基于阈值的图像分割方法研究与实现
基于VC++图像阈值分割与轮廓提取技术研究与实现
基于VC++的图像阈值分割与轮廓提取技术的研究与实现摘要:目前,随着计算机图像处理技术的飞速发展,医学图像分割技术在医疗诊断中的应用也越来越广泛。
本文分析了区域的图像分割算法,提出了结合距离正则化的水平集演化模型的自适应算法,基于vc++6.0软件对人体心脏核磁共振图像进行了仿真实验分析。
关键词:图像分割;医学图像;仿真实验中图分类号:tp391.41 文献标识码:a 文章编号:1007-9599 (2012) 24-0028-031 基于区域的图像分割算法概述1.1 阈值分割算法阈值分割算法具有多种优点,包括简单便捷、性能高效等,对于目标背景与灰度级之间存在明显差异的图像来说,图像分割的效果比较理想。
阈值分割算法的应用首先要对图像进行部分预处理,为后期图像分割提供相关准备。
阈值分割算法在医学图像分割中经常用于身体骨骼、皮肤组织等医学图像。
但是,阈值分割算法也存在部分缺点,如果将阈值分割应用于灰度值差异不够明显,以及图像中噪声分布不均匀的图像中,其效果却不尽理想。
而且,阈值的选取对于医学图像的分割起着决定性作用,因此,阈值的选取也是至关重要的步骤。
1.2 区域生长及分裂合并算法区域生长算法的特点是图像分割步骤简单,经常用于对医学图像中的小部分组织进行图像分割,例如肿瘤分割、伤疤分割等等。
如果将区域生长算法与其他算法结合应用,将会达到事半功倍的分割效果。
区域生长算法的缺点是其对于图像噪声极为敏感,而且需要人工手动得到种子点。
区域分裂合并算法与区域生长算法的理念不尽相同,区域分裂合并算法是通过对图像的不断分裂得到图像的各个区域,这些区域之间具有一定的关联性,各个区域中相邻的部分根据合并准则完成合并。
1.3 分类器及聚类算法分类器包括参数分类器与非参数分类器两种。
典型的非参数分类器有parzen窗、k近邻等;而贝叶斯分类器为参数分类器的典型代表。
分类器的优点较多,包括能够有效降低算法的计算量,也不需要进行迭代运算,从而提高算法效率等等。
图像处理技术中的图像分割阈值选择方法探讨
图像处理技术中的图像分割阈值选择方法探讨图像分割是图像处理的重要步骤之一,它将一幅图像划分成多个区域或对象,使得每个区域或对象具有一定的相似性或特征。
而图像分割的关键在于选择合适的阈值,以实现准确的分割结果。
本文将探讨图像处理技术中的图像分割阈值选择方法。
图像分割的目的是将图像中的前景和背景分开,使得每个区域或对象能够得到独立的处理。
在许多应用中,分割准确性对于后续处理步骤的成功非常关键。
因此,选择适当的阈值方法至关重要。
在图像处理中,有许多常用的图像分割阈值选择方法,比如全局阈值法、自适应阈值法、Otsu阈值法等。
下面将对这些方法进行详细的介绍和比较。
首先是全局阈值法,它是最简单和最常见的分割方法之一。
该方法假设图像中的前景和背景的灰度值具有明显的差异,并且像素的灰度值可以根据一个固定的阈值进行分类。
通常情况下,阈值可以通过试错法或者统计分析的方法来选择。
全局阈值法的优点是简单易用,计算速度快,适用于许多场景。
然而,该方法对于图像中存在灰度值分布不均匀或者背景复杂的情况表现不佳。
接下来是自适应阈值法,该方法能够根据图像中局部区域的特征动态地选择阈值。
它假设图像中的前景和背景的灰度值在局部区域内具有一定的相似性,并且像素的灰度值可以根据其局部区域的平均或中值来分类。
自适应阈值法的优点是能够适应图像中的灰度值变化和背景复杂的情况,但是计算复杂度会相应增加。
最后是Otsu阈值法,它是一种基于图像灰度直方图特性的自动分割方法。
Otsu 阈值法通过最大类间方差的方法选择阈值,即使得前景和背景之间的差异最大。
它能够自动选择合适的阈值,适用于各种图像。
Otsu阈值法的优点是能够自动化选择阈值,但是对于某些特殊图像,可能无法得到理想的分割结果。
除了以上介绍的常用方法外,还有一些其他的图像分割阈值选择方法,如基于聚类分析的方法、基于直方图的方法等。
这些方法在特定的应用场景中可能会有更好的效果,但是也有一定的局限性。
基于阈值法的图像分割技术
基于阈值法的图像分割技术阴国富(1.西安电子科技大学陕西西安710071;2.渭南师范学院陕西渭南714000)在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。
为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。
图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。
这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。
现有的图像分割算法有:阈值分割、边缘检测和区域提取法。
本文着重研究基于阈值法的图像分割技术。
1 阈值法图像分割1.1 阈值法的基本原理阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。
1.2 阈值法图像分割方法分类全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。
其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。
阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。
由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法和基于区域的阈值法分别进行了研究。
根据阈值法的原理可以将阈值选取技术分为3大类:(1)基于点的全局阈值方法基于点的全局阈值算法与其他几大类方法相比,算法时间复杂度较低,易于实现,适合应用于在线实时图像处理系统。
图像分割 实验报告
图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。
图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。
本实验旨在探索不同的图像分割方法,并对其进行比较和评估。
二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。
首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。
接下来,我们将详细介绍这两种分割方法的实现步骤。
1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。
它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)选择一个适当的阈值,将图像中的像素分为两类。
(3)根据阈值将图像分割,并得到分割结果。
2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。
边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。
具体步骤如下:(1)将彩色图像转换为灰度图像。
(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。
(3)根据边缘信息将图像分割,并得到分割结果。
三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。
首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。
实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。
接下来,我们使用基于边缘的分割方法对同一张图像进行分割。
实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。
与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。
通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。
基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。
医学图像配准与分割方法研究与实践
医学图像配准与分割方法研究与实践医学图像配准与分割是医学影像处理中的两个重要任务,可以帮助医生更准确地诊断和治疗疾病。
图像配准旨在将多个医学图像对齐,使得它们在空间上或时间上完全或部分重叠。
而图像分割则是将医学图像中的组织、器官或异常区域进行分离和区分。
