ⊥α,则l ⊥α,又l ⊂β,所以α⊥β.故④正确.故选A.2.[判断直线与直线的位置关系](2019·全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线解析:选B 法一:取CD 的中点O ,连接EO ,ON .由△ECD 是正三角形,平面ECD ⊥平面ABCD ,知EO ⊥平面ABCD .∴EO ⊥CD ,EO ⊥ON .又N 为正方形ABCD 的中心,∴ON ⊥CD .以CD 的中点O 为原点, OD ―→方向为x 轴正方向建立空间直角坐标系,如图①所示. 不妨设AD =2,则E (0,0,3),N (0,1,0),D (1,0,0), M ⎝⎛⎭⎫12,0,32,B (-1,2,0),∴EN =12+(-3)2=2,BM =⎝⎛⎭⎫322+4+34=7,∴EN ≠BM . 连接BD ,BE ,∵点N 是正方形ABCD 的中心,∴点N 在BD 上,且BN =DN ,∴BM ,EN 是△DBE 的中线,∴BM ,EN 必相交.故选B.法二:如图②,取CD 的中点F ,DF 的中点G ,连接EF ,FN ,MG ,GB .∵△ECD 是正三角形,∴EF ⊥CD .∵平面ECD ⊥平面ABCD ,∴EF ⊥平面ABCD .∴EF ⊥FN .不妨设AB =2,则FN =1,EF =3,∴EN = FN 2+EF 2=2.∵EM =MD ,DG =GF ,∴MG ∥EF 且MG =12EF ,∴MG ⊥平面ABCD , ∴MG ⊥BG .∵MG =12EF =32, BG = CG 2+BC 2= ⎝⎛⎭⎫322+22=52, ∴ BM = MG 2+BG 2=7.∴ BM ≠EN .连接BD ,BE ,∵ 点N 是正方形ABCD 的中心,∴ 点N 在BD 上,且BN =DN ,∴ BM ,EN 是△DBE 的中线,∴ BM ,EN 必相交.故选B.3.[线面垂直、面面垂直的判定]如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF。

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积

为 7 ,SA与圆锥底面所成角为45°.若△SAB的面积为5 15,则该圆锥的侧面积
8

.
答案 40 2 π
解析 因为母线SA与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直
角三角形.设底面圆的半径为r,则母线长l= 2 r.在△SAB中,cos∠ASB= 7 ,所以
8
sin∠ASB= 15 .因为△SAB的面积为5 15,即 1 SA·SBsin∠ASB=1 · 2 r·2 r×
A.20π C.28π
B.24π D.32π
答案 C 由三视图知圆锥的高为2 3,底面半径为2,则圆锥的母线长为4,所
以圆锥的侧面积为 1 ×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=
2
16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.
2.(2018课标全国Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值
BC=3,AA1=5.设△ABC内切圆半径为r,则S△ABC=
1 2
×3×4=
1 2
×(3+4+5)r,解得r=1,
所以内切球最大半径为1,直径为2,由AA1=5得,最多可加工出2个球.
2.(2019洛阳联考)已知球O与棱长为4的正四面体的各棱相切,则球O的体积 为( A )
A.8 2 π
3
B.8 3 π
在△ACD中,AD⊥CD,S△ACD= 5 ;
2
在△BCD中,BD⊥CD,S△BCD=1 ,
2
所以表面积为 3 + 2 + 5 .故选A.
2
2
命题角度二 空间几何体的体积
1.(2018课标全国Ⅱ文,16,5分)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与

