2020—2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)

合集下载

最新鲁教版数学六年级下册第五章《基本平面图形》复习精品课件

最新鲁教版数学六年级下册第五章《基本平面图形》复习精品课件
第三十一页,共34页。
17.如图,用字母(zìmǔ)A、B、C 表示∠α、∠β.
答案(dá àn):∠CAB或 ∠BAC
表示∠α;
∠CBA或∠ABC表示
∠β.
第三十二页,共34页。
11.引水渠从M向东流250米到N处,转 向东北方向300米到C 处,再转向北偏 西30°方向,流200米到D处,试用 (shìyòng)1 cm表示100米,画出相应 的图形.
(shèxiàn);③线段AB和线段BA是同一条线段;
④图中有两条射线(shèxiàn).
A.0 B.1 C.2
D.3
第十九页,共34页。
7.下列图形中有线段、射线或直线,根据它们的
基 ) 本特征可判断出,其中(qízhōng)能够相交的.C有(
A.①② B.①③ C.①③ D.③④
第二十页,共34页。
∴AC=CB= 1 AB 3cm
CD
1
2
CB 1.5cm
2
AD AC CD 4.5cm
CDB
第十四页,共34页。
►考点(kǎo diǎn)二 角
例2 8点30分时,钟表(zhōngbiǎo)的时针与分针的夹角为 __________°
[答案] 75
[解析] 钟表被分成12格,每格的度数是30°,30°×2.5=75°.
1
(AC+BC)=9
∴MB =9
2
∴MN=MB-NB=9-5 = 4
第二十八页,共34页。
8.经过E、F、G 三点(sān diǎn)画直线,可D以画
____条.
A. 1 B. 2 C. 3
D. 1或3
分析:三点(sān diǎn)共线时,可画一条直 线,三点(sān diǎn)不在同一直线上,根据 直线的性质,每过两点可以画一条直线,共 有三条直线. 解:如图.

鲁教版六年级下第五章基本平面图形规律总结ppt课件

鲁教版六年级下第五章基本平面图形规律总结ppt课件


条直线.
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3.直线上有n个点,则共有多少条线段?
4: 已知线段AB=10,点C在直线AB上, 且AC=4,若点D是AB的中点,求DC的长.
DC=1
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(4)以点O为端点引5条射线时, 共有多少个角?怎样表示?
A
C
D
E
O
B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(5)以点O为端点 A 引n条射线,共有 多少个角?
···
O
B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2)以点O为端点引3条射线时, 共有多少个角?怎样表示?
A C
O B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(3)以点O为端点引4条射线时, 共有多少个角
B
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
《配套》P7 第3题 P8 第5题
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目

鲁教版五四制初中数学目录 A4版 2020-8-3

鲁教版五四制初中数学目录 A4版 2020-8-3

鲁教版五四制六年级数学上册课本目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数的加减混合运算7 有理数的乘法8 有理数的除法9 有理数的乘方10 科学记数法11 有理数的混合运算12 近似数13 用计算器进行运算第三章整式及其加减1 用字母表示数2 代数式3 整式4 合并同类项5 去括号6 整式的加减7 探索与表达规律第四章一元一次方程1 等式与方程2 解一元一次方程3 一元一次方程的应用鲁教版五四制六年级数学下册课本目录第五章基本平面图形1 线段、射线、直线2 比较线段的长短3 角4 角的比较5 多边形和圆的初步认识第六章整式的乘除1 同底数幂的乘法2 幂的乘方与积的乘方3 同底数幂的除法4 零指数幂与负整数指数幂5 整式的乘法6 平方差公式7 完全平方公式8 整式的除法第七章相交线与平行线1 两条直线的位置关系2 探索直线平行的条件3 平行线的性质4 用尺规作角第八章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第九章变量之间的关系1 用表格表示变量之间的关系2 用表达式表示变量之间的关系3 用图象表示变量之间的关系鲁教版五四制七年级数学上册课本目录第一章三角形1 认识三角形2 图形的全等3 探索三角形全等的条件4 三角形的尺规作图5 利用三角形全等测距离第二章轴对称1 轴对称现象2 探索轴对称的性质3 简单的轴对称图形4 利用轴对称进行设计第三章勾股定理1 探索勾股定理2 一定是直角三角形吗3 勾股定理的应用举例第四章实数1 无理数2 平方根3 立方根4 估算5 用计算器开方6 实数第五章位置与坐标1 确定位置2 平面直角坐标系3 轴对称与坐标变化第六章一次函数1 函数2 一次函数3 一次函数的图象4 确定一次函数的表达式5 一次函数的应用鲁教版五四制七年级数学下册课本目录第七章二元一次方程组1 二元一次方程组2 解二元一次方程组3 二元一次方程组的应用4 二元一次方程与一次函数*5 三元一次方程组综合与实践哪一款“套餐”更合适?第八章平行线的有关证明1 定义与命题2 证明的必要性3 基本事实与定理4 平行线的判定定理5 平行线的性质定理6 三角形内角和定理第九章概率初步1 感受可能性2 频率的稳定性3 等可能事件的概率第十章三角形的有关证明1 全等三角形2 等腰三角形3 直角三角形4 线段的垂直平分线5 角平分线第十一章一元一次不等式和一元一次不等式组1 不等关系2 不等式的基本性质3 不等式的解集4 一元一次不等式5 一元一次不等式与一次函数6 一元一次不等式组总复习题第一章因式分解1 因式分解2 提公因式法3 公式法第二章分式与分式方程1 认识分式2 分式的乘除法3 分式的加减法4 分式方程第三章数据的分析1 平均数2 中位数与众数3 从统计图分析数据的集中趋势4 数据的离散程度第四章图形的平移与旋转1 图形的平移2 图形的旋转3 中心对称4 图形变化的简单应用第五章平行四边形1 平行四边形的性质2 平行四边形的判定3 三角形的中位线4 多边形的内角与外角和第六章特殊平行四边形1 菱形的性质与判定2 矩形的性质与判定3 正方形的性质与判定第七章二次根式1 二次根式2 二次根式的性质3 二次根式的加减4 二次根式的乘除第八章一元二次方程1 一元二次方程2 用配方法解一元二次方程3 用公式法解一元二次方程4 用分解因式法解一元二次方程5 一元二次方程根与系数的关系6 一元二次方程的应用第九章图形的相似1 成比例线段2 平行线分线段成比例3 相似多边形4 探索三角形相似的条件5 相似三角形判定定理的证明6 黄金分割7 利用相似三角形测高8 相似三角形的性质9 利用位似放缩图形第一章反比例函数1 反比例函数2 反比例函数的图像与性质3 反比例函数的应用第二章直角三角形的边角关系1 锐角三角函数2 30°,45°,60°的三角函数值3 用计算器求锐角的三角函数值4 解直角三角形5 三角函数的应用6 利用三角函数测高第三章二次函数1 对函数的再认识2 二次函数3 二次函数y=ax2的图象和性质4 二次函数y=ax2+bx+c的图象和性质5 确定二次函数的表达式6 二次函数的应用7 二次函数与一元二次方程第四章投影与视图1 投影2 视图第五章圆1 圆2 圆的对称性3 垂径定理4 圆周角和圆心角的关系5 确定圆的条件6 直线和圆的位置关系7 切线长定理8 正多边形和圆9 弧长及扇形的面积10 圆锥的侧面积第六章对概率的进一步认识1 用树形图或表格求概率2 生活中的概率3 用频率估计概率。

2020鲁教版六年级数学下册(五四制)电子课本课件【全册】

2020鲁教版六年级数学下册(五四制)电子课本课件【全册】

第五章 基本平面图形
2020鲁教版六年级数学下册(五四 制)电子课本课件【全册】
1 线段、射线、 直线
2020鲁教版六年级数学下册(五四 制)电子课本课件【全册】
2 比较线段的长短
2020鲁教版六年级数学下册(五四 2020鲁教版六年级数学下册(五四 制)电子课本课件【全册】
4 角的比较
2020鲁教版六年级数学下册(五四 制)电子课本课件【全册】
5 多边形和圆的初步认识
2020鲁教版六年级数学下册(五四 制)电子课本课件【全册】目录
0002页 0066页 0115页 0137页 0160页 0220页 0286页 0331页 0372页 0427页 0475页 0530页 0595页 0631页 0652页
第五章 基本平面图形 2 比较线段的长短 4 角的比较 第六章 整式的乘除 2 幂的乘方与积的乘方 4 零指数幂与负整数指数幂 6 平方差公式 8 整式的除法 1 两条直线的位置关系 3 平行线的性质 第八章 数据的收集与整理 2 普查和抽样调查 4 统计图的选择 1 用表格表示变量之间的关系 3 用图象表示变量之间的关系
2020鲁教版六年级数学下册(五四 制)电子课本课件【全册】

2020—2021年最新鲁教版五四制六年级数学下册《基本平面图形》单元测试题及答案.docx

2020—2021年最新鲁教版五四制六年级数学下册《基本平面图形》单元测试题及答案.docx

鲁教版(五四制)六年级下册单元评价检测第五章(45分钟100分)一、选择题(每小题4分,共28分)1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是( )(A)1 (B)2 (C)3 (D)42.如图所示,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB=1∶2,则线段AC的长度为( )(A)2 cm (B)8 cm (C)6 cm (D)4 cm3.下列说法正确的是( )(A)角的两边可以度量(B)一条直线可看成一个平角(C)角是由一点引出的两条射线组成的图形(D)一条射线可看成一个周角4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为( )(A)95°(B)100°(C)110°(D)120°5.如图,已知C是线段AB的中点,D是BC的中点,E是AD的中点,F是AE的中点,那么线段AF是线段AC的( )(A)18(B)14(C)38(D)3166.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( )(A)3对(B)4对(C)5对(D)7对7.已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是( )(A)20°(B)40°(C)80°(D)160°二、填空题(每小题5分,共25分)8.30.12°=________°_______′_______″,100°12′36″=_______°.9.已知线段AB,延长线段AB到C,使BC=2AB,反向延长AB到D,使AD=AB,则AC=_______AB;DC=_______AC.10.如图,圆中两条半径把圆分成面积为4∶5的两个扇形,则两个扇形的圆心角的度数为_________.11.如图,点C是∠AOB的边OA上一点,D,E是OB上两点,则图中共有_________条线段,可用字母表示的射线有_________条,_________个小于平角的角.12.直线上有2 013个点,我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后,直线上共有_________个点.三、解答题(共47分)13.(11分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求BD的长.14.(11分)如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD.求∠BOE的度数.15.(12分)如图所示,回答下列问题.(1)2条直线相交有几个交点?(2)3条直线两两相交,最多有几个交点?(3)4条直线两两相交,最多有几个交点?(4)根据(1)(2)(3)总结:n(n为大于或等于2的正整数)条直线两两相交,最多有几个交点;(5)根据上述结论,求100条直线两两相交最多有几个交点.16.(13分)(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中的∠AOB=α(OC在∠AOB外),其他条件不变,求∠MON的度数;(3)如果(1)中的∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结论中能得出什么结论?答案解析1.【解析】选B.射线的端点不同,射线就不同,所以射线AB与射线BA不是同一条射线,①错;②对;③错,因为无法使AB=AC;④对;所以选B.2.【解析】选B.因为AM=MB=12AB=6(cm),MC=6×13=2(cm),所以AC=AM+MC=6+2=8(cm),故选B.3.【解析】选C.角是由具有公共端点的两条射线组成的,可知C正确;射线不可以度量,故A错;角有顶点和两条边,故B,D错,因此选C.4.【解析】选C.因为∠BOC=90°-20°=70°,所以∠2=180°-∠BOC=180°-70°=110°.5.【解析】选C.根据题意可设CD=DB=x,则AC=CB=2DB=2x,AD=3x,AE=32x,AF=12AE=34x,所以3xAF34==AC2x8,故选C.6.【解析】选C.因为∠COB=∠DOE=90°,所以∠COE+∠COD=90°,∠COD+∠BOD=90°,所以∠COE=∠BOD;因为∠AOC=∠DOE,所以∠COE+∠COD=90°,∠AOE+∠COE=90°,所以∠AOE=∠COD;∠AOC=∠BOC.故选C.7.【解析】选D.可设∠α=x,∠β=8x,则x+8x=180°,x=20°,所以∠β=8x=160°,故选D.8.【解析】0.12°=0.12×60'=7.2',0.2'=0.2×60″=12″,所以30.12°=30°7'12″,36″=36×(160)'=0.6',12.6'=12.6×(160)°=0.21°,所以100°12'36″=100.21°.答案:30 7 12 100.219.【解析】如图所示,AC=3AB,DC=4AB,所以DC=43AC.答案:3 4310.【解析】两个扇形圆心角的度数分别为360°×49=160°和360°×59=200°.答案:160°,200°11.【解析】图中有线段OD,OE,OB,DE,DB,EB,OC,OA,CA,DC,EC,共11条,射线OA,CA,OB,DB,EB,共5条,小于平角的角有∠O,∠ODC,∠CDE,∠CED,∠CEB,∠ACE,∠ECD,∠DCO,∠ACD,∠OCE,共10个.答案:11 5 1012.【解析】2 013+2 012=4 025,4 025+4 024=8 049,8 049+8 048=16 097. 答案:16 09713.【解析】(1)因为C 是AB 的中点,所以AC=BC=12AB=9 cm.因为D 是AC 的中点,所以AD=DC=12AC=92cm.因为E 是BC 的中点,所以CE=BE=12BC=92cm.又因为DE=DC+CE,所以DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE,所以CE=13BD. 因为CE=5 cm,所以BD=15 cm.14.【解析】因为∠AOB=30°,∠BOC=40°,∠COD=26°,所以∠AOD=∠AOB+∠BOC+∠COD=30°+40°+26°=96°, 又因为OE 平分∠AOD,所以∠AOE=12∠AOD=12×96°=48°, 所以∠BOE=∠AOE-∠AOB=48°-30°=18°. 15.【解析】(1)由图可知,2条直线相交有1个交点. (2)3条直线两两相交,最多有2+1=3个交点. (3)4条直线两两相交,最多有3+2+1=6个交点. (4)依此类推,n 条直线两两相交最多有n-1+…+3+2+1=n(n 1)2-个交点. (5)根据上述结论,当n=100时, n(n 1)2-=100992⨯=4 950个交点.16.【解析】(1)因为ON 是∠BOC 的平分线, 所以∠CON=∠BON=12∠BOC=12×30°=15°. 因为OM 是∠AOC 的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+30°)=60°,所以∠MON=∠COM-∠CON=60°-15°=45°. (2)当∠AOB=α,其他条件不变时,由(1)得∠CON=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(α+30°)=12α+15°,所以∠MON=∠COM-∠CON=12α+15°-15°=12α.(3)当∠BOC=β,其他条件不变时,因为ON是∠BOC的平分线,所以∠CON=∠BON=1 2∠BOC=12β,因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+β)=45°+12β,所以∠MON=∠COM-∠CON=45°+12β-12β=45°.(4)∠MON的度数总等于∠AOB的一半,而与锐角∠BOC的度数没有关系.。

