分子生物学--转录与转录后加工课件
合集下载
分子生物学PPT课件
04 蛋白质的结构与功能
蛋白质的化学组成与结构
蛋白质的基本组成单 位
氨基酸,具有氨基和羧
基的有机化合物。
氨基酸的种类
20种常见氨基酸,根据 侧链R基的不同进行分 类。
蛋白质的一级结构
氨基酸的线性排列顺序 ,包括肽键和二硫键的 连接。
蛋白质的高级结构
二级结构(α-螺旋、β折叠等)、三级结构和 四级结构。
01
其他RNA
如miRNA、snRNA等,在基因表达调控、 RNA加工等方面发挥作用。
04
03
RNA的合成与加工
01
02
03
转录
以DNA为模板,通过RNA 聚合酶的作用,合成RNA 的过程。
加工
新合成的RNA需要经过一 系列加工过程,如剪接、 修饰等,才能成为成熟的 RNA分子。
转录后调控
通过RNA干扰、RNA编辑 等方式对RNA进行转录后 水平的调控,影响基因的 表达。
03
DNA连接酶的种类和应用
04
重组DNA分子的构建和筛选
PCR技术及其应用
01
PCR技术的原理及步骤
02
03
04
引物的设计与优化
PCR反应体系的组成及优化
PCR技术的应用举例
基因克隆与基因工程
基因克隆的定义和原理 基因表达载体的构建和选择
基因工程的基本步骤 基因工程的应用举例
分子生物学在医学、农业等领域的应用
医学领域的应用
基因诊断、基因治疗、药物研 发等
工业领域的应用
酶工程、发酵工程、生物制药 等
农业领域的应用
转基因作物、基因编辑育种、 农业生物技术等
环境领域的应用
环境监测、污染治理、生态修 复等
现代分子生物学ppt课件
现代分子生物学ppt课件
目录
• 分子生物学概述 • 基因与基因组 • DNA复制与修复 • RNA转录与加工 • 蛋白质翻译与修饰 • 基因表达调控 • 分子生物学技术与应用
01 分子生物学概述
分子生物学的定义与发展
分子生物学的定义
在分子水平上研究生物大分子的 结构和功能,以揭示生命现象本 质的科学。
重组DNA技术的应用
阐述重组DNA技术在基因克隆、基因表达、基因治疗等领域的应 用。
重组DNA技术的优缺点
分析重组DNA技术的优点,如高效、精确等,同时也指出其存在 的缺点,如安全性问题等。
PCR技术原理,包括引物设计、DNA聚合酶的作用 等。
PCR技术的应用
基因表达的调控
研究基因表达在时间和空间上的调控机制, 包括转录因子、表观遗传学等。
分子生物学与生物学的关系
分子生物学是生物学的重要分支
01
分子生物学研究生物大分子的结构和功能,是揭示生命现象本
质的基础科学。
分子生物学推动生物学的发展
02
随着分子生物学理论和技术的不断发展,生物学的研究领域不
断拓宽,研究水平不断提高。
microRNA调控
一类非编码小RNA分子,通过与靶mRNA结合抑制其翻译或促进 其降解来调节基因表达。
基因表达调控的生物学意义
适应环境变化
细胞分化和发育
能量代谢平衡
响应生物和非生物胁迫
基因表达调控使生物能够根据 不同环境条件调整其生理和代 谢状态,以维持生存和繁殖。
在细胞分化和发育过程中,基 因表达调控确保不同类型细胞 具有独特的表型和功能。
列举PCR技术在DNA片段扩增、基因突变分析、基因表达分析等领 域的应用。
目录
• 分子生物学概述 • 基因与基因组 • DNA复制与修复 • RNA转录与加工 • 蛋白质翻译与修饰 • 基因表达调控 • 分子生物学技术与应用
01 分子生物学概述
分子生物学的定义与发展
分子生物学的定义
在分子水平上研究生物大分子的 结构和功能,以揭示生命现象本 质的科学。
重组DNA技术的应用
阐述重组DNA技术在基因克隆、基因表达、基因治疗等领域的应 用。
重组DNA技术的优缺点
分析重组DNA技术的优点,如高效、精确等,同时也指出其存在 的缺点,如安全性问题等。
PCR技术原理,包括引物设计、DNA聚合酶的作用 等。
PCR技术的应用
基因表达的调控
研究基因表达在时间和空间上的调控机制, 包括转录因子、表观遗传学等。
分子生物学与生物学的关系
分子生物学是生物学的重要分支
01
分子生物学研究生物大分子的结构和功能,是揭示生命现象本
质的基础科学。
分子生物学推动生物学的发展
02
随着分子生物学理论和技术的不断发展,生物学的研究领域不
断拓宽,研究水平不断提高。
microRNA调控
一类非编码小RNA分子,通过与靶mRNA结合抑制其翻译或促进 其降解来调节基因表达。
基因表达调控的生物学意义
适应环境变化
细胞分化和发育
能量代谢平衡
响应生物和非生物胁迫
基因表达调控使生物能够根据 不同环境条件调整其生理和代 谢状态,以维持生存和繁殖。
在细胞分化和发育过程中,基 因表达调控确保不同类型细胞 具有独特的表型和功能。
列举PCR技术在DNA片段扩增、基因突变分析、基因表达分析等领 域的应用。
分子生物学基础PPT第四章
第二节 启动子与转录的起始
3.真核生物启动子对转录的影响 TATA区和其他两个UPE区的作用有所不同(图4-5)。 前者的主要作用是使转录精确地起始,如果除去TATA区或 进行碱基突变,转录产物下降的相对值不如CAAT区或GC区 突变后明显,但发现所获得的RNA产物起始点不固定。研 究SV40晚期基因启动子发现上游激活区的存在与否,对该 启动子的生物活性有着根本性的影响。若将该基因5′上 游–21-–47核苷酸序列切除,基因完全不表达(图4-6)。