2020新课标高考数学讲义:空间几何体的三视图、表面积与体积含解析

2020新课标高考数学讲义:空间几何体的三视图、表面积与体积含解析

求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得不规则几何体的表面积.命题角度二 空间几何体的体积(1)(20xx·河北衡水中学四调)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A .2 000π9B .4 000π27C .81πD .128π(2)(一题多解)如图,在直角梯形ABCD 中,AD =AB =4,BC =2,沿中位线EF 折起,使得∠AEB 为直角,连接AB ,CD ,则所得的几何体的表面积为________,体积为________.【解析】 (1)小圆柱的高分为上下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,体积V 单调递增;当53<h<5时,V ′<0,体积V 单调递减.所以当h =53时,小圆柱的体积取得最大值,即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. (2)如图,过点C 作CM 平行于AB ,交AD 于点M ,作CN 平行于BE ,交EF 于点N ,连接MN .由题意可知ABCM ,BENC 都是矩形,AM =DM =2,CN =2,FN =1,AB =CM =22,所以S △AEB =12×2×2=2,S 梯形ABCD =12×(2+4)×22=62,S 梯形BEFC =12×(2+3)×2=5,S 梯形AEFD =12×(3+4)×2=7,在直角三角形CMD 中,CM =22,MD =2, 所以CD =23.又因为DF =FC =5,所以S △DFC =12×23×2=6,所以这个几何体的表面积为2+62+5+7+6=14+62+6.所以AS 为三棱锥S -ABC 的高,所以V S ­ABC =13×6×2×12×23=43,故选C.2.(20xx·江苏南通联考)已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.解析:如图,取BC 中点O ,连接AO .因为正三棱柱ABC -A 1B 1C 1的各棱长均为2,所以AC =2,OC =1,则AO =3.因为AA 1∥平面BCC 1B 1,所以点D 到平面BCC 1B 1的距离为3. 又S △BB 1C 1=12×2×2=2,所以VD ­BB 1C 1=13×2×3=233.答案:233与球有关的切、接问题[典型例题]A.12B.14C.16D.112解析:选C.V A ­BC 1M =V C 1­ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.3.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( ) A .10 B .103 C .102D .53解析:选B.设圆锥的底面半径为r ,高为h .因为半圆的弧长等于圆锥的底面周长,半圆的半径等于圆锥的母线,所以2πr =20π,所以r =10,所以h =202-102=103.4.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163π C.323π D .16π解析:选D.如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA2+AB2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D.5.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1,则点B 到平面D 1AC 的距离等于( )A.33B.63C .1 D.2解析:选B.如图,连接BD 1,易知D 1D 就是三棱锥D 1­ABC 的高,AD 1=CD 1=5,取AC 的中点O ,连接D 1O ,则D 1O ⊥AC ,所以D 1O =AD21-AO 2=3.设点B 到平面D 1AC 的距离为h ,则由V B ­D 1AC =V D 1­ABC ,即13S △D 1AC ·h =13S △ABC ·D 1D ,又S △D 1AC =12D 1O ·AC =12×3×22=6,S △ABC =12AB ·BC =12×2×2=2,所以h =63.故选B. 6.在三棱锥S -ABC 中,SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,AB =12SC ,且三棱锥S -ABC 的体积为932,则该三棱锥的外接球半径是( ) A .1B .2C .3D .4解析:选C.取SC 的中点O ,连接OA ,OB ,则OA =OB =OC =OS ,即O 为三棱锥的外接球球心,设半径为r ,则13×2r ×34r 2=932,所以r =3. 7.(20xx·安徽省江南十校3月检测)我国南北朝时期的科学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体在等高处的水平截面的面积恒等,那么这两个几何体的体积相等.利用此原理求以下几何体的体积:如图,曲线y =x 2(0≤y ≤L )和直线y =L 围成的封闭图形绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,得截面圆的面积为π(l )2=πl .由此构造右边的几何体Z 1(三棱柱ABC -A 1B 1C 1),其中AC ⊥平面α,BB 1C 1C ∥α,EFPQ ∥α,AC =L ,AA 1⊂α,AA 1=π,Z 1与Z 在等高处的截面面积都相等,图中EFPQ 和BB 1C 1C 为矩形,且PQ =π,FP =l ,则几何体Z 1的体积为( )A .πL 2B .πL 3C.12πL 2D.12πL 3 解析:选C.由题意可知,在高为L 处,几何体Z 和Z 1的水平截面面积相等,为πL ,所以S 矩形BB 1C 1C =πL ,所以BC =L ,所以V 三棱柱ABC -A 1B 1C 1=S △ABC ·π=12πL 2,故选C. 8.(20xx·××市七校联合考试)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( )A .18B .12C .63D .43解析:选B.由题意知,球心在三棱锥的高PE 上,设内切球的半径为R ,则S 球=4πR 2=16π,所以R =2,所以OE =OF =2,OP =4.在Rt △OPF 中,PF =OP2-OF2=23.因为△OPF ∽△DPE ,所以OF DE =PF PE,得DE =23,AD =3DE =63,AB =23AD =12.故选B. 9.(多选)下列说法正确的是( )A .用一个平面截一个球,得到的截面是一个圆面B .圆台的任意两条母线延长后一定交于一点C .有一个面为多边形,其余各面都是三角形的几何体叫作棱锥D .若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是正六棱锥解析:选ABD.在A 中,用一个平面截一个球,得到的截面是一个圆面,故A 正确;在B 中,由圆台的概念知圆台的任意两条母线延长后一定交于一点,故B 正确;在C 中,依照棱锥的定义,其余各面的三角形必须有公共的顶点,故C 错误;在D 中,若六棱锥的底面边长都相等,则底面为正六边形,由过底面中心和顶点的截面知,若以正六边形为底面,侧棱长一定大于底面边长,故D 正确.10.(多选)在正方体上任意选择4个顶点,它们可能是如下几种几何图形的4个顶点,这些几何图形可以是( )A .矩形B .有三个面为等腰直角三角形,有一个面为等边三角形的四面体C .每个面都是直角三角形的四面体D .每个面都是等边三角形的四面体解析:选ABCD.4个顶点连成矩形的情形显然成立;图(1)中四面体A 1­D 1B 1A 是B 中描述的情形;图(2)中四面体D -A 1C 1B 是D 中描述的情形;图(3)中四面体A 1­D 1B 1D 是C 中描述的情形.正三棱锥的高为18-12=6.答案:614.(20xx·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.解析:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以圆柱的体积为π×⎝⎛⎭⎫122×1=π4. 答案:π415.(20xx·高考全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为____________.解析:如图,过点P 分别作PE ⊥BC 交BC 于点E ,作PF ⊥AC 交AC于点F .由题意知PE =PF =3.过P 作PH ⊥平面ABC 于点H ,连接HE ,HF ,HC ,易知HE =HF ,则点H 在∠ACB 的平分线上,又∠ACB =90°,故△CEH 为等腰直角三角形.在Rt △PCE 中,PC =2,PE =3,则CE =1,故CH =2,在Rt △PCH 中,可得PH =2,即点P 到平面ABC 的距离为2.答案:216.(20xx·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为⎝⎛⎭⎫13×32+12=233,则S 侧=3×12×2×233=23,S 底=12×3×2=3,所以三棱锥的表面积S 表=23+3=33.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S 表·r =13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:334π81。

2020届高考数学(文)二轮复习全程方略课件:专题四 立体几何 (1)空间几何体的三视图表面积及体积

2020届高考数学(文)二轮复习全程方略课件:专题四 立体几何 (1)空间几何体的三视图表面积及体积
答案:(1)C (2)B
[规律方法] 1.由几何体的三视图求其表面积:(1)关键是分析三 视图确定几何体中各元素之间的位置关系及度量大小.(2) 还原几何体的直观图,套用相应的面积公式. 2.(1)多面体的表面积是各个面的面积之和;组合体 的表面积注意衔接部分的处理. (2)旋转体的表面积问题注意其侧面展开图的应用.
长为 2,侧棱长为 3,D 为 BC 中点,则三棱锥 A-B1DC1 的体积为( )
A.3
B.32
C.1
D.
3 2
解析:(1)该几何体由一个长、宽、高分别为 2,1,1
的长方体和两个底面半径为 1,高为 1 的14圆柱体构成, 所以 V=2×1×1+2×14×π×12×1=2+π2.
(2)由题意可知,AD⊥平面 B1DC1,即 AD 为三棱锥 A­B1DC1 的高,且 AD= 23×2= 3,
侧(左)视图为直角三角形,则该三棱锥最长的棱长等于 ()
A.4 2 B. 34 C. 41 D.5 2
解析:(1)由直观图知,俯视图应为正方形,又上半 部分相邻两曲面的交线为可见线,在俯视图中应为实线, 因此,选择项 B 可以是几何体的俯视图.
(2)根据几何体的三视图,知该几何体是底面为直角 三角形,两侧面垂直于底面,高为 5 的三棱锥 P-ABC.棱 锥最长的棱长 PA= 25+16= 41.
解:将直三棱柱补形为长方体 ABEC-A1B1E1C1,
则球 O 是长方体 ABEC-A1B1E1C1 的外接球.
所以体对角线 BC1 的长为球 O 的直径. 因此 2R= 32+42+122=13. 故 S 球=4πR2=169π.
[规律方法] 1.与球有关的组合体问题,一种是内切,一种是外 接.球与旋转体的组合通常是作它们的轴截面解题,球与 多面体的组合,通过多面体的一条侧棱和球心,或“切 点”“接点”作出截面图,把空间问题化归为平面问题.

