飞机的稳定性和操纵性汇总

合集下载

飞机的机动性、稳定性、操纵性

飞机的机动性、稳定性、操纵性

飞机的操纵性
一、飞机的纵向(俯仰)操纵
飞机的纵向(俯仰)操纵是指飞行员前后推拉 驾驶盘偏转升降舵后,飞机绕横轴转动而改变其迎 角等飞行状态。 横轴
下俯
全动式高低平尾升降舵
平尾大致分为普通平尾和全动平尾两大类: 1.普通平尾:升降舵可偏转,安定面不可偏转; 2.全动平尾:整个水平尾翼均可偏转。
2.机翼后掠角: 飞机受干扰右倾斜 → 升力随其倾斜 → 而后 掠角→流过右翼的垂直分速大于左翼→V右>V左 → Y右> Y左 → 产生向左的反力矩 → 恢复横向
稳定。 (见图2—46)
3.垂 直 尾 翼:
飞机受干扰右倾斜 →垂尾右侧受空气动力 →产生左滚力矩→恢复横向稳定。 (见图2—47)
§2-8
平衡,而在扰动消失后又自 动恢复原平衡状态的特性。
附加升力对重心形成力矩
1.△Y: 迎角变化时,机 翼、平尾上附加 升力的和。 2.△M: △Y对飞机的重 心形成稳定与不 稳定力矩。
△Y
飞机纵向静稳定性的条件:焦点在重心之后
只有焦点的位置在飞机的重心之后飞机才具有俯 仰稳定性,焦点距离重心越远,俯仰稳定性越强。
低平尾升降舵
全动式平尾 高平尾升降舵
二、飞机的横侧操纵
飞机的横侧操纵是指飞行员左右压驾驶盘操纵副翼 以后,飞机绕纵轴横滚的飞行状态。
三 、 飞机的方向操纵
飞机的方向操纵是指飞行员前后蹬脚蹬操纵方向舵 以后,飞机绕立轴偏转而改变其侧滑角等飞行状态的 特性。
§2-6、7、8作业
1.什么是飞机的盘旋、筋斗和横滚? 2. 飞机的稳定性包括哪三方面? 3.飞机的纵向稳定中,为什么焦点要在重心之后? 4.什么是侧滑?飞机是如何恢复方向平衡的? 5.飞机通过什么装置恢复其横侧平衡? 6.飞行员如何操纵飞机的俯仰、方向、横侧平衡?

飞机平衡控制—飞机的稳定性与操纵性

飞机平衡控制—飞机的稳定性与操纵性

稳定性
飞机的情况也是一样,也有 稳定、不稳定和中和稳定三 种情况。
稳定性
飞机纵向稳定性(俯仰稳定性)
ห้องสมุดไป่ตู้
稳定性
飞机方向稳定性
稳定性
飞机侧向稳定性 影响飞机侧向稳定性的因素主要是机翼的上反角和后掠角。
操纵性
飞机的操纵性是飞机跟随驾 驶员操纵驾驶杆、脚蹬动作 而改变其飞行状态的特征。 飞机通过主操纵面—升降舵、 方向舵和副翼对绕3个轴的 运动进行操纵。
操纵性
飞机重心位置的前后移动会影响飞机的纵向操纵性能。 重心前移,增大同样迎角,所需要的升降舵上偏角增大,重心前移越多, 上偏角越大,但升降舵上偏角是有一定限定的,重心前移过多,就可能 出现即使驾驶杆拉到底,飞机也不能增加到所需要的迎角,因此重心位 置应有个前限,称为重心前极限。
操纵性
俯仰稳定性强的飞机,俯仰操纵时比较迟钝;俯仰稳定性弱的飞机,俯 仰操纵时比较灵敏。