分子生物学基础
遗传信息的转录—从 第四章 遗传信息的转录 从DNA到RNA 到
第一节 RNA转录的概述
一、RNA转录的特点 RNA转录的特点 在DNA指导下RNA的合成称为转录。RNA链的转 录起始于DNA模板的一个特定起点,并在特定的终 点终止,此转录区域称为转录单位。一个转录单 位可以是一个基因或多个基因。基因的转录是一 种有选择性的过程,随着细胞的不同生长发育阶 段和细胞内外条件的改变将转录不同的基因。转 录起始主要由DNA分子上的启动子(promoter)控 制,而控制终止的部位称为终止子(teminator)。 典型的转录单位结构如图4-1。
第四节
转录后加工
图4-12 真核生物mRNA5′–端帽结构
第四节
2.3′–端加尾
转录后加工
真核生物成熟的mRNA 3′–端通常都有100~200个腺苷 酸残基,构成多聚腺苷酸(polyA)的尾巴。通过研究发 现,DNA序列中没有多聚T的序列,由此说明了3′尾巴 polyA是在转录后加上的。研究发现,它还是多聚腺苷酸 化的信号,该序列AAUAAA,因为切除该保守序列,3′–端 则不能进行切除,也不能形成polyA尾巴。3′–端polyA尾 的形成见图4-13。
2024年《分子生物学》全册配套完整教学课件pptx
2024/2/29
运输功能
如载体蛋白,血红蛋白等 ,在生物体内运输各种物 质。
免疫功能
如抗体蛋白,参与生物体 的免疫应答。
18
蛋白质的功能与调控
调节功能
如激素,生长因子等,调节生物 体的生长发育和代谢过程。
2024/2/29
储存功能
如植物种子中的贮藏蛋白,动物体 内的肌红蛋白等,储存能量和营养 物质。
个性化医疗
根据患者的基因信息,制定个 性化的治疗方案。
药物基因组学
预测患者对药物的反应和副作 用,指导合理用药。
30
基因治疗的原理与应用
基因治疗的原理
通过导入正常基因或修复缺陷基因, 从而治疗由基因突变引起的疾病。
遗传性疾病的治疗
如视网膜色素变性、腺苷脱氨酶缺乏 症等。
2024/2/29
癌症治疗
利用基因编辑技术,修复或敲除癌症 相关基因,抑制肿瘤生长。
基因表达调控的层次
基因表达调控可分为转录前调控、转录水平调控、转录后调控和翻 译水平调控等多个层次。
基因表达调控的意义
基因表达调控对于生物体的生长发育、代谢、免疫应答等生理过程具 有重要意义,同时也是疾病发生发展的重要因素。
2024/2/29
22
原核生物的基因表达调控
1 2 3
原核生物基因表达调控的特点
26
DNA损伤的修复机制
直接修复
针对某些简单的DNA损伤,如碱 基错配,可通过特定的酶直接进行 修复。
碱基切除修复
通过识别并切除受损碱基,再合成 新的DNA片段进行修复。
2024/2/29
核苷酸切除修复
针对较严重的DNA损伤,如嘧啶 二聚体,通过切除一段包含受损部
运输功能
如载体蛋白,血红蛋白等 ,在生物体内运输各种物 质。
免疫功能
如抗体蛋白,参与生物体 的免疫应答。
18
蛋白质的功能与调控
调节功能
如激素,生长因子等,调节生物 体的生长发育和代谢过程。
2024/2/29
储存功能
如植物种子中的贮藏蛋白,动物体 内的肌红蛋白等,储存能量和营养 物质。
个性化医疗
根据患者的基因信息,制定个 性化的治疗方案。
药物基因组学
预测患者对药物的反应和副作 用,指导合理用药。
30
基因治疗的原理与应用
基因治疗的原理
通过导入正常基因或修复缺陷基因, 从而治疗由基因突变引起的疾病。
遗传性疾病的治疗
如视网膜色素变性、腺苷脱氨酶缺乏 症等。
2024/2/29
癌症治疗
利用基因编辑技术,修复或敲除癌症 相关基因,抑制肿瘤生长。
基因表达调控的层次
基因表达调控可分为转录前调控、转录水平调控、转录后调控和翻 译水平调控等多个层次。
基因表达调控的意义
基因表达调控对于生物体的生长发育、代谢、免疫应答等生理过程具 有重要意义,同时也是疾病发生发展的重要因素。
2024/2/29
22
原核生物的基因表达调控
1 2 3
原核生物基因表达调控的特点
26
DNA损伤的修复机制
直接修复
针对某些简单的DNA损伤,如碱 基错配,可通过特定的酶直接进行 修复。
碱基切除修复
通过识别并切除受损碱基,再合成 新的DNA片段进行修复。
2024/2/29
核苷酸切除修复
针对较严重的DNA损伤,如嘧啶 二聚体,通过切除一段包含受损部
分子生物学第九章 RNA转录后的剪接与加工
真核tRNA的基因和原核不同: (1)真核的前体分子tRNA是单顺反子,但成 簇排列,基因间有间隔区; (2)真核tRNA基因一般都比原核tRNA基因多 得多,如酵母约有400个tRNA基因; (3) 5′端单磷酸核苷酸,表明已被加工过; (4) tRNA的前体分子中含有内含子。
真核tRNA内含子切除的特点:
tRNAIle tRNAAla
tRNAAsp tRNATrp
16S RNaseIII RNaseIII
23S
5S RNaseIII
RNaseIII
RNaseR
RNaseR
RNaseR
RNaseR RNaseR
图 13- rRNA 的加工
真核tRNA内含子的特点:
①位置相同,都在反密码子环的下游; ②不同tRNA的内含子长度和序列各异; ③外显子和内含子交界处无保守序列; ④内含子的剪切是依靠RNase异体催化; ⑤内含子和反密码子配对形成茎环。 有何意义?
