max232非常实用的介绍

合集下载

max232资料简介

max232资料简介

一.max232资料简介该产品是由德州仪器公司(TI)推出的一款兼容RS232标准的芯片。

由于电脑串口rs232电平是-10v +10v,而一般的单片机应用系统的信号电压是ttl电平0 +5v,max232就是用来进行电平转换的,该器件包含2驱动器、2接收器和一个电压发生器电路提供TIA/EIA-232-F电平。

该器件符合TIA/EIA-232-F标准,每一个接收器将TIA/EIA-232-F电平转换成5-V TTL/CMOS电平。

每一个发送器将TTL/CMOS电平转换成TIA/EIA-232-F电平。

主要特点1、单5V电源工作2、 LinBiCMOSTM工艺技术3、两个驱动器及两个接收器4、±30V输入电平5、低电源电流:典型值是8mA6、符合甚至优于ANSI标准 EIA/TIA-232-E及ITU推荐标准V.287、ESD保护大于MIL-STD-883(方法3015)标准的2000V下图为MX232双串口的连接图,可以分别接单片机的串行通信口或者实验板的其它串行通信接口:二.MAX232 pdf资料三.max232应用电路,注意电容接法。

232是电荷泵芯片,可以完成两路TTL/RS-232电平的转换,它的的9、10、11、12引脚是TTL电平端,用来连接单片机的。

制作at89s51单片机器编程器的电路图MAX232获得正负电源的另一种方法在单片机控制系统中,我们时常要用到数/模(D/A)或者模/数(A/D)变换以及其它的模拟接口电路,这里面要经常用到正负电源,例如: 9V,-9V; 12V,-12V.这些电源仅仅作为数字和模拟控制转换接口部件的小功率电源。

在控制板上,我们有的只是5V电源,可又有很多方法获得非5V电源。

1.外接;2.DC-DC变换......在这里我介绍一块大家常用的芯片:MAX232. MAX232是TTL--RS232电平转换的典型芯片,按照芯片的推荐电路,取振荡电容为uF的时候,若输入为5V,输出可以达到-14V左右,输入为0V ,输出可以达到14V,在扇出电流为20mA的时候,处处电压可以稳定在 12V和-12V.因此,在功耗不是很大的情况下,可以将MAX232的输出信号经稳压块后作电源使用。

max232 (2)

max232 (2)

Max232介绍Max232是一款集成电路(IC),通常用于RS-232串行通信接口和微控制器(或其他数字设备)之间的电平转换。

RS-232是一种常见的串行通信标准,用于在不同设备之间传输数据。

然而,RS-232使用的电平范围与微控制器和其他数字设备的标准电平范围不同。

因此,需要一个电平转换器来实现两者之间的通信。

Max232解决了这个问题。

它由内部逻辑电路和电容器组成,可以将低电平转换为高电平,反之亦然,以实现RS-232和微控制器之间的电平转换。

架构Max232由两个逻辑电路组成,每个逻辑电路接受一个RS-232信号和一个电源电压。

一般来说,Max232 IC的供电电压在3.0V到5.5V之间,因此它适用于各种电源电压条件下的应用。

在逻辑电路中,Max232使用了电容器来产生负电压。

通过连接外部电容器,IC可以从正电压源产生一个负电压源。

这个负电压用于将RS-232信号提升到正常的RS-232电平范围。

引脚配置Max232具有16个引脚,按功能可以分成四个组:Vcc和GND•Vcc引脚提供IC的电源电压,通常在3.0V到5.5V之间。

•GND引脚用于接地。

RS-232输入和输出•T1IN和T2OUT是Max232的发送线路。

•R2IN和R1OUT是Max232的接收线路。

电容器连接引脚•C1+和C1-是电容器C1的连接引脚。

•C2+和C2-是电容器C2的连接引脚。

使用方法使用Max232进行电平转换非常简单。

以下是基本的使用步骤:1.将RS-232信号连接到T1IN引脚。

这是需要转换为微控制器可识别电平的信号。

2.将T2OUT引脚连接到微控制器的接收引脚。

这将是接收Max232转换后的信号。

3.链接电容器C1和C2到C1+、C1-和C2+、C2-引脚,以供电和产生负电压。

4.连接Vcc和GND引脚到适当的电源和地线。

完成上述步骤后,Max232将执行电平转换并允许RS-232设备与微控制器进行通信。

MAX232芯片使用方法

MAX232芯片使用方法

MAX232芯片使用方法1 综述最近用到了MAX232芯片,因此做一个小记录。

2 芯片介绍介绍:MAX232是美信公司专门为电脑的RS-232标准串口设计的单电源电平转换芯片供电:+5V1.1 主要特点a.符合所有的RS-232技术标准b.只需单一+5V供电c.偏载电荷泵具有升压、电压极性反转能力,能够产生+10V和-10V电压V+和V-d.功耗低,典型供电电流为5mAe.内部集成2个RS-232C驱动器1.2 引脚配置3 应用3.1 应用场景3.2 电路实现下图是芯片的典型工作电路,根据上面的管脚配置我们就可以设计出电路了:3.3 软件实现使用232芯片不需要进行任何编程,直接就能使用,但是要注意接法,其中T2in是指接单片机的TX,R2out是指接单片机的RX。