飞机的稳定性和操纵性

飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。

这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。

飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。

例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。

因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。

当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。

如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。

如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。

飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。

影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。

下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。

阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。

这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。

飞机在这个低头力矩作用下,使机头下沉。

经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。

同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。

这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

航空概论飞机的平衡安定性和操纵性

航空概论飞机的平衡安定性和操纵性

航空概论:飞机的平衡安定性和操纵性概述飞机的平衡安定性和操纵性是飞行器设计中最重要的问题之一。

正确的平衡和稳定性是确保飞机能够稳定飞行的关键,同时也保证了正确的操纵性,使飞机能够按照飞行员的意愿进行操作。

在本文中,我们将讨论什么是平衡和稳定性、如何设计一个平衡和稳定的飞机,以及如何操纵一个飞机。

飞机的平衡和稳定性飞机的重心和机翼的重心平衡是一架飞机在空中稳定飞行所需的基本条件之一。

为了保持平衡,飞机必须有一个正确的重心位置。

这个位置是在飞机中间的一个虚拟点,重力作用于这个点的位置使飞机保持平衡。

同时,飞机的机翼也有一个重心位置,这个重心位置是机翼所有部件的平均重心位置。

稳定性稳定性是指飞机在受到干扰之后能够自动回到原来的状态,从而保持飞行的状态。

稳定性是通过飞机的设计和材料选择来实现的。

飞机的稳定性可以分为静态稳定性和动态稳定性。

静态稳定性是指飞机在保持位置或姿态时的稳定性。

动态稳定性则指飞机对于干扰的快速反应能力。

设计一个平衡和稳定的飞机设计一个平衡和稳定的飞机需要考虑多个因素。

以下是一些参考:水平平衡设计者应该将水平平衡考虑在内,这样飞机才能在水平方向上保持平稳飞行。

水平平衡的几个主要元素包括下列部分:•重心:飞机的重心必须位于机翼重心的前方,这样才保证飞机保持稳定。

•机毂和发动机位置:机毂和发动机位置的不同会影响飞机的平衡。

•垂直尾翼:垂直尾翼能够帮助调整飞机的平衡。

垂直平衡设计者同样应该考虑垂直平衡的问题。

以下是设计者应该考虑的因素:•高度舵面:高度舵面能够帮助飞机在垂直方向上保持平稳飞行。

•垂直尾翼:与水平平衡类似,垂直尾翼也能够帮助调整飞机的平衡。

•重心:这里的重心是指沿着飞行器纵向的重量分布情况。

设计者必须考虑飞机的质心位置和操纵重心位置之间的关系。

机翼的大小和形状机翼的大小和形状会影响飞机的稳定性。

机翼面积越大,飞机的稳定性就越好,但是机翼越大,飞机的重量也会增加,从而影响飞机的性能。

3第三章飞机的稳定性和操纵性

3第三章飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。

这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。

飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。

例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。

因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。

