大学物理第十二章波动光学

合集下载

大学物理之波动光学讲解

大学物理之波动光学讲解

2024/1/28
25
未来发展趋势预测
2024/1/28
01 02 03
拓扑光子学
拓扑光子学是研究光在具有拓扑特性的材料中传播行为的 新兴领域。拓扑保护的光子态具有鲁棒性和缺陷免疫性, 为设计高性能、高稳定性的光学器件和系统提供了新的思 路和方法。
量子光学与量子信息
随着量子技术的不断发展,量子光学与量子信息已成为当 前研究的热点领域。利用光的量子特性,可以实现量子计 算、量子通信和量子精密测量等前沿应用。
6
02
干涉现象与原理
2024/1/28
7
双缝干涉实验及结果分析
03
实验装置与步骤
结果分析
干涉条件
使用激光作为光源,通过双缝装置,在屏 幕上观察到明暗相间的干涉条纹。
双缝干涉实验结果表明光具有波动性,明 暗相间的干涉条纹是光波叠加的结果。
当两束光波的频率相同、振动方向相同、 相位差恒定时,它们叠加后会产生干涉现 象。
超材料
超材料是一种具有特殊物理性质 的人工复合材料,其性质往往超 越自然材料的限制。在波动光学 领域,超材料可用于实现负折射 率、完美透镜、隐身斗篷等奇特 现象和应用。
表面等离激元
表面等离激元是一种存在于金属 和介质界面上的电磁模式,具有 亚波长尺度的场局域和增强效应 。表面等离激元在纳米光子学、 生物光子学和光电子学等领域具 有广泛的应用前景。
2024/1/28
8
薄膜干涉及其应用实例
薄膜干涉原理
当光照射在薄膜上时,薄膜的前后两 个表面都会反射光,这两束反射光叠 加后会产生干涉现象。
应用实例
肥皂泡、水面上的油膜等都可以观察 到薄膜干涉现象。此外,在光学仪器 中,也常常利用薄膜干涉来增强或减 弱光的反射或透射。

大学物理波动光学课件

大学物理波动光学课件

麦克斯韦电磁理论:19 世纪中叶,英国物理学 家麦克斯韦建立了电磁 理论,揭示了光是一种 电磁波,为波动光学提 供了更加深入的理论根 据。
在这些重要人物和理论 的推动下,波动光学逐 渐发展成为物理学的一 个重要分支,并在现代 光学、光电子学等领域 中发挥了重要作用。
02 光的干涉
干涉的定义与分类
定义 分类 分波前干涉 分振幅干涉
干涉是指两个或多个相干光波在空间某一点叠加产生加强或减 弱的现象。
根据光源的性质,干涉可分为两类,分别是ห้องสมุดไป่ตู้波前干涉和分振 幅干涉。
波前上不同部位发出的子波在空间某点相遇叠加产生的干涉。 如杨氏双缝干涉、洛埃镜、菲涅尔双面镜以及菲涅尔双棱镜等

一束光的振幅分成两部分(或以上)在空间某点相遇时产生的 干涉。例如薄膜干涉、等倾干涉、等厚干涉以及迈克耳孙干涉
波动光学与几何光学的比较
几何光学
几何光学是研究光线在介质中传播的光学分支,它主要关注 光线的方向、成像等,基于光的直线传播和反射、折射定律 。
波动光学与几何光学的区分
波动光学更加关注光的波动性质,如光的干涉、衍射等现象 ,而几何光学则更加关注光线传播的几何特性。两者在研究 对象和方法上存在差异,但彼此相互补充,构成了光学的完 整体系。
VS
马吕斯定律
当一束光线通过两个偏振片时,只有当两 个偏振片的透振方向夹角为特定值时,光 线才能通过。这就是马吕斯定律,它描述 了光线通过偏振片时的透射情况。这两个 定律在光学和物理学中都有着广泛的应用 。
THANKS
感谢观看
分类
根据障碍物的大小和光波波长的相对 关系,衍射可分为菲涅尔衍射和夫琅 禾费衍射。
单缝衍射与双缝衍射
单缝衍射

大学物理第十二章波动光学1

大学物理第十二章波动光学1

2. 高反射膜
增反膜是利用在薄膜上、下表面反射光相长干 涉的原理,使反射光得到增强。
通常是在光学玻璃表面镀上一层折射率n2 > n3 的介质
薄膜,
2n2e
2
k
(k
1,2)
工艺上通常采用多层膜。
λ emin = 4n2
第二十三页,编辑于星期六:二十一点 四十五 分。
三.等厚干涉条纹
1. 劈尖(劈形膜)
n1 n2 …… nm
……
光程 L = ( ni di )
d1 d2
dm
光程差 : = L2 - L1
相位差和光程差的关系:
[例]
S1 n
r1 r2
S2 d
·p P
2
:
2
2
r2
L2 L1
d nd
r1
2
r2
r1
n
1d
二.使用透镜不会产生附加光程差
a
物点到象点各光线之间的光 S· b
电磁波:工业电 无线电波 微波
10-3 m ~ 770 nm 760 ~ 400 nm 400 ~ 1 nm
红外线
可见光 紫外线
10-7 ~ 10-13 3 ×10-8 ~ 10-14 <10-14 (m)
X射线
射线 宇宙射线
4000Å