本文将介绍医学图像配准和分割的一些常见方法,并探讨其在实际应用中的研究与实践。
一、医学图像配准方法研究与实践医学图像配准是通过将多个医学图像进行准确对齐,实现多图像之间的一致性。
在医学影像处理中,常见的配准方法包括基于特征的方法和基于相似度度量的方法。
1. 基于特征的方法基于特征的配准方法通过提取图像中的特征点或特征区域来进行图像匹配。
其中,最常见的特征包括角点、边缘、纹理等。
常用的算法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB(旋转不变特征)等。
这些方法通过对特征点的检测、描述和匹配来实现图像配准。
在实践中,基于特征的方法往往具有较好的配准效果和鲁棒性。
2. 基于相似度度量的方法基于相似度度量的配准方法通过计算图像间的相似度来进行匹配。
常用的相似度度量指标包括互信息、相关系数和互相关等。
这些方法通过优化相似度度量指标来寻找最优的变换参数,从而实现图像的配准。
在实践应用中,基于相似度度量的方法通常能够得到较好的配准结果,并且具有较高的计算效率。
二、医学图像分割方法研究与实践医学图像分割是将医学图像中的组织、器官或异常区域进行分离和区分的过程。
常见的医学图像分割方法包括基于阈值的方法、基于边缘的方法和基于区域的方法。
1. 基于阈值的方法基于阈值的分割方法是最简单也是最直观的方法之一。
它通过选取适当的阈值来将图像进行二值化,将感兴趣的组织或区域与背景进行区分。
常见的阈值分割方法有全局阈值法、自适应阈值法和区域生长法等。
尽管基于阈值的方法简单易用,但对于复杂图像和噪声较多的情况下,效果不佳。
2. 基于边缘的方法基于边缘的分割方法通过检测图像中的边缘信息进行分割。
医学影像中的图像分割技术研究
医学影像中的图像分割技术研究一、背景介绍随着医学成像技术不断的发展,医学影像在临床医疗领域已经成为了不可或缺的一部分。
然而,海量的医学影像数据对临床医生和医学研究工作者的影像学分析提出了新的挑战。
一项重要的任务是医学影像中的图像分割,即将一张医学影像图像分为若干不同的区域以帮助临床医生和研究人员更好地理解该区域的构造和特性。
基于这一任务,许多图像分割技术得到了广泛的研究和应用。
二、医学影像中的图像分割技术1. 基于阈值的图像分割技术基于阈值的图像分割技术是一种快速、简单的图像分割方法,广泛应用于医学影像中。
基本原理是将像素值高于或低于预先定义的阈值的像素分为两个部分,从而实现图像的分割。
但此方法在面对医学影像中复杂结构的图像时,分割效果很可能出现错误。
2. 基于边缘检测的图像分割技术基于边缘检测的图像分割技术是利用边缘信息对图像进行分割的方法,主要分两步进行。
首先,对图像进行边缘检测,提取边缘信息。
然后,利用这些边缘信息将图像分割为不同的部分。
但这种方法对图像中噪声的敏感度很高,同时对于一些形状较为复杂的结构分割效果也较差。
3. 基于区域生长的图像分割技术基于区域生长的图像分割技术是一种运用种子点的方法将图像分为不同的区域。
基本原理是从种子点开始,对相邻像素点的灰度值进行比较,将符合条件的像素点归为同一区域,直到所有符合条件的像素点都被归为同一区域。
该方法能够有效处理复杂的图像结构,并且对噪声的抗干扰能力较强。
4. 基于图论的图像分割技术基于图论的图像分割技术将像素看作图中的节点,在节点之间建立连接关系。
在分割过程中,将节点之间的连线权值看作像素之间的相似性,将图像分为不同的区域。
该方法可以很好的解决医学影像中复杂结构分割问题,但其计算复杂度较大,分割速度比较慢。
三、总结医学影像中的图像分割技术在临床医学中具有重要的应用价值。
但由于医学影像的复杂性,不同的图像分割方法都存在自己的优缺点。
因此,在实际应用过程中,需要结合具体的医学影像特点选择合适的图像分割方法,并进行不断地优化和改进,以达到更好的分割效果。
如何利用图像处理技术实现图像的阈值分割
如何利用图像处理技术实现图像的阈值分割图像阈值分割是一种基本的图像处理技术,它可以将图像分割成不同的区域,以便于进一步的分析和处理。
在本文中,我们将探讨如何利用图像处理技术实现图像的阈值分割。
让我们了解阈值分割的基本概念。
阈值分割是通过将图像的像素按照一定的标准分成两个或多个不同的区域。
这个标准就是阈值,像素值大于阈值的被分到一个区域,像素值小于阈值的被分到另一个区域。
阈值分割可以用来提取图像中的目标区域,去除图像的背景,或者将图像进行二值化处理。
实现图像的阈值分割,通常需要经过以下几个步骤:1. 图像预处理:我们需要对图像进行预处理,以便更好地进行阈值分割。
预处理的方法包括灰度化、去噪和图像增强等。
2. 灰度化:将彩色图像转换为灰度图像。
这是因为在大多数情况下,图像的阈值分割是基于像素的灰度值进行的。
3. 去噪:当图像受到噪声影响时,阈值分割的效果往往不理想。
因此,我们需要对图像进行去噪处理,以减少噪声对阈值分割的影响。
去噪的方法包括中值滤波、高斯滤波和均值滤波等。
4. 图像增强:图像增强的目的是加强图像的对比度和边缘信息,以便更好地进行阈值分割。
图像增强的方法包括直方图均衡化、拉普拉斯增强和梯度增强等。
5. 选择合适的阈值:在图像预处理之后,我们需要选择一个合适的阈值进行分割。
选择阈值的方法有很多种,常见的有固定阈值法、自适应阈值法和Otsu阈值法等。
不同的方法适用于不同的图像。
6. 图像分割:根据选择的阈值,将图像的像素分成不同的区域。
像素值大于阈值的被分到一个区域,像素值小于阈值的被分到另一个区域。
除了上述基本步骤,还有一些进阶的技术可以用于改进阈值分割的效果,如自适应阈值、多阈值分割以及基于概率模型的阈值分割等。
这些方法可以根据图像特点和需求进行选择和调整,以获得更好的分割结果。
综上所述,利用图像处理技术实现图像的阈值分割是一个相对简单但却非常重要的任务。
通过合理的图像预处理、选择适当的阈值细分割算法,我们可以得到准确的图像分割结果,为后续的图像分析和处理提供有力的支持。
医疗影像处理中的图像分割算法使用方法与技巧
医疗影像处理中的图像分割算法使用方法与技巧医疗影像处理是一种应用广泛的技术,为临床诊断和治疗提供了重要支持。
在医疗影像中,图像分割是一个关键的步骤,它能够将影像中的不同区域或结构进行提取,为医生提供更准确的信息。
图像分割算法的使用方法和技巧对于提高分割效果具有重要意义。
本文将介绍医疗影像处理中常见的图像分割算法及其使用方法与技巧。
一、基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的方法。
它通过设定一个或多个阈值来将图像分割为不同的区域。
在医疗影像处理中,通过选择适当的阈值,我们可以将感兴趣的区域从背景中分离出来,例如分割出肿瘤或器官。
在使用基于阈值的算法进行图像分割时,以下几点技巧是需要注意的:1. 预处理:在进行图像分割之前,通常需要对图像进行一些预处理操作,例如去噪、增强对比度等。
这样可以提高分割的结果质量。
2. 自适应阈值:在某些情况下,图像中的亮度和对比度可能会发生变化。
为了应对这种情况,可以使用自适应阈值的算法,根据图像不同区域的统计信息来选择合适的阈值。
3. 多阈值分割:有时候,一个阈值无法对图像进行有效分割。
这时可以尝试使用多阈值分割算法,根据不同的阈值对图像进行多次分割,然后结合结果。
二、基于边缘的图像分割算法基于边缘的图像分割算法是利用图像中的边缘信息来分割图像的一种常见方法。
边缘是图像中灰度值变化较大的地方,通过检测图像中的边缘,可以将物体与背景分离出来。
以下是使用基于边缘的图像分割算法时的几个技巧:1. 边缘检测:为了得到图像的边缘信息,需要使用边缘检测算法,例如Canny算法、Sobel算法等。
在使用这些算法时,需要调整参数,以得到最佳的边缘检测结果。
2. 边缘连接:边缘检测算法有时会产生不连续的边缘线段。
为了得到完整的边缘,需要对边缘进行连接操作,将不连续的线段连接起来。
3. 边缘融合:在某些情况下,图像中的边缘可能会有重叠或交叉的情况。
为了解决这个问题,可以使用边缘融合算法,将重叠的边缘进行合并,提高分割的准确性。
图像分割算法的原理与效果评估方法
图像分割算法的原理与效果评估方法图像分割是图像处理中非常重要的一个领域,它指的是将一幅图像分割成多个不同的区域或对象。
图像分割在计算机视觉、目标识别、医学图像处理等领域都有广泛的应用。
本文将介绍图像分割算法的原理以及评估方法。
一、图像分割算法原理图像分割算法可以分为基于阈值、基于边缘、基于区域和基于图论等方法。
以下为其中几种常用的图像分割算法原理:1. 基于阈值的图像分割算法基于阈值的图像分割算法是一种简单而高效的分割方法。
它将图像的像素值进行阈值化处理,将像素值低于阈值的部分归为一个区域,高于阈值的部分归为另一个区域。