六年级数学下册 第五章 基本平面图形教学设计 鲁教版五四制

六年级数学下册 第五章 基本平面图形教学设计 鲁教版五四制

第五章基本平面图形中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

(完整)鲁教版六年级下册第五章基本平面图形全章教案.doc

(完整)鲁教版六年级下册第五章基本平面图形全章教案.doc

第五单元知识结构↗多边形现实情境→基本元素→基本的平面图形→圆↘扇形↙↘线段、射线、直线角↙↓↘↓↘符号表示线段长短比较基本事实符号表示角的大小比较1、基本事实:两点确定一条直线。

两点之间线段最短。

重2、中点的意义。

点3、角平分线的意义。

4、圆及圆弧、圆心角的意义。

难1、理解线段的和、差,以及线段中点的意义。

点2、理解角的和、差、倍,角平分线的意义。

1、经历观察、测量、折叠、模型制作等活动,发展学生的空间观念。

2、在现实情境中认识线段、射线、直线、角、多边形、扇形、圆等简单的平面图形,了解其含义及其相关的性质。

教3、能用符号表示线段、射线、直线和角。

学4、会进行线段的长短或角的大小的比较,能估计一个角的大小,会进行角的单位的简单的换算。

目标5、能用尺规作图作一条线段等于已知线段。

6、经历在操作活动中探索图形性质的过程,了解简单图形的性质;丰富数学学习的成功体验,积累操作活动经验,发展有条理的思考与表达能力。

教学措施教学过程设计学法指导1. 针对教材特点,将观察、操作等实践活动以及实践活动的思考与交流贯穿于教学过程的始终。

2.认真备课,把握好重、难点,有针对性的讲解与练习1、充分挖掘和利用现实生活中的与线段、射线、直线、角、多边形、圆、扇形密切相关的现实背景,尽可能从学生感兴趣的话题出发,通过创设恰当的问题情境进行教学。

2、要让学生从事观察、测量、折叠等活动,帮助他们有意识的积累活动经验,获得成功的体验。

3、鼓励学生从事抽象与概括活动,归纳数学对象的特征,发展有条理的思考。

1.在教学中,既要注重对教学语言的解释,又要注重必要的句法分析,这是理解、掌握数学语言的基础2.要注意语言规范,数学有其专业术语而且要求表述准确,这是正确运用数学语言的保证3.加强文字语言、符号语言、几何语言的互译和转换,这是促进学生理解数学语言,学会灵活运用的有效手段,为此,首先在概念和定理教学中应多采取转换成符号语言和图形语言来表述的练习。

鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试题

鲁教版(五四制)六年级数学下册第五章基本平面图形单元测试题

鲁教版六年级数学下册第五章基本平面图形单元测试题一、选择题1.已知如图,则下列叙述不正确的是()A. 点O不在直线AC上B. 射线AB与射线BC是指同一条射线C. 图中共有5条线段D. 直线AB与直线CA是指同一条直线2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是()A. 两点确定一条直线B. 两点之间线段最短C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直3.已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A. 12cmB. 8 cmC. 12 cm或8 cmD. 以上均不对4.如图,点A、B、C顺次在直线上,点M是线段AC的中点,点N是线段BC的中点,已知AB=16cm,MN=()A. 6cmB. 8cmC. 9cmD. 10cm5.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是()A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④6.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)角的大小与角的两边的长短有关.A. 1个B. 2个C. 3个D. 4个7.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A. B.C. D.8.如图所示,射线OB,OC将∠AOD分成三部分,下列判断中错误的是().A. 如果∠AOB=∠COD,那么∠AOC=∠BODB. 如果∠AOB>∠COD,那么∠AOC>∠BODC. 如果∠AOB<∠COD,那么∠AOC<∠BODD. 如果∠AOB=∠BOC,那么∠AOC=∠BOD9.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=13∠AOB ;②∠DOC=2∠BOC;③∠COB=12∠AOB;④∠COD=3∠BOC.正确的是()A. ①②B. ③④C. ②③D. ①④10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A. 67°64′B. 57°64′C. 67°24′D. 68°24′11.从八边形的一个顶点出发,可以画出m条对角线,它们将八边形分成n个三角形,则m,n的值分别为()A. 6,5B. 5,6C. 6,6D. 5,512.已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是()A. 6B. 7C. 8D. 10二、填空题13.小刚同学要在墙上钉牢一根木条至少需要______ 根铁钉,其数学道理是______ .第1页,共9页14.已知点A、B、C在同一直线上,AB=12cm,BC=13AC.若点P为AB的中点,点Q为BC的中点,则PQ=______ cm.15.如图,两根木条的长度分别为6cm和10cm,在它们的中点处各打一个小孔M、N(小孔大小忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN=______cm.16.如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠1=26°48′,则∠2=______.17.如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE−∠BOD= ______ °.18.过某多边形的一个顶点的所有对角线将这个多边形分成6个三角形,这个多边形是______ 边形.三、解答题19.计算:(1)48°39′+67°31′−21°17′×5;(2)90°−51°37′11″.20.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.21.已知:如图,OC是∠AOB的角平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,过点O作OE⊥OC,求∠AOE的度数;(3)当∠AOB=α时,过点O作OE⊥OC,直接写出∠AOE的度数.(用含α的式子表示)22.(1)如图(1)所示是四边形,小明作出它对角线为2条,算法为4×(4−3)2=2.(2)如图(2)是五边形,小明作出它的对角线有5条,算法为5×(5−3)2=5.(3)如图(3)是六边形,可以作出它的对角线有______ 条,算法为______ .(4)猜想边数为n的多边形对角线条数的算法及条数.23.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.第3页,共9页答案和解析1.【答案】B【解析】【分析】此题主要考查了直线、射线、线段,以及点与直线的位置关系,关键是掌握三线的表示方法.根据直线、射线、线段的表示方法,以及线段的概念分别判断各选项即可.【解答】解:A.点O不在直线AC上,故A说法正确,不符合题意;B.射线AB与射线BC,端点不同,不是指同一条射线,故B错误,符合题意;C.图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;D.直线AB与直线CA是指同一条直线,故D正确,不符合题意.故选B.2.【答案】A【解析】【分析】本题考查了直线的性质,解题关键是zw掌握直线的性质:两点确定一条直线.解题时,由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.【解答】解:由题意“经过刨平的木板上的两个点,能且只能弹出一条笔直的墨线”可知这一实际问题应用的数学知识是:两点确定一条直线.故选A.3.【答案】C【解析】【分析】此题主要考查了两点间的距离的含义和求法,要熟练掌握,注意分两种情况讨论.根据题意,分两种情况讨论:(1)点C在A、B中间时;(2)点C在点A的左边时;求出线段BC的长为多少即可.【解答】解:(1)点C在A、B中间时,BC=AB−AC=10−2=8(cm).(2)点C在点A的左边时,BC=AB+AC=10+2=12(cm).∴线段BC的长为12cm或8cm.故选:C.4.【答案】B【解析】【试题解析】【分析】本题主要考查了线段的中点、线段的和差等知识点,注意理解线段的中点的概念,利用线段中点的定义转化线段之间的倍分关系是解题的关键.根据点M是线段AC的中点,点N是线段BC的中点,得出MC=12AC,NC=12BC,利用MN=MC−NC=12AB,继而可得出答案.【解答】解:∵点M是线段AC的中点,点N是线段BC的中点,∴MC=12AC,NC=12BC,∴MN=MC−NC=12AC−12BC=12(AC−BC)=12AB,∵AB=16cm,∴MN=8cm.故选B.5.【答案】D【解析】【分析】本题主要考查了两点间的距离的求法,解题时利用了线段的和差,线段中点的性质,解决此类问题的关键是找出各个线段间的关系.根据中点的概念与线段之间的和差关系判断即可.【解答】解: ①若AD=BM,则AM=BD.由M是AD的中点,得AM=MD,则AM=MD=BD,故AB=3BD; ②若AC=BD,则AD=BC.由M,N分别是AD,BC的中点,可得AM=12AD,BN=12BC,故A M=BN; ③因为AC=AM+MC=DM+MC,BD=BN+DN=CN+DN,所以AC−BD=DM−CN+MC−DN.又因为DM−CN=MC−DN,故AC−BD=2(MC−DN); ④因为MN=MD+CN−CD=12AD+12BC−CD=12(AD+BC)−CD=12(AB+CD)−CD=12(AB−CD),故2MN=AB−CD.故选D.6.【答案】A【解析】解:(1)连接两点之间线段的长度叫做两点间的距离,因此(1)不符合题意;(2)两点之间,线段最短是正确的,因此(2)符合题意;(3)若AB=2CB,当点C在AB上时,点C是AB的中点,当点C在AB的延长线上时,点C就不是AB的中点,因此(3)不符合题意;(4)角的大小与角的两边的长短无关,只与两边叉开的程度有关,因此(4)不符合题意;因此正确的是(2),故选:A.根据两点间的距离,线段性质,线段中点以及角的大小逐项进行判断即可.本题考查两点间的距离,线段性质,线段中点以及角的大小等知识,理解各个概念的内涵是正确判断的前提.7.【答案】C 【解析】解:能用∠1、∠AOB、∠O三种方法表示同一个角的图形是C选项中的图,A,B,D选项中的图都不能同时用∠1、∠AOB、∠O三种方法表示同一个角,故选:C.根据角的三种表示方法,可得正确答案.本题考查了角的概念,熟记角的表示方法是解题关键.在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角.8.【答案】D【解析】【分析】本题主要考查了角的大小比较,解题的关键是正确找出各角的关系式.利用图中角与角的关系,即可判断各选项.【解答】解:A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOD,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC和∠BOD不一定相等,本选项错误.故选D.9.【答案】B【解析】解:设∠AOB=α,∵∠BOD=2∠AOB,OC是∠AOD的平分线,∴∠BOD=2α,∠AOC=∠COD=32α,∴∠COB=∠AOC−∠AOB=12∠AOB,故③正确,①错误;∴∠COD=3∠BOC,故④正确,②错误.故选B.设∠AOB=α,由∠BOD=2∠AOB,OC是∠AOD的平分线,可得∠BOD=2α,∠AOC=∠COD=32α,故能判断出选项中各角大小关系.本题主要考查角的比较与运算这一知识点,比较简单.第5页,共9页10.【答案】C【解析】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC−∠BOC=90°−22°36′=67°24′.故选:C.先利用角平分线的性质求出∠DOC的度数,再利用角的和差及互余关系求出∠BOA度数.本题考查了角平分线的性质、两角互余等知识点,掌握角的和差关系是解决本题的关键.11.【答案】B【解析】【分析】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2.根据从一个n边形一个顶点出发,可以连的对角线的条数是n−3,分成的三角形数是n−2解答即可.【解答】解:对角线的数量m=8−3=5条;分成的三角形的数量为n=8−2=6个.故选:B.12.【答案】B【解析】【分析】本题主要考查了多边形的对角线的条数与多边形的边数之间的关系.n边形的对角线有12n⋅(n−3)条,根据对角线条数是它边数的2倍列方程即可求得多边形的边数.【解答】解:设这个多边形的边数是n⋅根据题意得:12n⋅(n−3)=2n,解得:n=7.则多边形的边数是7.故选B.13.【答案】2 两点确定一条直线【解析】解:根据直线的公理;故应填2,两点确定一条直线.根据直线的确定方法,易得答案.本题考查直线的确定:两点确定一条直线.14.【答案】4.5或9【解析】解:(1)点C在线段AB上,如图1:∵AB=AC+BC,BC=13AC,∴AB=3BC+BC=4BC又∵AB=12cm,∴BC=3cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=1.5cm,∴PQ=BP−BQ=6−1.5=4.5cm;(2)点C在线段AB的延长线上,如:∵AB=AC−BC,BC=13AC,∴AB=3BC−BC=2BC又∵AB=12cm,∴BC=6cm,∵点P是线段AB的中点,点Q是线段BC的中点,∴PB=12AB=6cm,QB=12CB=3cm,∴PQ=BP+BQ=6+3=9cm;故答案为:4.5或9.分类讨论点C在AB上,点C在AB的延长线上,根据线段的中点的性质,可得BP、BQ的长,根据线段的和差,可得答案.本题考查了两点间的距离,线段中点的性质,线段的和差,分类讨论是解题关键.15.【答案】8或2【解析】解:有两种情形:(1)当A、C(或B、D)重合,且剩余两端点在重合点同侧时,MN=CN−AM=12CD−12AB=5−3=2(厘米);(2)当B、C(或A、C)重合,且剩余两端点在重合点两侧时,MN=CN+BM=12CD+12AB=5+3=8(厘米);故两根木条的小圆孔之间的距离MN是2cm或8cm,故答案为:2或8.本题没有给出图形,在画图时,应考虑到A、B、M、N四点之间的位置关系的多种可能,再根据题意正确地画出图形解题.此题考查两点之间的距离问题,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.【答案】73°12′【解析】解:∵∠AOB=100°,∠1=26°48′,∴∠2=100°−26°48′=73°12′.故答案为:73°12′根据角的计算解答即可.此题考查角的计算,关键是根据度分秒的计算解答.17.【答案】110 【解析】解:设∠EOD=x°,∠BOC=y°,则∠EOC=∠EOD+∠COD=x°+40°.∵OE平分∠AOC,∴∠AOE=∠EOC=x°+40°.∵∠AOB=150°,∴∠AOE+∠COE+∠BOC=150°.即2(x°+40°)+y°=150°.∴2x°+y°=70°.∵2∠BOE−∠BOD=2(x°+40°+y°)−(y°+40°)=2x°+80°+2y°−y°−40°=2x°+y°+40°,∴2∠BOE−∠BOD=70°+40°=110°.故答案为110.设∠EOD=x°,∠BOC=y°,用x,y表示2∠BOE−∠BOD,利用已知条件得出x,y的关系式,然后整体代入可得结论.本题主要考查了角平分线的定义的应用以及角的计算,本题的关键在于借助中间量,利用整体代入进行计算.18.【答案】八【解析】【分析】本题考查了多边形对角线,n边形过一个顶点的所有对角线公式是(n−2)条.根据n边形对角线公式,可得答案.【解答】解:设多边形是n边形,由对角线公式,得n−2=6.解得n=8,故答案为八.19.【答案】解:(1)原式=48°39′+67°31′−106°25′=9°45′;(2)原式=89°59′60″−51°37′11″=38°22′49″.【解析】(1)首先计算乘法,然后计算加减即可;(2)首先把90°化为89°59′60″,然后再利用度减度、分减分、秒减秒进行计算即可.第7页,共9页此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60″.20.【答案】解:(1)题图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个;(2)∵∠AOC=50°,OD平分∠AOC,∴∠AOD=12∠AOC=25∘,∴∠BOD=180°−∠AOD=155°;(3)∵∠DOE=90°,∠DOC=12∠AOC=25∘,∴∠COE=∠DOE−∠DOC=90°−25°=65°.又∵∠BOE=∠BOD−∠DOE=155°−90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.【解析】本题考查了有关角的概念,角的平分线,角的计算.正确的理解角的定义,角的平分线的定义是解决问题的关键.(1)数角的方法(" id="MathJax-Element-3441-Frame" role="presentation" style="box-sizing: content-box; - webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px; min-height: 0 px; border: 0 px; position: relative;" tabindex="0">((从一边数,再按一个方向数)" id="MathJax-Element-3442-Frame"role="presentation" style="box-sizing: content-box; -webkit-tap-highlight-color: rgba(0, 0, 0, 0); margin: 0 px; padding: 5 px 2px; display: inline-block; ; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0 px;min-height: 0 px; border: 0 px; position: relative;" tabindex="0">)),这样才能做到不重不漏;(2)先求出∠AOD的度数,因为∠AOB是平角,∠BOD=∠AOB−∠AOD;(3)分别求出∠COE和∠EOB的度数即可.21.【答案】解:(1)∵OC是∠AOB的平分线(已知),∴∠AOC=12∠AOB,∵∠AOB=60°,∴∠AOC=30°.(2)∵OE⊥OC,∴∠EOC=90°,如图1,∠AOE=∠COE+∠COA=90°+30°=120°.如图2,∠AOE=∠COE−∠COA=90°−30°=60°.(3)∠AOE=90°+12α或∠AOE=90°−12α.【解析】(1)直接由角平分线的意义得出答案即可;(2)分两种情况:OE在OC的上面,OE在OC的下面,利用角的和与差求得答案即可;(3)类比(2)中的答案得出结论即可.此题考查了角的计算,以及角平分线定义,分类考虑,类比推理是解决问题的关键.22.【答案】9;6×(6−3)2第9页,共9页【解析】解:(3)六边形,可以作出它的对角线有9条,算法:6×(6−3)2=9;故答案为:9;6×(6−3)2=9;(4)n 的多边形对角线条数的算法及条数n(n−3)2.根据(1)(2)所给算法计算即可.此题主要考查了对角线,关键是掌握对角线的计算方法. 23.【答案】解:(1)线段AB =20,BC =15, ∴AC =AB -BC =20-15=5. 又∵点M 是AC 的中点.∴AM =12AC =12×5=52,即线段AM 的长度是52.(2)∵BC =15,CN :NB =2:3, ∴CN =25BC =25×15=6.又∵点M 是AC 的中点,AC =5, ∴MC =12AC =52,∴MN =MC +NC =172,即MN 的长度是172.【解析】【试题解析】(1)根据题意知AM =12AC ,AC =AB -BC ;(2)根据已知条件求得CN =6,然后根据图示知MN =MC +NC .本题考查了两点间的距离,利用了线段的和差,线段中点的性质.。