7600Å

400——450——500——550——600——650——760nm
S1
插玻璃片之后二光束的光程差为 S2
r2 r1 d nd r2 r1 d n 1 0
5 d(1.5 1) 0
d 10 6m
r1
P
r2
第十五页,编辑于星期六:二十一点 四十五分。

2024年大学物理波动光学-(带目录)

2024年大学物理波动光学-(带目录)

大学物理波动光学-(带目录)大学物理波动光学摘要:波动光学是大学物理课程中重要的组成部分,主要研究光的波动性质及其在介质中的传播规律。

本文主要介绍了波动光学的基本概念、波动方程、干涉现象、衍射现象、偏振现象以及光学仪器等,旨在为读者提供系统的波动光学知识,为进一步学习和研究打下基础。

一、引言波动光学是研究光波在传播过程中所表现出的波动性质的科学。

光波是一种电磁波,具有波动性、粒子性和量子性。

波动光学主要关注光的波动性质,研究光波在介质中的传播、反射、折射、干涉、衍射、偏振等现象。

波动光学在科学技术、工程应用、日常生活等领域具有广泛的应用,如光纤通信、激光技术、光学仪器等。

二、波动方程波动方程是描述波动现象的基本方程。

光波在真空中的传播速度为c,介质中的传播速度为v。

波动方程可以表示为:∇^2E(1/c^2)∂^2E/∂t^2=0其中,E表示电场强度,∇^2表示拉普拉斯算子,t表示时间。

该方程描述了光波在空间和时间上的传播规律。

三、干涉现象1.极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向相同,相互加强,形成明条纹;当电场矢量方向相反,相互抵消,形成暗条纹。

2.非极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向垂直,相互叠加,形成干涉条纹。

四、衍射现象衍射现象是光波传播过程中遇到障碍物或通过狭缝时产生的现象。

衍射现象的本质是光波的传播方向发生改变,使得光波在空间中形成干涉图样。

衍射现象可以分为菲涅耳衍射和夫琅禾费衍射两种:1.菲涅耳衍射:当光波通过狭缝或障碍物时,光波在衍射角较小的情况下发生的衍射现象。

菲涅耳衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。

2.夫琅禾费衍射:当光波通过狭缝或障碍物时,光波在衍射角较大的情况下发生的衍射现象。

夫琅禾费衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。

五、偏振现象偏振现象是光波在传播过程中,电场矢量在空间某一方向上振动的现象。

第12章-波动光学3

第12章-波动光学3

第十二章 波动光学
B
i
A
C
光轴
无双折射现象
光轴
P.36/70
由惠更斯原理解释双折射现象:
第十二章 波动光学
o光和e光都不折射,但速度和折射率不同, 所以两波面并不重合。
P.37/70
o光、e光的一些性质
第十二章 波动光学
1、o光、e光传播速度一般不同,但沿光轴方向传播 方向速度相同(此时无双折射现象)
第十二章 波动光学
d d
P.50/70
四分之一波片
第十二章 波动光学
圆偏振光通过四分之
一波片后,变为线偏振 光,其振动方向与光轴 方向成45°角。
d
椭圆偏振光通过四分 之一波片后,变为线偏 振光,其振动方向与光 轴方向的夹角不等于45 °角。
Ex Ey
I Ix Iy
P.5/70
第十二章 波动光学
自然光可用两个相互独立、没有固定相位关系、 等振幅且振动方向相互垂直的线偏振光表示。
自然光的表示:
部分偏振光:某一方向的光振动比与之相垂直的另 一方向的光振动占优势。
平行纸面振动占优的部分偏振光 垂直纸面振动占优的部分偏振光
P.6/70
I
I
I
I
I
cos2
30
4I1
3 4
3I1
I
I
cos2
30
3I1
3 4
9 4 I1
P.16/70
第十二章 波动光学
例13. 一束光由自然光和线偏振光混合组成,当它通 过一偏振片时,发现透射光的强度随偏振片的转动可 以变化到五倍。求入射光中自然光和线偏振光的强度 各占入射光强度的几分之几?
解: 设入射光强度:I0 ; 自然光强度:I10 ; 偏振光强度 : I20