该算法的优势在于计算速度快,但对于复杂的图像分割任务效果可能不理想。
2. 基于边缘的图像分割算法基于边缘的图像分割算法通过检测图像中的边缘来实现分割。
常用的边缘检测算法包括Sobel算子、Canny算子等。
该算法对边缘进行检测并连接,然后根据连接后的边缘进行分割。
优点是对于边缘信息敏感,适用于复杂场景的分割任务。
3. 基于区域的图像分割算法基于区域的图像分割算法将图像分割成多个区域,使得每个区域内的像素具有相似的属性。
常用的方法包括区域生长、分裂合并等。
该算法将相邻的像素进行聚类,根据像素之间的相似度和差异度进行分割。
优点是在复杂背景下有较好的分割效果。
4. 基于图论的图像分割算法基于图论的图像分割算法将图像看作是一个图结构,通过图的最小割分割图像。
常用的方法包括图割算法和分割树算法等。
该算法通过将图像的像素连接成边,将图像分割成多个不相交的区域。
该算法在保持区域内部一致性和区域间差异度的同时能够有效地分割图像。
二、图像分割算法的效果评估方法在进行图像分割算法比较和评估时,需要采用合适的评估指标。
以下为常用的图像分割算法的效果评估方法:1. 兰德指数(Rand Index)兰德指数是一种常用的用于评估图像分割算法效果的指标。
它通过比较分割结果和真实分割结果之间的一致性来评估算法的性能。
基于阈值的图像分割算法研究综述
第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06052604基于阈值的图像分割算法研究综述:原理㊁分类及典型算法杨林蛟(沈阳师范大学化学化工学院,沈阳110034)摘要:随着计算机技术的飞速发展,图像处理技术在各个领域都得到了广泛应用,如产品质量检测㊁医学图像处理㊁军事目标的定位与跟踪等㊂作为图像处理技术和计算机视觉技术的研究基础,图像分割技术目前已出现了大量不同类型的算法,并在各个领域的应用中发挥着重要的作用㊂其中,基于阈值的图像分割算法因具有简单有效㊁计算量小㊁性能稳定等优点而受到了人们的普遍青睐㊂首先,对图像分割技术按照不同的划分方式进行了简单的分类;其次,对阈值分割算法的基本原理㊁分类及最典型的O t s u算法的基本思想进行了详尽的介绍;最后,对阈值分割算法目前存在的问题进行了阐述,并对算法未来的发展趋势进行了展望㊂研究工作可为图像处理技术的进一步发展提供理论借鉴㊂关键词:图像处理;阈值分割;阈值选取;算法中图分类号:T P391文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.007A r e v i e w o ft h r e s h o l d-b a s e di m a g es e g m e n t a t i o n a l g o r i t h m s:P r i n c i p l e s,c l a s s i f i c a t i o na n d t y p i c a l a l g o r i t h m sY A N GL i n j i a o(C o l l e g e o fC h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:W i t h t h e r a p i dd e v e l o p m e n t o f c o m p u t e r t e c h n o l o g y,i m a g e p r o c e s s i n g t e c h n o l o g y h a sb e e n w i d e l y u s e di nv a r i o u s f i e l d s,s uc ha s p r od u c t q u a l i t y de t e c t i o n,m e d i c a l i m a g e p r o c e s s i n g,m i l i t a r y t a r g e t p o s i t i o n i n g a n d t r a c k i n g.A s t h e b a s i s o f i m a g e p r o c e s s i n g t e c h n o l o g y a n d c o m p u t e rv i s i o nt e c h n o l o g y,al a r g e n u m b e r o f d i f f e r e n tt y p e s o fa l g o r i t h m s h a s e m e r g e d,a n d t h e s ea l g o r i t h m s p l a y a ni m p o r t a n t r o l e i nv a r i o u s f i e l d so fa p p l i c a t i o n.A m o n g t h e m,t h r e s h o l db a s e di m a g e s e g m e n t a t i o na l g o r i t h m h a sb e e n w e l c o m e db e c a u s eo f i t sa d v a n t a g e so fs i m p l e,e f f e c t i v e,l i t t l e c o m p u t a t i o na n ds t a b l e p e r f o r m a n c e.F i r s t l y,t h e i m a g es e g m e n t a t i o nt e c h n o l o g y i ss i m p l yc l a s s i f i e da c c o rd i n g t o t he d if f e r e n t p a r t i t i o n i ng w a y s.S e c o n d l y,th eb a si c p r i n c i p l e,c l a s s i f i c a t i o n,a n d t h eb a s i ci d e ao ft h e m o s tt y p ic a lO t s ua l g o r i t h m o ft h r e s h o l ds e g m e n t a t i o na l g o r i t h m a r ei n t r o d u c e di n d e t a i l.A tl a s t,t h ee x i s t i n g p r o b l e m s o ft h r e s h o l d s e g m e n t a t i o n a l g o r i t h m a r ed e s c r i b e d,a n dt h ef u t u r ed e v e l o p m e n tt r e n d o ft h i sa l g o r i t h m a r ef o r e c a s t e d.T h i s w o r kc a np r o v i d e t h e o r e t i c a l r e f e r e n c e f o r t h e f u r t h e r d e v e l o p m e n t o f i m a g e p r o c e s s i n g t e c h n o l o g y.K e y w o r d s:i m a g e p r o c e s s i n g;t h r e s h o l d s e g m e n t a t i o n;t h r e s h o l d s e l e c t i o n;a l g o r i t h m 图像处理技术一般是指利用计算机对图像进行分析,以达到所需结果的技术,又可称为影像处理㊂收稿日期:20230929基金项目:辽宁省教育厅科学研究经费项目(L J C202004,L J C202005)㊂作者简介:杨林蛟(1976 ),男,青海西宁人,沈阳师范大学高级实验师,硕士㊂图像处理技术主要包括图像的数字化㊁图像的增强和复原㊁图像的分割和识别㊁图像的数据编码等㊂其中,图像分割在计算机视觉中起着至关重要的作用,是图像处理技术的基础㊂图像分割的目的是使图像得到简化或改变图像的表示形式,图像经过分割后会形成一些特定的㊁具有独特性质的区域,这里的独特性质一般指像素的灰度㊁颜色和纹理等㊂其过程就好比把图像中的每一个像素打上一个特定的标签,使得具有相同标签的像素具有相同的视觉特性,从而用来定位图像的物体和边界㊂图像分割技术一直是计算机视觉研究的热点之一,历经数十年的发展,大量的分割算法被人们相继提出并得到广泛应用[1]㊂其中,基于阈值的图像分割算法因具有实时㊁有效㊁自动㊁应用广泛等优点而受到人们的广泛关注㊂本文首先对现有的图像分割技术进行了简单的划分,接着对基于阈值的分割算法的原理㊁分类及最典型的O