定点与平面解析几何
(完整)解析几何中的定点和定值问题
解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。
此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。
考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。
一、定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
例1、已知A 、B 是抛物线y 2=2p x (p 〉0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β=4π时,证明直线AB 恒过定点,解析: 设A (121,2y p y ),B (222,2y py ),则212tan ,2tan y py p ==βα,代入1)tan(=+βα 得221214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则022222=+-⇒⎩⎨⎧=+=pb py ky pxy bkx y ∴kpy y kpby y 2,22121=+=,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。
例2.已知椭圆C :22221(0)x y a b a b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切. ⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==,所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ①联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <<. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0).【针对性练习1】 在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为的椭圆,其方程为2214x y +=.⑵将y kx b =+,代入曲线C 的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ①设()11,P x y ,()22,Q x y ,则1228214k x x k +=-+,122414x x k =+ ② 且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+,()222,AQ x y =+.由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=.将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点.【针对性练习2】在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m 〉0,0,021<>y y .(1)设动点P 满足422=-PB PF ,求点P 的轨迹; (2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。
第06讲 定点问题(解析几何)(原卷版)
第06讲 定点问题知识与方法定点与定值是高考解析几何考查的热点问题,此类问题往往定中有动,动中有定.直线过定点问题,通法是设出直线方程,通过韦达定理和已知条件找出k 和m 的关系式,代入直线方程,将问题转化为过定点的直线系、曲线系或恒成立问题来求解.即可得到定点.求解定值问题的关键是引进参数表示直线方程、点坐标、数量积或斜率关系等,先引入变量,再进行消元,最后得到不受参数影响的量,就是定值.1.对直线过定点的理解如:①直线2(1)y k x -=-恒过定点(1,2);②对于直线:l y kx m =+,若2m k =-,则直线方程为(2)y k x =-,显然l 过定点(2,0); ③无论k 取任何实数,直线(23)(1)(41)0k x k y k ++--+=必经过一个定点,则这个定点的坐标为_____.【解析】直线(23)(1)(41)0k x k y k ++--+=可化为(24)(31)0k x y x y +-+--=,令24013102x y x x y y ⎧+-==⎧⎪⇒⎨⎨--==⎪⎩⎩,故定点坐标为(1,2). 2.直线过定点问题的基本解法方法1:设线法,用两个参数表示直线方程,一般步骤为:①设直线方程为y kx m =+(或x ny t =+),联立直线与圆锥曲线方程,得出根与系数的关系; ②结合韦达定理和已知条件,得到k b 、或m t 、的关系,或者解出b t 、的值;③将②的结果代入y kx m =+(或x ny t =+),得到定点坐标.方法2:解点法,用一个参数表示直线方程,一般步骤为:①引进参数,根据已知条件,求出直线上两个点,A B 的坐标(含参);②特殊位置入手,找到定点P (有时可考虑对称性);③证明,,A B P 三点共线,从而直线AB 过定点P .(其中一个方法是证明PA PB )3.定点问题的常见类型①由斜率关系求定点;②由倾斜角关系求定点;③切点弦过定点;④相交弦过定点;⑤圆过定点.典型例题类型1:由斜率关系求定点相关结论如下:定理1:()00,P x y 为椭圆2222:1(0,0)x y a b a bΓ+=>>上一定点,过点P 作斜率为12,k k 的两条直线分别与椭圆交于,M N 两点.(1)若12(0)k k λλ+=≠,则直线MN 过定点20000222,y b x x y a λλ⎛⎫--- ⎪⎝⎭;(2)若2122b k k a λλ⎛⎫⋅=≠ ⎪⎝⎭,则直线MN 过定点2222002222,a b a b x y a b a b λλλλ⎛⎫++- ⎪--⎝⎭. 定理2:设()00,P x y 是直角坐标平面内不同于原点的一定点,过P 作两条直线,AB CD 交椭圆2222:1(0,0)x y a b a bΓ+=>>于A B C D 、、、,直线,AB CD 的斜率分别为12,k k ,弦,AB CD 的中点记为,M N . (1)若12(0)k k λλ+=≠,则直线MN 过定点20002,y b x x a λλ⎛⎫-- ⎪⎝⎭; (2)若2122b k k a λλ⎛⎫⋅=≠ ⎪⎝⎭,则直线MN 过定点220002222,a x b y x a b a b λλλ⎛⎫ ⎪--⎝⎭. 定理3:过抛物线22(0)y px p =>上任一点()00,P x y 引两条弦,PA PB ,直线,PA PB 斜率存在,分别记为12,k k ,即12(0)k k λλ+=≠,则直线AB 经过定点00022,y p x y λλ⎛⎫-- ⎪⎝⎭. 