第12章-波动光学(二)概论

第12章-波动光学(二)概论
2
bsin 2k 1 k 1,2,3, 明纹
2
• 缝宽 b 越小,衍射角 越大,衍射越显著; • 缝宽 b 越大,衍射角 越小,衍射越不明显;
• 当 b >>λ时,不发生衍射现象。
12
结论:几何光学是波动光学在 b 0 时的极
限情况。 2 1
0
b sin (2k 1) 明纹
2
bsin k
解: bsin
sin
b
L 2x 2D tg
2D 2 D
D
b
2 5.460107 0.40 1.0103 m
0.437 103
19
12-4-4 单缝衍射的光强分布
将狭缝分为N个小波 带。
各光振动矢量: E1 , E2 , , En
设 E1 E2 En E0
相邻两光振动的相位差:
sin 2 u u2
sin 23 2 3 22
0.045
I2 I0
sin 2 u u2
sin 25 2 5 22
0.016
24
12-4-5 圆孔衍射 光学仪器的分辨本领
25
爱里斑:圆孔衍射的中央亮斑,其上集中了全部 衍射光能的84%。
E
E0
sin bsin sin bsin
N
因为N 很大,所以有 sin bsin N bsin N
sin bsin
E NE0 b sin
I E2 令: u bsin
I0 NE0 2
22
P点处的光强:
I
I0
sin 2 u2
u
当 u bsin k I 0
孔或狭缝以及屏幕P距小孔或狭缝 都在无限远处。
P

大学物理 第十二章 波动光学2

大学物理 第十二章 波动光学2

2 又,明纹所在处x满足: x tg 1.5 0.003 , f 500
2 0.5 1.5 3 104 2ax / f 107 m A λ (2k 1) 500 2k 1 2k 1
白光波长范围4000—7000Å,满足上式的波长值即为所求:
• • • •
例题:已知单缝宽a=0.5mm,透镜焦距f=50cm,今以白光垂直照 射狭缝,在观察屏上x=1.5mm处看到明纹极大,求: (1)入射光的波长及衍射级数; (2)单缝所在处的波阵面被分成的波带数目。
[解]: (1)由明纹条件: a sin (2k 1)

x 很小 。 sin ≈ tg f
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称次极大。
2、明暗纹中心位置坐标
(1)中央明纹中心位置 x=0
xk t g k f
tgk sin k
x xk
k
中 O 央 明 纹
k2
k 1
(1)
(2)
f
(2)暗纹中心位置坐标
由 a sin k k 及式(1)、(2) 得
二、光学仪器的分辨本领
1.22 1 D

D

瑞 利 判 据

定义
分辨本领


D R 1.22
1
刚可分辨
非相干叠加
不可分辨
瑞利判据 : 对于两个等光强的非相
干物点,若其中一点的象斑中心恰好落 在另一点的象斑的边缘(第一暗纹处), 则此两物点被认为是刚刚可以分辨。
当 再 , =3/2时,可将缝分成三个“半波带”,
B a A θ a B θ

大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)
单击此处添加标题
A)自然光 。 B) 完全偏振光且光矢量的振动方向垂直于入射面。 C)完全偏振光且光矢量的振动方向平行于入射面。 D )部分偏振光。
单击此处添加标题
8、两偏振片堆叠在一起,一束自然光垂直入射其上时没有光 线通过,当其中一偏振片慢慢转动1800时透射光强度发生的 变化为:
单击此处添加标题
10、一自然光通过两个偏振片,若两片的偏振化方向间夹角 由A转到B,则转前和转后透射光强之比为 。
单轴
速度
二、选择题:
2、一束波长为 的单色光由空气入射到折射率为 n 的透明介 质上,要使反射光得到干涉加强,则膜的最小厚度为:
3、平行单色光垂直照射到薄膜上,经上下表面反射的两束光 发生干涉,若薄膜厚度为 e,且 n1< n2 > n3, 1 为入射光在 折射率为n1的媒质的波长,则两束光在相遇点的相位差为:
作业:
10-9.如图所示,用波长为的单色光垂直照射折射率为n2的劈尖。图中各部分折射率的关系是n1< n2< n3,观察反射光的干涉条纹,从劈尖顶端开始向右数第5条暗纹中心所对应的厚度是多少?
[解] 因
故在劈尖上下表面的两反射光无因半波损失引起的附加光程差,干涉暗纹应满足
习题10-9图
n1
n2
n3
在该范围内能看到的主极大个数为5个。
所以,第一次缺级为第五级。
在单缝衍射中央明条纹宽度内可以看到0、±1、 ± 2 级主极大明条纹共5 条。
单缝衍射第一级极小满足
光栅方程:
解(1)由二级主极大满足的光栅方程:
由第三级缺级,透光缝的最小宽度为: 可能观察到的主极大极次为:0,±1,±2
例题 波长 λ=6000埃单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30度,且第三级缺级。① 光栅常数(a+b)是多大? ②透光缝可能的最小宽度是多少? ③在选定了上述(a+b)和a之后,求在衍射角-π/2<φ<π/2范围内可能观察到的全部主极大的级次。

大学物理(波动光学知识点总结)

大学物理(波动光学知识点总结)

