初中数学复习资料大全(值得收藏)
(完整版) 初中数学必背知识点总结
(完整版) 初中数学必背知识点总结初中数学必背知识点总结(完整版)
初中数学是建立中学数学基础的重要阶段,掌握必背知识点对学生的数学研究起到关键性的作用。
以下是初中数学的必背知识点总结。
代数与函数
- 一次函数和二次函数的基本性质
- 幂的运算规律
- 根式的求值及简化
- 四则运算的规则与性质
- 方程与不等式的解法及应用
- 比例与相似的概念与计算
- 函数的定义与性质
几何
- 图形的基本要素和表示方法
- 二维图形的性质、分类和计算
- 三维图形的性质、分类和计算
- 直线、角及其性质的研究
- 圆及其性质的研究
- 三角形及其性质的研究
- 相交线、平行线和垂线的研究
- 平面中的几何关系和判定
- 同位角、对顶角、全等三角形的性质- 平行四边形和梯形的性质
概率与统计
- 实际问题中的统计方法和应用
- 随机事件及其概率计算
- 范围、均值和中位数的计算与分析- 正态分布及其应用
数据与函数
- 数据的收集、整理和表示方法
- 统计数据的分析和解读
- 相关性和回归线的探究
- 折线图、饼图和柱状图的构建与解读
- 函数的图像与性质
这些初中数学的必背知识点涵盖了代数、几何、概率与统计以及数据与函数等重要内内容,掌握这些知识点将为学生在数学学习中打下坚实的基础。
初中数学复习资料大全(值得收藏)
曲老师推荐中考数学专题之:中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0。
231,0。
737373…,,.无限不环循小数叫做无理数.如:π,-,0。
1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3。
14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0。
060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a +b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a +b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n .⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3。
14)º=1,(-)0=1.7、二次根式:①()2=a(a ≥0),②=丨a 丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a <0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x24b b ac-±-b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.1210、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值—最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根。
初中数学复习资料大全
1234⒉特殊的角: ⑴对顶角 ⑵余角 ⑶补角⒊线段定理垂直平分线 ①线段的垂直平分线上的点到这条线段的两个端点的距离相等。
梯形中位线 ①梯形的中位线平行于两底,并且等于两底和的一半。
平行线 ①内错角相等。
②同旁内角互补。
③同位角相等。
垂线段 ①点到直线的距离,垂线段最短。
角平分线 ①角平分线上的点到这个角的两边的距离相等。
⒋三角函数 ⑴ 锐角三角函数:正弦:sin A=∠A 的对边斜边 余弦:cos A=∠A 的邻边斜边 正切:tan A=∠A 的对边∠A 的邻边⑵互余两角的三角函数:①sin A=co s(90°-A) cos A=sin(90°-A) ②tan A=cot(90°-A) cot A=tan(90°-A)⑶同一锐角的三角函数关系: sin 2A+cos 2A=1 tanA ·cotA=1 tanA=sinAcosA⑷特殊角的三角函数值: 三角函数 sin αcos αtan α30°12 32 33 45°22 22 160°32123⑸对实际问题的处理:①坡度:Sin A 的值越大,梯子越陡;Cos A 的值越小,梯子越陡。
②方位角(上北下南左西右东)③俯、仰角:⒌四边形 ⑴面积公式:①梯形,上底加下底的和乘以高除以2 ②菱形,对角线乘以对角线除以2 ③平行四边行,底乘以高 ⑵判定 性质56789(2)原式=⎪⎪⎪⎪⎭⎫ ⎝⎛--+⋅⎪⎪⎪⎪⎭⎫⎝⎛-++21212121e e e e e e e e =11=⋅e e。
初中数学知识点大全