鲁教版(五四学制)数学六年级下册 第五章 基本平面图形 5.1 线段、射线、直线

鲁教版(五四学制)数学六年级下册 第五章 基本平面图形 5.1 线段、射线、直线

6.(柳州·中考)如图,点A,B,C是直线l上的三个点,
图中共有线段条数是( )
A.1条
B.2条
C.3条
D.4条
AB
Cl
【解析】选C.有线段AB,线段AC,线段BC.
通过本课时的学习,需要我们掌握: 1.线段、射线、直线的表示方法. 2.射线的表示有方向性,端点字母在前,射线上其他任 意一点字母在后,线段、直线的表示与字母顺序无关. 3.经过两点有且只有一条直线.
第五章 基本平面图形
1 线段、射线、直线
1.在现实情境中理解线段、射线、直线等简单的平面 图形,通过操作活动,了解两点确定一条直线等几何 事实; 2.学会线段、射线、直线的画法及表示方法; 3.理解直线的基本性质.
绷紧的琴弦、人行横道都可以近 似地看做线段.
将线段向一个方向无限延长就形 成了射线.
征服畏惧、建立自信的最快最有效的方法, 就是去做你害怕的 1.点P在直线a上(或说:直线a经过点P)
a P
2.点P在直线a外 (或说:直线a不经过点P) P
a
学以致用:
经过两点有且只有一条直线. 简记为:两点确定一条直线
学以致用: 植树时,要把一排树植整齐,该怎么办?
只要定出两个树坑的位置就能确定同 一行的树坑所在的直线.
不可延长 两个 可以
射线OP 一方 一个 不可以
直线EF 直线 m
两方 无 不可以
判断下列各题,对的打“√”,错的打“×”.
(1)线段有两个端点, 射线有一个端点, 直线没有端点.( √ )
(2)线段AB长2 000米,射线AB长2 000米. ( × ) (3)射线比直线短一半.( × ) (4)线段、射线可以度量长度,直线不能.( × ) (5)射线AB与射线BA是同一条射线.( × )

鲁教版五四制六年级下册数学 第五章 基本平面图形 综合复习题(含答案解析)

鲁教版五四制六年级下册数学 第五章 基本平面图形 综合复习题(含答案解析)

参考答案与试题解析一.选择题1.下列说法正确的是()A.画一条长3cm的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到C解:A.画一条长3cm的射线,说法错误,射线可以向一个方向无限延伸;B.射线、线段、直线中直线最长说法错误,射线可以向一个方向无限延伸,直线可以向两个方向无限延伸;C.射线是直线的一部分,正确;D.延长直线AB到C说法错误,直线可以向两个方向无限延伸.故选:C.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是()①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.①③B.②④C.①④D.②③解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:C.3.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A.B.C.D.解:A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.4.如图,下列说法中正确的是()A.直线AC在线段BC上B.射线DE与直线AC没有公共点C.直线AC与线段BD相交于点AD.点D在直线AC上解:A.直线AC上的点C在线段BC上,故本选项错误;B.射线DE与直线AC有公共点,故本选项错误;C.直线AC与线段BD相交于点A,故本选项正确;D.点D在直线AC外,故本选项错误;故选:C.5.下列叙述中正确的是()①线段AB可表示为线段BA②射线AB可表示为射线BA③直线AB可表示为直线BA④射线AB和射线BA是同一条射线A.①②③④B.②③C.①③D.①②③解:①线段AB可表示为线段BA,正确;②射线AB不可表示为射线BA,错误;③直线AB可表示为直线BA,正确;④射线AB和射线BA不是同一条射线,错误;故选:C.6.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.7.如图,延长线段AB到点C,使BC=2AB,D是AC的中点,若AB=5,则BD的长为()A.2B.2.5C.3D.3.5解:∵AB=5,BC=2AB,∴BC=10,∴AC=AB+BC=15,∵D为AC的中点,∴AD=AC=7.5,∴BD=AD﹣AB=7.5﹣5=2.5,故选:B.8.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB 解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.9.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定解:由图可知,A′B′<AB;故选:C.10.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.11.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.95°B.100°C.110°D.120°解:∵∠1=20°,∠AOC=90°,∴∠BOC=∠AOC﹣∠1=90°﹣20°=70°,∴∠2=180°﹣∠BOC=180°﹣70°=110°,故选:C.12.如图所示,OB是∠AOC平分线,∠COD=∠BOD,∠COD=17°,则∠AOD的度数是()A.70°B.83°C.68°D.85°解:∵∠COD=∠BOD,∠COD=17°,∴∠BOC=2∠COD=2×17°=34°,∵OB是∠AOC平分线,∴∠AOC=2∠BOC=2×34°=68°,∴∠AOD=∠AOC+∠COD=68°+17°=85°,故选:D.13.下列角度不能用一副三角板画出来的是()A.75°B.65°C.45°D.15°解:A、用45°+30°角画出,故能画出;B、没有两个角的和或差是65°,故不能画出;C、直接用三角板就可画出,故能画出;D、用60°﹣45°就可以画出,故能画出.故选:B.14.如图:如果∠1=∠3,那么()A.∠1=∠2B.∠2=∠3C.∠AOC=∠BOD D.∠1=∠BOD 解:根据题意,∠1=∠3,有∠1+∠2=∠3+∠2,即∠AOC=∠BOD;故选:C.15.如图,小明顺着大半圆从A地到B地,小红顺着两个小半圆从A地到B地,设小明、小红走过的路程分别为a、b,则a与b的大小关系是()A.a=b B.a<b C.a>b D.不能确定解:设小明走的半圆的半径是R.则小明所走的路程是:πR.设小红所走的两个半圆的半径分别是:r1与r2,则r1+r2=R.小红所走的路程是:πr1+πr2=π(r1+r2)=πR.因而a=b.故选:A.二.填空题16.如图,OB平分∠AOC,∠AOD=78°,∠BOC=20°,则∠COD的度数为38°.解:∵OB平分∠AOC,∠BOC=20°,∴∠COD=40°,∵∠AOD=78°,∴∠COD=38°.故答案为38.三.解答题17.如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.解:(1)如图所示,直线AB,射线BD,线段BC即为所求;(2)连接AC,点E即为所求.18.如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,求∠EOF的度数.解:∵OF平分∠BOC,∠BOC=60°,∴∠COF=30°,∴∠EOF=∠COE﹣∠COF=∠COE﹣30°,∵OE平分∠AOC,∴∠AOC=2∠COE,又∵∠AOC+∠EOF=156°,∴2∠COE+∠COE﹣30°=156°,解得∠COE=62°,∴∠EOF=62°﹣30°=32°.。