01
圆孔、屏幕和光源。
实验现象
02
在屏幕上观察到明暗相间的圆环,中心为亮斑。
结论
03
圆孔衍射同样体现了光的波动性,中心亮斑是光线汇聚的结果。
光栅衍射实验
实验装置
光栅、屏幕和光源。
实验现象
在屏幕上观察到多条明暗相间的条纹,每条条纹都有自己的位置 和宽度。
结论
光栅衍射是由于光在光栅上发生反射和折射后相互干涉的结果, 形成多条明暗相间的条纹。
02
光的干涉
干涉现象与干涉条件
干涉现象
当两束或多束相干光波在空间某一点 叠加时,光波的振幅会发生变化,产 生明暗相间的干涉条纹。
干涉条件
要产生干涉现象,光波必须具有相同 的频率、相同的振动方向、相位差恒 定以及有稳定的能量分布。
干涉原理
光的波动性
光波在传播过程中,遇到障碍物或孔洞时,会产生衍射现象。衍射光波在空间 相遇时,会因相位差而产生干涉现象。
利用光纤的干涉、折射等光学效应,检测温度、压力、位移等物理量。
表面等离子体共振传感器
利用表面等离子体的共振效应,检测生物分子、化学物质等。
光学信息处理
全息成像
利用干涉和衍射原理,记录并再现物 体的三维信息。
光计算
利用光学器件实现高速并行计算,具 有速度快、功耗低等优点。
THANKS
感谢观看
大学物理(波动光学知识 点总结)
• 波动光学概述 • 光的干涉 • 光的衍射 • 光的偏振 • 波动光学的应用实例
01
波动光学概述
光的波动性质
01
02
03
光的干涉
当两束或多束相干光波相 遇时,它们会相互叠加, 形成明暗相间的干涉条纹。

2024版大学物理物理学波动光学ppt教案

2024版大学物理物理学波动光学ppt教案

大学物理物理学波动光学ppt教案•波动光学基本概念与原理•干涉现象及其应用•衍射现象及其应用•偏振光及其应用目录•波动光学实验方法与技巧•课程总结与拓展延伸01波动光学基本概念与原理光具有电磁波的基本性质,包括电场和磁场的振动以及传播速度等。

光是一种电磁波光的波动性表现光的波粒二象性光具有干涉、衍射、偏振等波动性质,这些性质是光作为波动现象的重要表现。

光既具有波动性质,又具有粒子性质,这种波粒二象性是量子力学中的基本概念。

030201光的波动性质1 2 3描述光波传播的基本方程,包括振幅、频率、波速等参数。

波动方程波速等于波长乘以频率,这一关系在波动光学中具有重要意义。

波速、波长、频率关系不同波长的光在介质中传播速度不同,导致光的色散现象。

色散现象波动方程与波速、波长、频率关系光的偏振现象及原理偏振现象光波中电场矢量的振动方向对于光的传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。