初中数学知识点大全一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值- 有理数的比较2. 整数- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 合并同类项- 代数式的简化4. 一元一次方程- 方程的建立与解法- 解方程的应用题5. 二元一次方程组- 代入法与消元法- 方程组的解的几何意义6. 不等式与不等式组- 不等式的建立与解集- 不等式的性质- 解一元一次不等式及不等式组7. 函数- 函数的概念- 一次函数与二次函数的图像与性质 - 函数的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的分类与性质- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与圆周角2. 几何图形的计算- 面积与体积的计算公式- 相似三角形的性质与应用- 勾股定理及其应用3. 变换几何- 平移、旋转、对称- 坐标系与图形的变换三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概率- 概率的计算- 用树状图解决简单概率问题四、综合应用题1. 数列的基本概念与简单计算2. 函数与方程在实际问题中的应用3. 几何知识解决实际问题4. 统计与概率在实际生活中的应用请注意,以上内容为初中数学知识点的概览,具体的教学和学习应结合教材和实际课程标准进行。
每个知识点都需要通过大量的练习来巩固和深化理解。
教师和学生可以根据实际情况调整学习的重点和难度,以达到最佳的学习效果。
初中数学总复习知识点整理(最全)
初中数学总复习知识点整理(最全)知识点分类
1. 整数
1.1 整数的概念
1.2 整数的进位与退位
1.3 整数的加减法
1.4 整数的乘法
1.5 整数的除法
2.分数
2.1 几个基本概念
2.2 分数的基本性质2.3 分数的加减法
2.4 分数的乘法
2.5 分数的除法
3. 小数
3.1 小数的概念
3.2 小数与分数的转化3.3 小数的加减法
3.4 小数的乘法
3.5 小数的除法
4.代数
4.1 代数式的概念和性质4.2 代数式的加减法
4.3 代数式的乘法
4.4 公式和方程
4.5 解一元一次方程
5. 轴对称与余弦定理5.1 轴对称的基本概念5.2 轴对称的性质
5.3 用轴对称解题
5.4 余弦定理的概念和性质
5.5 用余弦定理解题
6.勾股定理与三角函数
6.1 勾股定理的概念和性质
6.2 在平面直角坐标系中应用勾股定理6.3 用勾股定理解决实际问题
6.4 三角函数的定义和性质
6.5 用三角函数解决实际问题
知识点重点
- 整数的进位与退位
- 分数的加减法
- 代数式的乘法
- 解一元一次方程
- 用轴对称解题
- 用余弦定理解题
- 用勾股定理解决实际问题- 用三角函数解决实际问题知识点易错点
- 乘方与加减混淆
- 分数的错位相乘
- 代数式乘法计算错误
- 方程解错
- 三角函数概念混淆
- 勾股定理和余弦定理运用错误
- 计算精度不足
以上是初中数学的总复习知识点整理,祝您考试顺利!。
初中数学知识点大全(精选版)
初中数学知识点大全(精选版)1、一元一次方程根的情况△=b2-4ac当△〉0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△〈0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形.②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分.菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角.③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形.②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n—2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆.110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R—r﹤d﹤R+r(R﹥r)④两圆内切d=R—r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136、定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n—2)(k-2)=4144、弧长计算公式:L=n兀R/180145、扇形面积公式:S扇形=n兀R^2/360=LR/2146、内公切线长= d—(R—r) 外公切线长= d—(R+r)三、常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a—b)a3+b3=(a+b)(a2-ab+b2)a3—b3=(a-b(a2+ab+b2)一元二次方程的解-b+√(b2-4ac)/2a—b—√(b2—4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a 注:韦达定理某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角。
(完整word版)初中数学复习资料大全(值得收藏)
曲老师推荐中考数学专题之:中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=24b b ac-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =()()()222121.....nx x xx xx n 轾-+-++-犏臌标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =()()()222121.....n x x x x x x n 轾-+-++-犏臌一组数据的方差越大,这组数据的波动越大,越不稳定。