【注】以上结论都可以利用坐标平移齐次化的方法进行证明,齐次化方法请参考《2.4齐次化巧解双斜率问题》一章,证明过程此处略过.上面的结论不提倡记忆,重要的是掌握其证明方法,熟识这些模型,在解题中会事半功倍.斜率之和为定值,第三边过定点【例1】已知椭圆2222:1(0)x y C a b a b +=>>,四点123(1,1),(0,1),P P P ⎛- ⎝⎭, 4P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于,A B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明: l 过定点.斜率之积为定值,第三边过定点【例2】已知椭圆的中心在原点,一个长轴的端点为(0,2)P -,离心率为e =,过点P 作斜率为1k , 2k 的直线,PA PB ,分别交椭圆于点,A B .(1)求椭圆的方程;(2)若122k k ⋅=,证明直线AB 过定点,并求出该定点.【例3】过椭圆22:143x y C +=上一定点31,2P ⎛⎫ ⎪⎝⎭作两条互相垂直的直线,PA PB 与C 分别交于点,A B ,求证:直线AB 过定点.【例4】已知12(1,0),(1,0)F F -是椭圆22143x y +=的左右焦点.过2F 作两条互相垂直的直线1l 与2l (均不与x 轴重合)分别与椭圆交于A B C D 、、、四点.线段,AB CD 的中点分别是,M N ,求证:直线MN 过定点,并求出该定点坐标.斜率之比为定值,第三边过定点【例5】如图所示,抛物线2:2(0)C y px p =>的焦点为(1,0)F .(1)求抛物线C 的标准方程;(2)过F 的两条直线分别与抛物线C 交于点1,A A 与1,B B (点1,B A 在x 轴的上方).①若2AF FA =,求直线1AA 的斜率;②设直线11A B 的斜率为1k ,直线AB 的斜率为2k ,若122k k =,求证:直线AB 过定点.类型2:由倾斜角关系求定点【例6】已知椭圆2222:1(0)x y C a b a b+=>>,其左、右焦点分别为12,F F ,点P 为坐标平面内的一点,且1233||,,24OF PF PF O =⋅=-为坐标原点. (1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,,A B 是椭圆C 上两个不同的点,直线,MA MB 的倾斜角分别为,αβ, 且2παβ+=,证明:直线AB 恒过定点,并求出该定点的坐标.类型3:切点弦过定点【例7】已知圆22:4C x y +=,点P 为直线290x y +-=上一动点,过点P 向圆引两条切线,,,PA PB A B 为切点,求证:直线AB 经过定点.【例8】已知抛物线2:2C x py =的焦点与椭圆22143y x +=的上焦点重合,点A 是直线280x y --=上任意一点,过A 作抛物线C 的两条切线,切点分别为,M N .(1)求抛物线C 的方程;(2)证明直线MN 过定点,并求出定点坐标.类型4:相交弦过定点【例9】已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8,AG GB P ⋅=为直线6x =上的动点,PA 与E 的另一交点为,C PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.类型 5:圆过定点【10】 设平面直角坐标系 xoy 中,设二次函数 2()2()f x x x b x R =++∈ 的图象与两坐标轴有三个交点, 经过这三个交点的圆记为 C .(1) 求实数 b 的取值范围;(2) 求圆 C 的方程;(3) 问圆 C 是否经过某定点(其坐标与 b 无关)? 请证明你的结论.。
高考数学一轮复习 第九章 平面解析几何9 (2)
高考数学一轮复习 第九章 平面解析几何9.11 圆锥曲线中定点与定值问题题型一 定点问题例1 已知定圆A :(x +3)2+y 2=16,动圆M 过点B (3,0),且和圆A 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)设不垂直于x 轴的直线l 与轨迹E 交于不同的两点P ,Q ,点N (4,0).若P ,Q ,N 三点不共线,且∠ONP =∠ONQ .证明:动直线PQ 经过定点.(1)解 圆A 的圆心为A (-3,0),半径r 1=4.设动圆M 的半径为r 2,依题意有r 2=|MB |.由|AB |=23,可知点B 在圆A 内,从而圆M 内切于圆A ,故|MA |=r 1-r 2,即|MA |+|MB |=4>2 3.所以动点M 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,其方程为x 24+y 2=1. (2)证明 设直线l 的方程为y =kx +b (k ≠0),联立⎩⎪⎨⎪⎧y =kx +b ,x 2+4y 2=4, 消去y 得,(1+4k 2)x 2+8kbx +4b 2-4=0,Δ=16(4k 2-b 2+1)>0,设P (x 1,kx 1+b ),Q (x 2,kx 2+b ),则x 1+x 2=-8kb 1+4k 2,x 1x 2=4b 2-41+4k 2, 于是k PN +k QN =kx 1+b x 1-4+kx 2+b x 2-4=2kx 1x 2-4k -bx 1+x 2-8b x 1-4x 2-4, 由∠ONP =∠ONQ 知k PN +k QN =0.即2kx 1x 2-(4k -b )(x 1+x 2)-8b =2k ·4b 2-41+4k 2-(4k -b )-8kb 1+4k 2-8b =8kb 2-8k 1+4k 2+32k 2b -8kb 21+4k 2-8b =0, 得b =-k ,Δ=16(3k 2+1)>0.故动直线l 的方程为y =kx -k ,过定点(1,0).教师备选在平面直角坐标系中,已知动点M (x ,y )(y ≥0)到定点F (0,1)的距离比到x 轴的距离大1.(1)求动点M 的轨迹C 的方程;(2)过点N (4,4)作斜率为k 1,k 2的直线分别交曲线C 于不同于N 的A ,B 两点,且1k 1+1k 2=1.证明:直线AB 恒过定点.(1)解 由题意可知x 2+y -12=y +1,化简可得曲线C :x 2=4y .(2)证明 由题意可知,N (4,4)是曲线C :x 2=4y 上的点,设A (x 1,y 1),B (x 2,y 2),则l NA :y =k 1(x -4)+4,l NB :y =k 2(x -4)+4,联立直线NA 的方程与抛物线C 的方程,⎩⎪⎨⎪⎧ y =k 1x -4+4,x 2=4y⇒x 2-4k 1x +16(k 1-1)=0,解得x 1=4(k 1-1),①同理可得x 2=4(k 2-1),②而l AB :y -x 214=x 1+x 24(x -x 1),③又1k 1+1k 2=1,④ 由①②③④整理可得l AB :y =(k 1+k 2-2)x -4,故直线AB 恒过定点(0,-4).