转录后的加工(post transcriptional modification) (1)减少部分片段:如切除5′端前导序列, 3′端拖尾序列和中部的内含子; (2)增加部分片段:5′加帽,3′加poly(A), 归巢和通过编辑加入一些碱基; (3)修饰:对某些碱基进行甲基化等。
原核生物RNA的转录后加工
hnRNA的结构的特点
(1)5′端有帽结构;
(2) 3′端有poly(A)尾巴; (3)帽结构后有3个寡聚U区,每个长约30nt;
(4)有重复序列,位于寡聚U区后面;
(5)有茎环结构,可能分布于编码区(非重复
序列)的两侧; (6)非重复序列中有内含子区。
5’m7pppNmNUUUU 寡聚 U 区 ds 单一序列 ds RNA RNA
真核tRNA内含子切除的特点:
tRNAIle tRNAAla
tRNAAsp tRNATrp
16S RNaseIII RNaseIII
23S
5S RNaseIII
RNaseIII
RNaseR
RNaseR
RNaseR
RNaseR RNaseR
图 13- rRNA 的加工
真核tRNA内含子的特点:
①位置相同,都在反密码子环的下游; ②不同tRNA的内含子长度和序列各异; ③外显子和内含子交界处无保守序列; ④内含子的剪切是依靠RNase异体催化; ⑤内含子和反密码子配对形成茎环。 有何意义?
转录后的加工(post transcriptional modification) (1)减少部分片段:如切除5′端前导序列, 3′端拖尾序列和中部的内含子; (2)增加部分片段:5′加帽,3′加poly(A), 归巢和通过编辑加入一些碱基; (3)修饰:对某些碱基进行甲基化等。
原核生物RNA的转录后加工
hnRNA的结构的特点
(1)5′端有帽结构;
(2) 3′端有poly(A)尾巴; (3)帽结构后有3个寡聚U区,每个长约30nt;
(4)有重复序列,位于寡聚U区后面;
(5)有茎环结构,可能分布于编码区(非重复
序列)的两侧; (6)非重复序列中有内含子区。
5’m7pppNmNUUUU 寡聚 U 区 ds 单一序列 ds RNA RNA
分子生物学-转录后加工
小鼠免疫球蛋白μ重链基因可变剪接
14-14
可变剪接的多种模式
• 转录物可以按不同的模式进行可变剪接,产生具有多样性的转录本, 许多基因有2种以上的剪接方式,有的甚至达上千种。
• 几种常见的选择性剪接模式: • 1)不同启动子;2)忽略外显子;3)5’选择性剪接;4)3’选择性 剪接;5)保留内含子;6)多腺苷酸化
• 如果装配在snRNP的剪接因 子识别外显子,则称为外显子 界定(exon definition)
• 如果装配在snRNP的剪接因 子识别内含子,则称为内含子 界定(intron definition)
• 通过外显子-内含子边界(剪 接位点)突变,可以分析外显 子-内含子的界定类型
14-12
RNA Pol II的CTD参与外显子界定
内含子类型
特征
剪接体内含子(spliceosomal introns)
细胞核,mRNA,由剪接体催化切除
tRNA内含子(tRNA introns)
细胞核或古菌tRNA基因,由蛋白催化切除
自切割I类内含子(self-splicing group I introns) 细胞器,由RNA催化切除
自切割II类内含子(self-splicing group II introns)细胞器,由RNA催化切除
• 如果在6个位点发生2个不同事件,将会产生26 = 64种结果
14-15
可变剪接示例:果蝇性别决定
• 果蝇的性别决定涉及sxl(sex lethal,性别致死)、 tra (transformer, 转换)和dsx(doublesex, 双性别)三个基因前体mRNA的可变剪接
• 这3个基因的剪接存在级联反应:sxl基因雌性特异性剪接可产生活性 蛋白,进一步增强sxl基因的雌性特异性剪接,同时引发tra基因的雌性 特异性剪接,再进一步引发dsx的雌性特异性剪接
分子生物学ppt课件完整版
肿瘤标志物
寻找和验证肿瘤特异性标志物,用于肿瘤的早期诊断、预后评估和 个性化治疗。
肿瘤免疫治疗
利用分子生物学技术,研究和开发肿瘤免疫治疗策略,如CAR-T细胞 疗法等。
免疫学中的分子生物学应用
免疫相关基因
研究免疫相关基因的突变、表达和调控,揭示免疫应答和免疫疾 病的分子机制。
疫苗研发
利用分子生物学技术,研究和开发新型疫苗,如mRNA疫苗、 DNA疫苗等。
03
DNA修复机制
当DNA受到损伤时,细胞会启动修复机制对损伤进行修复。常见的修
复方式包括直接修复、切除修复和重组修复等。这些修复机制能够确保
遗传信息的稳定性和准确性。
03
RNA的结构与功能
RNA的分子组成
核糖核苷酸
RNA的基本组成单位是核 糖核苷酸,由磷酸、核糖 和碱基组成。
碱基
RNA中的碱基主要有腺嘌 呤(A)、鸟嘌呤(G)、 胞嘧啶(C)和尿嘧啶(U )。
基因诊断与治疗
基因诊断
通过检测特定基因或基因突变来 预测或诊断疾病,如遗传性疾病
、癌症等。
基因治疗
通过修改或替换病变基因来治疗 疾病,如基因编辑技术CRISPR-
Cas9等。
个性化医疗
基于患者的基因组信息,制定个 性化的治疗方案,提高治疗效果
和减少副作用。
肿瘤分子生物学研究
肿瘤基因
研究肿瘤相关基因的突变、表达和调控,揭示肿瘤发生和发展的分 子机制。
分子生物学ppt课 件完整版
目 录
• 分子生物学概述 • DNA的结构与功能 • RNA的结构与功能 • 基因的表达与调控 • 分子生物学技术与方法 • 分子生物学在医学领域的应用
01
分子生物学概述
寻找和验证肿瘤特异性标志物,用于肿瘤的早期诊断、预后评估和 个性化治疗。
肿瘤免疫治疗
利用分子生物学技术,研究和开发肿瘤免疫治疗策略,如CAR-T细胞 疗法等。
免疫学中的分子生物学应用
免疫相关基因