初中数学必考知识点102个
初中数学的必考知识点包括但不限于以下内容:1. 整数的加减乘除2. 分数的加减乘除3. 小数的加减乘除4. 百分数与分数、小数的互化5. 有理数的加减乘除6. 平方根、立方根7. 整式的加减乘除8. 一元一次方程9. 一元一次不等式10. 一元一次方程组11. 一元一次不等式组12. 二次根式13. 二次方程14. 一元二次不等式15. 一元二次方程组16. 一元二次不等式组17. 平面直角坐标系18. 直线方程19. 几何图形的性质20. 三角形的性质21. 三角形的面积22. 四边形的性质23. 圆的性质24. 圆的面积25. 圆的周长26. 直角三角形的性质27. 直角三角形的三边关系28. 直角三角形的三角函数29. 三角形的正弦定理30. 三角形的余弦定理31. 三角形的面积公式32. 三角形的高线定理33. 三角形的中线定理34. 三角形的角平分线定理35. 三角形的垂直平分线定理36. 三角形的中线定理37. 三角形的高线定理38. 三角形的角平分线定理39. 三角形的垂直平分线定理40. 三角形的中线定理41. 三角形的高线定理42. 三角形的角平分线定理43. 三角形的垂直平分线定理44. 三角形的中线定理45. 三角形的高线定理46. 三角形的角平分线定理47. 三角形的垂直平分线定理48. 三角形的中线定理49. 三角形的高线定理50. 三角形的角平分线定理51. 二次函数的图像和性质52. 一元二次不等式53. 一元二次方程组54. 一元二次不等式组55. 二次根式56. 二次方程57. 一元二次不等式58. 一元二次方程组59. 一元二次不等式组60. 二次函数的图像和性质61. 二次函数的性质62. 二次函数与一元二次方程63. 二次函数与一元二次不等式64. 二次函数与一元二次方程组65. 二次函数与一元二次不等式组66. 二次函数与二元二次方程67. 二次函数与二元二次不等式68. 二次函数与二元二次方程组69. 二次函数与二元二次不等式组70. 二次函数与二元二次方程71. 二次函数与二元二次不等式72. 二次函数与二元二次方程组73. 二次函数与二元二次不等式组74. 二次函数与二元二次方程75. 二次函数与二元二次不等式76. 二次函数与二元二次方程组77. 二次函数与二元二次不等式组78. 二次函数与二元二次方程79. 二次函数与二元二次不等式80. 二次函数与二元二次方程组81. 概率的基本概念82. 事件的概率83. 概率的加法法则84. 概率的乘法法则85. 排列组合86. 统计调查87. 统计图表的绘制与分析88. 数据的整理与分析89. 均值、中位数、众数的计算90. 简单的统计推断91. 一元二次函数的图像和性质92. 一元二次函数的性质93. 一元二次函数与一元二次方程94. 一元二次函数与一元二次不等式95. 一元二次函数与一元二次方程组96. 一元二次函数与一元二次不等式组97. 一元二次函数与二元二次方程98. 一元二次函数与二元二次不等式99. 一元二次函数与二元二次方程组100. 一元二次函数与二元二次不等式组101. 一元二次函数与二元二次方程102. 一元二次函数与二元二次不等式。
(完整版)人教版初中数学总复习资料doc
(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。
②个体:总体中每一个考察对象。
③样本:从总体中抽出的一部分个体。
④样本容量:样本中个体的数目。
⑤众数:一组数据中,出现次数最多的数据。
⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。
⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学总复习资料
初中数学总复习资料初中数学总复资料1.数与代数1.1 数与式有理数包括有限循环小数和无限循环小数,而无理数则是无限不循环小数。
数轴由三要素组成。
相反数是指绝对值相等但符号相反的两个数。
绝对值的定义为:当a≥0时,│a│=a;当a<0时,│a│=-a。
倒数是指一个数的倒数等于1除以这个数。
指数有不同的运算性质,如零指数为1,负整指数为一个正整数的倒数,完全平方公式为(a±b)²=a²±2ab+b²,平方差公式为(a+b)(a-b)=a²-b²,幂的运算性质包括am·an=am+n、am÷an=am-n、(am)n=amn、(ab)n=anbn、(an)1/n=a。
科学记数法定义为a×10^n(其中1≤a<10,n是整数),而算术平方根、平方根、立方根则分别为acma+c+…+ma、(b+d+…+n)^(1/2)、(b+d+…+n)^(1/3)。
1.2 方程与不等式一元二次方程的一般形式为ax²+bx+c=0(其中a≠0),解法包括直接开平方法、配方法、公式法、因式分解法等。
根的判别式包括三种情况:当Δ=b²-4ac>0时,有两个解;当Δ=b²-4ac<0时,无解;当Δ=b²-4ac=0时,有1个解。
维达定理为x1+x2=-b/a,x1x2=c/a,a(x1+x2)²=4ac,(x1-x2)²=(x1+x2)²-4x1x2.常用等式包括x1²+x2²=(x1+x2)²-2x1x2,其中x1、x2为一元二次方程的两个根。
应用题包括行程问题、增长率问题、工程问题和几何问题。