思维升华 求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式y =kx +m ,则直线必过定点(0,m ).跟踪训练1 (2022·邯郸质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且过点⎝⎛⎭⎫3,12. (1)求椭圆方程;(2)设直线l :y =kx +m (k ≠0)交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线x =12上,求证:线段AB 的中垂线恒过定点N .(1)解 椭圆过点⎝⎛⎭⎫3,12,即3a 2+14b2=1, 又2c =23,得a 2=b 2+3,所以a 2=4,b 2=1,即椭圆方程为x 24+y 2=1. (2)证明 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 1+4k 2,设AB 的中点M 为(x 0,y 0),得x 0=-4km 1+4k 2=12, 即1+4k 2=-8km ,所以y 0=kx 0+m =12k -1+4k 28k =-18k. 所以AB 的中垂线方程为y +18k =-1k ⎝⎛⎭⎫x -12, 即y =-1k ⎝⎛⎭⎫x -38, 故AB 的中垂线恒过点N ⎝⎛⎭⎫38,0.题型二 定值问题例2 (2022·江西赣抚吉名校联考)已知抛物线E :y 2=2px (p >0)上的动点M 到直线x =-1的距离比到抛物线E 的焦点F 的距离大12. (1)求抛物线E 的标准方程;(2)设点Q 是直线x =-1(y ≠0)上的任意一点,过点P (1,0)的直线l 与抛物线E 交于A ,B 两点,记直线AQ ,BQ ,PQ 的斜率分别为k AQ ,k BQ ,k PQ ,证明:k AQ +k BQ k PQ为定值. (1)解 由题意可知抛物线E 的准线方程为x =-12, 所以-p 2=-12,即p =1, 故抛物线E 的标准方程为y 2=2x .(2)证明 设Q (-1,y 0),A (x 1,y 1),B (x 2,y 2),因为直线l 的斜率显然不为0,故可设直线l 的方程为x =ty +1.联立⎩⎪⎨⎪⎧x =ty +1,y 2=2x ,消去x ,得y 2-2ty -2=0.Δ=4t 2+8>0,所以y 1+y 2=2t ,y 1y 2=-2,k PQ =-y 02. 又k AQ +k BQ =y 1-y 0x 1+1+y 2-y 0x 2+1 =y 1-y 0x 2+1+y 2-y 0x 1+1x 1+1x 2+1=y 1-y 0ty 2+2+y 2-y 0ty 1+2ty 1+2ty 2+2=2ty 1y 2+2-ty 0y 1+y 2-4y 0t 2y 1y 2+2t y 1+y 2+4 =2t ·-2+2-ty 0·2t -4y 0t 2·-2+2t ·2t +4=-y 0t 2+2t 2+2=-y 0. 所以k AQ +k BQ k PQ =-y 0-y 02=2(定值). 教师备选(2022·邯郸模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆于A ,B 两点,交y 轴于点M ,若|F 1F 2|=2,△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)MA →=λF 1A —→,MB →=μF 1B —→,试分析λ+μ是否为定值,若是,求出这个定值,否则,说明理由.解 (1)因为△ABF 2的周长为8,所以4a =8,解得a =2,由|F 1F 2|=2,得2a 2-b 2=24-b 2=2,所以b 2=3,因此椭圆C 的标准方程为x 24+y 23=1.(2)由题意可得直线l 的斜率存在,设直线l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧ y =k x +1,x 24+y 23=1, 整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0,设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧ x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.设M (0,k ),又F 1(-1,0),所以MA →=(x 1,y 1-k ),F 1A —→=(x 1+1,y 1),则λ=x 1x 1+1. 同理可得MB →=(x 2,y 2-k ),F 1B —→=(x 2+1,y 2),则μ=x 2x 2+1. 所以λ+μ=x 1x 1+1+x 2x 2+1=x 1x 2+1+x 2x 1+1x 1+1x 2+1=2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=2×4k 2-123+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k 2+1=8k 2-24-8k 24k 2-12-8k 2+3+4k 2=-24-9=83, 所以λ+μ为定值83. 思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2 在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB的斜率为k 1,点P 的坐标为⎝⎛⎭⎫1,32. (1)求椭圆C 的方程;(2)求证:k 1k 为定值.(1)解 由题意知⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧ a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1. (2)证明 设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),由于A ,B 为椭圆C 上的点, 所以x 214+y 213=1,x 224+y 223=1, 两式相减得x 1+x 2x 1-x 24=-y 1+y 2y 1-y 23, 所以k 1=y 1-y 2x 1-x 2=-3x 1+x 24y 1+y 2=-3x 04y 0. 又k =y 0x 0, 故k 1k =-34,为定值. 课时精练1.(2022·运城模拟)已知P (1,2)在抛物线C :y 2=2px 上.(1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线P A 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.