4 重要提示4.1 关于232的稳定性我在使用MAX3232的时候出现了很多的硬件问题,之前以为是软件问题,结果发现是硬件问题,浪费了很多时间。

我用了2个串口,然后使用MAX3232引出2个232电平,但是发送接收数据有问题,用TTL电平的串口则没有问题,,对同一个口进行对比后发现,原来不使用232的时候就没有事情,因此归结月232问题,但是换了2324.2 关于232和TTL连在同一个上面的问题有时候客户需要提供232和TTL两种接口的电平,如上面描述直接连接就可以使用,但是有一个问题,如果是同一个串口(例如USART1),将其连上232芯片后引出232接口,同时引出该串口的USART接口,此时开发板可以给电脑发(开发板发送到串口线上没问题,串口USART和232在串口调试助手中都可以接收到数据),但是如果是电脑端给开发板发送的话就只能是232发送了,使用USART的串口调试助手是没法给开发板发数据的,这一点一定要注意,免得浪费时间。

临时的解决办法是直接把RS232的芯片引脚给剪掉(克路德项目经验)。

(新增2016-01-05)发现剪掉管脚和不剪掉管脚,程序好于区别,暂未深究。

max202和max232

max202和max232

MAX232芯片的作用是将单片机输出的TTL电平转换成PC机能接收的232电平或将PC机输出的232电平转换成单片机能接收的TTL电平。

Max232与max202的区别:升压电容的取值。

手册上202电容用0.1uF 232电容用1uF问:我用开关电源,MAX232老烧串口,有的时候把计算机都烧了,但是用模拟电源就没有这样的情况,为什么会这样,接法肯定没有问题的答:开关电源干扰较大,做好良好接地,滤波电路加上。

据网上的一些资料,MAX232芯片的第7,8脚接PC串口的2,3脚;而9,10脚接C51的10,11脚MAX232是TTL--RS232电平转换的典型芯片,若接线正确,但输出过低就应是芯片不良。

按照芯片的推荐电路,取振荡电容为uF的时候,若输入为5V,输出可以达到-14V左右,输入为0V ,输出可以达到14V,在扇出电流为20mA的时候,输出电压可以稳定在12V和-12V。

补充;11脚输入TTL电平(5V)14脚输出CMOS电平(12V)联结11与14脚的反相器,实质上就是一个电平转换器,用它来完成TTL电平到CMOS电平的转换,因此当11脚为低电平时14脚就为高电平(12V),因你用的芯片只能输出7.5V,故判定该芯片有问题。

并行口与串行口的区别是交换信息的方式不同,并行口能同时通过8条数据线传输信息,一次传输一个字节;而串行口只能用1条线传输一位数据,每次传输一个字节的一位。

并行口由于同时传输更多的信息,速度明显高于串行口,但串行口可以用于比并行口更远距离的数据传输。

电脑的串口定义:9针串行口的针脚功能针脚功能针脚功能1 载波检测(DCD) 6 数据准备好(DSR)2 接受数据(RXD) 7 请求发送(RTS)3 发出数据(TXD) 8 清除发送(CTS)4 数据终端准备好(DTR) 9 振铃指示(RI)5 信号地线(SG)信号流向:DB9的2脚是接收脚,信号内流,3脚则相反,信号流出。

Get清风40 RS232标准串口设计的单电源电平转换芯片MAX232中文资料及应用

Get清风40 RS232标准串口设计的单电源电平转换芯片MAX232中文资料及应用

40 RS232标准串口设计的单电源电平转换芯片_MAX232_中文资料及应用max232中文资料及应用该产品是由德州仪器公司〔TI〕推出的一款兼容RS232标准的芯片。

由于电脑串口rs232电平是-10v +10 v,而一般的单片机应用系统的信号电压是ttl电平0 +5v,max232就是用来进行电平转换的,该器件包含2驱动器、2接收器和一个电压发生器电路提供TIA/EIA-232-F电平。

该器件符合TIA/EIA-232-F标准,每一个接收器将TIA/EIA-232-F电平转换成5-V TTL/CMOS电平。

每一个发送器将TTL/CMOS电平转换成TIA/EIA-232-F电平。

主要特点1、单5V电源工作2、 LinBiCMOSTM工艺技术3、两个驱动器及两个接收器4、±30V输入电平5、低电源电流:典型值是8mA7、ESD保护大于MIL-STD-883〔方法3015〕标准的2000V下列图为MX232双串口的连接图,可以分别接单片机的串行通信口或者实验板的其它串行通信接口:三.max232应用电路,注意电容接法。