当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。

如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。

如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。

飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。

影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。

下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。

阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。

这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。

飞机在这个低头力矩作用下,使机头下沉。

经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。

同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。

这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

航空概论飞机的平衡安定性和操纵性图文

航空概论飞机的平衡安定性和操纵性图文

航空概论:飞机的平衡安定性和操纵性飞机的平衡安定性和操纵性是航空学中极为重要的概念。

本文将介绍这两个概念的含义以及与之相关的基本法则和理论模型。

飞机的平衡静态平衡静态平衡是指在飞机静止时,重心与升力的作用线,以及扭矩的平衡关系。

如果这些关系得到满足,那么静态平衡就得以实现。

一般来说,飞机的重心应该位于飞机各个机身部件的重心重合点上方,在这种情况下,飞行员就可以轻松地控制飞机飞行。

当然,在设计飞机的过程中,设计师需要充分考虑飞机的重心位置,确保其能够实现最大程度的安全性和机动性。

动态平衡动态平衡是指在飞机运动时,飞机的各个部件始终处于平衡状态,以实现稳定的飞行。

动态平衡包括长周期运动和短周期运动,其中长周期运动指的是飞机在俯仰和纵倾方向上的运动,短周期运动则是飞机在横滚方向上的运动。

飞机的安定性飞机的安定性是指在特定的条件下,飞机能够以稳定的方式飞行。

稳定飞行有重要的应用,特别是在长时间的飞行或战斗操作中。

飞机的稳定性保证了飞行员和机组人员的安全。

飞机的操纵性飞机的操纵性是指飞行员控制飞机进行特定力学操作的能力。

操纵性与飞机的设计密切相关,因为可以进行不同的机构和材料选择,以改善或限制飞机和机组人员的响应速度。

飞机平衡安定性和操纵性的影响因素下面是一些影响飞机平衡安定性和操纵性的因素:1.机翼和无尾天线的尺寸和形状2.飞行员和机组人员的响应速度和技能水平3.飞机的机身重心位置和重量分布情况4.飞机的发动机和推进器的性能和效率5.飞行环境的风速、气压、湍流状况等飞机平衡安定性和操纵性在航空学中非常重要。

对于设计师和飞行员来说,了解这些基本原理和规律是至关重要的,这有助于他们更好地理解和应对不同的飞行条件和飞机应用。

第三讲 飞行性能、稳定性、操纵性

第三讲 飞行性能、稳定性、操纵性

俯冲、筋斗和跃升
战斗转弯
飞机的稳定性和操纵性
稳定的概念: 物体的稳定是指当物 体处于平衡状态时,受到 微小的扰动而偏离了原来 的平衡状态,在扰动消失 后能自动恢复到原来的平 衡状态的特性。
飞机的稳定性和操纵性
平衡状态:外力与外力矩之和都为零。 平衡状态常会因为各种因素的影响而遭到破坏 (如燃油消耗、收放起落架、收放襟翼、发动 机推力改变或投掷炸弹等)。
飞机的稳定性和操纵性
当飞机受到方向扰动发生偏航后,气 流与垂直尾翼之间就有了夹角,使垂直尾 翼上产生附 加侧向力, 相对绕纵轴 (x轴)的稳定叫侧 向稳定,它反映了 飞机的滚转稳定特 性。 保证飞机侧向 稳定的主要因素有 机翼上反角ψ、机翼 后掠角χ和垂直尾翼。
• 减速板 F15
• 反推力装置
反推力装置是安 装在发动机上的附设 装置,打开时,对发 动机的喷气流造成阻 挡,从而形成向前的 反推力。
反推力装置
减少着陆距离的另一措施-----减速伞
飞机的飞行性能——机动性能
盘旋飞行
筋斗 俯冲 跃升 战斗转弯
盘旋性能
对于战斗机来说,水 平盘旋飞行时半径大小是 至关重要的。影响最小盘 旋半径的因素很多,比较 粗略地分析可以认为飞机 的最大升力系数决定它的 最小盘旋半径。
飞机的稳定性和操纵性
重心与气动重心位置对稳定性的影响
(a) 重心位于焦点之前,纵向静稳定 (b) 重心位于焦点之后,纵向静不稳定
飞机的稳定性和操纵性
飞机绕立轴(y 轴) 的稳定叫方向稳定,也叫 航向稳定。 飞机主要靠垂直尾 翼来保证其方向稳定。 飞机的侧面迎风面 积、机翼后掠角、发动机 短舱等对飞机的方向稳定 也有一定的影响。
飞机的稳定性和操纵性