t s u 算法进行了系统的介绍,以期为图像处理技术的进一步发展提供理论借鉴㊂1 图像分割技术的分类目前,人们对图像分割技术进行了大量的研究,并取得了卓有成效的研究成果,开发出了很多算法㊂如图1所示,如果按照图像类型划分,图像分割技术可分为灰度图像分割和彩色图像分割,灰度图像分图1 图像分割技术的7种不同划分方式F i g .1 S e v e nd i f f e r e n tw a y s o f i m a g es e g m e n t a t i o n t e c h n o l o g y割主要用于处理非自然图像,彩色图像分割则主要用于处理自然图像;按照是否存在用户交互,可将图像分割技术分为监督式分割和非监督式分割,监督式分割主要用于对图像和视频进行编辑,非监督式分割则主要用于处理图像背景较为单一的文本图像㊁工业图像等;按照表示方式的不同,图像分割技术又可分为基于像素级的分割和超像素级的分割,目前大多数的分割算法属于基于像素级的分割技术,其通常具有较高的处理精度;按照图像的另一种表示方式,图像分割技术则分为单一尺度的分割和多尺度分割,单一尺度的分割是在原始尺度空间上构建相关的分割模型,而多尺度分割则可充分挖掘图像的基本信息;从属性来划分,图像分割技术可分为单一属性的分割和多属性分割,前者只对灰度㊁颜色㊁纹理等特征中的一种属性进行分割,后者则能综合运用图像的多种属性;从操作空间来划分,图像分割技术可分为利用图像特征信息的分割和利用空间位置信息的分割,其中前者主要包括阈值分割算法和聚类算法等,后者主要包括水平集分割算法㊁活动轮廓算法等;从驱动方式划分,图像分割技术可分为基于边缘的分割和基于区域的分割㊂2 阈值分割算法阈值分割算法主要利用图像的特征信息对图像进行分割,目前已有上百种算法被陆续提出㊂其主要思想是不同的目标具有不同的诸如颜色㊁灰度㊁轮廓等特征,根据特征间的细小差别,通过选取特定的阈值将目标物与背景划分开来,进而实现快速的图像分割㊂2.1 阈值分割算法的基本原理阈值法的基本原理是先确定一个阈值[2],然后将所有像素按照其特征值与阈值的大小关系划分为2个类别㊂当特征值大于阈值时,该像素被归为目标类;反之,被归为背景类㊂通过选择合适的阈值,可以实现对图像目标与背景的有效分离㊂设原始图像为f (x ,y ),在f (x ,y )中找出特征值T ,将原始图像分割为2个部分,得到分割后的图像为g (x ,y )=b 0,f (x ,y )<t b 1,f (x ,y )ȡ{t725 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法若取b 0=0(黑),b 1=1(白),即为图像的二值化㊂2.2 阈值分割算法的分类根据利用信息种类的不同,可将阈值分割算法分为以下几类:1)基于直方图形状的方法㊂该类方法主要根据直方图的形状属性来划分像素,其又可分为 凸壳 法㊁ 峰谷 法和形状建模法3类㊂1997年,C a r l o t t o [3]对图像的概率密度进行了多尺度分析,并以此估计最佳阈值;1998年,C a i 和L i u [4]利用P r o n y 谱分析法得到了图像多重指数信号能量谱的近似值;之后,G u o 和P a n d i t [5]提出了一个全极模型㊂2)基于熵的方法㊂该类方法利用灰度分布的熵信息来划分像素㊂J o h a n n s e n 和B i l l e [6]最早对熵算法进行了研究㊂之后,很多学者对这一算法进行了改进,如P a l [7]在交叉熵的基础上建立了一种对前景和背景后验概率密度的模型;S u n [8]依靠 模糊事件熵 的最大化,采用了Z a d e h 的S 隶属度函数㊂3)基于聚类的阈值分割方法㊂该类方法又可分为迭代法㊁聚类法㊁最小误差法和模糊聚类4类,其主要通过对灰度数据进行聚类分析来获取阈值㊂其中,聚类法是通过将前景和背景的加权方差最小化来获得最佳阈值,是阈值分割算法中较为经典的算法之一㊂L i u 和L i [9]将聚类法扩展到了二维,景晓军等[10]将聚类法扩展到了三维㊂4)基于对象属性的方法㊂该类方法通过度量原始图像与二值图像间的诸如灰度片段㊁形状紧密性㊁纹理等的属性特性来选取阈值㊂基于对象属性的方法可分为片段保存法㊁边缘匹配法㊁模糊相似法㊁拓扑固定态法㊁最大信息法和模糊紧密性增强法6类㊂5)基于空间的方法㊂该类方法又可分为同现方法㊁高次熵法㊁基于随机集合的方法和二维模糊划分法4类,其选取阈值的方式是度量灰度分布和邻域内像素的相关性㊂C h a n g 等[11]在确保源图像与二值图像的同现概率以最低程度发散的条件下建立了阈值;B r i n k [12]认为空间熵可由二元熵在所有可能间隔的总和来计算㊂6)局部自适应方法㊂局部自适应方法可以克服其他阈值算法的许多缺陷,受到了人们的普遍关注,其主要的2种形式分别为邻域法和分块法㊂邻域法一般会受到邻域范围的制约,因而对文字等狭长目标比较敏感,但对平坦的大块前景或背景容易造成误分;分块法的适用范围会更广,但分块之间结果的不连续是该方法的缺陷之一㊂2.3 典型阈值分割算法介绍O t s u 阈值分割算法,也可称为最大类间方差算法,是最常用的一类阈值分割算法,也是阈值分割领域各类文献中被引用数量最多的算法之一㊂该算法选取使得类间方差最大的灰度值作为划分背景和前景的最佳阈值,其基本思想如下:在一幅灰度图像中,假设其灰度级为L ,用n i 表示灰度级为i 的像素个数,N 表示总像素的个数,则N =n 0+n 1+ +n L -1㊂用p i 表示灰度图像中灰度值i 的像素点出现的概率,则有p i =n i N ㊂设有阈值t 将图像分为前景和背景2个部分,分别用C 0={0,1, ,t }和C 1={t +1,t +2, ,L -1}表示㊂设ω0为C 0出现的概率,ω1为C 1出现的概率,则有ω0=ðt i =0p i ,ω1=ðL -1i =t +1p i ,且ω0+ω1=1㊂则C 0和C 1的平均灰度μ0和μ1为μ0=ðt i =0i ㊃p i ω0=μ(t )ω0,μ1=ðL -1i =t +1i ㊃p i ω1=μ-μ(t )1-ω0用σ2B 表示类间方差,其表达式为σ2B =ω0(μ0-μ)2+ω1(μ1-m )2=ω0㊃ω1(μ0-μ1)2最佳分割阈值t *即为使得类间方差σ2B 最大的阈值t :t *=a r g m a x t ɪ{0,1, L -1}σ2B 上述O t s u 算法又称一维O t s u 算法,它在不对概率密度函数做出假设的情况下,以均值和方差的概率密度为基础对图像的分割状态进行描述,可以在很大程度上提高算法的运算速度㊂后来,人们又发展了二维O t s u 阈值分割方法,它是在原来一维算法灰度值的基础上加入了像素邻域平均灰度作为第825沈阳师范大学学报(自然科学版) 第41卷二维,因而提高了一维算法的抗噪声能力㊂O t s u 阈值分割算法的分割效果如图2所示㊂(a )原始图像(b )O t u s 法阈值选择图2 O t s u 阈值分割算法的分割效果F i g .2 S e g m e n t a t i o ne f f e c t o f O t s u t h r e s h o l d s e g m e n t a t i o na l g o r i t h m 2.4 阈值分割算法目前存在的问题虽然阈值分割算法在国内外研究者们数十年的努力下已经取得了长足的进步,但目前仍然存在着如不均匀光照㊁噪声干扰㊁文本图像 劣化 等问题亟待解决㊂其中,不均匀光照会使直方图中的目标波峰与背景波峰混杂在一起,从而降低直方图阈值法的效果;噪声对图像处理的整个过程都有影响,去噪已成为图像分割领域的一个研究重点;长时间保存的纸质文档会出现背面字迹浸透㊁字迹污染等现象,从而造成分割时产生大量的误分㊂3 结论与展望图像分割是计算机视觉的基础技术,分割效果将直接影响如目标定位㊁目标识别㊁目标跟踪㊁场景分析等的后续处理㊂在众多的图像分割算法中,阈值分割算法一直以其实时㊁高效等特点受到人们的普遍关注㊂但从目前来看,阈值分割算法仍面临着许多难以解决的困难,可行的解决方法是从更高的图像语义出发,对图像内容进行抽象分析,然后指导低层次的图像分割,重复这样的操作若干次,可以逐步提高分割的精度㊂目前,对该种分割方式的研究仍处于探索阶段㊂参考文献:[1]S E Z G I N M ,S A N K U RB .S u r v e y o v e r i m a g e t h r e s h o l d i n g t e c h n i qu e s a n d q u a n t i t a t i v e p e r f o r m a n c e e v a l u a t i o n [J ].J E l e c t r o n I m a g i n g ,2004,13(1):146168.