2020版高考数学大二轮复习第二部分专题3立体几何第1讲空间几何体的三视图、表面积与体积课件文

2020版高考数学大二轮复习第二部分专题3立体几何第1讲空间几何体的三视图、表面积与体积课件文

22π A. 3
25π C. 3
23π B. 3
26π D. 3
解析:由几何体的三视图,可确定该几何体为一个大球的34,和一个小球的14组合而成, 由题意可得,大球的半径为 2,小球的半径为 1,所以该几何体的体积为34×43π×23+14 ×43π×13=235π.故选 C.
答案:C
[题后悟通] 1.求几何体的表面积的方法 (1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化, 这是解决立体几何的主要出发点. (2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、 锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.
2.与球有关的组合体的常用结论
(1)长方体的外接球
①球心:体对角线的交点.
②半径:r= a2+2b2+c2(a,b,c 为长方体的长、宽、高). (2)正方体的外接球、内切球
①外接球:球心是正方体中心,半径
r=
3 2 a(a
为正方体的棱长).
②内切球:球心是正方体中心,半径 r=a2(a 为正方体的棱长).
以选择题与填空题为主,考查空间几何体的 1.根据三视图求几何体的表面积与体积.
表面积与体积的计算,涉及空间几何体的结 2.根据几何体求其表面积与体积.
构特征、三视图等内容,要求考生要有较强
的空间想象能力和计算能力,广泛应用转化
与化归思想.
[题组练透]
1.(2019·大连模拟)已知圆锥的母线长为 6,母线与轴的夹角为 30°,则此圆锥的体积
4.已知一个四棱锥的正(主)视图和俯视图如图所示,其中 a+b=10.则该四棱锥的高的 最大值为________.
解析:如图所示, 由题意知,平面 PAD⊥平面 ABCD,设点 P 到 AD 的距离为 x, 当 x 最大时,四棱锥的高最大, 因为 PA+PD=a+b=10>6, 所以点 P 的轨迹为一个椭圆, 由椭圆的性质得,当 a=b 时,x 取得最大值 52-32=4,即该四棱锥的高的最大值为 4. 答案:4

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

高考数学立体几何专题1空间立体几何的三视图、表面积和体积

专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥P­ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥P­ABC 可看作由正方体PADC­BEFG 截得,如图所示,PF 为三棱锥P­ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。