飞机的平衡稳定性与操纵性

飞机的平衡稳定性与操纵性
77
I. 机翼上下位置的影响 上单翼飞机横侧稳定性强
下单翼飞机横侧稳定性弱
78
II. 垂尾产生的横侧稳定力矩
侧滑中,垂尾产生的侧力对重心形成的滚转力矩也是横侧 稳定力矩。
侧滑方向
垂尾侧力 侧力力臂
79
●上单下反后掠布局
在飞机的设计中,为取得合适的横侧稳定性,往往采用 这几种机翼构型的组合。下图为上单下反后掠布局。
54
●焦点位置的确定 在A、B两点之间,存在一个点,当压力中心移动
时,机翼升力对此点的力矩大小不变。这个点就是焦 点。通常焦点距翼弦前缘点的距离是整个翼弦长度的 25%。
迎角增加,压力中心 向前移动
机翼升力对焦点 的下俯力矩恒定
焦点
55
●焦点与俯仰稳定力矩 只有焦点的位置在飞机的重心之后飞机才具有俯仰
① 影响俯仰平衡的主要因素
● 加减油门 ● 收放襟翼 ● 收放起落架 ● 重心变化
30
●加减油门
加减油门不仅直接 影响拉力或推力力矩 的大小,还会影响到 机翼和尾翼力矩的大 小。
31
●襟翼收放
放襟翼机翼升力增大,同时升力作用点(压力中 心)后移,下俯力矩增加;另一方面,放襟翼使下 洗增大,平尾负升力增大,抬头力矩变大。
第四章
飞机的平衡、稳定性与 操纵性
精品课件
飞机飞行状态的变化,归根到底,都是力和力矩作 用的结果。飞机的平衡、稳定性和操纵性是阐述飞 机在力和力矩的作用下,飞机状态的保持和改变的 基本原理。
2
本章主要内容
4.1 飞机的平衡 4.2 飞机的稳定性 4.3 飞机的操纵性
3
飞行原理/CAFUC
4.1 飞机的平衡
一旦摆锤偏离原平衡状态,重力分

基本飞行原理:飞机的稳定性和操纵性

基本飞行原理:飞机的稳定性和操纵性

基本飞行原理:飞机的稳定性和操纵性一架飞机,除了能产生足够的升力平衡重力、有足够的推力克服阻力以及具有良好飞行性能之外,还必须具有良好的稳定性和操纵性,才能在空中飞行。

否则,如果飞机的平衡特性、稳定特性和操纵特性不好,也就是说在飞行中,飞机总是偏离预定的航向;或者稍受外界偶然的扰动,飞机的平衡即遭破坏而又不能自动恢复,需要飞行员经常花费很大的精力予以纠正;在改变飞行状态的时候,飞行员操纵起来非常吃力,而且飞机反应迟钝,那么像这样的飞机就不能算是一架战术/使用性能良好的飞机。

驾驶这样的飞机,驾驶员会被搞得精疲力尽,而且不能保证飞行安全和很好地完成预定任务。

因此对于一架战术/使用性能优良的飞机来说,不仅要求它速度大、爬升快、升限高、航程远,而且要求具备良好的平衡性、稳定性和操纵性。

飞机的平衡飞机在飞行时,所有作用于飞机的外力与外力矩之和都等于零的状态称之为飞机的平衡状态。

等速直线运动是飞机的一种平衡状态。

按照机体坐标轴系,可以将飞机的平衡分为三个方向的平衡:纵向平衡、横向平衡和方向平衡。

飞机在纵向平面内作等速直线飞行,并且不绕横轴转动(俯仰)的运动状态,称为纵向平衡;飞机作等速直线飞行,并且不绕纵轴转动(滚转)的飞行状态,称为横向平衡。

飞机作等速直线飞行,并且不绕立轴转动(偏航)的飞行状态,称为方向平衡。

飞机在飞行中,其平衡状态不是一成不变的,经常会因为各种因素(如燃油消耗、收放起落架、收放襟翼、发动机推力改变或投掷炸弹等)的影响而遭到破坏,从而使飞机的平衡状态发生变化。