(1)解 将P 点坐标代入抛物线方程y 2=2px ,得4=2p ,即p =2,所以抛物线C 的方程为y 2=4x .(2)证明 设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0⇒16m 2+16t >0⇒m 2+t >0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k P A =y 1-2x 1-1=y 1-2y 214-1=4y 1+2, 同理k PB =4y 2+2,由题意知4y 1+2+4y 2+2=2, 即4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,故-4t =4,即t =-1,故直线AB :x =my -1恒过定点(-1,0).2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,且其左顶点到右焦点的距离为5. (1)求椭圆的方程;(2)设点M ,N 在椭圆上,以线段MN 为直径的圆过原点O ,试问是否存在定点P ,使得P 到直线MN 的距离为定值?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题设可知⎩⎪⎨⎪⎧c a =23,a +c =5,解得a =3,c =2,b 2=a 2-c 2=5,所以椭圆的方程为x 29+y 25=1. (2)设M (x 1,y 1),N (x 2,y 2),①若直线MN 与x 轴垂直,由对称性可知|x 1|=|y 1|,将点M (x 1,y 1)代入椭圆方程,解得|x 1|=37014, 原点到该直线的距离d =37014; ②若直线MN 不与x 轴垂直,设直线MN 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 25=1,消去y 得(9k 2+5)x 2+18kmx +9m 2-45=0,由根与系数的关系得⎩⎪⎨⎪⎧ x 1x 2=9m 2-459k 2+5,x 1+x 2=-18km 9k 2+5,由题意知,OM →·ON →=0,即x 1x 2+(kx 1+m )(kx 2+m )=0, 得(k 2+1)9m 2-459k 2+5+km ⎝⎛⎭⎫-18km 9k 2+5+m 2=0, 整理得45k 2+45=14m 2,则原点到该直线的距离d =|m |k 2+1=4514=37014, 故存在定点P (0,0),使得P 到直线MN 的距离为定值.3.已知双曲线C 的渐近线方程为y =±3x ,右焦点F (c ,0)到渐近线的距离为 3.(1)求双曲线C 的方程;(2)过F 作斜率为k 的直线l 交双曲线于A ,B 两点,线段AB 的中垂线交x 轴于D ,求证:|AB ||FD |为定值.(1)解 设双曲线方程为3x 2-y 2=λ(λ>0),由题意知c =2,所以λ3+λ=4⇒λ=3, 所以双曲线C 的方程为x 2-y 23=1. (2)证明 设直线l 的方程为y =k (x -2)(k ≠0)代入x 2-y 23=1, 整理得(3-k 2)x 2+4k 2x -4k 2-3=0,Δ=36(k 2+1)>0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-4k 23-k 2,x 1x 2=-4k 2-33-k 2, 由弦长公式得|AB |=1+k 2·x 1+x 22-4x 1x 2=6k 2+1|3-k 2|, 设AB 的中点P (x 0,y 0),则x 0=x 1+x 22=-2k 23-k 2, 代入l 得y 0=-6k 3-k 2, AB 的垂直平分线方程为y =-1k ⎝⎛⎭⎫x +2k 23-k 2-6k 3-k 2,令y =0得x D =-8k 23-k 2, 即|FD |=⎪⎪⎪⎪⎪⎪-8k 23-k 2-2=61+k 2|3-k 2|, 所以|AB ||FD |=1为定值. 当k =0时,|AB |=2,|FD |=2,|AB ||FD |=1, 综上所述,|AB ||FD |为定值.4.(2022·河南九师联盟模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,长轴长为4.(1)求椭圆C 的方程;(2)设过点F 1不与x 轴重合的直线l 与椭圆C 相交于E ,D 两点,试问在x 轴上是否存在一个点M ,使得直线ME ,MD 的斜率之积恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.解 (1)因为焦距为2,长轴长为4,即2c =2,2a =4,解得c =1,a =2,所以b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)由(1)知F 1(-1,0),设点E (x 1,y 1),D (x 2,y 2),M (m ,0),因为直线l 不与x 轴重合,所以设直线l 的方程为x =ny -1,联立⎩⎪⎨⎪⎧x =ny -1,x 24+y 23=1, 得(3n 2+4)y 2-6ny -9=0,所以Δ=(-6n )2+36(3n 2+4)>0,所以y 1+y 2=6n 3n 2+4,y 1y 2=-93n 2+4, 又x 1x 2=(ny 1-1)(ny 2-1)=n 2y 1y 2-n (y 1+y 2)+1=-9n 23n 2+4-6n 23n 2+4+1 =-12n 2-43n 2+4, x 1+x 2=n (y 1+y 2)-2=6n 23n 2+4-2 =-83n 2+4. 直线ME ,MD 的斜率分别为k ME =y 1x 1-m,k MD =y 2x 2-m , 所以k ME ·k MD =y 1x 1-m ·y 2x 2-m=y 1y 2x 1-m x 2-m=y 1y 2x 1x 2-m x 1+x 2+m 2=-93n 2+4-12n 2-43n 2+4-m ⎝ ⎛⎭⎪⎫-83n 2+4+m 2 =-9-12n 2+4+8m +3m 2n 2+4m 2=-93m 2-12n 2+4m +12, 要使直线ME ,MD 的斜率之积恒为定值,3m 2-12=0,解得m =±2,当m =2时,存在点M (2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-936=-14, 当m =-2时,存在点M (-2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-94, 综上,在x 轴上存在点M ,使得ME ,MD 的斜率之积恒为定值,当点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14, 当点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