研究免疫相关基因的突变、表达和调控,揭示免疫应答和免疫疾 病的分子机制。
疫苗研发
利用分子生物学技术,研究和开发新型疫苗,如mRNA疫苗、 DNA疫苗等。
03
DNA修复机制
当DNA受到损伤时,细胞会启动修复机制对损伤进行修复。常见的修
复方式包括直接修复、切除修复和重组修复等。这些修复机制能够确保
遗传信息的稳定性和准确性。
03
RNA的结构与功能
RNA的分子组成
核糖核苷酸
RNA的基本组成单位是核 糖核苷酸,由磷酸、核糖 和碱基组成。
碱基
RNA中的碱基主要有腺嘌 呤(A)、鸟嘌呤(G)、 胞嘧啶(C)和尿嘧啶(U )。
基因诊断与治疗
基因诊断
通过检测特定基因或基因突变来 预测或诊断疾病,如遗传性疾病
、癌症等。
基因治疗
通过修改或替换病变基因来治疗 疾病,如基因编辑技术CRISPR-
Cas9等。
个性化医疗
基于患者的基因组信息,制定个 性化的治疗方案,提高治疗效果
和减少副作用。
肿瘤分子生物学研究
肿瘤基因
研究肿瘤相关基因的突变、表达和调控,揭示肿瘤发生和发展的分 子机制。
分子生物学ppt课 件完整版
目 录
• 分子生物学概述 • DNA的结构与功能 • RNA的结构与功能 • 基因的表达与调控 • 分子生物学技术与方法 • 分子生物学在医学领域的应用
01
分子生物学概述
分子生物学课件--真核生物表达调控
(4)DNA拓扑结构变化 天然双链DNA的构象大多 是负性超螺旋。当基因活跃转录时,RNA聚合酶转 录方向前方DNA的构象是正性超螺旋,其后面的 DNA为负性超螺旋。正性超螺旋会拆散核小体,有 利于RNA聚合酶向前移动转录;而负性超螺旋则有 利于核小体的再形成。
(5)DNA碱基修饰变化:真核DNA中的胞嘧啶约有 5%被甲基化为5甲基胞嘧啶(5methylcytidine,m5C), 而活跃转录的DNA段落中胞嘧啶甲基化程度常较低。 这种甲基化最常发生在某些基因5′侧区的CpG序列中, 实验表明这段序列甲基化可使其后的基因不能转录。 甲基化可能阻碍转录因子与DNA特定部位的结合从而 影响转录。
分子生物学课件--真核生物表达 调控
1
一、转录前调控
1、DNA水平的调控:是真核生物发育调控的一种形式,它包括:基因
丢失、甲基化、扩增、重排、等方式。 (1) 基因丢失:目前认为这种调节方式主要是在较低等的真核生物中。如
马蛔虫,只有在生殖细胞核中保持个体发育的全部基因,而体细胞核 中却失去了一部分基因。在原生动物和昆虫中也有类似现象,体细胞 不具有全能性。高等生物没有发现类似的现象,可进行体细胞核移植。
③碱性-亮氨酸拉链(basic leucine zipper,bZIP)
这结构的特点是蛋白质分子的肽链上 每隔6个氨基酸就有一个亮氨酸残 基,结果就导致这些亮氨酸残基都 在α螺旋的同一个方向出现。两个 相同的结构的两排亮氨酸残基就能 以疏水键结合成二聚体,这二聚体 的另一端的肽段富含碱性氨基酸残 基,借其正电荷与DNA双螺旋链上 带负电荷的磷酸基团结合。若不形 成二聚体则对DNA的亲和结合力明 显降低。
(1) 启动子
真核启动子间不像原核那样有明显共同一致的序列,而且单靠RNA聚合 酶难以结合DNA而起动转录,而是需要多种蛋白质因子的相互协调作 用。
现代分子生物学(课堂PPT)
基因表达与疾病的关系
基因表达的异常与多种疾病的发生和发展密切相关,如癌症、遗传病等。因此,研究基因 表达的调控机制对于理解疾病的发生和治疗具有重要意义。
PART 03
DNA复制与修复
REPORTING
DNA复制的过程与特点
DNA复制的过程
起始、延伸、终止三个阶段,涉及多种蛋白质和酶的参与,确保 DNA的准确复制。
维持内环境稳定
基因表达调控有助于维持生物 体内环境的稳定,如血糖、血 压和免疫系统等。
响应生物信号
基因表达调控可以响应来自生 物体内部的信号,如激素和神 经递质等,从而调节生物体的
生理活动。
PART 06
分子生物学技术与应用
REPORTING
DNA重组技术
重组DNA技术的基本步骤
获取目的基因、构建基因表达载体、将目的基因导入受体细胞、 目的基因的检测与鉴定。
基因芯片技术及其应用
基因芯片技术的原理
将大量已知序列的基因片段固定在固相支持物上,与待测 样品进行杂交,通过检测杂交信号实现对基因表达的定量 分析。
常用的基因芯片技术
cDNA微阵列、寡核苷酸微阵列、蛋白质微阵列等。
基因芯片技术的应用
基因表达谱分析、基因突变检测、疾病诊断、药物筛选等 。
THANKS
表观遗传学调控
真核生物中还存在表观遗传学调控,如 DNA甲基化、组蛋白修饰和非编码RNA的 调控等。
基因表达调控的生物学意义
适应环境变化
基因表达调控使生物体能够适 应不同的环境条件,如温度、
光照、营养状况等。
细胞分化与发育
基因表达调控在细胞分化和发 育过程中起着关键作用,使不 同细胞具有不同的形态和功能 。
分子生物学发展
基因表达的异常与多种疾病的发生和发展密切相关,如癌症、遗传病等。因此,研究基因 表达的调控机制对于理解疾病的发生和治疗具有重要意义。
PART 03
DNA复制与修复
REPORTING
DNA复制的过程与特点
DNA复制的过程
起始、延伸、终止三个阶段,涉及多种蛋白质和酶的参与,确保 DNA的准确复制。
维持内环境稳定
基因表达调控有助于维持生物 体内环境的稳定,如血糖、血 压和免疫系统等。
响应生物信号
基因表达调控可以响应来自生 物体内部的信号,如激素和神 经递质等,从而调节生物体的
生理活动。
PART 06
分子生物学技术与应用
REPORTING
DNA重组技术
重组DNA技术的基本步骤
获取目的基因、构建基因表达载体、将目的基因导入受体细胞、 目的基因的检测与鉴定。
基因芯片技术及其应用
基因芯片技术的原理
将大量已知序列的基因片段固定在固相支持物上,与待测 样品进行杂交,通过检测杂交信号实现对基因表达的定量 分析。
常用的基因芯片技术
cDNA微阵列、寡核苷酸微阵列、蛋白质微阵列等。