2020-2021学年六年级数学鲁教版下册第5章基本平面图形章末易错题型优生辅导(附答案)

2020-2021学年六年级数学鲁教版下册第5章基本平面图形章末易错题型优生辅导(附答案)

2021年度鲁教版六年级数学下册第5章基本的平面图形章末易错题型优生辅导(附答案)1.下列说法正确的是()A.延长射线AB到CB.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线2.下列条件中能确定点C是线段AB的中点的是()A.AC=BC B.AB=BC C.AC=BC=AB D.AC+BC=AB 3.在时刻9:30,墙上挂钟的时针与分针之间的夹角是()A.115°B.105°C.100°D.90°4.已知线段AB=8cm,在直线AB上画线BC,使BC=,则线段AC等于()A.12cm B.4cm C.12cm或4cm D.8cm或12cm 5.若平面内有三个点A、B、C,过其中任意两点画直线,那么画出的直线条数可能是()A.0,1,2B.1,2,3C.1,3D.0,1,2,3 6.点C是线段AB上的三等分点,D是线段AC的中点,E是线段BC的中点,若CE=6,则AB的长为()A.18B.36C.16或24D.18或367.如图,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点,则DE的长()A.4cm B.8cm C.10cm D.16cm8.下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A.B.C.D.9.如果A,B,C三点同在一直线上,且线段AB=6cm,BC=3cm,A,C两点的距离为d,那么d=()A.9cm B.3cm C.9cm或3cm D.大小不定10.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB 的度数是()A.65°B.25°C.90°D.115°11.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为cm.12.计算:90°﹣44°14′15″=.13.钟表上的时间是8:30时,时针与分针的夹角为度.14.有两根木条,一根长60厘米,一根长100厘米.如果将它们放在同一条直线上,并且使一个端点重合,这两根木条的中点间的距离是.15.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.16.如图,耀华同学从O点出发,前进10米后向右转20°,再前进10米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了米.17.已知线段AB=9cm,点C是直线AB上一点,且BC=3cm,若点D是线段AB的中点,点E是线段BC的中点,则线段DE=cm.18.已知OC平分∠AOB,若∠AOB=70°,∠COD=10°,则∠AOD的度数为.19.已知∠AOB=60°,以点O为端点作射线OC,使∠BOC=20°,再作∠AOC的平分线OD,则∠AOD的度数为.20.一个多边形剪去一个角后,内角和为360°,则原多边形为几边形:.21.已知∠AOB=30°,∠BOC=24°,∠AOD=15°,则锐角∠COD的度数.22.过多边形的一个顶点能引出5条对角线,则这个多边形的边数是.23.已知:如图,在直线l上顺次有A、B、C三点,AB=4cm,AB>BC,点O是线段AC 的中点,且OB=cm,求:B、C两点之间的距离.24.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.25.已知:点C在直线AB上.(1)若AB=2,AC=3,求BC的长;(2)若点C在射线AB上,且BC=2AB,取AC的中点D,已知线段BD的长为1.5,求线段AB的长.(要求:在备用图上补全图形)26.已知:点M,N,P在同一条直线上,线段MN=6,且线段PN=2.(1)若点P在线段MN上,求MP的长;(2)若点P在射线MN上,点A是MP的中点,求线段AP的长.27.如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;(2)作射线OE,使∠BOE=∠COE,求∠COE的度数;(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.28.如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=30°,求∠EOF的度数?(2)如图2,若∠AOB=α,求∠EOF的度数,(用含α的式子表示)(3)若将题中的“平分”的条件改为“∠EOB=∠COB,∠COF=∠COA,且∠AOB =α,求∠EOF的度数,(用含α的式子表示)29.如图①,已知线段AB=20cm,点C为AB上的一个动点,点D,E分别是AC和BC 的中点(1)若点C恰好是AB中点,则DE的长是多少?(直接写出结果)(2)若BC=14cm,求DE的长(3)试说明不论BC取何值(不超过20cm),DE的长不变(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试求出∠DOE的大小,并说明∠DOE的大小与射线OC 的位置是否有关?30.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由参考答案1.解:A、射线本身是无限延伸的,不能延长,故本选项不合题意;B、若AM=BM,此时点M在线段AB的垂直平分线上,故本选项不合题意;C、两点确定一条直线,说法正确,故本选项符合题意;D、只有三点共线时才能做一条直线,故本选项不合题意;故选:C.2.解:A.当A,B,C不在同一条直线上时,AC=BC,则C不是AB的中点;B.当AB=BC时,C不是AB的中点;C.当AC=BC=AB时,能确定点C是线段AB的中点;D.当AC+BC=AB时,点C是线段AB上的任意一点,故点C不一定是AB的中点;故选:C.3.解:∵9点30分,时针指向9和10的中间,分针指向6,中间相差3大格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴9点30分分针与时针的夹角是30°×3.5=105°,故选:B.4.解:因为AB=8cm,BC=AB,所以BC=AB=×8=4(cm),由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+4=12(cm);(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣4=4(cm);所以线段AC等于12cm或4cm.故选:C.5.解:如图,可以画3条直线或1条直线,故选:C.6.解:如图1,∵点C是线段AB上的三等分点,∴AB=3BC,∵E是线段BC的中点,CE=6,∴BC=2CE=12,∴AB=3×12=36;如图2,∵E是线段BC的中点,CE=6,∴BC=2CE=12,∴AC=6,∵点C是线段AB上的三等分点,∴AB=3AC=18,则AB的长为36或18.故选:D.7.解:∵点D、E分别是AC和BC的中点,∴DE=DC+CE=AC+BC=AB而AB=16cm,∴DE=×16=8(cm).故选:B.8.解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠AOB不能用∠O表示,故本选项错误;C、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;D、图中的∠AOB不能用∠O表示,故本选项错误;故选:C.9.解:C在线段AB上,AC=6﹣3=3(cm),C在AB延长线上,AC=6+3=9(cm).故选:C.10.解:∵点O在直线AE上,OC平分∠AOE,∴∠AOC=∠COE=90°,∵∠DOB是直角,∠1=25°,∴∠BOC=∠DOB﹣∠1=90°﹣25°=65°,∵∠AOB+∠BOC=∠AOC=90°∴∠AOB=90°﹣∠BOC=90°﹣65°=25°.故选:B.11.解:∵MN=MB+BC+CN,∵MN=7cm,BC=3cm,∴MB+CN=7﹣3=4(cm),∵M是AB的中点,N是CD的中点,∴AB=2MB,CD=2CN,∴AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11(cm).所以AD的长为11cm.故答案为:11.12.解:90°﹣44°14′15″=89°59′60″﹣44°14′15″=45°45′45″.故答案是:45°45′45″.13.解:8:30时,钟表的时针与分针相距2.5份,8:30时,钟表的时针与分针所夹小于平角的角为30°×2.5=75°.故答案为:75.14.解:若两条线段的另一个端点在重合端点的同旁,则中点间的距离为50﹣30=20cm;若两条线段的另一个端点在重合端点的异侧,则中点间的距离为50+30=80cm.故答案为20cm或80cm.15.解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.16.解:依题意可知,耀华所走路径为正多边形,设这个正多边形的边数为n,则20n=360,解得n=18,所以他第一次回到出发点O时一共走了:10×18=180(米),故答案为:180.17.解:如图1,当点C在点B右侧时,∵点D是线段AB的中点,点E是线段BC的中点,∴DB=AB,BE=BC,∴DE=DB+BE=(AB+BC)=6;如图2,当点C在点B左侧时,∵点D是线段AB的中点,点E是线段BC的中点,∴DB=AB,BE=BC,∴DE=DB﹣BE=(AB﹣BC)=3;则线段DE的长为6或3cm.故答案为6或3.18.解:(1)若射线OD在OC的下方时,如图1所示:∵OC平分∠AOB,∴∠AOC=,又∵∠AOB=70°,∴∠AOC==35°,又∵∠AOC=∠COD+∠AOD,∠COD=10°,∴∠AOD=35°﹣10°=25°;(2)若射线OD在OC的上方时,如图2所示:同(1)可得:∠AOC=35°,又∵∠AOD=∠AOC+∠COD,∴∠AOD=35°+10°=45°;综合所述∠AOD的度数为25°或45°,故答案为25°或45°.19.解:(1)当OC在∠AOB的内部时,如图1所示:∵∠BOC=20°,∠AOB=60°,∠AOB=∠AOC+∠BOC,∴∠AOC=60°﹣20°=40°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD==20°;(2)当OC在∠AOB的外部时,如图2所示:∵∠AOC=∠AOB+∠BOC,∠AOB=60°,∠BOC=20°,∴AOC=80°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD==40°;综合所述∠AOD的度数有两个,故答案为20°或40°.20.解:∵剪痕不过任何一个其他顶点设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=360°,∵截去一个角后边数可能增加1,不变或减少1,∴原多边形的边数为3或4或5.故答案为:3或4或521.解:由题意,∠AOB=30°,∠BOC=24°,∠AOD=15°,根据角的不同和位置的不同,有以下几种情况:(1)如图(1):∠COD=∠AOB+∠BOC+∠AOD=69°.(2)如图(2):∠COD=∠AOB﹣∠AOD+∠BOC=39°;(3)如图(3):∠COD=∠AOB﹣∠BOC+∠AOD=21°;(4)如图(4):∠COD=∠AOB﹣∠BOC﹣∠AOD=9°.故答案为69°、39°、21°、9°.22.解:∵从一个多边形的一个顶点出发可以引5条对角线,设多边形边数为n,∴n﹣3=5,故答案为:8.23.解:∵AB=4cm,OB=cm∴OA=AB﹣OB=3.5而O是线段AC的中点,∴AC=2OA=7∴BC=AC﹣AB=7﹣4=3故B、C两点之间的距离为3cm.24.解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB的中点.25.解:(1)若C在A的左边,则BC=AB+AC=5;若C在A的右边,则BC=AC﹣AB=1.故BC的长为5或1;(2)如图所示,点C在AB延长线上:∵BC=2AB,D是AC的中点,∴AD=AB,∴BD=AB,∵线段BD的长为1.5,∴线段AB的长为3.26.解:(1)如图:因为MN=6,PN=2,所以MP=MN﹣NP=6﹣2=4;(2)分两种情况讨论:①当点P在N点左侧时,如图所示:由(1)可知,MP=4因为点A为MP的中点,所以AP=MP=2;②当点P在N点右侧时,如图所示:由图形可知:MP=MN+NP=6+2=8,因为点A为MP的中点所以AP=MP=4,综上所述,AP的长为4或2.27.解:(1)∵∠BOC=40°,∴∠AOC=180°﹣∠BOC=140°,∵OD平分∠AOC,∴∠AOD=AOC=70°;(2)①如图1,当射线OE在AB上方时,∠BOE=∠COE,∵∠BOE+∠COE=∠BOC,∴∠COE+∠COE=40°,∴∠COE=24°;②如图2,当射线OE在AB下方时,∠BOE=∠COE,∵∠COE﹣∠BOE=∠BOC,∴∠COE﹣∠COE=40°,∴∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)①如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∵∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∴∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∴x°=5°,∴∠AOH=160°+3x°=175°;②如图4,当射线OE在AB上方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°﹣x°=180°,解得x°=80°,∵∠COB=40°,∵80°>40°,∴x°=80°不符合题意舍去;③如图5,当射线OE在AB下方,OF在AB上方时,∵∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°+70°+90°﹣x°=180°,解得x°=10°,∴∠AOH=180°﹣∠BOH=180°﹣x°=170°;④如图6,当射线OE在AB下方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°+x°=180°,解得x°=40°,∴∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.28.解:(1)∵OF平分∠AOC,∴∠COF=∠AOC=×30°=15°,∵∠BOC=∠AOB﹣∠AOC=120°﹣30°=90°,OE平分∠BOC,∴∠EOC=∠BOC=45°,∴∠EOF=∠COF+∠EOC=60°;(2)∵OF平分∠AOC,∴∠COF=∠AOC,同理,∠EOC=∠BOC,∴∠EOF=∠COF+∠EOC=∠AOC+∠BOC=(∠AOC+∠BOC)=∠AOB=α;(3)∵∠EOB=∠COB,∴∠EOC=∠COB,∴∠EOF=∠EOC+∠COF=∠COB+∠COA=∠BOC+∠AOC=∠AOB=α.29.解:(1))∵点C恰为AB的中点,∴AC=BC=AB=10cm,∵点D、E分别是AC和BC的中点,∴DC=AC=5cm,CE=BC=5cm,∴DE=10cm.(2)∵AB=20cm,BC=14cm,∴AC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=7cm,∴DE=CD+CE=10cm;(3)∵点D、E分别是AC和BC的中点,∴CD=AC,CE=BC,∴DE=CD+CE=(AC+BC)=AB=10cm,∴不论BC取何值(不超过20cm),DE的长不变.(4)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC=∠AOC,COE=∠COB,∴∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB,∵∠AOB=130°,∴∠DOE=65°.∴∠DOE的度数与射线OC的位置无关.30.解:(1)如图,当C是线段AB的中点,则AB=2AC,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s。