《解析几何》知识点总结:第2章-平面与直线
第二章平面与直线一、直角坐标系、放射坐标系以及直角坐标系中的向量计算1.直角坐标系和放射坐标系(1)定义5.1:i ,j ,k 以O 为起点,为单位向量且两两垂直,则O ;i ,j ,k 为空间的一个以O 为原点的直角标架或直角坐标系,记为{O ;i ,j ,k }。
如果向量形成右手系,则成为右手直角标架或右手直角坐标系。
i ,j ,k 称为该直角坐标系的基向量。
(2)定义5.2:不要求i ,j ,k 为单位向量且两两垂直,只要求不共面,则称为仿射标架或放射坐标系。
(3)定理5.1:v =x i +y j +z k ,称(x ,y ,z )为向量v 在该坐标系{O ;i ,j ,k }下的坐标,记为v =(x ,y ,z )。
(4)定义5.3:规定P 的坐标为向量→OP 的坐标,向量→OP 称为P 点的定位向量或矢径。
(5)8个卦限(逆时针,上层,右下角),x 轴为一半长。
2.直角坐标系中的向量运算(1)线性运算(仿射可)①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3);②λa =(λa 1,λa 2,λa 3);(2)内积(仿射不可)①a ·b =a 1b 1+a 2b 2+a 3b 3;②|a |=232221a a a ++;③cos∠(a ,b )=232221232221332211b b b a a a b a b a b a +++++++;cosα=2322211a a a a ++;cos 2α+cos 2β+cos 2γ=1;·向量a 与x、y、z 轴的夹角称为向量a 的方向角,其余弦称为a 的方向余弦。
·把与三个方向余弦成比例的三个数(该向量的坐标),称为该向量的一组方向数。
(3)外积(仿射不可)a ×b =(a 2b 3-a 3b 2)i +(a 3b 1-a 1b 3)j +(a 1b 2-a 2b 1)k (4)混合积(仿射不可)(a ,b ,c )=321212131313232c b b a a c b b a a c b b a a ++3.距离公式和定比分点公式(1)距离公式21221221221z -z y -y x -x )()()(++=P P (2)定比分点公式(坐标形式):P 1P=λPP 2λλλλλλ++=++=++=1z 1y y 1x 212121z z y x x ;;·中点公式:⎪⎭⎫⎝⎛+++2a ,2a ,2a 332211b b b ·重心公式:⎪⎭⎫⎝⎛++++++3c a ,3c a ,3c a 333222111b b b 4.题型①向量运算二、平面方程1.平面方程(1)平面的向量形式的点法式方程:N ·(P -P 0)=0平面的坐标形式的点法式方程:A (x-x 0)+B (y-y 0)+C (z-z 0)=0——平面法向量[垂直]N =(A ,B ,C )(2)平面的一般式方程(普通方程):Ax+By+Cz+D=0(A ,B ,C 不能同时为0)平面的一般式方程(向量形式):N ·P+D=0定理6.1:平面方程是三元一次方程,反之三元一次方程必表示平面。
高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题
第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。
解析几何中定值和定点问题
解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x ²/4+y ²/3=1 ②①,②联立得出两个解一个是A (1,3/2)另一个是E (x1,y1) ①代入②消去y 得(1/4+k ²/3)x ²-(2k ²/3-k )x+k ²/3-k-1/4=0 根据韦达定理 x1·1=(k ²/3-k-1/4)/(1/4+k ²/3)③ 将③的结果代入①式得y1=(-k ²/2-k/2+3/8)/(1/4+k ²/3)设AF 斜率为-k ,F (x2,y2) 则AF 方程为y-(3/2)=-k (x-1)④ x ²/4+y ²/3=1 ② ②④联立同样解得x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。
高考数学第八篇平面解析几何第7节圆锥曲线的综合问题(第3课时)定点、定值、存在性专题文
+1),
由x82+y42=1,
得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
y+2=k(x+1),
设 A(x1,y1),B(x2,y2),则 x1+x2=-4k(1+k-2k22),
y1),B(x2,y2).
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第二十二页,共四十二页。
由x42+y2=1,得(1+4k2)x2+8kmx+4m2-4=0. y=kx+m
则 Δ=(8km)2-4(1+4k2)(4m2-4)=16(1+4k2-m2)>0,x1+x2 =-1+8km4k2,x1x2=41m+2-4k42 ,则 y1y2=(kx1+m)(kx2+m)=m12+-44kk22,
且 x1+x2=4k82k+2 3,x1x2=44kk22-+132.
直线 AE 的方程为 y=x1y-1 2(x-2),
令 x=4,得点 M4,x12-y12,
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第十七页,共四十二页。
直线 AF 的方程为 y=x2y-2 2(x-2), 令 x=4,得点 N4,x22-y22, 所以点 P 的坐标为4,x1y-1 2+x2y-2 2. 所以直线 PF2 的斜率为 k′=x1y-1 2+4-x21y-2 2-0 =13x1y-1 2+x2y-2 2=13·y2xx11x+2-x22y(1-x12+(xy21)++y24)
返回(fǎnhuí)导航
第7节 圆锥曲线的综合问题 第十一页,共四十二页。
(2)由(1)知 F(1,0),设 A(x0,y0)(x0>0),D(xD,0)(xD>0), 因为|FA|=|FD|,则|xD-1|=x0+1, 由 xD>0 得 xD=x0+2,故 D(x0+2,0), 故直线 AB 的斜率为 kAB=-y20, 因为直线 l1 和直线 AB 平行, 故可设直线 l1 的方程为 y=-y20x+b,
2020版高考数学大一轮复习第九章平面解析几何第11讲定点、定值、探索性问题课件理新人教A版
所以1λ+μ1=1-1yM+1-1yN =(kx-1-1)1 x1+(kx-2-1)1 x2 =k-1 1·2x1x2-x(1xx21+x2) =k-1 1·k22+21kk-2 4=2.
k2
所以1λ+μ1为定值.