此时,驾驶员可以通过偏转相应的操纵面来保持飞机的平衡,称为配平。

飞机的稳定性对于飞机的配平而言,不平衡的力矩是由一些长久作用的因素(如单台发动机停车)造成的,因而驾驶员适当的偏舵就可以克服。

但除此之外,飞机在飞行过程中,还常常会碰到一些偶然的、瞬时作用的因素,例如突风的扰动或偶而触动一下驾驶杆或脚蹬等,也会使飞机的平衡状态遭到破坏。

空气动力学基础飞机的稳定性和操纵性

空气动力学基础飞机的稳定性和操纵性

空气动力学基础:飞机的稳定性和操纵性概述在航空领域,空气动力学是一个非常重要的领域,它涉及到飞机的设计、性能和控制。

本文将讨论飞机的稳定性和操纵性,这是任何一款飞机都必须具备的基本属性。

空气动力学基础在理解飞机的稳定性和操纵性之前,我们需要了解一些空气动力学的基础知识。

升力和阻力在飞机飞行时,空气会对它产生一个向上的力,这个力被称为升力。

同时,空气也会对飞机产生一个与飞行方向相反的力,这个力被称为阻力。

升力和阻力都与飞机的速度、机翼的形状和机翼倾斜的角度有关。

正常力和重力在飞机飞行时,它受到的重力恒定,它所产生的升力也要与它的重力相平衡。

正常力是垂直于飞机的力,在水平飞行时,正常力等于重力。

弯曲和滑行当飞机进行弯曲飞行时,机翼的形状和倾斜的角度会发生变化,这将改变升力和阻力的大小和方向。

飞机在弯曲时所受到的外部力量有:惯性力、升力和质心的向心力。

飞机的稳定性飞机的稳定性是指在不同的飞行条件下,飞机能够保持平衡,不发生剧烈的变化。

稳定性是一款飞机必须具备的属性,否则它将无法保持安全的飞行。

长itudinal稳定性长纵向稳定性是指飞机绕俯仰轴的稳定性。

当飞机降低鼻部时,空气会产生向上的升力,使得飞机重新上升,保持平衡。

lateral稳定性横向稳定性是指飞机沿横滚轴的稳定性。

当飞机向一侧倾斜时,对应的机翼会受到更多的升力和阻力,使得飞机重新保持平衡。

定常稳定性定常稳定性是指在稳定状态下,飞机可以保持平衡。

这对于飞机的飞行以及操纵来说非常重要。

飞机的操纵性飞机的操纵性是指驾驶员控制飞机时的灵活性和可控性。

飞机的操纵性取决于飞机的设计和飞行控制系统。

增加操纵性的方法增加飞机的操纵性可以通过以下方法实现:•设计更大的机翼•增加襟翼的数量和面积•增加水平尾翼的大小和面积•增加垂直尾翼的面积和高度•使用高性能的飞行控制系统整体飞行性能除了稳定性和操纵性之外,整体飞行性能也是飞机设计中的关键因素。

整体飞行性能包括速度、升限、爬升速率、最大航程以及最大功率等。

3第三章 飞机的稳定性和操纵性

3第三章 飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性3.1 飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等.这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题.飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。

例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。

因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

3。

1.1 纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。

当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的.如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。

如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的.飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。

影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。

下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的.当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。

阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。

这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。

飞机在这个低头力矩作用下,使机头下沉。

经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态.同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。

这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

动稳定性与动操纵性

动稳定性与动操纵性

飞机动稳定性和动操纵性学习小结研究飞机的动态响应特性,主要是研究飞机的动稳定性和动操纵性。

飞机的动稳定性通常是指处于平衡状态即作定常飞行的飞机,在受到外界小扰动情况下偏离其原始平衡状态,飞机从而产生附加力和附加力矩,在此外力和力矩作用下,飞机所表现出来的运动属性。

动稳定性一般分为动稳定、动不稳定、动中立稳定,其探究的是飞机受扰动后运动参数能否恢复到原平衡状态,是过度过程的特性。

而扰动运动可用“模态”表示,通过研究模态特性参数和动稳定性判据来研究飞机的动稳定性。

其中,飞机纵向动稳定性需要通过纵向扰动运动特征方程来研究,它有两种典型运动模态,短周期模态和长周期模态;飞机横航向动稳定性需要通过横航向扰动运动特征方程来研究,它有三种典型运动模态,分别为滚转模态、荷兰滚模态(收敛模态)和螺旋模态。