基因芯片技术的应用
基因表达谱分析、基因突变检测、疾病诊断、药物筛选等 。
THANKS
表观遗传学调控
真核生物中还存在表观遗传学调控,如 DNA甲基化、组蛋白修饰和非编码RNA的 调控等。
基因表达调控的生物学意义
适应环境变化
基因表达调控使生物体能够适 应不同的环境条件,如温度、
光照、营养状况等。
细胞分化与发育
基因表达调控在细胞分化和发 育过程中起着关键作用,使不 同细胞具有不同的形态和功能 。
分子生物学发展
《分子生物学全套》ppt课件
分子生物学定义
分子生物学是一门从子水平研究生 物大分子的结构和功能的科学,主要 关注DNA、RNA和蛋白质等生物大 分子的复制、转录、翻译和调控等过 程。
分子生物学特点
以分子为研究对象,阐明生命现象的 本质;与多学科交叉融合,推动生命 科学的发展;实验技术手段不断更新 ,提高研究效率和准确性。
分子生物学发展历程
分子生物学研究内容及方法
研究内容
包括基因和基因组的结构与功能、DNA损伤与修复、基因表达的调控、蛋白质 组学的研究以及疾病产生的分子基础等。
研究方法
包括基因克隆与表达、蛋白质分离与纯化、PCR技术、基因敲除与敲入、高通 量测序技术、生物信息学分析等。这些方法的应用使得分子生物学研究更加深 入和广泛。
阔前景。
下一代测序技术在分子生物学中应用
下一代测序技术原理
基于大规模并行测序的原理,一次可对数百万至数十亿个DNA分 子进行测序。
测序数据分析
包括序列比对、变异检测、基因表达量分析等,以揭示基因组的结 构和功能。
下一代测序技术的应用
在疾病诊断、个性化医疗、物种鉴定和进化生物学等领域发挥重要 作用。
非编码RNA与疾病关系
非编码RNA异常表达与多种疾病相关,如肿瘤、心血管疾 病等,可作为疾病诊断和治疗的新靶点。
非编码RNA研究前景
随着高通量测序技术和生物信息学发展,非编码RNA研究 将更加深入,为疾病防治提供新思路和新方法。
合成生物学在分子生物学中应用前景
合成生物学概念及研究范畴
合成生物学是一门新兴交叉学科,旨在通过设计和构造新的生物部件、系统和机器来理解 和操控自然生物系统。
RNA产物。
影响因素
包括DNA模板的序列和 结构、RNA聚合酶的活 性和选择性、转录因子
分子生物学是一门从子水平研究生 物大分子的结构和功能的科学,主要 关注DNA、RNA和蛋白质等生物大 分子的复制、转录、翻译和调控等过 程。
分子生物学特点
以分子为研究对象,阐明生命现象的 本质;与多学科交叉融合,推动生命 科学的发展;实验技术手段不断更新 ,提高研究效率和准确性。
分子生物学发展历程
分子生物学研究内容及方法
研究内容
包括基因和基因组的结构与功能、DNA损伤与修复、基因表达的调控、蛋白质 组学的研究以及疾病产生的分子基础等。
研究方法
包括基因克隆与表达、蛋白质分离与纯化、PCR技术、基因敲除与敲入、高通 量测序技术、生物信息学分析等。这些方法的应用使得分子生物学研究更加深 入和广泛。
阔前景。
下一代测序技术在分子生物学中应用
下一代测序技术原理
基于大规模并行测序的原理,一次可对数百万至数十亿个DNA分 子进行测序。
测序数据分析
包括序列比对、变异检测、基因表达量分析等,以揭示基因组的结 构和功能。
下一代测序技术的应用
在疾病诊断、个性化医疗、物种鉴定和进化生物学等领域发挥重要 作用。
非编码RNA与疾病关系
非编码RNA异常表达与多种疾病相关,如肿瘤、心血管疾 病等,可作为疾病诊断和治疗的新靶点。
非编码RNA研究前景
随着高通量测序技术和生物信息学发展,非编码RNA研究 将更加深入,为疾病防治提供新思路和新方法。
合成生物学在分子生物学中应用前景
合成生物学概念及研究范畴
合成生物学是一门新兴交叉学科,旨在通过设计和构造新的生物部件、系统和机器来理解 和操控自然生物系统。
RNA产物。
影响因素
包括DNA模板的序列和 结构、RNA聚合酶的活 性和选择性、转录因子
《现代分子生物学》第五章 3 真核生物的转录后加工
真核细胞中rRNA的加工途径 真核细胞中rRNA的加工途径
(1) 切除5′端的前导序列; (2) 从41S的中间产物中先切下18S的片段。 (3) 部分退火,形成发夹结构; (4) 最后修正。
真核细胞中rRNA的加工 真核细胞中rRNA的加工
目前还不清楚45S前体在剪切位点断裂后是否 就产生成熟的末端,还是要经进一步的加工。 整个加工过程需要蛋白质的参与,可能形成核 蛋白体的形式。 rRNA的加工过程还需要snoRNA (small nucleolar RNAs )的参与。 真核生物的5S rRNA是和tRNA转录在一起的, 经加工处理后成为成熟的5S rRNA。
真核细胞核mRNA的加帽反应 真核细胞核 的加帽反应
不同真核生物的mRNA可有不同的帽子结构, 同一种真核生物的mRNA也常有不同的帽子 结构。 帽子结构的作用: 1.为核糖体识别RNA提供信号 2.增加mRNA的稳定性 3.为mRNA向胞质的运输提供信号 4 与某些RNA病毒的正链RNA的合成有关。
各种参与剪接的成分形成一个剪接体系, 称为剪接体(spliceosome)。该体系由 几种snRNP和大量的其他的蛋白质分子 组成,这些蛋白质分子称为剪接因子, 估计有40多种。 剪接点和分支点序列由剪接体识别, snRNA和蛋白质都参与了识别,特别是 snRNA之间以及与mRNA间的碱基配对 起重要作用。
1. rRNA的转录后加工 rRNA的转录后加工
真核生物有4种rRNA,即5.8S rRNA、18S rRNA、28S rRNA和5S rRNA。其中前三者 的基因组成一个转录单位,产生47S的前 体,并很快转变成45S前体。 45S前体上有许多甲基化的位点,在转录 过程中或转录后被甲基化。甲基基团主要 是加在核糖上。甲基化是45S前体最终成 为成熟rRNA区域的标志。
第四章-细胞的复制与转录PPT课件
奇迹是怎样创造的?