分式方程的解法需要将原方程化为整式方程,再将增根带入化间后的整式方程,求出参数的值。
不等式的性质包括a>b→a+c>b+c、a>b→ac>bc(c>0)、a>b→acb,b>c→a>c、a>b,c>d→a+c>b+d。
初中数学知识点大全
初中数学知识点大全一、数与代数1、有理数有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
有理数的运算有加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个不为 0 的数,等于乘这个数的倒数;0 除以任何一个不为 0 的数都得 0。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作√a。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式:单项式和多项式统称为整式。
单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算:整式的加减实质是合并同类项;整式的乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式;整式的除法包括单项式除以单项式、多项式除以单项式。
分式:形如 A/B(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
分式的运算:分式的加减包括同分母分式相加减和异分母分式相加减;分式的乘法法则是分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式的除法法则是分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
初中数学503个必考知识点
初中数学503个必考知识点1. 整数的概念和表示方法2. 分数的概念和表示方法3. 整式的概念和简单运算4. 代数式的概念和基本性质5. 初等函数的概念和基本性质6. 平面直角坐标系7. 平面向量的概念8. 合并同类项和化简代数式9. 一元一次方程的解法和应用10. 一元二次方程的解法和应用11. 不等式的概念和解法12. 整式的乘法和因式分解13. 分式的乘法和除法14. 暴力算法、试除法、筛法15. 数列的概念和基本性质16. 等差数列和等比数列17. 数列的极限和通项公式18. 数列的求和公式19. 概率的基本概念和重要性质20. 随机事件的概念和计算方法21. 表格的绘制和数据的整理22. 直方图的绘制和数据的分析23. 折线图的绘制和数据的分析24. 饼图的绘制和数据的分析25. 三角形的概念和基本性质26. 等腰三角形和等边三角形27. 直角三角形和勾股定理28. 三角形的面积公式29. 多边形的概念和基本性质30. 三角形、平行四边形和梯形31. 圆的概念和基本性质32. 圆的面积和周长公式33. 时间、速度和距离的关系34. 速度、加速度和时间的关系35. 动量、力和加速度的关系36. 定点和定比分点的概念37. 相似和全等三角形的判定38. 几何图形的对称性和轴线39. 平移和旋转的概念和性质40. 反比例函数的概念和基本性质41. 一次函数的概念和图像42. 二次函数的概念和图像43. 线性规划和最优解44. 单位换算和计算方法45. 二次根式的化简和计算46. 幂的概念和基本性质47. 对数的概念和基本性质48. 平行线和截线定理49. 平行线与相交线的夹角50. 直角三角形内角和外角的关系51. 勾股定理的应用52. 三角函数的概念和基本性质53. 三角函数的图像和变化规律54. 三角函数的解法和应用55. 解析几何的最基本概念56. 解析几何的直线和方程57. 解析几何的圆和方程58. 空间向量的概念和基本性质59. 空间向量的加减和数量积60. 空间平面和空间直线的关系61. 空间几何体与它们的表面积和体积62. 几何概型和计数原理63. 排列和组合的概念和计算方法64. 等差数列和等比数列的应用65. 随机变量和概率密度函数66. 常见的离散型随机变量67. 常见的连续型随机变量68. 离散型随机变量的特征数69. 正态分布和标准正态分布70. 随机变量的独立性和相关性71. 统计推断的基本原理和流程72. 参数估计的点估计和区间估计73. 假设检验的假设和检验方法74. 方差分析的思想和方法75. 回归分析的基本思想和方法76. 回归分析的判定系数和残差分析77. 差异分析的意义和方法78. 实验设计和处理效应的分析79. 固定效应模型和随机效应模型80. 变量的相关性和线性回归分析。
初中数学知识点必考考点大全
初中数学知识点必考考点大全1.整数和有理数运算整数的加减乘除、有理数的加减乘除、乘方、开方等运算规则。
2.分数运算分数的加减乘除、约分、通分、分数的比较、分数与整数的关系等。
3.负数的概念与运算负数的概念、负数的加减乘除、负数的乘方与开方等。
4.小数的加减乘除小数的加减乘除、小数的化简、小数的近似表示等。
5.数字的化简与科学计数法数字的约分和化简、数的大小比较、科学计数法的表示与运算等。
6.代数式与方程式的运算代数式的加减乘除、代数式的化简、对称式等。
7.坐标系与二维几何直角坐标系、点坐标的确定、平面上图形的平移、翻转、旋转、对称等。
8.直线、角的性质和计算直线的种类、直线的表示方式、角的种类和性质、角的比较和运算等。
