浅析300MW火力发电厂电动给水泵变频节能改造技术 常惠伟

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析300MW火力发电厂电动给水泵变频节能改造技术常惠伟

发表时间:2017-12-31T11:49:06.773Z 来源:《电力设备》2017年第26期作者:常惠伟

[导读] 摘要:火力发电厂各种转动机械的电量消耗偏大特别是6KV转动设备是厂用电率居高不下的根本原因,作为发电厂主要设备的电动给水泵,早期标准设计裕量都偏大,在现在高压变频技术日益成熟,电泵变频改造成为降低水泵耗电率的首选。

(中铝宁夏能源集团马莲台电厂宁夏灵武 750411)

摘要:火力发电厂各种转动机械的电量消耗偏大特别是6KV转动设备是厂用电率居高不下的根本原因,作为发电厂主要设备的电动给水泵,早期标准设计裕量都偏大,在现在高压变频技术日益成熟,电泵变频改造成为降低水泵耗电率的首选。本文通过某发电厂实施电泵变频改造的节能数据分析的结论,对同类设备的改造可以作为参考,提出一些改进的建议,实现节能高效的目标。

关键词:给水泵;变频改造;节能技术

一、电动给水泵运行现状

330MW机组在过去的设计基本都采用的是电力行业DL/T892-2004标准,设计裕量偏大。现在基本都采用IEC45-1-1991标准设计,给水泵的设计裕量相对偏低。电动给水泵采用液力耦合器调速控制的模式,当机组负荷较高时,液力耦合器能效较高。当负荷较低时,液力耦合器自身损耗急剧增加。近几年高压变频器技术的不断发展,成熟、能满足用户需求的大功率变频器已经进入市场并得到检验,且高压变频器在通过降低电源频率进行调速的过程中,自身能效水平较高,完全可以解决在负荷较低情况下电动给水泵转速低进而效率较低的问题。近几年机组负荷率较低,330MW机组在200MW左右运行时,其电泵的转速为4200转左右,给水泵的电机转速1490转,

泵轮转速约为6258,则其转速比为67%,液力偶合器的效率约为67%,330MW机组采用液力偶合器调节的电动给水泵组其200MW左右运行时,损耗高达34%。

根据比转速和该厂330MW机组实际运行参数统计计算出,该厂在不同负荷下的液力偶合器的效率。在330MW时其效率最高才能达到85%左右,其损耗达到了15%左右,包括设计裕量过大、液力偶合器效率低等因素造成。

怎么才能提高给水泵组的效率,有如下几种办法:

1、采用小汽轮机调速,采用小汽轮机调速改造效果评估较难,不同专家算出的结果也是不同的,其改造工程量大,费用高,不建议轻易使用。

2、采用电泵变频调速,采用电泵变频改造后的系统简单,费用低、节能效果好,是电动液力偶合器调节给水泵提高效率的最简单的改造方案。

二、电动液力偶合器调节给水泵变频改造的方案选择

电动液力偶合器调节给水泵变频改造关键的核心是液力偶合器如何改,该厂已经改造了几台液力偶合器,现介绍一下。

电泵电机有工频和变频两种功能,液力偶合器也可分为工频运行和变频运行两种模式。

液力偶合器原理:液力偶合器电机轴和大齿轮相连,大齿轮通过小齿轮带动泵轮轴旋转,泵轮轴与给水泵轴相连,正常运行时通过勺管调节泵轮和涡轮里传动的油量来调速。当泵轮和涡轮中油量较小时,泵轮和涡轮内的油量不满,造成液力偶合器的效率低,当油量越多,泵轮和涡轮内空余的空间小,热量损失就小。变频运行时,由电机调节转速,液力偶合器的勺管全开,泵轮和涡轮腔室里的充满了润滑油,泵轮和涡轮完全成为一个刚性联轴器,这时液力偶合器就成为增速器。工频运行还和改造前一样,电机转速恒定,通过勺管调节转速运行。

三、改造方案说明

1、保守方案

改造方案就是保留的液力偶合器的泵轮和涡轮,在变频运行时,让勺管开度100%,这样液力偶合器的效率最高,因其最少有3%的滑差,加上增速齿轮及其它各种损失,最高其效率能达到93%左右,最高负荷时偶合器的效率能提高8%左右。工频功能就是当变频故障后,让液力偶合器恢复成勺管调节方式运行。该厂#1机组2台给水泵液力偶合器就采用了保守思路的方案进行了改造。后期又采用第二种方案进行优化改造。

液力偶合器中因为有泵轮、滑动轴承,内部有二台润滑油泵和一台工作油泵,工作油泵和一台润滑油泵共用一根轴,通过泵轮上轴上的齿轮传动。其额定转速和电机额定转速相同,改变频后因电机转速下降,其转速下降,无法满足润滑油和工作油提供额定的流量和压力,必须改造。改造方案有多种,目前了解到的有3种方案。

2、追求节能量最大化:

电泵电机只有变频功能,无工频功能。变频器的品牌必须选好。

该厂#2机组2台给水泵液力偶合器就采用了此方案进行了改造,将液力偶合器的泵轮和涡轮拆除,将两根轴相连,泵轮轴与电机轴连接,液力偶合器变为增速器,可以通过电机调速因为取消了泵轮和涡轮,可以取消工作油系统(工作油泵、管路、工作油冷却器),系统简单,维护量小,设备节能量高,液力偶合器变成了增速器其没有滑差,液力偶合器的效率达到最大。

第三种方案,是将液力偶合器直接去除,将其更换成增速器。新电厂可以直接按照增速器来设计,已发电电厂可以订购一台新增速器,其地脚螺栓尺寸、中心距,对轮连接的尺寸和中心距与液力偶合器一模一样,然后设计润滑油系统,配置二台润滑油泵。

3、前置泵的改造方案选择:前置泵和给水泵为同轴电机,当电机变频在低转速下运行时因转速变低,其出口压力能否满足给水泵最小必需汽蚀余量,是前置泵改造的前提。根据前置泵出厂技术参数资料计算,可以满足要求,但大部份的电厂水泵已经运行了多年,性能已经偏离设计值,会影响到前置泵的运行,如果采用同轴会造成给水泵入口汽蚀,建议将前置泵的壳体保留,转子和叶轮更换一个方向,然后转动方向反向转动即可。

四、改造后设备的节能量

1、计算说明及计算公式:

1.1功率因素选择:电泵改造前其工频运行时,其功率因数根据实测电能量计算,负荷从190MW至330MW变化时,其功率因数自0.82逐步上升至0.895;

电泵变频运行时当机组负荷从190MW至330MW变化时,变频器频率基本在35Hz至45Hz之间变化,变频器输入功率因数基本维持在

相关文档
最新文档