•3
第四节 遗传物质的复制
replication of the genomic materials 一、DNA 复制过程及其特征 二、DNA 复制的有关酶类和蛋白质
•4
一、DNA 复制过程及其特征
• 半保留复制 • 复制从复制起始点开始 • 复制叉、双向复制和复制泡 • 复制叉的不对称性:前导链、后随链和
配校读
DNA连接酶
连接岗崎片段3‘-OH与5’-P •36
第四章 细胞核nucleus
第一节 核被膜 第二节 染色质和染色体 第三节 核仁 第四节 遗传物质的复制 第五节 遗传信息的表达
•37
分化
受精卵→胚胎干细胞 →→→ 各种细胞
分化:基因选择性表达的结果
红细胞:专一表达血红蛋白
分化
•38
一个人的两种细胞:源于同一个细胞(同一个受精卵),携 带完全相同的遗传信息却有着截然不同的形态和功能。
点向两个方向移动
•15
3.复制叉、双向复制和复制泡 (replication forks,
two-direction replication & replication bubbles)
复制叉: 已经打开的2条单链与未解开的双链间形成•1Y6 形。
复制从复制起始点 开始向两个方向推进, 形成两个反向的复制叉。
由RNA聚合酶转录
RNA聚合酶:催化这一合成反应,所以又叫转录酶。作用
是解开DNA双链,以其中的反基因链为模板,将4种三磷酸
核苷酸聚合成与模板互补的RNA链。
•51
RNA聚合酶催化的细菌基因的转录:聚合酶遇到启动子序列 就与之结合,打开双链开始转录,直至遇到终止子.•卡52 通
•3
第四节 遗传物质的复制
replication of the genomic materials 一、DNA 复制过程及其特征 二、DNA 复制的有关酶类和蛋白质
•4
一、DNA 复制过程及其特征
• 半保留复制 • 复制从复制起始点开始 • 复制叉、双向复制和复制泡 • 复制叉的不对称性:前导链、后随链和
配校读
DNA连接酶
连接岗崎片段3‘-OH与5’-P •36
第四章 细胞核nucleus
第一节 核被膜 第二节 染色质和染色体 第三节 核仁 第四节 遗传物质的复制 第五节 遗传信息的表达
•37
分化
受精卵→胚胎干细胞 →→→ 各种细胞
分化:基因选择性表达的结果
红细胞:专一表达血红蛋白
分化
•38
一个人的两种细胞:源于同一个细胞(同一个受精卵),携 带完全相同的遗传信息却有着截然不同的形态和功能。
点向两个方向移动
•15
3.复制叉、双向复制和复制泡 (replication forks,
two-direction replication & replication bubbles)
复制叉: 已经打开的2条单链与未解开的双链间形成•1Y6 形。
复制从复制起始点 开始向两个方向推进, 形成两个反向的复制叉。
由RNA聚合酶转录
RNA聚合酶:催化这一合成反应,所以又叫转录酶。作用
是解开DNA双链,以其中的反基因链为模板,将4种三磷酸
核苷酸聚合成与模板互补的RNA链。
•51
RNA聚合酶催化的细菌基因的转录:聚合酶遇到启动子序列 就与之结合,打开双链开始转录,直至遇到终止子.•卡52 通
医学分子生物学PPT课件
基因组特点
基因组具有高度的复杂性 和多样性,同时不同生物 之间的基因组存在显著的 差异。
基因表达调控机制
基因表达概念
基因表达是指基因转录成mRNA并翻 译成蛋白质的过程。
表观遗传学调控
表观遗传学调控是指通过DNA甲基化、 组蛋白修饰等方式对基因表达进行调 控,但不改变DNA序列本身。
基因表达调控
生物体通过多种机制对基因表达进行 精确调控,包括转录水平调控、转录 后水平调控和翻译水平调控等。
05
蛋白质组学研究方法及应 用
蛋白质组学概念及研究内容
蛋白质组学定义
研究生物体或特定细胞类型中所有蛋 白质的科学,包括蛋白质表达、结构、 功能和相互作用等方面。
蛋白质组学研究内容
包括蛋白质表达谱、蛋白质翻译后修饰、 蛋白质相互作用网络等。
蛋白质分离纯化技术
双向凝胶电泳
利用蛋白质的等电点和分子量差 异进行分离,具有高分辨率和高
数据库资源搜索策略
数据库类型
包括核酸序列数据库、蛋白质序列 数据库、结构数据库、基因组数据 库等。
搜索策略
根据研究目的和数据类型,选择合 适的数据库和搜索工具,制定有效 的搜索策略,以获取准确、全面的 数据资源。
序列比对和注释方法
序列比对
通过比较两个或多个生物分子序列的相似性和差异性,来推断它们的结构、功 能和进化关系。常用的序列比对方法包括全局比对和局部比对。
程。
microRNA
通过与mRNA结合,抑 制翻译过程或促进 mRNA降解。
表观遗传调控
通过DNA甲基化、组蛋 白修饰等方式,调控基
因表达。
异常情况对生理功能影响
1 2
转录和翻译异常 导致蛋白质合成异常,影响细胞功能和代谢。
--分子生物学1PPT课件
模板: 亲代DNA单链 材料: dNTP 酶: DNA polymerase 等 方式: 半保留复制
不连续复制 符合碱基配对原则 方向: 模板3’-5’ 新链5’-3’ 引物: 需要
DNA sequencing
DNA 单链模板 dNTP 荧光标记的ddNTP DNA pol. 引物
DNA测序图谱
UAU 29.8(22) UAC 23.0(17) UAA 5.4( 4) UAG 0.0( 0) CAU 4.1( 3) CAC 0.0( 0) CAA 1.4( 1) CAG 13.5(10) AAU 59.5(44) AAC 32.5(24) AAA 46.0(34) AAG 18.9(14) GAU 33.8(25) GAC 2.7( 2) GAA 29.8(22) GAG 14.9(11)
End
Tail
3
3’-端非翻译区
从mRNA 5-侧起始密码子AUG到3-侧终止密 码子之间的核苷酸序列,称为开放阅读框架 (open reading frame, ORF)。