圆锥曲线中的定值问题的常见类型及解题策略 (1)求代数式为定值:依题意设条件,得出与代数式参数有关的 等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值:利用点到直线的距离公式得出距 离的解析式,再利用题设条件化简、变形求得; (3)求某线段长度为定值:利用长度公式求得解析式,再依据条 件对解析式进行化简、变形即可求得.
设
MN
的中点为
E,则点
E
的坐标为0,-
k2,则以
MN
为直
径的圆的方程为
x2+y+
k22=2(1+k22k2),即
x2+y2+2
k
2 y
=4.
令 y=0 得 x=2 或 x=-2,即以 MN 为直径的圆经过两定点
P1(-2,0),P2(2,0).
圆锥曲线中的探索性问题 [典例引领]
【解】 (1)由于 P3,P4 两点关于 y 轴对称,故由题设知 C 经过 P3,P4 两点. 又由a12+b12>a12+43b2知,C 不经过点 P1,所以点 P2 在 C 上. 因此ba1122= +413b,2=1,解得ab22= =41, . 故 C 的方程为x42+y2=1. (2)证明:设直线 P2A 与直线 P2B 的斜率分别为 k1,k2. 如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,可得 A,B 的坐标分别为t, 42-t2,t,- 42-t2.
高中数学高考58第九章 平面解析几何 高考专题突破5 第2课时 定点与定值问题
技能提升练
5.(2018·保定模拟)设椭圆 C:ax22+by22=1(a>b>0)的离心率 e= 23,左顶点 M 到 直线ax+by=1 的距离 d=455,O 为坐标原点. (1)求椭圆 C 的方程;
123456
(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明: 点O到直线AB的距离为定值.
思维升华
圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究 变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点 与变量无关.
跟踪训练 1 已知焦距为 2 2的椭圆 C:ax22+by22=1(a>b>0)的右顶点为 A,直 线 y=43与椭圆 C 交于 P,Q 两点(P 在 Q 的左边),Q 在 x 轴上的射影为 B,且 四边形 ABPQ 是平行四边形. (1)求椭圆 C 的方程;
(1)求C的方程;
解 由椭圆定义得|MF1|+|MF2|=4,
①
由垂直得|MF1|2+|MF2|2=|F1F2|2=4(4-b2),
②
由题意得 S△MF1 F2 =12|MF1|·|MF2|=1,
③
由①②③,可得 b2=1,C 的方程为x42+y2=1.
123456
(2)设C的上顶点为H,过点(2,-1)的直线与椭圆交于R,S两点(异于H),求 证:直线HR和HS的斜率之和为定值,并求出这个定值.
123456
2.(2018·威海模拟)已知抛物线C:y2=2px(p>0)的焦点F,直线y=4与y轴的交 点为P,与抛物线C的交点为Q,且|QF|=2|PQ|. (1)求p的值; 解 设 Q(x0,4),由抛物线定义,|QF|=x0+2p, 又|QF|=2|PQ|,即 2x0=x0+p2,解得 x0=p2, 将点 Qp2,4代入抛物线方程,解得 p=4.
解析几何中的定值与定点问题-玩转压轴题(解析版)
专题5.4 解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。
(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A.B.C.2p D.【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫⎪⎝⎭ B .11,42⎛⎫⎪⎝⎭ C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+, 取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭.【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k-+=,2122b x x k =; 又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== ,则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( ) A .充分非必要条件 B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =,直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。
高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第9节 直线与圆锥曲线中的定点与定值问题
-
直线 MA1 的方程为 y=
(x+2),直线
NA
2 的方程为 y=
+
联立直线 MA1 与直线 NA2 的方程可得
=
由
+ ( +) ( -)
=
=
- ( -) ( -)
=
-
(x-2),
-
-
· -· +
提升·关键能力
类分考点,落实四翼
考点一
定值问题
[例1] 已知双曲线 C: - =1 (a>0,b>0)的虚轴长为4,直线2x-y=0
为双曲线C的一条渐近线.