2020-2021学年鲁教版(五四制)六年级下册第五章基本的平面图形 单元复习课件

2020-2021学年鲁教版(五四制)六年级下册第五章基本的平面图形 单元复习课件

1、线段的中点 (1)因为 AM
A
BM
1
M
B
AB,所以M是线段AB的中点;
2
(2)因为M是线段AB的中点,所以:
AM BM 1 AB 2
BD
2、角平分线: (1)因为 AOD= BOD
O
A
,所以0D是 AOB
的角平分线
(2)因为0D是 AOB的角平分线、所以:
AOD= BOD
检测2
1、如图,B为线段AC上的一点,AB=4cm, BC=3cm,M,N分别为AB,BC的中点,
6.如右图中,共有几条线段?
6条
7.把一条弯曲的公路改成直道,可以缩短路程,用几何知
识解释其道理正确的是( C )
A.两点确定一条直线 B.两点之间,直线最短 C.两点之间,线段最短 D.两点之间,射线最短
复习检测:
8.用度表示:30°45′=
30.75°.
9.图中小于平角的角的 个数有___6_个.
考点解析
【变式训练 2】如图,AOB COD 90,OC 平分 AOB ,BOD 3DOE .试求 COE 的度数.
【解答】解: AOB 90 , OC 平分 AOB BOC 1 AOB 45(3 分)
2 BOD COD BOC 90 45 45 BOD 3DOE (6 分) DOE 15 (8 分) COE CODDOE 90 15 75 (10 分) 故答案为 75 .
2 所以 BM AM AB 5x 2x 3xcm 因为 BM 6 cm , 所以 3x 6 , x 2 , 故 CM MDCD 5x 3x 2x 22 4cm, AD 10x 102 20 cm .
易错点 图形不确定时求线段的长度易漏解

2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形章节测评试题(含答案解析)

2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形章节测评试题(含答案解析)

六年级数学下册第五章基本平面图形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个角的度数为54°12',则这个角的补角度数等于()A.125°48'B.125°88'C.135°48'D.136°48'2、已知,点C为线段AB的中点,点D在直线AB上,并且满足2CD=cm,则线段ABAD BD=,若6的长为()A.4cm B.36cm C.4cm或36cm D.4cm或2cm3、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=20°,则∠AOD等于()A.160°B.140°C.130°D.110°4、将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.5、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上6、下列现象:①用两个钉子就可以把木条固定在墙上②从A地到B地架设电线,总是尽可能沿着线段AB架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线④把弯曲的公路改直,就能缩短路程其中能用“两点之间线段最短”来解释的现象有()A.①④B.①③C.②④D.③④7、图中共有线段()A.3条B.4条C.5条D.6条8、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.105°B.125°C.135°D.145°9、下列说法错误的是()A.两点之间,线段最短B.经过两点有一条直线,并且只有一条直线C.延长线段AB和延长线段BA的含义是相同的D.射线AB和射线BA不是同一条射线10、一副三角板按如图所示的方式摆放,则∠1补角的度数为()A.45︒B.135︒C.75︒D.165︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A、B、C三点在同一条直线上,AB=10cm,BC=6cm,则AC =___ cm.2、直线上有A、B、C三点,AB=4,BC=6,则AC=___.3、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.4、如图,已知点O 是直线AB 上的一点,120COE ∠=︒,13AOF AOE ∠=∠.(1)当15BOE ∠=︒时,COA ∠的度数为__________;(2)当FOE ∠比∠BOE 的余角大40︒,COF ∠的度数为__________.5、一种零件的图纸如图所示,若AB =10mm ,BC =50mm ,CD =20mm ,则AD 的长为 _____mm .三、解答题(5小题,每小题10分,共计50分)1、补全解题过程.如图所示,点C 是线段AB 的中点,延长线段AB 至点D ,使BD =13AB ,若BC =3,求线段CD 的长. 解:∵点C 是线段AB 的中点,且BC =3(已知),∴AB =2× (①填线段名称)= (②填数值)∵BD =13AB (已知),∴BD = (③填数值),∴.CD = (④填线段名称)+BD = (⑤填数值).2、如图,已知线段AB =12cm ,CD =2cm ,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若AC =4cm ,EF =___cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变,请求出EF 的长度,如果变化,请说明理由.3、若关于x ,y 的多项式()21402513m x n x y ⎛⎫-+-+-+ ⎪⎝⎭的值与字母x 取值无关. (1)求2m n -的值;(2)已知∠AOB =m °,在∠AOB 内有一条射线OP ,恰好把∠AOB 分成1:n 的两部分,求∠AOP 的度数.4、如图,,OB OE 是AOC ∠内的两条射线,OD 平分AOB ∠,12BOE EOC ∠=∠,若55DOE ∠=︒,150AOC ∠=︒,求EOC ∠的度数.5、已知∠AOB =90°,∠COD =80°,OE 是∠AOC 的角平分线.(1)如图1,若∠AOD =13∠AOB ,则∠DOE =________;(2)如图2,若OF 是∠AOD 的角平分线,求∠AOE −∠DOF 的值;(3)在(1)的条件下,若射线OP 从OE 出发绕O 点以每秒12°的速度逆时针旋转,射线OQ 从OD 出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<674)后得到∠COP=54∠AOQ,求t的值.-参考答案-一、单选题1、A【解析】【分析】由1805412'︒-︒计算求解即可.【详解】解:∵''180541217960541212548'︒-︒=︒-︒=︒′∴这个角的补角度数为'12548︒故选A.【点睛】本题考查了补角.解题的关键在于明确160︒=′.2、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵2AD BD=,∴AB=BD,∵点C为线段AB的中点,∴BC=1122AB BD=,∵6CD=,∴162BD BD+=,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵2AD BD=,∴AD=23 AB,∵点C为线段AB的中点,∴AC=BC=12 AB,∵6CD=,∴23AB-12AB=6,∴AB=36cm,故选C.【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.3、A【解析】【分析】如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【详解】解:∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOD=∠AOB+∠COD-∠BOC=90°+90°-20°=160°.故选:A.【点睛】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.4、C【解析】【分析】A、由图形可得两角互余,不合题意;B、由图形得出两角的关系,即可做出判断;C、根据图形可得出两角都为45°的邻补角,可得出两角相等;D、由图形得出两角的关系,即可做出判断.【详解】解:A、由图形得:α+β=90°,不合题意;B、由图形得:β+γ=90°,α+γ=60°,可得β﹣α=30°,不合题意;C、由图形可得:α=β=180°﹣45°=135°,符合题意;D、由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不合题意.故选:C.【点睛】本题考查了等角的余角相等,三角尺中角度的计算,掌握三角尺中各角的度数是解题的关键.5、C【解析】【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD的延长线上,故选:C.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.6、C【解析】【分析】直接利用直线的性质和线段的性质分别判断得出答案.【详解】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:C.【点睛】本题考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.7、D【解析】【分析】A B C D为端点数线段,从而可得答案.分别以,,,【详解】解:图中线段有:AB,AC,AD,BC,BD,CD,共6条,故选D【点睛】本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.8、B【解析】【分析】由题意知()90709015BAC ∠=︒-︒+︒+︒计算求解即可.【详解】解:由题意知()90709015125BAC ∠=︒-︒+︒+︒=︒故答案为:B .【点睛】本题考查了方位角的计算.解题的关键在于正确的计算.9、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB 和延长线段BA 的含义是不同的,故该项符合题意;D. 射线AB 和射线BA 不是同一条射线,故该项不符合题意;故选:C .【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.10、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.二、填空题1、16或4##4或16【解析】【分析】分两种情况讨论,当C在B的右边时,当C在B的左边时,再结合线段的和差可得答案.【详解】解:如图,当C在B的右边时,AB=10cm,BC=6cm,16AC AB BC cm,如图,当C在B的左边时,AB=10cm,BC=6cm,AC AB BC cm,4故答案为:16或4【点睛】本题考查的是线段的和差关系,利用C的位置进行分类讨论是解本题的关键.2、10或2##2或10【解析】【分析】根据题目可分两种情况,C点在B点右测时,C在B左侧时,根据两种情况画图解析即可.【详解】解:①如图一所示,当C点在B点右测时:AC=AB+BC=4+6=10;②如图二所示:当C在B左侧时:AC=BC-AB=6-4=2,综上所述AC等于10或2,故答案为:10或2.【点睛】本题考查,线段的长度,点与点之间的距离,以及分类讨论思想,在解题中能够将分类讨论思想与几何图形相结合是本题的关键.3、两点确定一条直线【解析】【分析】根据两点确定一条直线,即可求解.【详解】解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.故答案为:两点确定一条直线【点睛】本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.4、45° 20°【解析】【分析】(1)根据∠COA=∠AOE-∠COE求解即可;(2)设∠BOE=x,则∠BOE的余角为90°-x,然后求出∠COF和∠AOC,继而得到∠AOF=50°,再根据13AOF AOE∠=∠求得∠AOE和∠BOE,根据∠COF=∠COE-∠FOE即可求解.【详解】解:(1)∵∠BOE=15°,∴∠AOE=165°,∵∠COE=120°,∴∠COA=∠AOE-∠COE=45°,故答案为:45°;(2)设∠BOE=x,则∠BOE的余角为90°-x,∵∠FOE比∠B0E的余角大40°,∴∠FOE=90°-x+40°=130°-x,∵∠COE=120°,∴∠COF=∠COE-∠FOE=120°-(130°-x)=x-10°,∠AOC=180°-∠COE-∠BOE=180°-120°-x=60°-x,∴∠AOF=∠AOC+∠COF=(60°-x)+(x-10°)=50°,∵13AOF AOE ∠=∠,∴∠AOE=3∠AOF=150°,∴∠BOE=180°-∠AOE=180°-150°=30°,即x=30°,∴∠COF=∠COE-∠FOE= x-10°=30°-10°=20°故答案为:20°.【点睛】本题考查余角、补角的计算,解题的关键是熟知相关知识点.5、80【解析】【分析】根据AD=AB+BC+CD即可得答案.【详解】解:由图可知:AD=AB+BC+CD=10+50+20=80(mm).故答案为:80.【点睛】本题考查了线段的和差,掌握连接两点间的线段长叫两点间的距离是解本题的关键.三、解答题1、BC;6;2;BC;5【解析】【分析】根据线段的中点的性质以及线段的和差关系填写过程即可【详解】解:∵点C是线段AB的中点,且BC=3(已知),∴AB=2×BC(①填线段名称)=6(②填数值)∵BD=13AB(已知),∴BD=2(③填数值),∴.CD=BC(④填线段名称)+BD=5(⑤填数值).【点睛】本题考查了有关线段中点的计算,线段和差的计算,数形结合是解题的关键.2、 (1)7(2)不改变,EF=7cm.【解析】【分析】(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;(2)利用线段中点的性质证明EF的长度不会发生改变.(1)解:∵AB =12cm ,CD =2cm ,AC =4cm ,∴BD =AB -CD -AC =6(cm ),∵E 、F 分别是AC 、BD 的中点,∴CE =12AC =2(cm ),DF =12BD =3(cm ),∴EF =CE +CD +DF =7(cm );故答案为:7;(2)不改变,理由:∵AB =12cm ,CD =2cm ,∴AC +BD =AB -CD =10(cm ),∵E 、F 分别是AC 、BD 的中点,∴CE =12AC ,DF =12BD ,∴CE +DF =12AC +12BD =5(cm ),∴EF =CE +CD +DF =7(cm ) .【点睛】本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.3、 (1)116(2)40°或80°【解析】【分析】(1)不含x 的项,所以40−13m =0,−n +2=0,然后解出m 、n 即可;(2)把m 和n 代入,分∠AOP :∠BOP =1:2和∠AOP :∠BOP =2:1两种情况讨论,列式计算即可.(1)解:由题可知:40−13m =0,−n +2=0,解得:m =120,n =2,∴m −n 2=120−22=116;(2)解:由(1)得:m =120,n =2,∴∠AOB =120°,如图①,当∠AOP :∠BOP =1:2时,∠AOP =13∠AOB =40°;如图②,当∠AOP :∠BOP =2:1时,∠AOP =23∠AOB =80°;综上:∠AOP =40°或80°. .【点睛】本题考查了整式的加减,一元一次方程的解,以及角的运算,熟练掌握运算法则是解本题的关键. 4、80°【分析】设∠BOE为x°,则∠DOB=55°-x°,∠EOC=2x°,然后根据角平分线定义列方程解决求出∠BOE,可得∠EOC.【详解】解:设∠BOE=x°,则∠DOB=55°﹣x°,由∠BOE=12∠EOC可得∠EOC=2x°,由OD平分∠AOB,得∠AOB=2∠DOB,故有2x+x+2(55﹣x)=150,解方程得x=40,故∠EOC=2x=80°.【点睛】本题主要考查了角平分线的定义以及角的计算,根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.5、(1)25°(2)∠AOE-∠DOF=40°(3)t的值为18544秒或354秒【解析】【分析】(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;(2)先由角平分线定义得∠AOF=∠DOF=12∠AOD,∠AOE=12∠AOC,再证∠AOE-∠AOF=12∠COD,即可(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC 外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.(1)解:(1)∵∠AOB=90°,∴∠AOD=13∠AOB=30°,∵∠COD=80°,∴∠AOC=∠AOD+∠COD=30°+80°=110°,∵OE平分∠AOC,∴∠AOE=∠COE=12∠AOC=55°,∴∠DOE=∠AOE-∠AOD=55°-30°=25°;(2)解:∵OF平分∠AOD,∴∠AOF=∠DOF=12∠AOD,∵OE平分∠AOC,∴∠AOE=12∠AOC,∴∠AOE-∠AOF=12∠AOC-12∠AOD=12(∠AOC-∠AOD)=12∠COD,又∵∠COD=80°,∴∠AOE-∠DOF=12×80°=40°;(3)解:分三种情况:①当射线OP、OQ在∠AOC内部时,即0<t≤154时,由题意得:∠POE=(12t)°,∠DOQ=(8t)°,∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,∵∠COP=54∠AOQ,∴55-12t=54(30-8t),解得:t=354(舍去);②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即154<t≤5512时,则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴55-12t=54(8t-30),解得:t=185 44;③当射线OP、OQ在∠AOC外部时,即5512<t<674时,则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,∴12t-55=54(8t-30),解得:t=354;综上所述,t的值为18544秒或354秒.【点睛】本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.。