[2]阴国富.基于阈值法的图像分割技术[J ].现代电子技术,2007(23):107108.[3]C A R L O T T O M J .H i s t o g r a m a n a l y s i su s i n g as c a l e -s p a c ea p p r o a c h [J ].I E E E T r a n sP a t t e r n A n a l M a c hI n t e l l ,1997,9(1):121129.[4]C A I J ,L I UZQ.An e wt h r e s h o l d i n g a l g o r i t h m b a s e do na l l -p o l em o d e l [C ]ʊP r o c e e d i n g so f t h e14t hI n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n i t i o n .B r i b a n e :I E E E ,1998:3436.[5]G U O R ,P A N D I TS M.A u t o m a t i c t h r e s h o l ds e l e c t i o nb a s e do nh i s t o gr a m m o d e sa n dad i s c r i m i n a n t c r i t e r i o n [J ].M a c hV i s i o nA p p l ,1998,10:331338.[6]J OHA N N S E N G ,B I L L EJ .At h r e s h o l ds e l e c t i o n m e t h o du s i n g i n f o r m a t i o n m e a s u r e s [C ]ʊP r o c e e d i n gso f t h e6t h I n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n .M u n i c h :G e r m a n y ,1982:140143.[7]P A L N R.O nm i n i m u mc r o s s -e n t r o p y t h r e s h o l d i n g [J ].P a t t e r nR e c o g n ,1996,29(4):575580.[8]S U NCY.An o v e lf u z z y e n t r o p y a p p r o a c h t o i m ag e e nh a n c e m e n t a n d t h r e s h o l di n g [J ].S i gn a l P r o c e s s ,1999,75:277301.[9]L I UJZ ,L I W Q.T h ea u t o m a t i ct h r e s h o l d i n g o f g r a y -l e v e l p i c t u r e sv i at w o -d i m a n s i o n a lO t s u me t h o d [J ].A c t a A u t o m a t i c aS i n ,1993,19:101105.[10]景晓军,李剑峰,刘郁林.一种基于三维最大类间方差的图像分割算法[J ].电子学报,2003,31(9):12811285.[11]C HA N GC ,C H E N K ,WA N GJ ,e t a l .Ar e l a t i v e e n t r o p y b a s e d a p p r o a c h i n i m a g e t h r e s h o l d i n g [J ].P a t t e r nR e c o gn ,1994,27(9):12751289.[12]B R I N K A D.M i n i m u ms p a t i a l e n t r o p y t h r e s h o l d s e l e c t i o n [J ].I E E EP r o c e e d i n g s ,1995,142(3):128132.925 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法。
基于阈值的图像分割算法的研究的开题报告
基于阈值的图像分割算法的研究的开题报告一、选题背景及意义在数字图像处理领域,图像分割是一个极为重要的任务,它是对数字图像进行分解、分类和描述的基本步骤之一。
图像分割的主要目的是将图像中的像素点分为不同的区域,以便在后续的处理过程中,对图像进行更加精准的分析和处理。
其中,基于阈值的图像分割是最为基础而传统的图像分割算法之一。
该算法的基本思想是将图像的像素值按照一定的阈值进行二值化处理,将图像分为两个不同的区域,然后再根据不同的目标任务,进一步将图像分割为多个不同的区域,识别出感兴趣的图像区域以及不感兴趣的区域。
针对基于阈值的图像分割算法,当前仍然存在着一些问题和挑战。
例如,如何选取合适的阈值,以及如何解决图像中的噪声和复杂背景干扰等问题。
因此,对基于阈值的图像分割算法的研究具有重要的意义和实际应用价值。
二、研究内容及研究方法本文将主要研究基于阈值的图像分割算法及其在实际应用领域中的性能分析和优化方法。
具体研究内容包括以下几个方面:1. 综述基于阈值的图像分割算法的发展现状和研究前沿,分析其主要算法原理和特点,并比较不同算法的优缺点。
2. 探讨基于阈值的图像分割算法在实际应用中的问题和挑战,包括如何选取合适的阈值、如何解决图像中的噪声和复杂背景干扰等问题。
3. 针对基于阈值的图像分割算法中存在的问题和挑战,提出优化措施和算法改进方法,以提高算法的性能和实用价值。
4. 在实验室中进行基于阈值的图像分割算法的实验研究和性能分析,评估改进后算法的分割性能和实际应用效果。
本文将采用实验研究和理论分析相结合的方法,通过编写实验程序和算法模拟,验证提出的优化措施和算法改进方法的有效性和可行性,对改进后的基于阈值的图像分割算法进行性能分析和评估。
三、研究预期成果本文主要预期达到以下几个方面的成果:1. 通过对基于阈值的图像分割算法的研究,掌握和理解不同算法的基本原理、优缺点和适应范围,提高对图像分割技术的理论认识和应用能力。
医学影像处理中的脑部MRI图像分割方法研究及性能比较分析
医学影像处理中的脑部MRI图像分割方法研究及性能比较分析脑部MRI图像分割是医学影像处理中一项关键的任务,它可以提取出脑部结构的特征信息,为疾病诊断和治疗提供重要依据。
本文将研究和比较几种常见的脑部MRI图像分割方法,分析它们的性能。
随着计算机技术和人工智能的迅猛发展,脑部MRI图像分割得到了广泛应用。
目前,常用的脑部MRI图像分割方法包括基于阈值分割、基于区域生长、基于边缘检测、基于图像聚类和基于深度学习等方法。
下面将对这几种方法进行详细介绍。
首先是基于阈值分割的方法,该方法基于像素灰度值,将图像上的像素分为不同的区域。
通过设置合适的阈值,可以将脑部组织与其他组织分离开来。
然而,该方法在处理存在不均匀灰度分布的图像时效果不佳。
其次是基于区域生长的方法,该方法从种子点开始,通过定义相似性准则,逐渐生长出脑部区域。
该方法对图像中的局部特征很敏感,适用于边缘清晰的图像。
但是,容易受到噪声和初始种子点选择的影响。
第三种方法是基于边缘检测的方法,该方法通过检测图像中的边缘来进行分割。
常用的边缘检测算法有Canny算法、Sobel算法等。
这些算法可以有效地提取出脑部的边缘信息,但对于存在强噪声和模糊边缘的图像,效果不佳。
接下来是基于图像聚类的方法,该方法将图像中的像素分为不同的簇。
常用的聚类算法有K-means算法、Mean-Shift算法等。
这些算法可以通过像素的颜色或灰度值来进行聚类,但需要提前确定聚类的数量和初始中心,不适用于复杂图像。
最后是基于深度学习的方法,近年来得到了广泛关注。
该方法通常采用卷积神经网络(CNN)进行脑部图像分割。
通过训练大量的样本数据,CNN可以自动学习脑部结构的特征,具有较高的准确性和鲁棒性。
然而,该方法需要大量的计算资源和数据集的支持。
针对以上方法,我们进行了性能比较分析。