(1)求双曲线C的标准方程;
(1)解:因为虚轴长为4,所以2b=4,即b=2,
因为直线2x-y=0为双曲线C的一条渐近线,
与曲线C方程联立,消去y整理得(4+3k2)x2+6kx-9=0,
Δ=36k2+4×9×(4+3k2)=144(1+k2)>0恒成立,
设M(x1,y1),N(x2,y2),
则|MN|= +
|x1-x2|=
+
×
设线段 MN 的中点为 T(x0,y0),
+
则 x0=
=-
由题意,直线MN的斜率不为0,
设M(x1,y1),N(x2,y2),
直线 MN 的方程为 x=my-4,且-<m<,
2
2
2
与 -=1 联立消去 x 可得(4m -1)y -32my+48=0,且Δ=64(4m +3)>0,
平面解析几何
平面解析几何
101
Contents
目录
01. 基础知识
02. 直线与圆
03. 椭圆与双曲线
04. 多边形与圆
极坐标系与参数方程
Part One
基础知识
平面解析几何的定义
解析几何:研 究几何图形的 代数性质的数
学分支
平面解析几何: 研究平面上点 的坐标、向量、 直线、圆锥曲 线等几何图形
极坐标系与参数方程的应用
曲线的表示:利用极坐标系和参 数方程可以简洁地表示曲线的形
状和位置
曲线的变换:利用极坐标系和参 数方程可以实现曲线的平移、旋
转、缩放等变换
A
B
C
D
曲线的求解:利用极坐标系和参 数方程可以方便地求解曲线的方
程和性质
曲线的拟合:利用极坐标系和参 数方程可以对实验数据进行拟合,
得到曲线的方程和性质
相贯:直线 穿过圆心, 且与圆有两 个交点
Part Three
椭圆与双曲线
椭圆的基本性质
定义:平面内到两个定点 的距离之和为常数的点的 集合
焦点:椭圆有两个焦点, 位于椭圆的长轴上
离心率:椭圆的离心率等 于椭圆的焦点到椭圆中心 的距离除以椭圆的长轴
标准方程:椭圆的标准方 程为x^2/a^2 + y^2/b^2 = 1,其中a和 b分别表示椭圆的长轴和 短轴
感谢您的观看与聆听
101
极坐标系中的点与平面解析几 何中的点之间可以相互转换。
参数方程的基本概念与性质
01
02
03
04
参数方程的定义: 用参数表示的方 程,如x=f(t), y=g(t)
参数方程的性质: 参数方程可以表 示曲线、曲面等 几何图形
浅谈高考中关于解析几何的“定点”问题
故 ( 0 ' 9 . y 。 ) , 设 p ( ) 1 : 。 ,
线
的方程为 = 1 , 过点D ( 1 , 0 ) l 若
— — , 直线 Ⅳ D的斜率
—
X l ≠X ,, 则 m≠ 2 √ 1 0, 直线 M D 的斜 率
k M D- - —1 0m m 直线 Ⅳ D的斜率 kN — 1 0 40- - m2 D-
—
在 上任取一点Qx i ,
得尼 = 加 , 所 以 直 线 MN过 点 D , 故 直
线M N必过 轴上的一定点 I 1 , 0 ) 。
A I , Y o J , 则直线 的方程为:
一
警
Xo  ̄ 2 X
( J '
y o 2
评注 : 本 题 考 查 的 是 椭 圆 与 直 线 的 方 程等基础 知识 , 以 及 运 算 求 解 能 力 和 探 求 点 尸的轨迹; ( 2 ) 设X l =2 , X 2 = {, 求点 的 问 题 的能 力 。 直线 T A 、T B 与此 椭 圆分 别 交 坐标 。 ( 3 ) 设t =9, 求证 : 直 线 MN 必 过 x 轴 上 的一 定 点 ( 其坐 标 与 m 无 关 ) 。
则x 。 。 一2 b =
,
≠ 一 3 , 则字 一 筹・ ; 解得
1  ̄N ( x 2 , Y 2 ) 满
r I 2 2 _ 2
+ :1 9 5
代入( 1 ) 式整理得
=+5 b。 即 以 M N 为 直 径 的 圆过 两 定 点
例1 : ( 2 0 0 9 江西) 已知点P t ( X o , Y o ) 为双 ( 一 5 b , 0 ) , ( 5 6 , 0 ) 。
高考数学解析几何专题讲义第16讲--定点问题
3 3
x2
ty2
1
②
由①②知 AB 的方程为 3 x ty 1 ,即 x 3(1 ty)
③
3
易知右焦点 F ( 3, 0) 满足③ 故直线 AB 恒过定点 F ( 3, 0)
(2)略
【例 2-2】(2019 全国Ⅲ文 21)已知曲线 C : y x2 ,D 为直线 y = - 1 上的动点,过 D 作 C 的两条切线, 切
【解法一】 F (1, 0), k (a2 , 0) ,先探索,当 m 0 时,直线 l ox 轴,则 ABED 为矩形,由对称性知,AE 与
BD 交于定点 N ( a2 1, 0) , 2
证明:设 A(x1, y1)B(x2 , y2 )E(a2 , y1) ,当 m 变化时首先 AE 过定点 N
2 2
+ +
(y + y2 =
1)2 3 1
=
(4)2 3Þ
ìïx = 0 ïî y = 1
即两圆的公共点为(0,1)
因此所求点 T 如果存在,只能是(0,1),事实上.点(0,1)就是所求点,证明如下 当 l 与 x 轴垂直时,以 AB 为直径的圆过 T(0,1)
当 l 与 x 轴不垂直时,设直线 l : y = kx - 1 3
且以 AB 为直径的圆过椭圆 C 的右顶点。求证:直线 l 过定点,并求出该定点坐标.
y kx m
【解析】设
A(x1,
y1), B(x2 ,
y2 ) ,由 3x2
4y2
得 12
(3 4k 2 )x2 8mkx 4(m2 3) 0
64m2k 2 16(3 4k 2 )(m2 3) 0
2
2
点分别为 A,B.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 平面解析几何
[解] (1)证明:依题意可设 AB 方程为 y=kx+2,代入 x2 =4y,得 x2=4(kx+2),即 x2-4kx-8=0. 设 A(x1,y1),B(x2,y2),则有 x1x2=-8. 直线 AO 的方程为 y=xy11x;BD 的方程为 x=x2.
x=x2, 解得交点 D 的坐标为y=yx1x12,
第八章 平面解析几何
第3课时 定点、定值问题
第八章 平面解析几何
考点一 定点问题 考点二 定值问题 考点三 探究存在性问题
栏目 导引
第八章 平面解析几何
考点一 定点问题 (2014·高考山东卷节选)已知抛物线 C:y2=2px(p>
0)的焦点为 F,A 为 C 上异于原点的任意一点,过点 A 的 直线 l 交 C 于另一点 B,交 x 轴的正半轴于点 D,且有|FA| =|FD|,当点 A 的横坐标为 3 时,△ADF 为正三角形. (1)求 C 的方程; (2)若直线 l1∥l,且 l1 和 C 有且只有一个公共点 E,证明直 线 AE 过定点,并求出定点坐标.