2020-2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合达标测评

2020-2021学年鲁教版(五四制)六年级数学下册《第五章基本平面图形》单元综合达标测评

鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合达标测评(附答案)1.过平面内已知点A作直线,可作直线的条数为()A.0条B.1条C.2条D.无数条2.若线段AB=12cm,点C是线段AB的中点,点D是线段AC的三等分点,则线段BD的长为()A.2cm或4cm B.8cm C.10cm D.8cm或10cm 3.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°4.如图,点A,B是直线上的两点,则图中分别以A,B为端点的射线的条数为()A.1B.2C.3D.45.下列说法正确的有()个.①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形.A.3B.2C.1D.06.点E在线段CD上,下面的等式:①CE=DE;②DE=CD;③CD=2CE;④CD=DE.其中能表示E是CD中点的有()A.1个B.2个C.3个D.4个7.如图所示,∠AOB是平角,OC是射线,OD、OE分别是∠AOC、∠BOC的角平分线,若∠COE=28°,则∠AOD的度数为()A.56°B.62°C.72°D.124°8.兴泉铁路是江西省兴国县至福建省泉州市正在建设中的国家一级铁路,途中经过三明地界停靠的车站依次是:宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田,那么要为三明境内站点拟制作的火车票有()A.15种B.18种C.30种D.36种9.上午10:00时,钟表的时针与分针的夹角为()A.60°B.90°C.120°D.30°10.在同一平面上,若∠BOA=60°,∠BOC=20°,则∠AOC的度数是()A.80°B.40°C.20°或40°D.80°或40°11.如图,在直角∠AOB的内部作射线OC,若∠AOC=33°24′17″,则∠BOC=.12.如图,从O点引出6条射线OA、OB、OC、OD、OE、OF,且∠AOB=80°,∠EOF =160°,OE、OF分别是∠AOD、∠BOC的平分线.则∠COD的度数为度.13.要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是.14.已知点A,B,C在同一条直线上,AB=4cm,BC=5cm,则AC=.15.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE=2,∠COD=∠AOD=,∠DOE=°.16.一个n边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n的值为.17.如图,点B、D在线段AC上,且BD=AB=CD,E、F分别是AB、CD的中点,EF=10cm,则CD=cm.18.如图,将一个圆形的蛋糕等分成六份,则每一份中的角的度数为.19.已知A,B,C三点,过其中每两个点画直线,一共可以画条直线.20.已知∠A=41°18′36″,∠B=36°17′42″;则∠A+∠B=.21.已知:OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠COD=40°.分别求∠AOD和∠BOC的度数.22.如图,已知线段AF长13cm,点B、C、D、E顺次在AF上,且AB=BC=CD,E是DF的中点,CE=5cm,求BE的长.23.已知O为直线AB上一点,过点O向直线AB上方引两条射线OC,OD,且OC平分∠AOD.(Ⅰ)请在图①中∠BOD的内部画一条射线OE,使得OE平分∠BOD,并求此时∠COE 的度数;(Ⅱ)如图②,若在∠BOD内部画的射线OE,恰好使得∠BOE=3∠DOE,且∠COE =70°,求此时∠BOE的度数.24.如图,点O为直线AB上一点,∠BOC=40°,OD平分∠AOC.(1)求∠AOD的度数;(2)作射线OE,使∠BOE=∠COE,求∠COE的度数;(3)在(2)的条件下,作∠FOH=90°,使射线OH在∠BOE的内部,若∠DOF=3∠BOH,求∠AOH的度数.25.如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=12cm,AM=5cm,求BC的长;(2)如果MN=8cm,求AB的长.26.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.27.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=acm,其他条件不变,你能猜想出MN 的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC﹣CB=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案1.解:过平面内已知点A作直线,可作直线的条数为无数条,故选:D.2.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:D.3.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选:C.4.解:以A为端点的射线有2条,以B为端点的射线有2条,共4条,故选:D.5.解:从角的顶点出发,把一个角分成两相等的角的射线叫角的平分线,故①说法错误;连接C、D两点的线段的长度叫两点之间的距离,故②说法错误;两点之间,线段最短,故③说法错误;射线上点的个数和直线上点的个数都是无数个,故④说法错误;n边形从其中一个顶点出发连接其余各顶点,可以画出(n﹣3)条对角线,这些对角线把这个n边形分成了(n﹣2)个三角形,故⑤说法正确.所以法正确的有1个.故选:C.6.解:假设点E是线段CD的中点,则CE=DE,故①正确;当DE=CD时,则CE=CD,点E是线段CD的中点,故②正确;当CD=2CE,则DE=2CE﹣CE=CE,点E是线段CD的中点,故③正确;④CD=DE,点E不是线段CD的中点,故④不正确;综上所述:①、②、③正确,只有④是错误的.故选:C.7.解:∵OE平分∠BOC,∴∠BOC=2∠COE=56°.∴∠AOC=180°﹣∠BOC=124°.∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC=62°.故选:B.8.解:设宁化﹣清流﹣明溪﹣三元区﹣永安﹣大田六站分别用A、B、C、D、E、F表示,则共有线段:AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF共15条,所以共需要15种车票.故选:A.9.解:∵10点整,时针指向10,分针指向12,中间相差两大格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴10点整分针与时针的夹角是2×30°=60°.故选:A.10.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=80°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.11.解:∵∠AOB=90°,∠AOC=33°24′17″,∴∠BOC=∠AOB﹣∠AOC=90°﹣33°24′17″=56°35′43″,故答案为:56°35′43″.12.解:设∠AOE=α,∠BOF=β,∵∠AOB=80°,∠EOF=160°,∴∠AOE+∠BOF=360°﹣∠AOE﹣∠BOF=360°﹣80°﹣160°=120°.∵OE、OF分别是∠AOD、∠BOC的平分线.∴∠AOD=2α,∠BOC=2β.∴∠COD=360°﹣∠AOB﹣∠AOD﹣∠BOC=360°﹣80°﹣120°×2=40°.故答案为40.13.解:要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是两点确定一条直线,故答案为:两点确定一条直线.14.解:当点C在线段AB的延长线上时,AC=BC+AB=5cm+4cm=9cm;当点C在线段BA的延长线上时,AC=BC﹣AB=5cm﹣4cm=1cm;故则AC=1cm或9cm.故答案为:1cm或9cm.15.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案为:∠COE,∠AOC,90°.16.解:依题意有n﹣2=5,解得n=7.故答案为:7.17.解:由BD=AB=CD,得AB=3BD,CD=4BD.由线段的和差,得AD=AB﹣BD=2BD,AC=AD+CD=2BD+4BD=6BD.由线段AB、CD的中点E、F,得AE=AB=BD,FC=CD=BD=2BD.由线段的和差,得EF=AC﹣AE﹣FC=6BD﹣BD﹣2BD=10,解得:BD=4cm,CD=×4==16cm,故答案为:16.18.解:因为周角的度数是360°,所以每一份中的角的度数为=60°.故答案为:60°.19.解:如图,最多可以画3条直线,最少可以画1条直线,.故答案为:1或3.20.解:∵∠A=41°18′36″,∠B=36°17′42″,∴∠A+∠B=41°18′36″+36°17′42″=77°35′78″=77°36′18″,故答案为:77°36′18″.21.解:∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,又∵∠COD=40°,∴∠AOD=80°,∠AOC=40°,∵OB平分∠AOC,∴∠BOC=∠AOC=20°.22.解:设AB=BC=CD=x,则BD=2x,∴DF=13﹣3x,∵E是DF的中点,∴DE=(13﹣3x),∵CE=5,∴x+(13﹣3x)=5,∴x=3,∴BC=3,∴BE=BC+CE=8.23.解:(1)∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD,∵OE平分∠BOD,∴∠BOE=∠DOE=∠BOD,又∵∠AOD+∠BOD=180°,∴2∠COD+2∠DOE)=180°,∴∠COD+∠DOE)=90°,即∠DOE=90°,答:此时∠COE的度数为90°;(2)设∠DOE=x,则∠BOE=3x,∵∠AOD+∠BOD=180°,∴∠AOD=180°﹣4x,∵OC平分∠AOD,∴∠AOC=∠COD=∠AOD=90°﹣2x,∵∠COE=70°,∴∠COD+∠DOE=70°,即:90°﹣2x+x=70°,解得,x=20°,∴∠BOE=3x=60°.24.解:(1)∵∠BOC=40°,∴∠AOC=180°﹣∠BOC=140°,∵OD平分∠AOC,∴∠AOD=AOC=70°;(2)①如图1,当射线OE在AB上方时,∠BOE=∠COE,∵∠BOE+∠COE=∠BOC,∴∠COE+∠COE=40°,∴∠COE=24°;②如图2,当射线OE在AB下方时,∠BOE=∠COE,∵∠COE﹣∠BOE=∠BOC,∴∠COE﹣∠COE=40°,∴∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)①如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∵∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∴∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∴x°=5°,∴∠AOH=160°+3x°=175°;②如图4,当射线OE在AB上方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°﹣x°=180°,解得x°=80°,∵∠COB=40°,∵80°>40°,∴x°=80°不符合题意舍去;③如图5,当射线OE在AB下方,OF在AB上方时,∵∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°+70°+90°﹣x°=180°,解得x°=10°,∴∠AOH=180°﹣∠BOH=180°﹣x°=170°;④如图6,当射线OE在AB下方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°+x°=180°,解得x°=40°,∴∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.25.解:(1)∵点M是线段AC的中点,∴AC=2AM,∵AM=5cm,∴AC=10cm,∵AB=12cm,∴BC=AB﹣AC=2cm;(2)∵点M是线段AC的中点,点N是线段BC的中点,∴BC=2NC,AC=2MC,∵MN=NC+MC=8cm,∴AB=BC+AC=2MN=2×8=16cm.26.解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.27.解:(1)∵点M、N分别是AC、BC的中点,∴MC=AC=×8cm=4cm,NC=BC=×6cm=3cm,∴MN=MC+NC=4cm+3cm=7cm;(2)MN=acm.理由如下:∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC+NC=AC+BC=AB=acm;(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=bcm.。