我们选取了100个脑部MRI图像作为实验数据集,分别应用了以上方法进行分割,并评估了它们的准确性和鲁棒性。
医学图像分割算法研究进展
医学图像分割算法研究进展医学图像分割是医学影像处理的重要研究领域之一,通过从医学图像中提取出感兴趣的结构和组织,可以帮助医生进行准确的诊断和治疗。
在过去的几十年里,随着计算机技术的不断发展和进步,医学图像分割算法也取得了显著的进展。
本文将对医学图像分割算法的研究进展进行综述,按类划分章节,介绍各个类别的算法及其特点。
一、基于阈值的医学图像分割算法基于阈值的医学图像分割算法是最早也是最简单的一种分割方法。
其基本思想是通过将图像中的像素灰度值与预先设定的阈值进行比较,将像素分类为目标和背景两类。
根据阈值的选择和设定方式不同,该类算法可以分为全局阈值法、局部阈值法和多阈值法等。
然而,基于阈值的算法受到图像灰度值分布不均匀、噪声干扰以及图像亮度突变等因素的影响,导致分割结果的准确性和鲁棒性不高。
二、基于边缘的医学图像分割算法基于边缘的医学图像分割算法是另一类常用的分割方法。
该类算法通过检测图像中的边缘信息,将图像分割为不同的区域。
常用的边缘检测算法包括Canny算子、Sobel算子、Laplacian算子等。
然而,基于边缘的算法容易受到噪声干扰和图像纹理信息的影响,导致分割结果不准确。
三、基于区域的医学图像分割算法基于区域的医学图像分割算法是近年来得到广泛研究和应用的一类方法。
该类算法通过将图像像素分组成连通区域,根据区域之间的相似性和差异性进行分割。
常用的基于区域的算法包括基于阈值的区域生长算法、基于区域合并的算法、基于图割的算法等。
这些算法通过充分利用像素之间的空间关系和灰度分布等特征,能够有效地处理图像噪声、纹理信息和灰度不均匀等问题,得到较为准确的分割结果。
四、基于深度学习的医学图像分割算法随着深度学习在计算机视觉领域的快速发展,基于深度学习的医学图像分割算法也得到了广泛的研究和应用。
深度学习算法能够从大量的标注数据中学习到图像的特征表示和分割规律,具有较高的准确性和鲁棒性。
常用的深度学习模型包括卷积神经网络(CNN)、U-Net、FCN等。
利用Matlab进行图像分割的常用方法与应用案例
利用Matlab进行图像分割的常用方法与应用案例引言:图像分割是图像处理领域的一项重要技术,它将图像分割成具有相似特征的区域或像素。
图像分割在许多应用中起着关键作用,如医学图像分析、计算机视觉和机器人视觉等领域。
本文将介绍Matlab中常用的图像分割方法和应用案例。
一、基于阈值的图像分割方法基于阈值的图像分割方法是最简单和最常用的一种方法。
它根据像素的灰度值与预先设定的阈值进行比较,将图像分为前景和背景两个部分。
Matlab中提供了丰富的函数和工具箱来实现基于阈值的图像分割。
例如,可以使用im2bw函数将灰度图像转换为二值图像,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);threshold = graythresh(gray_image);bw_image = im2bw(gray_image, threshold);imshow(bw_image);```二、基于边缘检测的图像分割方法边缘检测是图像分割中常用的一种方法,它基于图像中不同区域之间的边界。
常用的边缘检测算法有Sobel、Prewitt和Canny等。
在Matlab中,可以使用edge函数实现边缘检测,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);edge_image = edge(gray_image, 'sobel');imshow(edge_image);```三、基于聚类分析的图像分割方法聚类分析是图像分割中一种常见的方法,它将图像中的像素分成不同的群集,每个群集代表一个区域或对象。
常用的聚类算法有K-means和Mean-shift等。
在Matlab中,可以使用kmeans函数实现K-means聚类,代码如下:```matlabimage = imread('image.jpg');feature_vector = reshape(image, [], 3);[cluster_index, cluster_center] = kmeans(double(feature_vector), 2);segmented_image = reshape(cluster_index, size(image, 1), size(image, 2));imshow(segmented_image);```四、图像分割的应用案例1. 医学图像分割医学图像分割在临床诊断和研究中具有重要意义。
图像分割中阈值的选取研究及算法实现
图像分割 中阈值 的选取研究及算法实 现
王 强
( 东华理工学院 , 江西 抚州 34O) 4OO
摘要: 像分割是图像处理学科中的基础难题 , 图 基于闽值的分割又是图像分割的最基本的难题之一 , 其难点在于闽值的
选取 。本文主要对一 些当前 比较流行的 闽值 选取算法进行 了实现 , 并对这些算法作 了一定的分析和 比较 。
U . o e蛔 e Sm
t e i m t I 邺
tI os gt ehl l a p via p sn aer le i ppr adteaa ss n m a sm t llo c oi r o v u t t r a t r et r e i di t s ae, n nl e dc pro ls f h n h s d a e h e l e az n h I h y a o i o
WA GQag N i n
( at hn stt o Tcnl yF zo  ̄4 0 ,hm) Es C ia ntu eho g ,uhu Ii ef o 00 C l
Ab t s喇 :ti ab s i u rbe i g rcsigdsil eta epc r u pr,n ut gaath itr ae n I s ai d ̄ck polm maepo es i pi ht h iuei c t atad ctn p r tepcueb sdo c n n c n t t s a i
维普资讯
20 年 第 1 期 (6 1 O
tr s od a =lo ; h eh l v l o p
关键词 : 图像 处理 ; 图像分 割; 闽值 中图分类号 :P 1 T 31 文献标识码 : A
Ie l
图像分割算法的原理及实现
图像分割算法的原理及实现图像分割是一种将图像按照某种特定的准则进行拆分的技术,它被广泛应用于计算机视觉领域中的目标定位、图像识别以及医疗领域的病变检测等领域。
图像分割算法的实现要点包括图像特征提取、分割方法选择、分割效果评估等内容。
本文将从原理和实现两个层面对图像分割算法进行深入讲述。
一、图像分割算法原理的概述1.1 图像分割算法的基本原理图像分割是将图像按照其特征和相似性划分为若干个具有这些特征的部分的过程。
通常情况下,图像分割的基本原理是:首先通过预处理将图像中的噪声去除或减小,再进行特征提取来识别图像中感兴趣的目标或区域;接着根据预先设定的分割方法将图像划分为若干个子目标或子区域。
1.2 图像分割算法基本分类按照分割策略,图像分割算法可分为以下三类。
1.2.1 基于阈值的图像分割算法基于阈值的图像分割算法,是将图像根据像素值的分布情况进行分割。
分割时,选择一个阈值,通过枚举阈值的不同取值,找到最佳分割点,将图像分成两个子区域。
此类方法实现简单,但对于复杂场景和多目标识别效果会比较差。
1.2.2 基于区域的图像分割算法这类方法首先根据图像特征将图像中不同的区域分割出来,再通过分割区域外的连续边界将相邻区域进行合并。
1.2.3 基于边缘处理的图像分割算法这类方法首先对图像中的边缘进行检测,再根据边缘连接将图像区域划分为不同的部分。
此类方法对噪声敏感较小,但对于曲线和空间位置的变化比较大的图像难以处理。
二、图像分割算法实现的方法和技术2.1 图像特征提取在实现图像分割的过程中,需要对图像进行特征提取。
主要有以下两种方法。
2.1.1 基于像素点的特征提取方法这种方法主要是根据像素点的位置、颜色等特征进行分割。
其中,像素点的位置是指在图像中的坐标位置,而像素点的颜色是指在图像中的颜色属性。
2.1.2 基于图像区域的特征提取方法这种方法是根据不同区域的纹理、形状或颜色等进行分割。
该方法常用的特征提取技术包括SIFT、SURF、LBP等。
图像处理中的阈值处理方法分析
图像处理中的阈值处理方法分析图像处理中的阈值处理方法是一种常见的技术,它旨在将图像的灰度级别划分为两个或多个部分。
通过设定一个阈值,图像中的像素被分为高于或低于该阈值的两个部分,从而实现对图像的分割、增强或去噪等目的。