偏振光的产生通过反射、折射、双折射和选择性吸收等方法可以获得偏振光。

偏振光的检测通过偏振片、尼科耳棱镜等可以检测偏振光。

干涉和衍射现象概述干涉现象01两列或几列光波在空间某些区域相遇时相互加强,在某些区域相互减弱,形成稳定的强弱分布的现象。

产生干涉的条件是波的频率相同,振动方向一致,相位差恒定。

衍射现象02光绕过障碍物继续向前传播的现象叫做光的衍射。

产生明显衍射现象的条件是障碍物的尺寸与波长相差不大或比波长小。

干涉和衍射的应用03干涉和衍射现象在光学测量、光学信息处理等领域有广泛应用。

02干涉现象及其应用03干涉条纹特点等间距、等光程差、明暗相间。

01双缝干涉实验装置与原理通过双缝的相干光源产生干涉现象,观察干涉条纹的分布和变化。

02干涉条件分析满足相干条件的光源,如单色光、点光源等,以及合适的双缝间距和屏幕距离。

双缝干涉实验及条件分析光在薄膜上下表面反射后产生干涉现象,形成彩色条纹。

薄膜干涉原理肥皂泡、油膜等薄膜干涉现象的观察和分析。

大学物理物理学波动光学共98张

大学物理物理学波动光学共98张

02 干涉仪原理及应用举例
分波前干涉仪
杨氏双缝干涉
通过双缝将单色光源的波前分割为两 部分,在屏幕上产生明暗相间的干涉 条纹。
菲涅尔双棱镜干涉
洛埃镜实验
通过半透半反镜与反射镜的组合,实 现波前的分割与干涉。
利用双棱镜将波前分割,产生类似于 杨氏双缝干涉的条纹分布。
分振幅干涉仪
薄膜干涉
光线经过薄膜的前后两个表面反 射后产生干涉现象。
根据光波叠加方式的不同 ,干涉可分为相长干涉和 相消干涉。
衍射现象及规律
衍射现象
光波在传播过程中,遇到 障碍物或小孔时,偏离直 线传播路径并绕到障碍物 后面的现象。
衍射的分类
根据障碍物或孔的尺寸与 光波长的关系,衍射可分 为夫琅禾费衍射和菲涅尔 衍射。
衍射的规律
衍射现象遵循惠更斯-菲涅 尔原理,即光波在传播过 程中的每一点都可以看作 是一个新的波源。
辐射现象。
二次谐波产生过程包括基频光的 入射、非线性介质的相互作用和
二次谐波的出射三个步骤。ห้องสมุดไป่ตู้
二次谐波产生效率受到多种因素 的影响,如入射光功率、非线性
介质性质、相位匹配条件等。
参量振荡器和放大器原理
参量振荡器是一种利用非线性光学效应实现光波振荡的器件,具有可调谐性、高效 率等优点。
参量放大器是一种利用非线性光学效应实现光波放大的器件,具有宽带宽、低噪声 等特点。
根据晶体内部原子排列方式和对称性,可将晶体分为七大晶系和十 四种布拉维格子。
晶体中光传播特性分析
光的折射与反射
光在晶体中传播时,会发生折射和反射现象,遵循斯涅尔 定律和菲涅尔公式。
光的偏振
光波在晶体中传播时,其振动方向会受到限制,形成偏振 光。

大学物理高校出版社罗圆圆主编-第12章波动光学PPT课件

大学物理高校出版社罗圆圆主编-第12章波动光学PPT课件

现象:一系列平行的明暗相间的条纹; 不太大时条纹等间距.
24
干涉条纹定量分析:
(1)条纹(中心)的位置
s
s
d
1
(在 较小的情况下) s 2
波程差:
r1
p
r2
x
o
D
r2r1dsin dt gdD x
Δ20 10 2 π(r2r1) 现已有 20 - 10=0
25
亮纹: (相长干涉)
2kπ (k0,1,2, ) 或波程 r2差 r1k
13
P点处:
E 1E 1c 0 o ts (1)
E 2E 2c 0 o ts (2)
r1
· 1
r2
· 2
E20
·P
E0
EE1E2
EE0cos(t)
2 1 E10
14
E 0 2E 1 2 0E 2 2 02E 1E 0 2c 0 os
其中:21
I E 0 2 = 1 0 E 2 0 d t = 1 0 [E 1 2 0 E 2 2 0 2 E 1 0 E 2 0 c o s ] d t
电磁谐波 EE0cots(k)x
电磁波的强度:
I
wu1
2
E02u
在同一介质中通常把强度直接写成
I
E
2 0
说明:与物质作用的主要物理量是电矢量 通常称 E为光矢量
按波长或频率的次序把这些电磁波排列成谱
----称为电磁波谱。
可见光的范围
4000埃~7600埃,
:40~076n0m只占很小的一段 :7.51104~4.31104Hz 8
2
波动光学
第一部分 光的干涉 第二部分 光的衍射 第三部分 光的偏振

大学物理波动光学 (12)

大学物理波动光学 (12)

由此可得斜入射时的光栅方程为
(a b)(sin sin ) k k 0, 1, 2
同样,k的可能最大值相应于 sin 1
在O点上方观察到的最大级次为 k1,取 90 得
k 1.70取 k 1 (ab)(sin90 sin 30 ) 2106 (10.5)
(3)对光栅公式两边取微分
(a b) coskdk kd
光栅光谱
波长为 及 d 第k级的两条纹分开的
角距离为
d d k k (a b) cos k
光线正入射时,最大级次为第3级,相应的角
位置3 为
3

sin1
(
k
ab
)

sin ( ) 1 3589.3109 2106
钠光谱线( 589.3 nm),问
(1)平行光线垂直入射时; (2)平行光线以入射角30入射时,最多能看见第几 级条纹?总共有多少条条纹?
(3)由于钠光谱线实际上是 1 589.0nm及 589.6nm
两条谱线的平均波长,求在正入射时最高级条纹此双 线分开的角距离及在屏上分开的线距离。设光栅后透 镜的焦距为2m.
光栅光谱
(2)如平行光以 角入射时,光程差的计算公式
应做适当的调整,如图所示。在衍射角的方向上, 光程差为
P
A
O
B
斜入射时光栅光程差的计算
A

C
D B
光栅光谱
BD AC (a b)sin (a b) sin (a b)(sin sin )
a
I0单 I单
-2
-1
光栅衍射 光强曲线
0
1

上海理工大学物理第十二篇波动光学

上海理工大学物理第十二篇波动光学

一. 选择题[ B ]1. 在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变. (C) 不移动,但间距改变. (D) 向上平移,且间距改变. 参考解答:(解题思想参考计算题第2小题)。

[ B ]2. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大 λ,则屏上原来的明纹处 (A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹参考解答:光程差变化了λ,原光程差为半波长的偶数倍(形成明纹),先光程差为半波长的奇数倍,故变为暗条纹。