2020版高三数学二轮复习(全国理)讲义:专题五 第一讲 空间几何体的三视图、表面积及体积

2020版高三数学二轮复习(全国理)讲义:专题五   第一讲 空间几何体的三视图、表面积及体积

专题五 立体几何第一讲 空间几何体的三视图、表面积及体积高考考点考点解读空间几何体的三视图与直观图的关系 1.根据某几何体的部分三视图,判断该几何体的其他三视图;或者已知某几何体的三视图,判断该几何体的形状2.考查三视图的画法以及数量关系空间几何体的表面积与体积的计算 1.以三视图为命题背景,考查空间几何体体积、表面积的计算方法2.以空间几何体为命题背景考查空间几何体体积、表面积的计算方法多面体与球的切、接问题以球与多面体为背景,考查球的截面性质备考策略本部分内容在备考时应注意以下几个方面:(1)加强对空间几何体结构特征的理解,掌握各种几何体的体积、表面积公式.(2)掌握空间几何三视图的画法规则,掌握几何直观图中各个元素之间的关系以及三视图中长宽之间的关系.(3)掌握球及球的截面的性质.预测2020年命题热点为:(1)已知空间几何体的三视图,求空间几何体的体积、表面积.(2)已知空间几何体中各元素间的关系,求几何体的体积、表面积.(3)给出球体与多面体,利用球的性质求解球的体积、表面积等.Z知识整合hi shi zheng he 1.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V 棱柱=Sh(S 为底面积,h 为高)S 棱柱=2S 底面+S 侧面棱锥V 棱锥=!!!! Sh13(S 为底面积,h 为高)S 棱锥=S 底面+S 侧面棱台V 棱台=h (S ++S ′)13SS ′S 棱台=S 上底+S 下底+S 侧面(S 、S ′为底面积,h 为高)圆柱V 圆柱=πr 2h(r 为底面半径,h 为高)S 圆柱=2πrl +2πr 2(r 为底面半径,l 为母线长)圆锥V 圆锥=!!!! πr 2h 13(r为底面半径,h 为高)S 圆锥=πrl +πr 2(r 为底面半径,l 为母线长)圆台V 圆台=πh (r 2+rr ′+r ′2)13(r 、r ′为底面半径,h 为高)S 圆台=π(r +r ′)l +πr 2+πr ′2球V 球=!!!! πR 3(R 为43球的半径)S 球=4πR 2(R 为球的半径)2.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.Y易错警示i cuo jing shi 1.未注意三视图中实、虚线的区别在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.2.不能准确分析组合体的结构致误对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差.3.台体可以看成是由锥体截得的,此时截面一定与底面平行.4.空间几何放置的方式不同时,对三视图可能会有影响.1. (2018·全国卷Ⅲ,3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( A )[解析] 选A.由直观图可知选A.2.(文)(2018·全国卷Ⅰ,5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B ) 2A.12πB.12π2C.8πD.10π222 [解析] 截面面积为8,所以高h=2,底面半径r=,所以该圆柱表面积S=π·() 222·2+2π··2=12π.(理)(2018·全国卷Ⅰ,7)某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( B )175A.2B.2C.3 D.2[解析] 选B.将三视图还原为圆柱,M,N的位置如图1所示,将侧面展开,最短路42+225径为M,N连线的距离,所以MN==2.3.(2018·浙江卷,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( C )A .2B .4C .6D .8[解析] 选C .由三视图可知,该几何体是底面为直角梯形的直四棱柱,底面面积S ==3,高h =2,所以V =Sh =6.(1+2)×224.(2018·北京卷,5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( C )A .1B .2C .3D .4[解析] 选C .将四棱锥三视图转化为直观图,如图,侧面共有4个三角形,即△PAB ,△PBC ,△PCD ,△PAD ,由已知,PD ⊥平面ABCD ,又AD ⊂平面ABCD ,所以PD ⊥AD ,同理PD ⊥CD ,PD ⊥AB ,所以△PCD ,△PAD 是直角三角形.因为AB ⊥AD ,PD ⊥AB ,PD ,AD ⊂平面PAD ,PD ∩AD =D ,所以AB ⊥平面PAD ,又PA ⊂平面PAD ,所以AB ⊥PA ,△PAB 是直角三角形.因为AB =1,CD =2,AD =2,PD =2,所以PA ==2,PC ==2,PD 2+AD 22PD 2+CD 22PB ==3,PA 2+AB 2在梯形ABCD 中,易知BC =,5△PBC 三条边长为2,3,,△PBC 不是直角三角形.25综上,侧面中直角三角形个数为3.5.(文)(2018·全国卷Ⅰ,10)在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( C )A .8B .6 2C .8D .823[解析]选C .如图,连接AC 1和BC 1,因为AB ⊥平面BB 1C 1C ,AC 1与平面BB 1C 1C 所成角为30°,所以∠AC 1B =30°,所以=tan30°,BC 1=2,所以CC 1=2,所以V =2×2×2=8.ABBC 13222(理)(2018·全国卷Ⅲ,10)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9,则三棱锥D ­ABC 体积的最大值为( B )3A .12B .18 33C .24D .5433[解析] 设△ABC 的边长为a ,则S △ABC =a 2sin C =a 2=9,解得a =6,12343如图所示,当点D 在底面上的射影为三角形ABC 的中心H 时,三棱锥D ­ABC 的体积最大,设球心为O ,则在直角三角形AHO 中,AH =××6=2,OA =R =4,则OH =23323==2,所以DH =2+4=6,所以三棱锥D ­ABC 的体积最大值为OA 2-AH 216-12V =S △ABC ×DH =×9×6=18.1313336.(文)(2018·天津卷,11)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则四棱锥A 1­BB 1D 1D 的体积为.13[解析] 连接A 1C 1,交B 1D 1于O 1点,依题意得A 1O 1⊥平面BB 1D 1D ,即A 1O 1为四棱锥A 1­BB 1D 1D 的高,且A 1O 1=,而四棱锥A 1­BB 1D 1D 的底面为22矩形,其面积为,所以四棱锥A 1­BB 1D 1D 的体积V =Sh =××=.2131322213(理)(2018·天津卷,11)已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M ­EFGH 的体积为.112[解析] 依题意得:该四棱锥M ­EFGH 为正四棱锥,其高为正方体棱长的一半,即为,12正方形EFGH 的边长为,其面积为,所以四棱锥M ­EFGH 的体积2212V M ­EFGH =Sh =××=.131312121127.(2018·全国卷Ⅱ,16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为,SA 78与圆锥底面所成角为45°,若△SAB 的面积为5,则该圆锥的侧面积为40π.152[解析] 如图:设SA =SB =l ,底面圆半径为r ,因为SA 与圆锥底面所成角为45°,所以l =r ,在2△SAB 中,AB 2=SA 2+SB 2-2SA ·SB ·cos ∠ASB =r 2,12AB =r ,AB 边上的高为=r ,△SAB 的面积为5,22(2r )2-(24r )230415所以·r ·r =5,解得r =2,12223041510所以该圆锥的侧面积为πrl =πr 2=40π.228.(2017·全国卷Ⅰ,16)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为36π.[解析] 如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC ,知OA ⊥平面SCB .设球O 的半径为r ,则OA =OB =r ,SC =2r ,∴三棱锥S -ABC 的体积V =×(SC ·OB )·OA =,1312r 33即=9,r 33∴r =3,∴S 球表=4πr 2=36π.命题方向1 空间几何体的三视图与直观图的对应关系 例1 (1)下列三视图所对应的直观图是( C )[解析] 由题意可知,几何体的直观图下部是长方体,上部是圆柱,并且高相等,所以C 选项符合题意.(2)(2018·肇庆一模)已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( C )[解析] 由题意该四棱锥的直观图如图所示:则其三视图如图:(3)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟台)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( B )[解析] 因为相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟台)在一起的方形伞(方盖).所以其正视图和侧视图都是一个圆,因为俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上,所以俯视图是有2条对角线且为实线的正方形.『规律总结』1.由直观图确认三视图的方法根据空间几何体三视图的定义及画法规则和摆放规则确认.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.G跟踪训练en zong xun lian 1.(2018·南宁一模)一个简单几何体的正视图、侧视图如图所示,则其俯视图可能是(B )①长、宽不相等的长方形;②正方形;③圆;④椭圆.A .①② B .①④C .②③D .③④[解析] 由题设条件知,正视图中的长与侧视图中的长不一致,对于①,俯视图是长方形是可能的,比如此几何体为一个长方体时,满足题意;对于②,由于正视图中的长与侧视图中的长不一致,故俯视图不可能是正方形;对于③,由于正视图中的长与侧视图中的长不一致,故俯视图不可能是圆形;对于④,如果此几何体是一个椭圆柱,满足正视图中的长与侧视图中的长不一致,故俯视图可能是椭圆.综上知①④是可能的图形.2.一只蚂蚁从正方体ABCD -A 1B 1C 1D 1的顶点A 处出发,经正方体的表面,按最短路线爬行到顶点C 1处,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是(C )A .(1)(2) B .(1)(3)C .(2)(4)D .(3)(4)[解析] 爬行路线为时正视图为(2);爬行路线是时,正视图为(4),故选C .命题方向2 空间几何体的表面积与体积例2 (1)(2017·全国卷Ⅰ,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( B )A .10 B .12C .14D .16[解析] 观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2××(2+4)×2=12.12故选B .(2)(2017·山东卷,13)由一个长方体和两个圆柱体构成的几何体的三视图如下,则该14几何体的体积为2+.π2[解析] 该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2××π×12×1=2+.14π2『规律总结』求几何体的表面积与体积问题,熟记公式是关键,应多角度全方位的考虑.1.给出几何体的形状、几何量求体积或表面积,直接套用公式.2.用三视图给出几何体,先依据三视图规则想象几何体的形状特征,必要时画出直观图,找出其几何量代入相应公式计算.3.用直观图给出几何体,先依据线、面位置关系的判定与性质定理讨论分析几何体的形状特征,再求体积或表面积.4.求几何体的体积常用等积转化的方法,转换原则是其高易求,底面在几何体的某一面上,求不规则几何体的体积,主要用割补法.G跟踪训练en zong xun lian 1.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( D )A . B . 1817C .D .1615[解析] 由三视图得,在正方体ABCD ­A 1B 1C 1D 1中,截去四面体A ­A 1B 1D 1,如图所示,设正方体棱长为a ,则VA ­A 1B 1D 1=×a 3=a 3,故剩余几何体体积为a 3-a 3=a 3,所以1312161656截去部分体积与剩余部分体积的比值为,故选D .152.(2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( A )28π3A .17πB .18πC .20πD .28π[解析] 由三视图可得此几何体为一个球切割掉后剩下的几何体,设球的半径为r ,18故×πr 3=π,所以r =2,表面积S =×4πr 2+πr 2=17π,选A .78432837834命题方向3 多面体与球 例3 (1)已知正四棱锥P -ABCD 内接于一个半径为R 的球,则正四棱锥P -ABCD 体积的最大值是( C )A . B . 16R 38132R 381C . D .R 364R 381[解析] 如图,记O 为正四棱锥P -ABCD 外接球的球心,O 1为底面ABCD 的中心,则P ,O ,O 1三点共线,连接PO 1,OA ,O 1A .设OO 1=x ,则O 1A =,AB =·,PO 1=R +x ,R 2-x 22R 2-x 2所以正四棱锥P -ABCD 的体积V =AB 2×PO 1=×2(R 2-x 2)·(R +x )1313=×(2R -2x )(R +x )·(R +x )≤[]3=,1313(2R -2x )+(R +x )+(R +x )364R 381当且仅当2R -2x =R +x ,即x =时取等号.R3(2)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为πa 2.73[解析] 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a .