在本文中,我们将对几种常见的阈值处理方法进行分析和讨论。
1. 全局阈值处理方法:全局阈值处理方法是最简单和最直接的方法之一。
该方法基于整个图像的统计信息,通过计算像素的灰度级别的平均值或直方图的峰值来确定一个全局阈值。
将图像中的像素与该阈值进行比较,将高于阈值的像素设置为白色,低于阈值的像素设置为黑色。
该方法可以快速实现,但对于具有不同光照条件和背景的复杂图像效果可能不理想。
2. 自适应阈值处理方法:自适应阈值处理方法是一种根据图像的局部特性来确定阈值的方法。
与全局阈值处理方法不同,该方法使用图像的小区域来计算阈值,在每个区域内分别应用阈值处理。
这种方法尤其适用于具有不均匀光照条件的图像。
它可以根据图像的局部亮度和对比度变化自动调整阈值,从而更好地分割目标图像。
3. 多阈值处理方法:多阈值处理方法是将图像的灰度级别划分为多个等级的方法。
通过设定多个阈值,可以将图像分为多个不同的部分,以实现更多的图像信息提取和分割。
该方法常用于图像分割和目标检测等应用领域。
然而,多阈值处理方法需要更多的计算和分割参数的选择,因此在实际应用中需要根据具体情况进行调整。
4. 非线性阈值处理方法:非线性阈值处理方法是一种根据像素的灰度级别和空间信息来确定阈值的方法。
该方法通过考虑图像的局部对比度和纹理信息,可以更准确地分割具有复杂纹理和边缘的图像。
这种方法常用于医学图像处理和目标跟踪等领域。
5. 自适应聚类阈值处理方法:自适应聚类阈值处理方法是一种基于像素的相似性来确定阈值的方法。
通过将像素聚类为不同的群组,可以根据像素的亮度和颜色信息自适应地选择阈值。
这种方法通常用于图像分割和特征提取等应用领域。
综上所述,图像处理中的阈值处理方法是一种有效的技术,可以实现图像的分割、增强和去噪等目的。
基于阈值的图像分割
N
N
i 0
L 1
i
第i级出现的概率为:
Ni P i N
在OTSU算法中,以阈值k将所有的像素分为目标C0和背景C1两类。其 中,C0类的像素灰度级为0~k-1,C1类的像素灰度级为k~L-1。 图像的总平均灰度级为:
u iP i
i 0
L 1
C0类像素所占面积的比例为:
0 P i
(a)原图 图3-1 生成直方图
(b)直方图
3.2 最大类间方差法(OTSU)
最大类间方差法又称为OTSU算法,大津法(OTSU)是一种确定图像二 值化分割阈值的算法,由日本学者大津于1979年提出。从大津法的原理 上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进 行图像二值化分割后,前景与背景图像的类间方差最大。 原理: 对于图像 A(x,y),前景(即目标) 和背景的分割阈值记作 T ,属于前景 的像素点数占整幅图像的比例记为 ω 0,其平均灰度μ 0;背景像素点数 占整幅图像的比例为 ω 1,其平均灰度为μ 1。图像的总平均灰度记为 μ , 类间方差记为g。 设A是一幅具有L级灰度级的图像,其中第i级像素为 个,其中i的值 在0~L-1之间,图像的总像素点个数为:
2 2
2
2
令k从0~L-1变化,计算在不同k值下的类间方差 k 2 使得 k 最大时的那个k值就是所要求的最优阈值。
图3-2为采用OTSU方法取得最优阈值后进行阈值分割的结果。 MATLAB程序如下: I=imread('tsaml.jpg'); [width,height]=size(I); level=graythresh(I); BW=im2bw(I,level); figure imshow(BW) MATLAB 提供 graythresh 函数来自动获取分割阈值, im2bw 功能是 转换图像为二进制图像。这两个函数结合使用,graythresh函数是自适 应阈值,求出图像的自适应阈值,然后利用im2bw函数再转化为二值图像 并输出,得到如图所示的自适应阈值图。
基于阈值分割法
基于阈值分割法的原理和应用1. 概述阈值分割法是数字图像处理中常用的一种分割技术。
它基于像素灰度值与预设的阈值之间进行比较,将像素分为两个或多个不同的区域,从而实现图像的分割。
阈值分割法广泛应用于图像处理、计算机视觉、模式识别等领域。
2. 阈值分割的原理阈值分割的基本思想是根据像素灰度值的特征,将图像分为背景和前景两个不同的区域。
其具体原理如下:1.预处理:首先将彩色图像转换为灰度图像,简化后续处理步骤。
2.确定阈值:选择一个合适的阈值用于将图像分割成两个区域。
常见的阈值选择方法有固定阈值法、自适应阈值法等。
3.分割图像:根据所选阈值将图像中的像素分为两个区域,通常是背景和前景。
4.后处理:可能需要进行降噪、边缘检测等后续处理步骤,以得到更好的分割效果。
3. 常见的阈值分割方法3.1 固定阈值法固定阈值法是最简单直观的阈值分割方法。
其原理是通过预设一个固定的阈值,将图像中的像素根据灰度值与阈值的大小关系分为两个区域。
具体步骤如下:1.将彩色图像转换为灰度图像。
2.选取一个合适的阈值,通常是根据经验或直方图分析确定。
3.遍历图像中的每个像素,将像素灰度值与阈值进行比较。
4.根据比较结果将像素分为背景和前景两个区域。
5.根据应用需求进行后续处理。
3.2 自适应阈值法固定阈值法存在一个问题,无法适应图像中灰度值不均匀的情况。
自适应阈值法通过根据局部像素灰度值的分布自动调整阈值,解决了这个问题。
具体步骤如下:1.将彩色图像转换为灰度图像。
2.根据图像特点选择合适的自适应阈值计算方法,常见的方法有局部平均法、局部中值法等。
3.定义一个合适的窗口大小,在图像上滑动窗口,计算每个窗口内的局部阈值。
4.遍历图像中的每个像素,将像素灰度值与对应的局部阈值进行比较。
5.根据比较结果将像素分为背景和前景两个区域。
6.根据应用需求进行后续处理。
4. 阈值分割的应用场景4.1 图像二值化图像二值化是阈值分割的一种常见应用,它将图像分割为两个阶段,即黑白两色,用于提取图像中的目标信息。
基于卡方散度阈值方法的图像分割研究与实现
t e h l ig s g n ain cie i s d o is a e d v r e c sp o s d i hi a e . Th o eia o hrs o dn e me t t rtra ba e n Ch —qu r ie g n e i r po e n t s p p r o e r tc lc mpua in c m p e iy o hr s o — tto o lx t ft e h l
第2 5卷 第 l 0期
20 0 8年 1 月 0
计 算机应 用 与软件
Co u e p ia in n ot r mp t rAp l t s a d S f c o wa e
Vo . 5 N . O I2 o 1
Oc .2 08 t 0
基 于 卡 方 散 度 阈值 方 法 的 图像 分 割研 究 与 实现
Absr c ta t
By me ns o nay ig e itn r b e o r s e to y hr s o dng a f a lzn x si g p o l m fc o s n r p t e h l i meho wih t d t mu h o u ai n tm e, t n w i g c c mp t to i he e ma e
与 交 叉 熵 阈值 法 的计 算 复 杂 性 。 实 验 , 计 算 所 需 时 间 比 交 叉 熵 阈值 法 有 了 明 显 减 少 , 提 且 它 对 一定 强度 噪 声干 扰 的 图像 比交 叉 熵 法 能获 得 更 好 的分 割 结 果 。
乔群耩 吴成茂
( 州大学计算机系 温 浙江 温州 350 2 00)
( 西安邮电学 院电子与信息工程系 陕西 西安 7 0 2 ) 11 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业设计(2011届)题目基于阈值的图像分割方法研究与实现摘要本毕业设计主要研究基于Hough变换的图像结构提取方法,通过MATLAB语言编程来实现两种典型的图像阈值分割算法(最大类间方差法和迭代法),并对这两种算法进行比较分析。
其主要工作步骤如下:首先介绍数字图像处理和图像分割的基本理论知识。
接着对几种图像分割方法进行了介绍。
然后了解图像阈值化原理,并在此基础上对两种典型的图像阈值分割算法(最大类间方差法和迭代法)的原理进行了介绍。
最后通过MATLAB语言编程实现这两种算法,分别得到这两种算法的分割性能,并对这两种算法的分割性能进行比较。
结果表明在大多数情况下,最大类间方差法比迭代法更稳定。