[ B ]3.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).参考解答:需考虑半波损失。

[ B ]4. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍,故薄膜的最小厚度h 应满足如下关系式:212nh λλ+=⋅(要考虑半波损失),由此解得/(4)h n λ=。

[ B ]5. 用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩.(C) 向外扩张. (D) 静止不动. (E) 向左平移. 参考解答:根据牛顿环公式,此时固定位置的k 变大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[](A)(B)2第12章波动光学、选择题1.如T12-1-1图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 片和n 3,已知n 1 n 2 n 3 .若波长为 入的单色平行光垂直入射到该薄膜上,则从薄膜上、下 两表面反射的光束①与②的光程差是: [](A) 2n ?e (B) 2n ?e 1 2 (C) 2n 2(D) 2n ?e -2n 2径S 1P 垂直穿过一块厚度为t 1 ,折射率为n 1的一种介质; 路径S 2P 垂直穿过一块厚度为t 2的另一介质;其余部分3.在相同的时间内,一束波长为的单色光在空气和在玻璃中[ ](A)传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等2.女口 T12-1-2图所示, S 1、S 2是两个相干光源, 他们到P 点的距离分别为 r 1和r 2 .路可看作真空. 这两条光路的光程差等于: [](A) (「2 匕上)(「nd 1) (B) [r 2 (n 2 1)t 2][「1 (n 2 1)h](C) (「2匕上2)(A n 缶)(D) n 2t 2S 2T12-1-2 图[](A)(B)2(D) 传播的路程不相等,走过的光程不相等4.频率为f的单色光在折射率为n的媒质中的波速为其光振动的相位改变了2 n f ](A)vv,则在此媒质中传播距离为I2 n vf(B) T (C)2 n nlf vlf(D)厂5.波长为的单色光在折射率为n的媒质中由到b点的几何路程为:a点传到b点相位改变了,则光从a点(C) (D) n6.真空中波长为的单色光,在折射率为n的均匀透明媒质中从a点沿某一路径传到b 点.若将此路径的长度记为I, a、b两点的相位差记为,则[](A) 2则合光照在该表面的强度为8. 相干光是指 [](A)振动方向相同、频率相同、相位差恒定的两束光 (B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9.两个独立的白炽光源发出的两条光线 ,各以强度I 照射某一表面•如果这两条光线同时照射此表面,则合光照在该表面的强度为10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [](A)传播方向相同 (B)振幅相同 (C)振动方向相同(D)位置相同n i 和n 2 (n i v n 2)的两片透明介质分别盖住杨氏双缝实验13. 在杨氏双缝实验中,若用白光作光源3 [](A) l , 3 n 2 3 (C) l ,3 n2n33n n (B) l2n , (D) l 3—n , 3n n27. 两束平面平行相干光,每一束都以强度 I 照射某一表面,彼此同相地并合在一起[ ](A) I(B) 21 (C) 41 (D) 2I [](A) I (B) 2I(C) 4I(D) 8I11.用厚度为d 、折射率分别为 中的上下两缝,若入射光的波长为 此时屏上原来的中央明纹 处被第三级明纹所占据 则该媒质的厚度为[](A) 3(B)3 n 2 n 1(C) 22 (D)n 2 n 112. 一束波长为的光线垂直投射到一双缝上,在屏上形成明、暗相间的干涉条纹则下列光程差中对应于最低级次暗纹的是 (B)2(C) (D)T12-1-11 图T12-1-21 图[ ](A)中央明纹是白色的 (C)紫光条纹间距较大干涉条纹的情况为(B)红光条纹较密 (D)干涉条纹为白色T12-1-21 图[](A)缝屏间距离,则条纹间距不变 (C) 入射光强度,则条纹间距不变(B)双缝间距离,则条纹间距变小 (D)入射光波长,则条纹间距不变 20. 在保持入射光波长和缝屏距离不变的情况下 [](A)干涉条纹宽度将变大 (C)干涉条纹宽度将保持不变,将杨氏双缝的缝距减小,则 (B)干涉条纹宽度将变小(D)给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻 璃形成玻璃劈形膜;一个由玻璃中的空气形成空劈形膜•当用相 同的单色光分别垂直照射它们时,从入射光方向观察到干涉条纹 间距较大的是14. 在双缝干涉实验中,屏幕 E 上的P 点处是明条纹•若将缝S 2盖住,并在S ,S 2连线的垂直平面出放一反射镜 M ,如图所示,则此时[](A)P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹T12-1-14图15.在双缝干涉实验中, 入射光的波长为 ,用玻璃纸遮住双缝中的一个缝, 若玻璃纸中光程比相同厚度的空气的光程大 2.5,则屏上原来的明纹处 [](A)仍为明条纹(C)既非明条纹也非暗条纹(B)变为暗条纹(D)无法确定是明纹还是暗纹16.把双缝干涉实验装置放在折射率为 D (D d ),所用单色光在真空中的波长为是: D n D [](A) (B)nddn 的水中,两缝间距离为d,双缝到屏的距离为 ,则屏上干涉条纹中相邻的明纹之间的距离(C)d nD(D)D 2nd17.