六年级数学下册 第五章 基本平面图形单元复习课件 鲁教版五四制 课件

六年级数学下册 第五章 基本平面图形单元复习课件 鲁教版五四制 课件

【解析】选D.因为两条直线将平面分为四部分,每一部分都有这
样的“距离坐标”是(2,3)的点.故选D.
3.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°, 则∠BOD的度数是 ( )
(A)35°
(B)55°
(C)70°
(D)110°
【解析】选C.因为OE平分∠COB,所以∠COB=2∠BOE,所以
【解析】CD=(AB-AC)÷2=2. 答案:2
6.(2011·崇左中考)如图,O是直线AB上一点,∠COB=30°,则
∠1=
.
【解析】因为∠1+∠COB=180°,所以∠1=180°∠COB=180°-30°=150°. 答案:150°
7.如图,线段AB=4,点O是线段AB上一动点,C,D分别是线段OA,OB 的中点.
6.角的平分线
(1)定义:从一个角的顶点引出的一条射线,把这个角分成两个相
等的角,这条射线叫做这个角的平分线.
(2)几何语言表示:OC是∠AOB的平分线,∠AOB=2∠AOC=2∠COB (或∠AOC=∠COB= 1 ∠AOB).
2
(3)对于角的平分线的概念,需要注意:
它是角的内部的一条射线,并且是一条特殊的射线,它把角分成
2.线段长度的计算 (1)在计算线段的长度时,要弄清楚题中涉及的有关概念,如中点、 两点间的距离等概念,根据图形确定所求线段与已知线段的关系, 从而求出线段的长度. (2)题目的分析和书写步骤问题 ①书写步骤大体可参照以下两个环节来进行:一是确定要计算的 线段表达式;二是做运算前的准备. ②每一个运算的局部都应按照条件→表达式→代数→答案这几 个环节进行.
5.角的计算 (1)角的度、分、秒之间的换算:要把角用度表示,就需要利用度、 分、秒之间的进制关系,从秒到分,再从分到度的顺序进行.将角 的度量转化成度、分、秒的形式,跟化成度的形式一样,需要利 用度、分、秒之间的进制关系,但顺序应按照从度到分,再从分 到秒的顺序.要注意进制,在减法或除法计算时,不够减或不够除, 则借1化作60;在角度的乘法运算中,可以运用乘法法则及运算律 进行计算,满60进1.

五四制鲁教版六年级数学下册 第五章 基本平面图形 多边形

五四制鲁教版六年级数学下册 第五章 基本平面图形    多边形
鲁教版五四六年级下
第5章基本平面图形
5.5.1
多边形
习题链接
温馨提示:点击 进入讲评
1C 2D 3B 4D
5 -7 6D 7B 8D
答案呈现
9 10
1 下列图形中,属于多边形的是( C ) A.线段 B.角 C.六边形 D.圆
2 一个四边形截去一个角后,可以变成( D ) A.三角形 B.四边形 C.五边形 D.以上都有可能
3 在研究多边形的几何性质时.我们常常把它分割成三
角形进行研究.从八边形的一个顶点引对角线,最多
把它分割成三角形的个数为( )
A.5 B.6
B
C.7 D.8
4 如果过一个多边形的一个顶点的对角线有6条,则该 多边形对角线一共有( ) D A.18条 B.14条 C.20条 D.27条
【点拨】 因为过一个多边形的一个顶点的对角线有 6 条, 所以多边形的边数为 6+3=9, 所以这个多边形是九边形. 所以该多边形对角线一共有9×(92-3)=27(条).
解:若是n边形,用三种方法分割所得三角形的个数依 次为n-2,n,n-1.
10 如图,用三种方法分割五边形.
(1)三种分割方法将多边形分成的三角形的个数与多边形 的边数有没有关系?若有关系,具体是什么关系?
解:有关系. 题图①中,三角形的个数=多边形的边数-2; 题图②中,三角形的个数=多边形的边数; 题图③中,三角形的个数=多边形的边数-1.
(2)若是n边形,请分别写出用上述三种方法分割所得三角 形的个数.
5 过m边形的一个顶点有7条对角线,n边形没有对角线, 则n-m=__-__7____.
【点拨】 由题意得m-3=7,n=3, 解得m=10. 所以n-m=3-10=-7.

鲁教版六年级下册第五章基本平面图形全章教案

鲁教版六年级下册第五章基本平面图形全章教案

鲁教版六年级下册第五章基本平面图形全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五单元授课内容线段、射线、直线课型新授授课日期教学目标知识目标在现实情境中在现实情境中了解线段、射线、直线等简单的平面图形;通过操作活动,理解两点确定一条直线等事实,积累操作活动经验。

能力目标让学生经历观察、思考、讨论、操作的过程,培养学生抽象化、符号化的数学思维能力,建立从数学中欣赏美,用数学创造美的思想观念。

情感目标感受图形世界的丰富多彩,能够主动参与教师组织的数学活动。

教学重点线段、射线、直线的符号表示方法。

教学难点培养学生学会一些几何语言,培养学生的空间观念。

措施自学引导教法引导发现、尝试指导以及学生的互动合作相结合。

学法教师引导,学生自主学习教学准备教师:图片,三角板,窄木条。

学生:直尺,几枚图钉,薄窄木条或硬纸板条。

教师活动学生活动二次备课一、认识图形1、看一看,观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇来表达极光铁轨学生观察。

︒︒︒︒教学重点求扇形圆心角的度数教学难点求扇形圆心角的度数措施动手操作教法和谐高效,思维对话学法练习讨论交流教学准备多媒体教师活动学生活动二次备课(一)、创设情境,激发兴趣.这些有趣的图形是由哪些基本图形组成的?它们有什么共同特征?学生观察。

让学生从观看中发现数学、体会数学的奥秘(二)、读一读:P15学习新课:1、多边形的概念: 在平面内,是由若干条不在同一直线上的线段首尾顺次相接组成的封闭的平面图形叫做多边形。

2、组成多边形的各条线段叫做多边形的边,每相邻两条边的公共端点叫做多边形的顶点。

3、在多边形中,连接不相邻两个顶点的线段叫做多边形的对角线3、观察下面一组多边形,说说它们的边、角 有什么共同的特征?4、正多边形:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形. 讨论交流。

2021-2022学年鲁教版(五四)六年级数学下册第五章基本平面图形重点解析试卷(精选含答案)

2021-2022学年鲁教版(五四)六年级数学下册第五章基本平面图形重点解析试卷(精选含答案)