Reverse transcription
( RT,反转录)
模板: RNA单链 材料: dNTP 酶: Reverse transcriptase 方式: 符合碱基配对原则
现代分子生物学
Modern Molecular Biology
王艳林 fzswangyl@
Office: S-2706
1. 基因
遗传学中的一个功能单位; 染色体DNA上的一个功能片段; 指导蛋白多肽或RNA分子合成的模板; 结构上含启动子,转录调控区,编码区和转录终止序列等。
OD260/OD280 比值可用于分析核酸的纯度
纯DNA溶液: OD260/OD280 为1.8 纯RNA溶液: OD260/OD280 为2.0
不连续复制 符合碱基配对原则 方向: 模板3’-5’ 新链5’-3’ 引物: 需要
DNA sequencing
DNA 单链模板 dNTP 荧光标记的ddNTP DNA pol. 引物
DNA测序图谱
UAU 29.8(22) UAC 23.0(17) UAA 5.4( 4) UAG 0.0( 0) CAU 4.1( 3) CAC 0.0( 0) CAA 1.4( 1) CAG 13.5(10) AAU 59.5(44) AAC 32.5(24) AAA 46.0(34) AAG 18.9(14) GAU 33.8(25) GAC 2.7( 2) GAA 29.8(22) GAG 14.9(11)
End
Tail
3
3’-端非翻译区
从mRNA 5-侧起始密码子AUG到3-侧终止密 码子之间的核苷酸序列,称为开放阅读框架 (open reading frame, ORF)。
Reverse transcription
( RT,反转录)
模板: RNA单链 材料: dNTP 酶: Reverse transcriptase 方式: 符合碱基配对原则
现代分子生物学
Modern Molecular Biology
王艳林 fzswangyl@
Office: S-2706
1. 基因
遗传学中的一个功能单位; 染色体DNA上的一个功能片段; 指导蛋白多肽或RNA分子合成的模板; 结构上含启动子,转录调控区,编码区和转录终止序列等。
OD260/OD280 比值可用于分析核酸的纯度
纯DNA溶液: OD260/OD280 为1.8 纯RNA溶液: OD260/OD280 为2.0
第06章RNA转录与转录后加工
调控序列
5 3
结构基因
3 5
RNA-pol
RNA聚合酶结合模板DNA的部位,称为启 动子(promoter)。
RNA聚合酶全酶在转录起始区的结合
RNA聚合 酶保护法
目录
RNA聚合酶保护区 结构基因
5 3 5 3 -35 区 TTGACA AA C T G T RNA-pol辨认位点 (recognition site) 开始转录 -10 区 T A T A A T Pu A T A T T A Py (Pribnow box) 3 5 3 5
结构基因
5
编码链 模板链
转录方向
模板链
3
3
编码链
5
转录方向
不对称转录(asymmetric transcription)
• 在DNA分子双链上某一区段,一股链用作 模板指引转录,另一股链不转录 ; • 模板链并非永远在同一条单链上。
二、RNA聚合酶
(一)原核生物的RNA聚合酶
亚基 分子量 36512 150618 155613 70263 功 能 决定哪些基因被转录 催化功能 结合DNA模板 辨认起始点
4. mRNA的剪接
—— 除去hnRNA中的内含子,将外显子连接。 •snRNP与hnRNA结合成为并接体 ①
目录
外显子1
内含子 GpU
外显子2
UpA •剪接过程的二次转酯反应
pG-OH (ppG-OH, pppG-OH)
(twice transesterification)第一次转酯反应
U-OH
ⅡH
TBP POL-TAF Ⅱ TFⅡFTATA ⅡB ⅡA
CTD- P
PIC组装完成,TFⅡH使CTD磷酸化
5 3
结构基因
3 5
RNA-pol
RNA聚合酶结合模板DNA的部位,称为启 动子(promoter)。
RNA聚合酶全酶在转录起始区的结合
RNA聚合 酶保护法
目录
RNA聚合酶保护区 结构基因
5 3 5 3 -35 区 TTGACA AA C T G T RNA-pol辨认位点 (recognition site) 开始转录 -10 区 T A T A A T Pu A T A T T A Py (Pribnow box) 3 5 3 5
结构基因
5
编码链 模板链
转录方向
模板链
3
3
编码链
5
转录方向
不对称转录(asymmetric transcription)
• 在DNA分子双链上某一区段,一股链用作 模板指引转录,另一股链不转录 ; • 模板链并非永远在同一条单链上。
二、RNA聚合酶
(一)原核生物的RNA聚合酶
亚基 分子量 36512 150618 155613 70263 功 能 决定哪些基因被转录 催化功能 结合DNA模板 辨认起始点
4. mRNA的剪接
—— 除去hnRNA中的内含子,将外显子连接。 •snRNP与hnRNA结合成为并接体 ①
目录
外显子1
内含子 GpU
外显子2
UpA •剪接过程的二次转酯反应
pG-OH (ppG-OH, pppG-OH)
(twice transesterification)第一次转酯反应
U-OH
ⅡH
TBP POL-TAF Ⅱ TFⅡFTATA ⅡB ⅡA
CTD- P
PIC组装完成,TFⅡH使CTD磷酸化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原核 DNA
ABC
P 转录
真核
DNA P A P B P C
转录
mRNA A B C
mRNA
A
B
C
• 真核细胞转录和翻译在时间上和空间上都是分 开的,转录在细胞核,翻译在细胞质。