设O ,O 1分别为下、上底面的中心,且球心O 2为O 1O 的中点,又AD =a ,AO =a ,OO 2=,设球的半径为R ,则3233a2R 2=AO =a 2+a 2=a 2,所以S 球=4πR 2=4π×a 2=πa 2.2131471271273『规律总结』多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P 、A 、B 、C 构成的三条线段PA 、PB 、PC 两两垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R 2=a 2+b 2+c 2求解.(3)正方体的内切球的直径为正方体的棱长.(4)球和正方体的棱相切时,球的直径为正方体的面对角线长.(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.G跟踪训练en zong xun lian 1.(2018·重庆测试)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,PC 为球O 的直径,该三棱锥的体积为,则球O 的表面积为( A )26A .4π B .8πC .12πD .16π[解析] 依题意,设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是PC的中点得,点P 到平面ABC 的距离等于2d ,所以V P -ABC =2V O -ABC =2×S △ABC ×d =×1323×12×d =,解得d =,又R 2=d 2+()2=1,所以球O 的表面积等于4πR 2=4π,选34262333A .2.(2017·陕西西安模拟)已知三棱锥D -ABC 中,AB =BC=1,AD =2,BD =,AC =,BC ⊥AD ,则该三棱锥的外接球的表面积为( B )52A .πB .6π 6C .5πD .8π[解析] 由勾股定,知DA ⊥BC ,AB ⊥BC ,∴BC ⊥平面DAB ,∴BC ⊥BD ,∴CD ==.BD 2+BC 26∴AC 2+AD 2=2+4=6=CD 2,∴DA ⊥AC .取CD 的中点O ,由直角三角形的性质知,O 到点A ,B ,C ,D 的距离均为,其即62为三棱锥的外接球球心.故三棱锥的外接球的表面积为4π·()2=6π.62A 组1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,AB =BC =AA 1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( C )[解析] 由直观图和俯视图知,正视图中点D 1的射影是B 1,所以正视图是选项C 中的图形,A 中少了虚线,故不正确.2.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( C )A .20π B .24πC .28πD .32π[解析] 该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r =2,底面圆的周长c =2πr =4π,圆锥的母线长l ==4,圆柱的高h =4,所以该几何22+(23)2体的表面积S 表=πr 2+ch +cl =4π+16π+8π=28π,故选C .123.(文)一个几何体的三视图如图所示,则该几何体的体积为( A )A .12-πB .12-2πC .6-πD .4-π[解析] 由三视图知,该几何体是一个组合体,由一个长方体挖去一个圆柱构成,长方体的长、宽高为4,3,1,圆柱底半径1,高为1,∴体积V =4×3×1-π×12×1=12-π.(理)若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( B )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3[解析] 由三视图知该几何体是四棱锥,可视作直三棱柱ABC -A 1B 1C 1沿平面AB 1C 1截去一个三棱锥A -A 1B 1C 1余下的部分.∴VA -BCC 1B 1=VABC -A 1B 1C 1-VA -A 1B 1C 1=×4×3×5-×(×4×3)121312×5=20cm 3.4.某几何体的三视图如图所示,则该几何体的表面积为( B )A .18+2πB .20+πC .20+D .16+ππ2[解析] 由三视图可知,这个几何体是一个边长为2的正方体割去了相对边对应的两个半径为1、高为1的圆柱体,其表面积相当于正方体五个面的面积与两个圆柱的侧面1414积的和,即该几何体的表面积S =4×5+2×2π×1×1×=20+π.14故选B .5.(2018·双鸭山一模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( A )A .B .16π38π3C .4D .2π33[解析] 由已知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体有一个侧面PAC 垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如3图.则这个几何体的外接球的球心O 在高线PD 上,且是等边三角形PAC 的中心,这个几何体的外接球的半径R =PD =.23233则这个几何体的外接球的表面积为S =4πR 2=4π×()2=.23316π36.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为.16[解析] 利用三棱锥的体积公式直接求解.VD 1-EDF =VF -DD 1E =SD 1DE ·AB =××1×1×1=.131312167.已知E ,F 分别是矩形ABCD 的边BC 与AD 的中点,且BC =2AB =2,现沿EF 将平面ABEF 折起,使平面ABEF ⊥平面EFDC ,则三棱锥A -FEC 外接球的体积为π.32[解析] 如图,平面ABEF ⊥平面EFDC ,AF ⊥EF ,所以AF ⊥平面ECDF ,将三棱锥A -FEC 补成正方体ABC ′D ′-FECD .依题意,其棱长为1,外接球的半径R =,32所以外接球的体积V =πR 3=π·()3=π.434332328.(文)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =,求三棱柱ABC -A 1B 1C 1的体积.6[解析] (1)取AB 的中点O ,连接OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1=.3又A 1C =,则A 1C 2=OC 2+OA ,故OA 1⊥OC .621因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABC =.故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3.3(理)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =AD ,∠BAD =∠ABC =90°.12(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为2,求四棱锥P -ABCD 的7体积.[解析] (1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为12正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =x ,PM =x ,PC =PD =2x .23如图,取CD 的中点N ,连接PN ,则PN ⊥CD ,所以PN =x .142因为△PCD 的面积为2,7所以×x ×x =2,1221427解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2.3所以四棱锥P -ABCD 的体积V =××2=4.132(2+4)233B 组1.(文)某三棱锥的三视图如图所示,则该三棱锥的体积为( D )A .60B .30C .20D .10[解析] 由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P -ACD =××3×5×4=10.1312故选D .(理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( B )A .3B .2 23C .2D .22[解析] 在正方体中还原该四棱锥,如图所示,可知SD 为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD ==2.22+22+223故选B .2.(2018·宜宾一模)三棱锥A -BCD 内接于半径为2的球O ,BC 过球心O ,当三棱锥A -BCD 体积取得最大值时,三棱锥A -BCD 的表面积为( D )A .6+4B .8+233C .4+6D .8+433[解析] 由题意,BC 为直径,△BCD 的最大面积为×4×2=4,12三棱锥A -BCD 体积最大时,AO ⊥平面BCD ,三棱锥的高为2,所以三棱锥A -BCD 的表面积为4×2+2××2×=8+4.122633.三棱锥P -ABC 中,PA ⊥平面ABC 且PA =2,△ABC 是边长为的等边三角形,3则该三棱锥外接球的表面积为( C )A .B .4π 4π3C .8π D .20π[解析] 由题意得,此三棱锥外接球即为以△ABC 为底面、以PA 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =××=1,外接球球心到△ABC 的外接圆圆心的32323距离d =1,所以外接球的半径R ==,所以三棱锥外接球的表面积r 2+d 22S =4πR 2=8π,故选C .4.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( B )A .2B .2 23C .4D .26[解析] 如图,四面体的直观图是棱长为2的正方体ABCD -MNPQ 中的三棱锥Q -BCN ,且QB ==2,NC =QN =QC =2,四面体Q -BCN 各面的面积22+(22)232分别为S △QBN =S △QBC =×2×2=2,S △BCN =×2×2=2,S △QCN =×(2)2=2,1222123423面积最大为2.35.三棱锥S -ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( B )A .2B .4 112C .D .16383[解析] 由已知中的三视图可得SC ⊥平面ABC ,且底面△ABC 为等腰三角形,在△ABC 中AC =4,AC 边上的高为2,3故BC =4,在Rt △SBC 中,由SC =4,可得SB =4.26.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等且=,则的值是.V 1V 232S 1S 294[解析] 设甲、乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,又=,∴=,∴=,则=()2=.V 1V 2πr 21h 1πr 2h 2V 1V 2r 1r 2r 1r 232S 1S 2r 1r 2947.已知在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,将直角梯形ABCD 沿AC 折叠成三棱锥D -ABC ,当三棱锥D -ABC 的体积取最大值时,其外接球的体积为π.43[解析] 当平面DAC ⊥平面ABC 时,三棱锥D -ABC 的体积取最大值.此时易知BC ⊥平面DAC ,∴BC ⊥AD ,又AD ⊥DC ,∴AD ⊥平面BCD ,∴AD ⊥BD ,取AB 的中点O ,易得OA =OB =OC =OD =1,故O 为所求外接球的球心,故半径r =1,体积V =πr 3=π.43438.(文)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ____ACD 的体积为,求该三棱锥的侧面63积.[解析] (1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =x ,32GB =GD =.x2因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =x .32由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =x .22由已知得,三棱锥E ­ACD 的体积V E ­ACD =×AC ·GD ·BE =x 3=.131262463故x =2.从而可得AE =EC =ED =.6所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为.5 故三棱锥E ­ACD 的侧面积为3+2.5(理)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.(1)求证:AC ⊥平面BDEF ;(2)求证:平面BDGH //平面AEF ;(3)求多面体ABCDEF 的体积.[解析] (1)证明:因为四边形ABCD 是正方形,所以AC ⊥BD .又因为平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,且AC ⊂平面ABCD ,所以AC ⊥平面BDEF .(2)证明:在△CEF 中,因为G 、H 分别是CE 、CF 的中点,所以GH ∥EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF ,所以GH ∥平面AEF .设AC ∩BD =O ,连接OH ,在△ACF 中,因为OA =OC ,CH =HF ,所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF ,所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH ,所以平面BDGH ∥平面AEF .(3)解:由(1),得AC ⊥平面BDEF ,又因为AO =,四边形BDEF 的面积S BDEF =3×2=6,222所以四棱锥A -BDEF 的体积V 1=×AO ×S BDEF =4.13同理,四棱锥C -BDEF 的体积V 2=4.所以多面体ABCDEF 的体积V =V 1+V 2=8.。