如T12-1-17图所示,在杨氏双缝实验中,若用一片厚度为 装置中的上面一个缝挡住;再用一片厚度为d 2的透光云母片将 下面一个缝挡住,两云母片的折射率均为 n, d 1>d 2,干涉条纹的变化情况是 [](A)条纹间距减小(B)条纹间距增大 (18. 在杨氏双缝实验中,若用一片能透光的云母片将双缝装 置中的上面一个缝盖住,干涉条纹的变化情况是 [ ](A)条纹间距增大 (B) 整个干涉条纹将向上移动 (C)条纹间距减小(D)整个干涉条纹将向下移动T12-1-18 图19.当单色光垂直照射杨氏双缝时 ,屏上可观察到明暗交替的干涉条纹•若减小d 1的透光云母片将双缝T12-1-17 图[](A) d 1 d o ,d 2 d o 3(B) d 1 d o , d 2 d o 3(C) d 1do2,d2 do(D) d1 do孑d2 do(B) 明纹间距逐渐变小,并向劈棱移动 (C) 明纹间距逐渐变大,并向劈棱移动 (D) 明纹间距逐渐变大,并背向劈棱移动 24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射•若上面的平 玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [](A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移 (C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移25.检验滚珠大小的干涉试装置示意如 T12-1-25(a)图.S 为光源,L 为汇聚透镜,M为半透半反镜.在平晶T i 、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为d o •用 波长为 的单色光垂直照射平晶,在 M 上方观察时观察到等厚条纹如 T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径d 1、C 珠的直径d 2与d 0的关系分别为:[ ](A)玻璃劈形膜(C)两劈形膜干涉条纹间距相同(B)空气劈形膜(D)已知条件不够,难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜 的变化情况为,如果波长逐渐变小,干涉条纹](A)明纹间距逐渐减小 并背离劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中 方向可以察到干涉条纹的变化情况为 若慢慢地减小劈形膜夹角,则从入射光[](A)条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化T12-1-23 图aaaaaaET12-1-25(a)图T12-1-25(b)图26•如T12-1-26(a)图所示,一光学平板玻璃 A 与待测工件B 之间形成空气劈尖, 用波长=500nm(1 nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如 T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部27.设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动 ,当透镜向上平移(即离开玻璃板)时,从入射光方向可观察到干涉条纹的变化情况是 [](A)环纹向边缘扩散,环纹数目不变 (B)环纹向边缘扩散,环纹数目增加 (C)环纹向中心靠拢,环纹数目不变(D)环纹向中心靠拢,环纹数目减少28.牛顿环实验中,透射光的干涉情况是[](A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环(C) 中心亮斑,条纹为内密外疏的同心圆环(D) 中心亮斑, 条纹为内疏外密的同心圆环(平凸透镜的平面始终保29.在牛顿环装置中 ,若对平凸透镜的平面垂直向下施加压力持与玻璃片平行),则牛顿环[](A) 向中心收缩 ,中心时为暗斑,时为明斑,明暗交替变化H 1 H 1(B) 向中心收缩 ,中心处始终为暗斑(C) 向外扩张,中心处始终为暗斑(D)向中心收缩 ,中心处始终为明斑 T12-1-29 图30. 关于光的干涉,下面说法中唯一正确的是[](A)在杨氏双缝干涉图样中,相邻的明条纹与暗条纹间对应的光程差为 一2(B) 在劈形膜的等厚干涉图样中,相邻的明条纹与暗条纹间对应的厚度差为一2(C) 当空气劈形膜的下表面往下平移时,劈形膜上下表面两束反射光的光程差2将增加一2(D) 牛顿干涉圆环属于分波振面法干涉31.根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面[](A) 不平处为凸起纹,最大高度为 500nm(B)不平处为凸起纹, 最大高度为 250nm(C) 不平处为凹槽,最大深度为 500nm 分的切线相切.则工件的上表面缺陷是 (D)不平处为凹槽,最大深度为250nmT12-1-26(a)图T12-1-26(b)图半径R 的关系式d k 工可知,离开环心越远的条纹2R[ ](A)对应的光程差越大,故环越密 (B)对应的光程差越小,故环越密 (C)对应的光程差增加越快,故环越密(D)对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜 放在平玻璃上,则干涉条纹的形状 [ ](A)为内疏外密的圆环(B)为等间距圆环形条纹 (C)为等间距平行直条纹(D) 为以接触线为中心,两侧对称分布,明暗相间,内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的•这是因为: [](A)牛顿环的条纹是环形的(B)劈尖条纹是直线形的 (C)平凸透镜曲面上各点的斜率不等(D)各级条纹对应膜的厚度不等34•如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的 光束发生干涉.若薄膜的厚度为e ,且n i < n 2 > n 3,为入射光在折射率为 n i 的媒质中的波35.