飞机的动操纵性是指飞机对飞行员的操纵反应,也就是指飞机在接受操纵后的整个过渡过程的品质及其跟随能力。

研究飞机的动操纵性可以通过研究飞机的纵向传递函数和横航向传递函数的性质来研究,飞机的典型操纵动作有阶跃型操纵、谐波型操纵、脉冲型操纵和梯形操纵,阶跃操纵时的操纵性能参数有超调量与超调度、峰值时间、调整时间、震荡次数、放大系数。

通过对典型操纵动作的操纵性能参数的分析可以判断飞机的动操纵性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞机重心范围的确定

飞机的重心前限

重心前移,飞机的纵向静稳定性提高,操纵性 能变坏,纵向平衡变差。 从飞机纵向平衡和纵向操纵性能的要求对飞机 重心最靠前的位置进行了限制。 重心后移,飞机的纵向稳定性减小,飞机对操 纵的反应变灵敏。 从飞机的纵向静稳定性和操纵灵敏度的要求对 飞机重心最靠后的位置进行了限制。
荷兰滚
飞机的横侧向扰动运动 及影响稳定性的因素


飞机的侧向静稳定性和方向静稳定性大小 比例搭配,对飞机横侧向动稳定性有着重 要的影响。 影响因素


侧向静稳定性——机翼上反角和后掠角。 方向静稳定性——垂尾面积及到飞机重心的力 臂。

偏航阻尼器——用在大型高速运输机上, 防止荷兰滚
4.7 飞机的横侧向操纵性
空气动力学基础(ME、AV)
第一章 第二章 第三章 第四章 大气物理学 空气动力学 飞行理论 飞机的稳定性和操纵性
第4章 飞机的稳定性和操纵性



4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
飞机运动参数 飞机稳定性和操纵性的基本概念 飞机的纵向稳定性 飞机的纵向操纵性 飞机的横侧向静稳定性 飞机的横侧向动稳定性 飞机的横侧向操纵性 飞机主操纵面上的附设装置

滚转角γ

空速向量相对机体的方位

速度轴系或风轴系OVXVYVZV XV沿飞行速度方向,气动阻力沿XV负向。YV在飞 机对称面内且与飞行速度垂直。
迎角和侧滑角

迎角α

空速向量在飞机对称面Oxtyt上的投影与机体 坐标系纵轴Oxt之间的夹角。规定投影线在Oxt 轴下方时为正。 空速向量与飞机对称面Oxtyt之间的夹角。规 定空速向量偏向右侧时为正(向右侧滑为正)。
纵向扰动运5部规定:在主操纵处于松浮状 态或固定状态时,在相应于飞机形态的失 速速度与最大允许速度之间产生的任何短 周期振荡,必须受到重阻尼。
4.4 飞机的纵向操纵性


飞机的纵向操纵是指 飞机绕横轴的俯仰操 纵。 它是通过向前或向后 推拉驾驶杆,使升降 舵向下或向上偏转, 来实现飞机纵向操纵 的目的。
飞机的滚转力矩和偏航力矩



作用在飞机上的气动力对机体OXt轴产生的力矩 叫滚转力矩,用Mx表示。力矩矢量与Xt轴正方 向一致时,滚转力矩为正。 作用在飞机上的气动力对机体OYt轴产生的力矩 叫偏航力矩,用My表示。力矩矢量与Yt轴正方向 一致时,偏航力矩为正。 相关因素:

侧滑角——静稳定力矩 滚转和偏航运动——阻尼力矩 副翼偏转角——操纵力矩

飞机重心后限

4.5 飞机的横侧向静稳定性
飞机的侧滑和侧滑角

飞机的滚转或偏航都会造成飞机侧滑和侧 滑角,从而产生滚转力矩Mx和偏航力矩 My,飞机相对纵轴OXt的侧向静稳定性和 相对立轴OYt的方向静稳定性就不是独立 的,而是相互影响。所以,又把飞机的侧 向静稳定性和方向静稳定性统称为横侧向 静稳定性。

俯仰阻尼力矩

纵向扰动运动的模态及其特征


短周期模态 飞机的扰动运动主要是飞机绕重心的摆动 过程,表现为迎角和俯仰角速度周期性迅 速变化,而飞行速度则基本上保持不变。 一般情况下,飞机的这种短期振荡运动在 开始的头几秒内就基本结束了。
长周期运动模态


飞机的扰动运动主要是飞机重心运动的振 荡过程,表现为飞行速度和航迹倾斜角周 期性的缓慢变化,飞机的迎角基本恢复到 原来的迎角并保持不变。 这一振荡过程衰减很慢,形成长周期运动 模态。
副翼操纵的失效和反逆是怎样产生
副翼操纵的失效和反逆是怎样产生


操纵力矩M1=反力矩 M2,再操纵副翼就不 会产生滚转力矩,这 种现象叫副翼失效。 这个飞行速度叫副翼 反逆临界速度。 M1<M2时,副翼反 效。
提高副翼反逆临界速度

提高机翼的抗扭刚度

机翼的扭转刚度越大,副翼反逆临界速度就越 高。 外侧副翼——低速飞行 内侧副翼——高速飞行
副翼偏转对飞机进行侧向操纵
前视图
偏转副翼引起的有害偏航


为什么? 左压杆——机翼左右阻力不平衡——右偏 航——左侧滑——右滚转静稳定力矩。 怎么办?

差动副翼

上偏角大于下偏角 上下偏角相等

弗莱兹副翼

副翼操纵的失效和反逆


“副翼反效”又称为“副翼反逆”、“副翼 反操纵”。 飞机高速飞行时由于气动载荷而引起的机 翼扭转弹性变形,使得偏转副翼时所引起 的总滚转力矩与预期方向相反的现象。
横侧向扰动运动的三种模态及特性

滚转收敛模态


一种非周期性的、衰 减很快的运动模态。 滚转角和滚转速度迅 速变化,侧滑角和偏 航角的变化很小。
螺旋模态



一种非周期性的,运 动参数变化比较缓慢 的模态。 侧滑角近似为零,偏 航角大于滚转角,所 以螺旋模态运动主要 是略带滚转、侧滑角 近似为零的偏航运动。 方向静稳定性>>侧 向静稳定性。

侧滑角β

4.2 飞机稳定性和操纵性的基本概念

飞机的稳定性

处于平衡状态的物体, 受到外界扰动,偏离 了平衡位置,当扰动 消失后,物体能否自 动恢复到原始的平衡 位置,取决于物体的 平衡状态是否具有稳 定性。
飞机的稳定性

静稳定性

研究外界扰动消失后,物体是否有回到原始平 衡位置的趋势,也就是扰动消失后,物体的瞬 间运动。 研究外界扰动消失后,物体回到原平衡位置的 运动过程:扰动是收敛的,物体最终回到原始 平衡位置,物体具有动稳定性,否则就是动不 稳定的。
影响飞机侧向静稳定性的其他因素

垂尾

机体纵轴上方的垂尾增加侧向静稳定性,下方 的垂尾减少侧向静稳定性。 上单翼起侧向静稳定作用,下单翼起侧向静不 稳定作用。

机翼和机身的相对位置

飞机方向静稳定性的条件

飞机具有方向静稳定性的条件,飞机受到 扰动绕OY轴偏转,产生侧滑角β 时,如果 由于侧滑角引起的偏航力矩力图使飞机对 准来流,消除侧滑角,飞机就具有方向静 稳定性。
交叉力矩