第八章 平面解析几何
法二:由A→P·A→Q=0,知 AP⊥AQ,从而直线 PQ 与 x 轴 不垂直,故可设直线 l 的方程为 y=kx+t(t≠1),
y=kx+t 联立x32+y2=1,整理得(1+3k2)x2+6ktx+3(t2-1)=0.
设 P(x1,y1),Q(x2,y2), 则 x1+x2=1-+63kkt2,x1x2=3(1+t2-3k12).(*) 由Δ=(6kt)2-4(1+3k2)×3(t2-1)>0,得 3k2>t2-1.
可得直线 AE 的方程为 y-y0=y204-y04(x-x0). 由 y20=4x0, 整理可得 y=y204-y04(x-1), 直线 AE 恒过点 F(1,0).
栏目 导引
第八章 平面解析几何
当 y20=4 时,直线 AE 的方程为 x=1,过点 F(1,0), 所以直线 AE 过定点 F(1,0). [规律方法] 圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变 化量,再研究变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点, 再证明该定点与变量无关.
栏目 导引
第八章 平面解析几何
∴直线 l 的斜率为kkk2226+-+k 333--111-++-6333kkkk222=k24-k 1, ∴直线 l 的方程为 y=k24-k 1(x-k26+k 3)+kk22-+33, 即 y=k24-k 1x-12. ∴直线 l 过定点(0,-12).
栏目 导引
代入抛物线方程得 y2+y80y-8yb0 =0,
由题意Δ=6y420 +3y20b=0,得 b=-y20.
栏目 导引
第八章 平面解析几何
设 E(xE,yE),则 yE=-y40,xE=y420.
当 y20≠4 时,kAE=xyEE- -yx00=-yy44002+-yy4200=y204-y04,
栏目 导引
第八章 平面解析几何
[解] (1)由题意知 F(p2,0). 设 D(t,0)(t>0),则 FD 的中点为(p+4 2t,0). 因为|FA|=|FD|,
由抛物线的定义知 3+p2=t-p2,
解得 t=3+p 或 t=-3(舍去). 由p+4 2t=3,解得 p=2. 所以抛物线 C 的方程为 y2=4x.
栏目 导引
第八章 平面解析几何
由A→P·A→Q=0,得A→P·A→Q=(x1,y1-1)·(x2,y2-1)=(1+ k2)x1x2+k(t-1)(x1+x2)+(t-1)2=0. 将(*)代入,得 t=-12, ∴直线 l 过定点(0,-12).
栏目 导引
第八章 平面解析几何
考点二 定值问题 (2014·高考江西卷)如图,已知抛物线 C:x2=4y,
过点 M(0,2)任作一直线与 C 相交于 A,B 两点,过点 B 作 y 轴的平行线与直线 AO 相交于点 D(O 为坐标原点).
(1)证明:动点 D 在定直线上; (2)作 C 的任意一条切线 l(不含 x 轴),与直线 y=2 相交于 点 N1,与(1)中的定直线相交于点 N2,证明:|MN2|2-|MN1|2 为定值,并求此定值.
栏目 导引
第八章 平面解析几何
1.(2015·大庆市教学质量检测)已知椭圆 C:xa22+ y2=1(a>1)的上顶点为 A,右焦点为 F,直线 AF 与圆 M: (x-3)2+(y-1)2=3 相切. (1)求椭圆 C 的方程; (2)若不过点 A 的动直线 l 与椭圆 C 交于 P,Q 两点,且A→P·A→Q =0,求证:直线 l 过定点,并求该定点的坐标.
栏目 导引
第八章 平面解析几何
(2)由(1)知 F(1,0). 设 A(x0,y0)(x0y0≠0),D(xD,0)(xD>0). 因为|FA|=|FD|,则|xD-1|=x0+1, 由 xD>0 得 xD=x0+2,故 D(x0+2,0), 故直线 AB 的斜率 kAB=-y20. 因为直线 l1 和直线 AB 平行, 设直线 l1 的方程为 y=-y20x+b,
栏目 导引
第八章 平面解析几何
(2)法一:由A→P·A→Q=0,知 AP⊥AQ,从而直线 AP 与坐
标轴不垂直,故可设直线 AP 的方程为 y=kx+1,直线 AQ
的方程为 y=-1kx+1.
y=kx+1 联立x32+y2=1,整理得(1+3k2)x2+6kx=0,
解得 x=0 或 x=1-+63kk2,故点 P 的坐标为(1-+63kk2,11-+33Байду номын сангаасk22), 同理,点 Q 的坐标为(k26+k 3,kk22-+33),
栏目 导引
第八章 平面解析几何
解:(1)圆 M 的圆心为(3,1),半径 r= 3.
由题意知 A(0,1),F(c,0),
直线 AF 的方程为xc+y=1,即 x+cy-c=0.
由直线
AF
与圆
M
相切,得|3+c-c|= c2+1
3,解得 c2=2,
a2=c2+1=3,
故椭圆 C 的方程为x32+y2=1.