用白光垂直照射厚度 折射率为n 1,薄膜下面的媒质折射率为 n 3 •则反射光中可看到的加强光的波长为:37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: ](A)增大劈形膜夹角 (B) (C)换用波长较短的入射光(D)38. 若用波长为的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放长,则两束反射光在相遇点的相位差为: 4 n2 n n 2 [](A)e(B)e n4 n r>24 n(C) e n(D)-ee = 350nm 的薄膜,若膜的折射率 n 2 = 1.4 ,薄膜上面的媒质n 3, 且 n 1 < n 2 <](A) 450nm (C) 690nm(B) 490nm (D) 553.3nmT12-2-35 图n i36. 已知牛顿环两两相邻条纹间的距离不等. 不可行的是如果要使其相等 ,以下所采取的措施中](A)将透镜磨成半圆柱形(C)将透镜磨成三棱柱形(B)将透镜磨成圆锥形 (D)将透镜磨成棱柱形增大棱边长度换用折射率较小的液体入厚度为I 、折射率为n 的透明薄片•放入后,干涉仪两条光路之间的光程差改变量为 [](A) ( n-1) I(B) nl(C) 2 nl(D) 2( n-1)139. 若用波长为 的单色光照射迈克尔逊干涉仪 ,并在迈克尔逊干涉仪的一条光路中放入一厚度为I 、折射率为n 的透明薄片,则可观察到某处的干涉条纹移动的条数为 [ ](A) 4(n 1)-(B)(C)2(n 1)- (D) (n 1)丄40.如图所示,用波长为的单色光照射双缝干涉实验装置,若将一折射率为 n 、劈角为 的透明劈尖b 插入光线2中,则当劈尖b 缓慢向 上移动时(只遮住S 2),屏C 上的干涉条纹 [](A)间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动(D) 间隔不变,向上移动41.根据惠更斯--菲涅耳原理,若已知光在某时刻的波阵面为S,则S 的前方某点P 的光强度取决于波阵面 S 上所有面积元发出的子波各自传到 P 点的[](A)振动振幅之和 (C)光强之和(B)振动振幅之和的平方 (D)振动的相干叠加42.无线电波能绕过建筑物,而可见光波不能绕过建筑物.这是因为 [](A)无线电波是电磁波 (B)光是直线传播的(C)无线电波是球面波(D)光波的波长比无线电波的波长小得多43.光波的衍射现象没有显著,这是由于[](A)光波是电磁波,声波是机械波 (B)光波传播速度比声波大(C)光是有颜色的(D)光的波长比声波小得多a 的单缝上,缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上,若整个实验装置浸入折射率为 n 体中,则在屏上出现的中央明纹宽度为的液 ](A)na2f (C)na(B) (D)na 2nf亠L L J口 I -IT12-1-44 图T12-1-40 图44.波长为的单色光垂直入射在缝宽为45. 在单缝衍射中,若屏上的P 点满足a sin ](A)第二级暗纹 (B) (C)第二级明纹 (D) 46.在夫琅和费单缝衍射实验中,欲使中央亮纹宽度增加,可采取的方法是 [](A)换用长焦距的透镜 (B)换用波长较短的入射光=5/2则该点为第五级暗纹 第五级明纹(C)增大单缝宽度 (D)将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ](A)各级亮条纹亮度相同 (B) 各级暗条纹间距不等 (C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时,中央亮纹两侧为由红到紫的彩色条纹 48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中 心位置不变,各衍射条纹 [ ](A)对应的衍射角变小 (B)对应的衍射角变大 (C)对应的衍射角不变 (D)光强也不变 49. 一束波长为 的平行单色光垂直入射到一单缝 在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第- AB 上,装置如 T12-1-49图所示, 个暗纹所在的位置,则 BC 的长度为 [ ](A) (B)- 23 c (C) (D) 2 250.在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹 [ ](A)宽度变小 (B)宽度变大 (C)宽度不变,且中心强度也不变 (D)宽度不变,但中心强度增大 51.在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很 小.若单缝a 变为原来的 3 -,同时使入射的单色光的波长 2 3变为原来的 -,则屏幕E 上的单缝衍射条纹中央明纹的 4宽度△x 将变为原来的T12-1-51 图[](A) 44 倍 4 2 9 1 (B)-倍 (C) 9 倍 (D)-倍 3 8 2 52. 一单缝夫琅和费衍射实验装置如 T12-1-52图所 示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时, 衍射图样将 [ ](A)向上平移 (B)向下平移 (C)不动(D)消失T12-1-52 图55.在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕 央衍射条纹将 [](A)变宽,同时上移 (B) 变宽,同时下移 (C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽 300 nm 、中心间距为 直照射时,屏幕上最多能观察到的亮条纹数为: [](A) 2 条(B) 3 条57. 白光垂直照射到每厘米有5000条刻痕的光栅上,若在衍射角 =30。

相关文档
最新文档