交叉力矩是指由滚转运动引起的偏航力矩和由 偏航运动引起的滚转力矩。 右滚——右机翼迎角增大,阻力增大——向右 偏转的偏航力矩。 右滚——垂尾产生向左侧的气动力——向右偏 转的偏航力矩。 左偏航——垂尾产生向左的气动力——向左横 滚的滚转力矩。 左偏航——左机翼升力减小,右机翼升力增 大——向左的横滚滚转力矩。
飞机的纵向操纵


前推杆——舵面下偏(δ z>0)——附加升力向 上——低头力矩(Mz<0)。 后拉杆——舵面上偏(δ z<0 )——附加升力向 下——抬头力矩(Mz>0)。
纵向操纵性和纵向稳定性的关系
纵向操纵性和纵向稳定性的关系


飞机的稳定性和操纵性是相互制约的:稳 定性太大,飞机保持原飞行姿态的能力太 强,要改变它就很不容易,操纵起来就很 费劲,飞机的操纵性就很迟钝。 稳定性太小,飞机的飞行姿态很容易改变, 驾驶员很难精确的操纵飞机,飞机的操纵 性有过于灵敏。
飞机纵向静稳定性的条件

在小迎角下飞机纵向静稳定性只取决于全机焦点 和重心之间的相对位置。
纵向静稳定
纵向静不稳定
飞机纵向静稳定性的条件



全机焦点位于重心之后:飞机是纵向静 稳定的。 全机焦点位于重心之前:飞机是纵向静 不稳定的。 全机焦点位于重心之上:飞机具有纵向 中立静稳定性。
飞机纵向静稳定性的条件
4.1 飞机运动参数

地面坐标系是固定在地球表面的一种坐标系。
姿态角

俯仰角θ

机体坐标系纵轴(OXt)与水平面之间的夹角。 规定机头上仰时为正。

偏航角ψ

机体坐标系纵轴在水平面上的投影与地面坐标 系Axd轴之间的夹角。规定当飞机向左偏航时 为正。
飞机对称面与包含Oxt轴的铅垂面之间的夹角。 规定当飞机向右滚转时为正。

动稳定性

平衡稳定状态
飞机的稳定性和操纵性分类

纵向稳定性(和操纵性)

绕横轴(OZt)转动,也叫俯仰稳定性。 绕纵轴(OXt)滚转,也叫滚转稳定性。 绕立轴(OYt)转动,也叫航向稳定性。

侧向稳定性(和操纵性)


方向稳定性(和操纵性)

4.3 飞机的纵向稳定性


飞机的纵向静稳定性 飞机的纵向力矩
荷兰滚


荷兰滚是频率较快(周期为几秒)的中等 阻尼的横向——航向组合振荡模态。 在荷兰滚中,飞机的侧滑角、滚转角和偏 航角的量级相同,而滚转、偏航运动的速 度较小。各运动参数都随时间按振荡方式 周期变化,形成飞机一面来回滚转,一面 左右偏航,同时带有侧滑的振荡运动。 侧向静稳定性与方向静稳定性相比较大时, 飞机易产生荷兰滚不稳定。


纵向静稳定余量:全机焦 点和重心之间的距离 KF=XF-XW。对于民用飞 机KF=10%-15%。 水平尾翼的重要作用二


为飞机提供必要的纵向 静稳定性。 亚音速飞行时,机翼的 焦点一般在飞机重心之 前。
影响飞机纵向静稳定性的因素

握杆和松杆对飞机纵向静稳定性的影响


与握杆飞行相比,松杆飞行时,全机焦点的位置前移 了,纵向静稳定性减少了。 减少升降舵的自由摆动,减少松杆和握杆飞行状态下 纵向静稳定性的差异。
飞机的方向静稳定性

垂尾对飞机方向静稳定性的贡献
影响飞机方向静稳定性的其他因素
相关文档
最新文档