《走向高考》高三数学二轮复习 第1讲空间几何体专题攻略课件 理 新人教

《走向高考》高三数学二轮复习 第1讲空间几何体专题攻略课件 理 新人教

•17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/152022/1/152022/1/151/15/2022
•18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
2022/1/152022/1/15
(1)当圆柱底面半径r取何值时,S取得最大值?并 求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的 灯笼,请作出用于制作灯笼的三视图(作图时,不 需考虑骨架等因素).
【解】 (1)由题意可知矩形的高即圆柱的母线长 为9.6-88×2r=1.2-2r,
制作灯笼的三视图如图.
【方法总结】 空间几何体中面积和体积的最值, 一般利用函数思想,在构造函数时,要利用空间几 何体的性质,合理引入自变量,利用函数性质求得 最值.
高考动态聚焦
考情分析
从近几年高考来看,本讲高考命题具有以下特点: 1.柱、锥、台、球以及简单组合体的结构特征是基 础,以它们为载体考查线面位置关系是重点. 2.柱、锥、台、球的表面积、体积的考查常以选择 题和填空题的形式出现. 3.对三视图的考查呈逐年增强的趋势,既有选择题、 填空题又有解答题,应引起高度重视.
热点突破探究
典例精析
题型一 空间几何体的表面积和体积
例1 (2010 年高考大纲全国卷Ⅱ)已知正四棱锥
S-ABCD 中,SA=2 3,那么当该棱锥的体积
最大时,它的高为( )
A.1
B. 3
C.2
D.3
【解析】 如图所示,设正四棱锥 S-ABCD 的高 SO=h.
在 Rt△SOA 中,SA=2 3, ∴OA= 12-h2. ∴AB= 2· 12-h2.