关键词:数字图像处理;阈值化;最大类间方差法;迭代法;直方图ABSTRACTThe main aim of this thesis is to analyze image segmentation method based on thresholding, then implement two typical algorithms (Otsu method and Iterative method) by MATLAB language programming, and compare the two algorithms. Its main work procedure is as follows:First the basic theories of digital image processing and image segmentation are introduced. Then several image segmentation algorithms are introduced. Based on knowing the theory of image thresholding, we introduce the theory of two typical algorithms (Otsu method and Iterative method). Finally through MATLAB language programming, we can get the segmentation performance of the two algorithms respectively, and compare the two algorithm’s segmentation performance. The result shows that Otsu method is more stable than Iterative method in most cases.Key words:digital image processing; thresholding; Otsu method; Iterative method;image histogram.目录1 引言 (1)2 数字图像处理基础 (2)2.1 数字图像处理的发展概况 (2)2.2 数字图像处理的目的与主要内容 (2)2.3 数字图像的表示法 (3)2.4 图像的灰度直方图 (4)3 图像分割技术及其方法 (5)3.1 图像分割的基本论述 (5)3.2 典型的图像分割方法 (6)3.3 结合特定理论的图像分割方法 (8)4 图像阈值化分割原理 (10)4.1 阈值化分割原理 (10)4.2 迭代法 (11)4.3 最大类间方差法 (12)4.4 图像阈值化技术的应用现状 (14)5 分割效果分析 (15)5.1 MATLAB的简介 (15)5.2 分割效果的评估标准 (16)5.3 分割效果分析 (16)6 结论 (24)致谢 (25)参考文献 (26)附录 (27)1 引言21世纪是科学技术迅猛发展的时代,图像作为现代信息社会中最基本的信息之一得到了广泛的应用。
数字图像处理技术是20世纪60年代发展起来的一门新兴学科,几乎在各个行业里都起到了重要作用,随着全球数字化和现代信息技术的不断发展,数字图像处理这门新兴学科也跟着得到了迅速的发展,其理论与方法进一步完善,使得数字图像处理在更多领域得到了广泛的应用,并展示出广阔的应用前景。
在数字图像处理中,图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。
目前图像分割技术已被广泛应用于很多的领域,如工业自动化,在线产品检验,生产过程控制,文档图像处理,遥感和生物医学图像分析,保安监视,以及军事,体育,农业工程等方面。
基于阈值选取方法的图像分割方法,因其计算简单,具有较高的运算效率、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,但是不同方法选取的阈值直接影响到图像分割的质量。
从20世纪70年代,图像阈值分割方法一直受到人们的关注和重视,到现在为止已经提出了众多基于阈值的分割算法,但是并没有通用的阈值分割理论,也没有一种图像阈值分割算法适用于所有的情况,每种图像分割算法都有其局限性。
其中,迭代法和最大类间方差法(大津法)作为两种典型的算法得到了广泛的应用。
本论文就这两种算法进行了研究与实现,通过MATLAB语言编程实现这两种算法,分别对几幅灰度图像进行分割,从而验证这两种算法的有效性,并对它们做对比分析。
2 数字图像处理基础2.1 数字图像处理的发展概况数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
数字图像处理取得的另一个巨大成就是在医学上获得的成果。
1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。
CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。
1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。
1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。
与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。
随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。
其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。
图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域[1]。
2.2数字图像处理的目的与主要内容图像处理就是对图像信息进行加工处理,一般来说,对图像进行加工处理与分析主要目的有3个方面:提高图像的视感质量已达到赏心悦目的目的;提取图像中所包含的某些特征与特殊信息,以便于分计算机析;图像数据的变换、编码和压缩,以便于图像的存储和传输。
不图像处理要达到什么样的目的,都需要用计算机处理系统对图像数据进行处理,其中常见的图像处理技术有图像增强、复原、重建、编码压缩和分割等。
1 图像复原:当造成图像降质或退化的原因已知时,复原技术可以对图像进行校正。
图像复原最关键的是对每种退化都需要有一个合理的模型。
复原技术是基于模型和数据的图像恢复,其目的是消除退化的影响,从而产生一个等价于理想成像系统所获得的。
2 图像增强:图像增强是对图像质量在一定上进行改善,当造成图像退化的原因未知时,就可以用图像增强技术较为主观的改善图像的质量。
所以,图像增强技术是用于改善图像视感质量所采取的一种方法。
3 图像重建:图像重建与上述的图像复原、增强不同。
图像复原和增强的输入是图像,处理后输出的也是图像,而图像重建是指从数据到图像的处理,即输入的是某种数据,而经过处理后得到的结果是图像.4 图像编码压缩:由于数字图像所包含的信息量庞大,同时又有很多冗余信息,导致不能满足图像数据处理的需要,因此需要对图像进行编码以满足传输与存储的需要。
5 图像分割:图像分割就是将图像分成多块区域,然后将图像中有意义的特征部分提取出来,这是进一步进行图像识别、分析和理解的基础,虽然目前已研究出多种分割方法,但还没有一种普遍适用于各种图像的有效方法,因此它是目前图像处理中研究的热点之一。
2.3 数字图像的表示法一幅黑白图像可用二维函数f (x ,y )表示,其中x ,y 是平面的二维坐标,f (x ,y )表示点(x ,y )的亮度值(灰度值)。
如果是一幅彩色图像,各点值还应反应出色彩变化,即可用f (x ,y ,λ)表示,其中λ为波长。
假如是活动彩色图像,还应是时间t 的函数,即可表示为f (x ,y ,λ,t )。
对模拟图像来说,f (x ,y )显然是连续函数。
为了适应数字计算机的处理,必须对连续图像函数进行空间和幅值数字化。
空间(x ,y )的数字化称为图像采样,而幅值数字化被称为灰度级量化。
经过数字化的图像称为数字图像(或离散图像)。
灰度数字图像有两种常用的表示法:矩阵法和链码法。
在MATLAB 中数字图像是以矩阵的方式存储的。
令数字图像排列M×N 阵列,相应的矩阵表示为:()()()()()()()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1,11,10,11,11,10,11,01,00,0,N M f M f M f N f f f N f f f y x f (2-1) 图像阵列中每一个元素都是离散值,称为像素(pixel )。
在数字图像处理中,阵列M,N和灰度级G都是2的整数次幂。