9.平面图形的常见性质和计算三角形、四边形、多边形的性质、各种图形的面积和周长、各种图形间的关系等。
10.空间几何体的常见性质和计算立体图形的种类、立体图形的表面积和体积、立体图形间的位置关系等。
11.数据的图表表示和分析统计图表的绘制和分析、平均数、中位数、众数的计算等。
12.概率与统计概率的基本概念、概率的计算、随机事件、抽样调查等。
13.逻辑推理与数学证明常见的逻辑推理题、数学证明的基本方法和策略等。
14.四则运算的应用实际生活中的问题,如两车相遇的时间、速度问题、运动员超越问题等。
15.图形的平移、翻转、旋转、对称的应用应用图形变化的原理解决问题,如飞机投弹问题等。
16.几何形体的表面积和体积的应用计算实际问题中的几何形体的表面积和体积,如容器的容积、缸的油量等。
17.抽样调查、平均数、中位数、众数的应用利用统计数据解决实际问题,如人口普查、调查报告等。
18.几何证明的应用利用几何知识解决实际问题,如建筑设计、工程测量等。
初中数学必考知识点大全
初中数学必考知识点大全1.数的分类及数的性质:-自然数、整数、有理数、无理数、实数的概念及性质;-数的比较、绝对值、相反数、倒数等性质。
2.基本运算:-加减乘除运算的概念及性质;-整数、分数、小数之间的运算;-混合运算;-运算法则和运算顺序。
3.代数式和方程式:-代数式的概念、结果与计算;-等式、不等式的概念和性质;-简单的一元一次方程求解方法;-数据的整理和解决问题。
4.几何基本概念:-点、线、面、角的概念;-平行线、垂直线、相交线等基本性质;-三角形、四边形、圆的构成和性质。
5.几何图形的计算:-平面图形的周长和面积;-三角形、四边形的面积计算方法;-圆的周长和面积计算方法。
6.相似和全等:-相似的概念和判定;-全等的概念和判定;-利用相似和全等的性质解决问题。
7.几何变换:-平移、旋转、翻转的概念和性质;-利用几何变换解决问题。
8.三角函数:-根据角度的大小关系确定三角函数的正负性;-正弦、余弦、正切等三角函数的定义及性质;-利用三角函数计算角度和边长。
9.根式及其运算:-根式和含有根式的四则运算;-根式的化简和合并。
10.数列与函数:-等差数列和等比数列的概念和性质;-数列的通项和求和;-函数的概念和性质。
11.统计与概率:-数据的收集和整理;-统计图形的制作和解读;-概率的概念和计算。
以上是初中数学必考知识点的一个概述,详细的知识点包括各个知识点的定义、性质、计算方法以及解决问题的应用能力。
了解并掌握这些知识点对于初中数学的学习和备考非常重要。
初中数学复习资料大全(值得收藏)
中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab +b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n =n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②-=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差: 数据1x 、2x ……,nx 的方差为2s ,则2s =222121.....nx xx xx xn标准差:方差的算术平方根. 数据1x 、2x ……,nx 的标准差s,则s =222.....x xx x x x一组数据的方差越大,这组数据的波动越大,越不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲老师推荐中考数学专题之:中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=24b b ac-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =()()()222121.....nx x xx xx n 轾-+-++-犏臌标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则s =()()()222121.....n x x x x x x n 轾-+-++-犏臌一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值; 13、锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.lα14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b ),关于原点对称的点为P 3(-a ,-b ).(2)坐标平移:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1). 15、二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .4.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐 标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-1、多边形内角和公式:n 边形的内角和等于(n -2)180º(n ≥3,n 是正整数),外角和等于360º2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。