【高考推荐】2020-2021高考数学二轮复习专题三立体几何第1讲空间几何体的三视图、表面积和体积练习

【高考推荐】2020-2021高考数学二轮复习专题三立体几何第1讲空间几何体的三视图、表面积和体积练习

第1讲空间几何体的三视图、表面积和体积高考定位 1.三视图的识别和简单应用;2.简单几何体的表面积与体积计算,主要以选择题、填空题的形式呈现,在解答题中,有时与空间线、面位置证明相结合,面积与体积的计算作为其中的一问.真题感悟1.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.答案 A2.(2018·全国Ⅰ卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.122πB.12πC.82πD.10π解析因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为2 2.所以S表面积=2×π×(2)2+2π×2×22=12π.答案 B3.(2018·天津卷)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为________.解析连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1的中点,所以EH ∥AC ,EH =12AC .因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M到平面EHGF 的距离为12,所以四棱锥M -EFGH 的体积为13×⎝ ⎛⎭⎪⎫222×12=112.答案1124.(2017·全国Ⅰ卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析 如图,连接OA ,OB ,因为SA =AC ,SB =BC ,SC 为球O 的直径,所以OA ⊥SC ,OB ⊥SC .因为平面SAC ⊥平面SBC ,平面SAC ∩平面SBC =SC ,且OA ⊂平面SAC ,所以OA ⊥平面SBC .设球的半径为r ,则OA =OB =r ,SC =2r , 所以V A -SBC =13×S △SBC ×OA =13×12×2r ×r ×r =13r 3,所以13r 3=9⇒r =3,所以球的表面积为4πr 2=36π.答案 36π考 点 整 合1.空间几何体的三视图(1)几何体的摆放位置不同,其三视图也不同,需要注意长对正、高平齐、宽相等. (2)由三视图还原几何体:一般先从俯视图确定底面,再利用正视图与侧视图确定几何体. 2.空间几何体的两组常用公式 (1)柱体、锥体、台体的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高);②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.热点一 空间几何体的三视图与直观图【例1】 (1)(2018·兰州模拟)中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知某“堑堵”的正视图和俯视图如图所示,则该“堑堵”的侧视图的面积为( ) A.18 6 B.18 3 C.18 2D.2722(2)(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.217B.2 5C.3D.2解析 (1)在俯视图Rt △ABC 中,作AH ⊥BC 交于H . 由三视图的意义, 则BH =6,HC =3,根据射影定理,AH 2=BH ·HC ,∴AH =3 2.易知该“堑堵”的侧视图是矩形,长为6,宽为AH =3 2.故侧视图的面积S =6×32=18 2. (2)由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN ,则MS =2,SN =4.则从M 到N 的路径中,最短路径的长度为MS 2+SN 2=22+42=2 5.答案 (1)C (2)B探究提高 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.2.由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置. (3)确定几何体的直观图形状.【训练1】 (1)如图,在底面边长为1,高为2的正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之和为( )A.1B.2C.3D.4(2)(2017·北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2B.2 3C.2 2D.2解析 (1)设点P 在平面A 1ADD 1的射影为P ′,在平面C 1CDD 1的射影为P ″,如图所示.∴三棱锥P -BCD 的正视图与侧视图分别为△P ′AD 与△P ″CD , 因此所求面积S =S △P ′AD +S △P ″CD =12×1×2+12×1×2=2. (2)根据三视图可得该四棱锥的直观图(四棱锥P -ABCD )如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD ,PD =22+22+22=2 3. 答案 (1)B (2)B热点二 几何体的表面积与体积 考法1 空间几何体的表面积【例2-1】 (1)(2017·全国Ⅰ卷)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A.10 B.12C.14D.16(2)(2018·西安模拟)如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π解析 (1)由三视图可画出直观图,该直观图各面内只有两个相同的梯形的面,S 梯=12×(2+4)×2=6,S 全梯=6×2=12.(2)由三视图知,该几何体由一圆锥和一个圆柱构成的组合体,∵S 圆锥侧=π×3×32+42=15π,S 圆柱侧=2π×1×2=4π,S 圆锥底=π×32=9π. 故几何体的表面积S =15π+4π+9π=28π. 答案 (1)B (2)C探究提高 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小;(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (2)旋转体的表面积问题注意其侧面展开图的应用.【训练2】 (1)(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π(2)(2018·烟台二模)某几何体的三视图如图所示,其中俯视图右侧曲线为半圆弧,则几何体的表面积为( )A.3π+42-2B.3π+22-2C.3π2+22-2D.3π2+22+2 解析 (1)由题知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S =78×4π×22+3×14π×22=17π.(2)由三视图,该几何体是一个半圆柱挖去一直三棱柱,由对称性,几何体的底面面积S 底=π×12-(2)2=π-2.∴几何体表面积S =2(2×2)+12(2π×1×2)+S 底=42+2π+π-2=3π+42-2. 答案 (1)A (2)A考法2 空间几何体的体积【例2-2】 (1)(2018·河北衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203(2)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.解析 (1)由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是等腰直角三角形,等腰直角三角形的直角边长为2.故几何体体积V =23-12×2×2×1=6.(2)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的14圆柱体构成.所以V =2×1×1+2×14×π×12×1=2+π2.答案 (1)A (2)2+π2探究提高 1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积:常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.【训练3】 (1)(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.(2)(2018·北京燕博园质检)某几何体的三视图如图所示,则该几何体的体积为( )A.8π-163B.4π-163C.8π-4D.4π+83解析 (1)正方体的棱长为2,以其所有面的中心为顶点的多面体是正八面体,其中正八面体的所有棱长都是 2.则该正八面体的体积为13×(2)2×1×2=43.(2)该图形为一个半圆柱中间挖去一个四面体,∴体积V =12π×22×4-13×12×2×4×4=8π-163.答案 (1)43(2)A热点三 多面体与球的切、接问题【例3】 (2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4πB.9π2C.6πD.32π3解析 由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .则12×6×8=12×(6+8+10)·r ,所以r =2.2r =4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π.答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”试求该几何体外接球的体积.解 该几何体为四棱锥,如图所示,设正方形ABCD 的中心为O ,连接OP . 由三视图,PH =OH =1, 则OP =OH 2+PH 2= 2. 又OB =OC =OD =OA = 2. ∴点O 为几何体外接球的球心, 则R =2,V 球=43πR 3=823π.探究提高 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练4】 (2018·广州三模)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234π C.64πD.643π解析 如图,设O ′为正△PAC 的中心,D 为Rt △ABC 斜边的中点,H 为AC 中点.由平面PAC ⊥平面ABC .则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =23PH =23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.故几何体外接球的表面积S =4πR 2=643π.答案 D1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解. (3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(4)求解几何体的表面积时要注意S 表=S 侧+S 底.2.球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球、内切球、棱切球的半径分别为32a ,a 2,22a . 3.锥体体积公式为V =13Sh ,在求解锥体体积中,不能漏掉13.一、选择题1.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是( )解析由直观图知,俯视图应为正方形,又上半部分相邻两曲面的交线为可见线,在俯视图中应为实线,因此,选项B可以是几何体的俯视图.答案 B2.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4解析在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,是△PAD,△PCD,△PAB.答案 C3.(2018·湖南师大附中联考)某几何体的三视图如图所示,则该几何体的表面积为( )A.8(π+4)B.8(π+8)C.16(π+4)D.16(π+8)解析 由三视图还原原几何体如右图:该几何体为两个空心半圆柱相切,半圆柱的半径为2,母线长为4,左右为边长是4的正方形.∴该几何体的表面积为2×4×4+2π×2×4+2(4×4-π×22)=64+8π=8(π+8).答案 B4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.πB.3π4C.π2D.π4解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4. 答案 B5.(2018·北京燕博园押题)某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A.4π3B.5π3C.7π6D.11π6解析 由三视图可知,该几何体是由半个圆柱与18个球组成的组合体,其体积为12×π×12×3+18×4π3×13=5π3.答案 B6.(2018·全国Ⅲ卷)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( ) A.12 3B.18 3C.24 3D.54 3解析 设等边△ABC 的边长为x ,则12x 2sin 60°=93,得x =6.设△ABC 的外接圆半径为r ,则2r =6sin 60°,解得r =23,所以球心到△ABC 所在平面的距离d =42-(23)2=2,则点D到平面ABC 的最大距离d 1=d +4=6.所以三棱锥D -ABC 体积的最大值V max =13S △ABC ×6=13×93×6=18 3.答案 B 二、填空题7.(2018·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 68.(2018·郑州质检)已知长方体ABCD -A 1B 1C 1D 1内接于球O ,底面ABCD 是边长为2的正方形,E 为AA 1的中点,OA ⊥平面BDE ,则球O 的表面积为________.解析 取BD 的中点为O 1,连接OO 1,OE ,O 1E ,O 1A ,则四边形OO 1AE 为矩形,∵OA ⊥平面BDE ,∴OA ⊥EO 1,即四边形OO 1AE 为正方形,则球O 的半径R =OA =2,∴球O 的表面积S =4π×22=16π. 答案 16π9.(2018·武汉模拟)某几何体的三视图如图所示,其中正视图的轮廓是底边为23,高为1的等腰三角形,俯视图的轮廓为菱形,侧视图是个半圆.则该几何体的体积为________.解析 由三视图知,几何体是由两个大小相同的半圆锥的组合体. 其中r =1,高h = 3.故几何体的体积V =13π×12×3=33π.答案33π 三、解答题10.在三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C ⊥底面ABC ,AA 1=A 1C =AC =AB =BC =2,且点O 为AC 中点. (1)证明:A 1O ⊥平面ABC ; (2)求三棱锥C 1-ABC 的体积.(1)证明 因为AA 1=A 1C ,且O 为AC 的中点, 所以A 1O ⊥AC ,又面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,且A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 ∵A 1C 1∥AC ,A 1C 1⊄平面ABC ,AC ⊂平面ABC ,∴A 1C 1∥平面ABC ,即C 1到平面ABC 的距离等于A 1到平面ABC 的距离. 由(1)知A 1O ⊥平面ABC 且A 1O =AA 21-AO 2=3,∴VC 1-ABC =VA 1-ABC =13S △ABC ·A 1O =13×12×2×3×3=1.11.(2018·长春模拟)如图,在四棱锥P -ABCD 中,平面PAB ⊥平面ABCD ,PA=PB ,AD ∥BC ,AB =AC ,AD =12BC =1,PD =3,∠BAD =120°,M 为PC 的中点.(1)证明:DM ∥平面PAB ; (2)求四面体MABD 的体积.(1)证明 取PB 中点N ,连接MN ,AN . ∵M 为PC 的中点,∴MN ∥BC 且MN =12BC ,又AD ∥BC ,且AD =12BC ,得MN 綉AD .∴ADMN 为平行四边形,∴DM ∥AN .又AN ⊂平面PAB ,DM ⊄平面PAB ,∴DM ∥平面PAB . (2)解 取AB 中点O ,连接PO ,∵PA =PB ,∴PO ⊥AB ,又∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,PO ⊂平面PAB , 则PO ⊥平面ABCD ,取BC 中点H ,连接AH , ∵AB =AC ,∴AH ⊥BC ,又∵AD ∥BC ,∠BAD =120°, ∴∠ABC =60°,Rt △ABH 中,BH =12BC =1,AB =2,∴AO =1,又AD =1,△AOD 中,由余弦定理知,OD = 3. Rt △POD 中,PO =PD 2-OD 2= 6. 又S △ABD =12AB ·AD sin 120°=32,∴V M -ABD =13·S △ABD ·12PO =24.。