六年级数学下册第五章基本平面图形重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点C 、D 在线段AB 上,且AC :CD :DB =2:3:4,如果AB =18,那么线段AD 的长是( )A .4B .5C .10D .142、下列说法错误的是( )A .两点之间,线段最短B .经过两点有一条直线,并且只有一条直线C .延长线段AB 和延长线段BA 的含义是相同的D .射线AB 和射线BA 不是同一条射线3、如图,C 为线段AB 上一点,点D 为BC 的中点,且30cm AB =,4AC CD =.则AC 的长为( )cm .A .18B .18.5C .20D .20.54、如图,将一块三角板60°角的顶点与另一块三角板的直角顶点重合,12720'∠=︒,2∠的大小是( )A .2720'︒B .5720'︒C .5840'︒D .6240'︒5、已知∠α=125°19′,则∠α的补角等于( )A .144°41′B .144°81′C .54°41′D .54°81′6、如果线段10cm AB =,13cm MA MB +=,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外7、钟表10点30分时,时针与分针所成的角是( )A .120︒B .135︒C .150︒D .225︒8、若点A 在点O 的北偏西15︒,点B 在点O 的西南方向,则AOB ∠的度数是( )A .60︒B .75︒C .120︒D .150︒9、如图,已知C 为线段AB 上一点,M 、N 分别为AB 、CB 的中点,若AC =8cm ,则MC +NB 的长为( )A .3cmB .4cmC .5cmD .6cm10、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )A .两点确定一条直线B .两点之间,线段最短C .射线只有一个端点D .过一点有无数条直线第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,延长线段AB 到C ,使BC =12AB ,D 为线段AC 的中点,若DC =3,则AB =______.2、同一直线上有两条线段,AB CD (A 在B 的左边,C 在D 的左边),M ,N 分别是,AB CD 的中点,若5cm MN =,7cm BC =,则AD =_________cm .3、如图已知,线段=10cm AB ,=2cm AD ,D 为线段AC 的中点,那么线段=CB _________cm .4、已知∠α=7038︒',则∠α的余角的度数是_____.5、若一个角的补角是其余角的3倍,则这个角的度数为___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知30,140,AOB AOE OB ∠=︒∠=︒平分,AOC OD ∠平分AOE ∠.(1)求AOC ∠的度数.(2)求COD ∠的度数.2、按要求作答:如图,已知四点A 、B 、C 、D ,请仅用直尺和圆规作图,保留画图痕迹.(1)①画直线AB ;②画射线BC ;③连接AD 并延长到点E ,在射线AE 上截取AF ,使AF =AB +BC ;(2)在直线BD 上确定一点P ,使PA +PC 的值最小,并写出画图的依据 .3、如图(1),直线AB 、CD 相交于点O ,直角三角板EOF 边OF 落在射线OB 上,将三角板EOF 绕点O 逆时针旋转180°.(1)如图(2),设AOE n ∠=︒,当OF 平分BOD ∠时,求DOF ∠(用n 表示)(2)若40AOC ∠=︒,①如图(3),将三角板EOF 旋转,使OE 落在AOC ∠内部,试确定COE ∠与BOF ∠的数量关系,并说明理由.②若三角板EOF 从初始位置开始,每秒旋转5°,旋转时间为t ,当AOE ∠与DOF ∠互余时,求t 的值.4、如图甲,已知线段20cm AB =,4cm CD =,线段CD 在线段AB 上运动,E ,F 分别是AC ,BD 的中点.(1)若6cm AC =,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变,请求出EF 的长度,如果变化,请说明理由;(3)①对于角,也有和线段类似的规律.如图乙,已知COD ∠在AOB ∠内部转动,OE ,OF 分别平分AOC ∠和BOD ∠,若150AOB ∠=︒,30COD ∠=︒,求EOF ∠;②请你猜想EOF ∠,AOB ∠和COD ∠会有怎样的数量关系,直接写出你的结论.5、补全解题过程.如图所示,点C 是线段AB 的中点,延长线段AB 至点D ,使BD =13AB ,若BC =3,求线段CD 的长. 解:∵点C 是线段AB 的中点,且BC =3(已知),∴AB =2× (①填线段名称)= (②填数值)∵BD =13AB (已知),∴BD = (③填数值),∴.CD = (④填线段名称)+BD = (⑤填数值).-参考答案-一、单选题1、C【解析】【分析】设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.【详解】∵AC:CD:DB=2:3:4,∴设AC=2x,CD=3x,DB=4x,∴AB=9x,∵AB=18,∴x=2,∴AD=2x+3x=5x=10,故选:C.【点睛】本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.2、C【解析】【分析】根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.【详解】解:A. 两点之间,线段最短,故该项不符合题意;B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;D. 射线AB和射线BA不是同一条射线,故该项不符合题意;故选:C.【点睛】此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.3、C【解析】【分析】根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.【详解】解:由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=30,解得CD=5,AC=4CD=4×5=20cm,故选:C;【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.【解析】【分析】根据∠BAC=60°,∠1=27°20′,求出∠EAC的度数,再根据∠2=90°-∠EAC,即可求出∠2的度数.【详解】解:∵∠BAC=60°,∠1=27°20′,∴∠EAC=32°40′,∵∠EAD=90°,∴∠2=90°-∠EAC=90°-32°40′=57°20′;故选:B.【点睛】本题主要考查了与三角板有关的角度计算,解题的关键是能够正确求出∠EAC的度数.5、C【解析】【分析】两个角的和为180,︒则这两个角互为补角,根据互为补角的含义列式计算即可.【详解】解:∠α=125°19′,∴∠α的补角等于180125195441故选C【点睛】本题考查的是互补的含义,掌握“两个角的和为180,︒则这两个角互为补角”是解本题的关键.【解析】【分析】AB=,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.根据10cm【详解】AB=,MA+MB=13cm,解:∵10cm∴M点可能在直线AB上,也可能在直线AB外,故选:D.【点睛】此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.7、B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:10点30分时的时针和分针相距的份数是4.5,10点30分时的时针和分针所成的角的度数为30°×4.5=135°,故选:B.【点睛】本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.8、C【解析】【分析】先画出符合题意的图形,如图,由题意得:15,45,,AON SOBWOB NS WO 再求解,AOW再利用角的和差关系可得答案.【详解】解:如图,由题意得:15,45,,AON SOB WOB NS WO901575,AOW 7545120,AOB 故选C【点睛】本题考查的是方向角的含义,角的和差关系,掌握“方向角的定义”是解本题的关键.9、B【解析】【分析】设MC =xcm ,则AM =(8﹣x )cm ,根据M 、N 分别为AB 、CB 的中点,得到BM =(8﹣x )cm ,NB =(4﹣x )cm ,再求解MC +NB 即可.【详解】解:设MC =xcm ,则AM =AC ﹣MC =(8﹣x )cm ,∵M 为AB 的中点,∴AM =BM ,即BM =(8﹣x )cm ,∵N 为CB 的中点,∴CN =NB ,∴NB ()()()118422MB MC x x x cm =-=--=-, ∴MC +NB =x +(4﹣x )=4(cm ),故选:B .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.10、A【解析】【分析】两个学生看成点,根据两点确定一条直线的知识解释即可.【详解】∵两点确定一条直线,∴选A .【点睛】本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.二、填空题1、4【解析】【分析】根据线段中点的性质,可得AC的长,再根据题目已知条件找到BC和AC之间的关系,用AC减去BC 就得AB的长度【详解】解:由D为AC的中点,得AC=2DC=2×3=6又∵BC=12AB,AC=AB+BC.∴ BC=13 AC=13×6=2由线段的和差关系,得AB=AC-BC=6-2=4故答案为:4.【点睛】本题先根据线段中点的定义求出有关线段的长,再根据线段之间倍数关系,列出求解所求线段的式子即可.2、17【解析】【分析】AB CD的中点,得出AM=BM,CN=DN,当点B在点C 根据A在B的左边,C在D的左边,M,N分别是,的右边时满足条件,分三种情况,当点B在NM上,设AM=BM=x,得出BN=MN-BM=5-x,ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,CM=7-x,得出ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,MC=BM-BC=x-7,得出CN=DN=MN-MC=5-(x-7)=12-x,可求AD=AM+MN+ND=x+5+12-x=17即可.【详解】AB CD的中点,解:∵A在B的左边,C在D的左边,M,N分别是,∴AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况:当点B在NM上,设AM=BM=x,∴BN=MN-BM=5-x,∴CN=BC+BN=7+5-x=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,∴BN=x-5,CM=7-x,∴CN=CM+MN=7-x+5=12-x,∴ND=CN=12-x,∴AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,∴MC=BM-BC=x-7,∴CN=DN=MN-MC=5-(x-7)=12-x,∴AD=AM+MN+ND=x+5+12-x=17;综合得AD=17.故答案为17.【点睛】本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.3、6【解析】【分析】根据D为线段AC的中点,可得24cmAC AD==,即可求解.【详解】解:D为线段AC的中点,∴2224cm==⨯=,AC ADAB=10cm∴.=-=-=CB AB AC1046cm故答案为:6【点睛】本题主要考查了有关中点的计算,熟练掌握把一条线段分成相等的两段的点,叫做这条线段的中点是解题的关键.︒'4、1922【解析】根据90度减去7038︒'即可求解.【详解】解:∠α=7038︒',则∠α的余角的度数是907038896070381922''''︒-︒=︒-︒=︒故答案为:1922'︒【点睛】本题考查了角度的计算,求一个角的余角,掌握角度的计算是解题的关键.5、45°##45度【解析】【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x ,则180°-x =3(90°-x ),解得x =45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.三、解答题1、 (1)60°(2)10°【分析】(1)根据角平分线的定义得∠AOC=2∠AOB,即可求解;(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.(1)∠AOB=30,OB平分∠AOC∴∠AOC=2∠AOB=2⨯30=60(2)∠AOE=140,∠AOC=60∴∠COE=∠AOE-∠AOC=140-60=80又OD平分∠AOE∴∠DOE=12∠AOE=12⨯140=70°∴∠COD=∠COE-∠DOE=80-70=10【点睛】本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.2、(1)①见解析,②见解析,③见解析(2)图见解析,两点之间,线段最短【解析】【分析】(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.(1)①如图所示:连接AB 作直线即可;②连接BC 并延长即为射线BC ;③连接AD 并延长到点E ,以点A 为圆心,AB 为半径画弧交AE 于点G ,以点G 为圆心,BC 长为半径画弧交AE 于点F ,AF 即为所求;(2)画直线BD ,连接AC 交BD 于点P ,根据两点之间,线段最短,点P 即为所求,故答案为:两点之间,线段最短.【点睛】题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.3、 (1)90DOF n ∠=︒-︒(2)①130COE BOF ∠+∠=︒,理由见解析;②4秒或22秒【解析】【分析】(1)利用角的和差关系求解,BOF ∠ 再利用角平分线的含义求解DOF ∠即可;(2)①设∠=COE β,再利用角的和差关系依次求解40AOE β∠=︒-, 50AOF β∠=︒+,130BOF β∠=︒-, 从而可得答案;②由题意得:OE 与OA 重合是第18秒,OF 与OD 重合是第8秒,停止是36秒.再分三种情况讨论:如图,当08t <<时 905AOE t ∠=︒-,405DOF t ∠=︒-,如图,当818t <<时 905AOE t ∠=︒-,540DOF t ∠=-︒,如图,当1836t <<时,590AOE t ∠=-︒,540DOF t ∠=-︒,再利用互余列方程解方程即可.(1)解:180,90,,AOB EOF AOE n∴ 18090BOF EOF AOE n ∠=︒-∠-∠=︒-︒∵OF 平分BOD ∠∴90DOF BOF n ∠=∠=︒-︒(2)解:①设∠=COE β,则40AOE β∠=︒-,∴()904050AOF ββ∠=︒-︒-=︒+∴()180********BOF AOF ββ∠=︒-∠=︒-︒+=︒-,∴130COE BOF ∠+∠=︒②由题意得:OE 与OA 重合是第18秒,OF 与OD 重合是第8秒,停止是36秒.如图,当08t <<时 905AOE t ∠=︒-,405DOF t ∠=︒-,则90540590t t -+-=,∴4t =如图,当818t <<时 905AOE t ∠=︒-,540DOF t ∠=-︒,则90554090t t -+-=,方程无解,不成立如图,当1836t <<时,590AOE t ∠=-︒,540DOF t ∠=-︒,则59054090t t -+-=,∴22t =综上所述4t =秒或22秒【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.4、 (1)12(2)不变; (3)①90°;②()12EOF AOB COD ∠=∠+∠【解析】【分析】(1)根据线段中点推理表示EF 的长度即可;(2)根据EF EC CD DE =++,再根据中点进行推导即可;(3)①根据EOF EOC COD DOF ∠=∠+∠+∠再结合角平分线进行计算; ②由①可以得到结论.(1)∵E ,F 分别是AC ,BD 的中点,∴EC =12AC ,DF =12DB .∴EC +DF =12AC +12DB =12 (AC +DB ).又∵AB =20cm ,CD =4cm ,∴AC +DB =AB -CD =20-4=16(cm ).∴EC +DF =12 (AC +DB )=8(cm ).∴EF =EC +DF +CD =8+4=12(cm ).故答案为:12.(2) EF 的长度不变.EF EC CD DE =++1122AC CD DB =++ ()12AC DB CD =++()12AC CD DB CD CD =++-+ ()12AB CD CD =-+ 1122AB CD =+ ()12AB CD =+ ()12042=+ 12=(3)①∵OE ,OF 分别平分AOC ∠和BOD ∠∴∠EOC =12∠AOC ,∠DOF =12∠DOB .∴EOF EOC COD DOF ∠=∠+∠+∠1122AOC COD BOD =∠+∠+∠ ()12AOC BOD COD =∠+∠+∠ ∵=COD AOB AOC BOD ∠∠-∠-∠ ∴()12EOF AOC BOD AOB AOC BOD ∠=∠+∠+∠-∠-∠ 1122AOB AOC BOD =∠-∠-∠ 11()22AOB AOB AOC BOD =∠+∠-∠-∠ 1122AOB COD =∠+∠()12AOB COD =∠+∠ ()1150302=︒+︒ 90=︒ ②()12EOF AOB COD ∠=∠+∠,理由如下: ∵OE ,OF 分别平分AOC ∠和BOD ∠∴∠EOC =12∠AOC ,∠DOF =12∠DOB .∴EOF EOC COD DOF ∠=∠+∠+∠1122AOC COD BOD =∠+∠+∠ ()12AOC BOD COD =∠+∠+∠ ∵=COD AOB AOC BOD ∠∠-∠-∠ ∴()12EOF AOC BOD AOB AOC BOD ∠=∠+∠+∠-∠-∠ 1122AOB AOC BOD =∠-∠-∠ 11()22AOB AOB AOC BOD =∠+∠-∠-∠ 1122AOB COD =∠+∠ ()12AOB COD =∠+∠ 【点睛】本题主要考查线段中点以及角平分线的定义,熟练掌握线段中点以及角平分线的定义是解决本题的关键.5、BC;6;2;BC;5【解析】【分析】根据线段的中点的性质以及线段的和差关系填写过程即可【详解】解:∵点C是线段AB的中点,且BC=3(已知),∴AB=2×BC(①填线段名称)=6(②填数值)∵BD=13AB(已知),∴BD=2(③填数值),∴.CD=BC(④填线段名称)+BD=5(⑤填数值).【点睛】本题考查了有关线段中点的计算,线段和差的计算,数形结合是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁教版2021年度六年级数学下册《第五章基本平面图形》单元综合培优训练(附答案)1.如图,在直线l上有A、B、C三点,则图中线段共有()A.1条B.2条C.3条D.4条2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm4.如图(一),为一条拉直的细线,A、B两点在上,且:=1:3,:=3:5.若先固定B点,将折向,使得重叠在上,如图(二),再从图(二)的A 点及与A点重叠处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()A.1:1:1B.1:1:2C.1:2:2D.1:2:55.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处7.1°等于()A.10′B.12′C.60′D.100′8.如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAMC.∠BAM=2∠CAM D.2∠CAM=∠BAC9.直线上有2020个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.10.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.11.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O 的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为(n≥3,n是整数).12.如图,线段的长度大约是厘米(精确到0.1厘米).13.在锐角∠AOB内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得锐角个.14.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2007”在哪条射线上?15.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.16.先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.如图(1),如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图(2),如果直线上有3台机床时,不难判断,供应站设在中间一台机床,A2处最合适,因为如果P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此P放在A2处最佳选择.不难知道,如果直线上有4台机床,P应设在第二台与第3台之间的任何地方,有5台机床,P应设在第3台位置.问题:(1)有n台机床时,P应设在何处?(2)根据(1)的结论,求|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣617|的最小值.17.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B 位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.18.用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.参考答案1.解:图中线段有AB、AC、BC这3条,故选:C.2.解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.3.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.4.解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选:B.5.解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°.故选:B.6.解:由图可得,目标A在南偏东75°方向5km处,故选:D.7.解:1°等于60′.故选:C.8.解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.9.解:第一次:2020+(2020﹣1)=2×2020﹣1,第二次:2×2020﹣1+2×2020﹣1﹣1=4×2020﹣3,第三次:4×2020﹣3+4×2020﹣3﹣1=8×2020﹣7.∴经过3次这样的操作后,直线上共有8×2020﹣7=16153个点.故答案为:16153.10.解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.11.解:由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4﹣(n≥3,n是整数).故答案为:4﹣.12.解:线段的长度大约是2.3(或2.4)厘米,故答案为:2.3(或2.4).13.解:∵在锐角∠AOB内部,画1条射线,可得1+2=3个锐角;在锐角∠AOB内部,画2条射线,可得1+2+3=6个锐角;在锐角∠AOB内部,画3条射线,可得1+2+3+4=10个锐角;…∴从一个角的内部引出n条射线所得到的锐角的个数是1+2+3+…+(n+1)=×(n+1)×(n+2),∴画10条不同射线,可得锐角×(10+1)×(10+2)=66.故答案为:66.14.解:(1)18正好转3圈,3×6;17则3×6﹣1;“17”在射线OE上;(2)射线OA上数字的排列规律:6n﹣5射线OB上数字的排列规律:6n﹣4射线OC上数字的排列规律:6n﹣3射线OD上数字的排列规律:6n﹣2射线OE上数字的排列规律:6n﹣1射线OF上数字的排列规律:6n(3)2007÷6=334…3.故“2007”在射线OC上.15.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.16.解:(1)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置.(2)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣617|的最小值就是在数轴上找出表示x的点,使它到表示1,617各点的距离之和最小,根据问题1的结论,当x=309时,原式的值最小,最小值是308+307+…+1+1+2+…+308=95172.17.解:∵∠1=45°,∠2=60°,∴∠AOB=180°﹣(45°+60°)=75°.18.证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°。

相关文档
最新文档