• 真核细胞RNApol高度分工
• 启动子更复杂和更多样性,不同的RNA聚合酶 有不同的启动子
• 真核生物转录需要许多转录因子(transcription factor,TF)的参与。
不依赖ρ因子的终止子: E.coli有两类
依赖于ρ因子的终止子
不依赖ρ因子的终止子:
• 简单终止子,又称内在终止子 (Intrinsic terminator)
• 转录终止不依赖任何辅助因子。 而依靠转录产物形成特殊的茎 环二级结构
具有茎环结构
•有茎环结构,富含GC •茎环结构后有寡聚尿苷
依赖ρ因子的终止子 (rho-dependent terminators )
• different genes may use different strands as template
(二)原核生物RNA聚合酶
DNA指导的RNA聚合酶 DNA dependent RNA polymerase(DDRP)
E.coli RNA聚合酶
全酶 (holoenzyme):
β’
α2β’ σ
模板的识别
启动子(promoter):RNA聚合酶识别,结合并 开始转录的一段DNA序列。
-35序列
TTGACA
-10序列
TATAAT
转录起 始位点
五种不同启动子的共同顺序
箭头表示突变,向上表示增加转录水平,向下表示降低转录水平
提供RNA聚合酶 识别信号
有助于DNA 局部双链解开
σ因子对RNA聚合酶与DNA结合的影响
2020
分子生物学--转录与转录后加工课
转录和DNA复制的区别
Template(模板)
• 模板链(template strand):反义链(anti-sense strand) • 非模板链(non- template strand):编码链(coding strand),
有意义链(sense strand)
穷追(Hot pursuit) 模型
通读
• 通读(read-through): 某些因子可使酶越过 终止子继续转录。
• 抗终止因子(antitermination factor): 引起抗终止作用的蛋 白质。
• 常见于某些噬菌体的 时序控制
(四)真核生物转录特点
• 典型的真核细胞转录பைடு நூலகம்物是单顺反子mRNA
α
α
σ
核心酶 (core enzyme):
α2β’
core enzyme
细菌中单一类型的RNA聚合酶负责合成所有的RNA。
利用SDS-PAGE从E.coli RNA聚合酶中分离各个亚基
亚 基因 分子量 数
基
(kD) 目
功能
α rpo 40 2 酶的装配,与启动子上游元件及
A
活化因子结合
β rpo 150 1 结合底物,催化磷酸二脂键形成 B
β’ rpo 160 1 C
结合DNA模板
σ rpo 32-90 1 识别启动子,促进转录起始 D
ω
9
未知
σ因子的结构
σ70因子的一级结构
σ因子与启动子的特异性相互作用
E.coli与枯草杆菌各的σ因子同源区
结合核心酶后
(三)转录过程
Start point
promoter
terminator
σ因子使RNA pol特异性 的识别启动子
σ因子的更替可控制转录起始
转录的起始
转录的延伸
• RNA链的合成方向5′→3′
σ循环:RNA聚合酶与启动子结合,使DNA局部熔 解,当转录延伸时, σ因子与核心酶分离,与其它 新的核心酶结合,起始新的转录事件.
转录的终止
终止子( terminator ): 提供终止信号的DNA序列。
• 真核基因DNA的顺式作用元件比原核复杂得多
• 真核生物的转录调控以正调控为主。
转录因子(transcription factors)
Definition:
转录起始所需要的,而非RNA聚合酶 本身组分的任何蛋白质
转录因子(transcription factors)
• Functions:
– Binding to DNA – Recognizing another factor – Recognizing RNA Pol – Incorporating into initiation complex
转录因子(transcription factors)
Classification:
普遍性转录因子:使RNA聚合酶结合到启动子上, 形成前起始复合物。其作用相对较弱,仅在 本底水平上支持转录并实施最小程度的调控。 又称通用因子
转录调控因子:通过与启动子及增强子等调控元件结合 而调控转录活性的蛋白因子 包括上游因子和可诱导因子
转录因子(transcription factors)
通用因子
是在所有启动子的RNA 合成中都是必需的。
(General factor)
上游因子
是能够识别并结合转录起始位点上游的特异
(Upstream factor) 性短序列的DNA 结合蛋白。普遍存在,且
活性不被调控。
可诱导因子 在特定的时间或特定的组织被激活或合成, (Inducible factor) 能控制转录在特定的时间和地点进行的一
类因子。
顺式作用元件(Cis-acting elements)
Definition:
指与基因 表达调控相关、能够被调控蛋白 特异性识别和结合的特异DNA序列。 包括启动子、增强子,负调控元件等
反式作用因子(Trans-acting factors)
Definition:
指真核细胞内通过与 顺式作用元件相互作用 而调节基因转录活性的蛋白质因子。
transcribed region
-35 -10 –1 +1 +10 +20
upstream downstream
1. template recognition(模板的识别) 2. Initiation(起始) 3. elongation(延伸) 4.termination(终止)
原 核 生 物 转 录 过 程
(五)真核生物基因转录起始的 几种研究方法
测定转录起点的方法
S1核酸酶图谱技术 引物延伸法
1. S1核酸酶图谱技术