湖南师大 高三数学 立体几何复习课件 文

湖南师大 高三数学 立体几何复习课件 文
用斜二测画法画出的平面图形的直观 图的面积S 与原平面图形的面积S之间 的关系是 S 2 S .
4
· 高中新课标总复习(第1轮)· 文科数学 · 湖南 · 人教版
方法提炼 •1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。
•2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。
立足教育 开创未来
•4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。
•5、诚实比一切智谋更好,而且它是智谋的基本条件。
•6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/152022/1/152022/1/151/15/2022
1、空间几何体的结构
(1)多面体的定义 (2)棱柱、棱锥、棱台、圆柱、圆锥、圆台、
球的结构特征 (3)正多面体的结构特征
2、三视图和直观图
类型一
“长对正,高平齐,宽相等”规则的应用
1.画几何体的三视图的要求是: 正视图与俯视图长对正; 正视图与侧视图高平齐; 侧视图与俯视图宽相等.
2.三视图的安排规则是: 正视图与侧视图分别在左、右两边, 俯视图画在正视图的下方.
•7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/152022/1/15January 15, 2022
•8、教育者,非为已往,非为现在,而专为将来。2022/1/152022/1/152022/1/152022/1/15
3.三视图和实物之间的关系还原, 由于在三视图较为复杂,所以还原时 容易出错.若相邻两物体表面相交, 表面的交线在பைடு நூலகம்视图中可见时用实线 画出,否则用虚线表示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1­ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD­A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ­ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ­ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC ­A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E ­BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E ­BCD =V D ­BCE =V A ­BCE =V E ­ABC .由(1)知,DE ∥平面ABC ,所以V E ­ABC =V D ­ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC ­A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ­ABCDEF 中,G 为PB 的中点,则三棱锥D ­GAC 与三棱锥P ­GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD ­A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD ­A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1­ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ­ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ­ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ­ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D ­GAC V P ­GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。

相关文档
最新文档