232是电荷泵芯片,可以完成两路TTL/RS-232电平的转换,它的的9、10、11、12引脚是TTL电平端,用来连接单片机的。

制作at89s51单片机器编程器的电路图MAX232获得正负电源的另一种方法在单片机控制系统中,我们时常要用到数/模〔D/A〕或者模/数(A/D)变换以及其它的模拟接口电路,这里面要经常用到正负电源,例如: 9V,-9V; 12V,-12V.这些电源仅仅作为数字和模拟控制转换接口部件的小功率电源。

在控制板上,我们有的只是5V电源,可又有很多方法获得非5V电源。

1.外接;2.DC-DC变换......在这里我介绍一块大家常用的芯片:MAX232. MAX232是TTL --RS232电平转换的典型芯片,按照芯片的推荐电路,取振荡电容为uF的时候,假设输入为5V,输出可以到达-14V左右,输入为0V ,输出可以到达14V,在扇出电流为20mA的时候,处处电压可以稳定在 12V和-12V.因此,在功耗不是很大的情况下,可以将MAX232的输出信号经稳压块后作电源使用。

max232资料

max232资料
产品简介
MAX232CPE是MAX232的子型号!MAX232CPE是专为RS-232和V.28通信接口设计的收发器,尤其是±12V供压无法实现的情况。
型号标识/参数
MAX232CPE的型号标识和参数如下表所示:
MAX232CPE型号标识
MAX
MAXIM品牌标识
232
基本型号
C
温度等级,商业级(1)
P
封装类型,PDIP(2)
E
引脚数,16PIN
MAX232CPE参数特性
Vcc (V)
5
传输速率(kbps)
120
外部电容大小(uF)
1
温度等级
0℃至70℃
(1)C=商业级(0℃至70℃),E=工业级(-40℃至80℃)
M=军工级(-55℃至125℃)
(2)P=PDIP16,S=SOIC16窄体,W=SOIC16宽体,U=TSSOP16
价格表标定的价格为零售价,如需批量采购,欢迎来电咨询洽谈!
MAX232CPE的文字介绍及图片仅供参考,所有信息均以官方最新PDF及实物为准!
J=CERDIP16,L=LCC20
封装信息
MAX232CPE的封装为:
类型:PDIP
引脚:16
标准:JEDEC MS-001 AA
体宽:300 mil
引脚间距:100 mil / 2.规格为:
·类型:Tube(管装)
每管:25pcs
每标准包:40管,共1,000pcs

MAX232

MAX232

MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的单电源电平转换芯片,使用+5v单电源供电。

编辑本段图片编辑本段引脚介绍第一部分是电荷泵电路。

由1、2、3、4、5、6脚和4只电容构成。

功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。

第二部分是数据转换通道。

由7、8、9、10、11、12、13、14脚构成两个数据通道。

其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。

8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。

TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT 送到电脑DB9插头;DB9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R1OUT、R2OUT输出。

第三部分是供电。

15脚GND、16脚VCC(+5v)。

编辑本段主要特点1、符合所有的RS-232C技术标准2、只需要单一 +5V电源供电3、片载电荷泵具有升压、电压极性反转能力,能够产生+10V和-10V电压V+、V-4、功耗低,典型供电电流5mA5、内部集成2个RS-232C驱动器6、内部集成两个RS-232C接收器7、高集成度,片外最低只需4个电容即可工作。

编辑本段标准应用电路max232电容器应选择1μF的电解电容。

在使用过程中本人曾用过10μF的代替。

注意,由于RS232电平较高,在接通时产生的瞬时电涌非常高,很有可能击毁max232,所以在使用中应尽量避免热插拔。

max232是什么芯片

max232是什么芯片

max232是什么芯片MAX232是一种串口转换芯片,用于将TTL(逻辑电平)信号转换成RS232(标准电平)信号。

它广泛应用于计算机硬件通讯领域,如串口通信、电话线调制解调、计算机接口等。

MAX232芯片由Maxim公司设计和生产,是一款双路驱动、双路接收的RS232接口芯片。

它的主要功能是将计算机与其他外设之间的信息转换,以便于计算机与其他设备进行串口通信。

MAX232芯片的主要特点有以下几个方面:1. 低成本:MAX232芯片采用集成电路设计,可以用较低的成本生产出大量的芯片。

2. 双路驱动:MAX232芯片具备双路驱动功能,可以同时驱动两个接收器和两个发射器,适用于双向通信。

3. 兼容性强:MAX232芯片能够将计算机的TTL电平信号转换成RS232标准电平信号,并且在芯片内部进行了自动电平转换,使得计算机与其他设备的通信更加稳定。

4. 外围元件简单:MAX232芯片只需要一些简单的电容器和电阻器作为外围元件,不需要额外的电源供给,减少了系统设计的复杂性。

5. 低功耗:MAX232芯片的功耗较低,适合于在嵌入式系统中使用。

MAX232芯片的工作原理比较简单。

它通过四个电容器和四个电阻器组成一个电压倍增电路,从而将TTL电平(通常为0V和5V)转换为RS232电平(通常为-12V和12V)。

同时,它还能够将RS232电平转换为TTL电平,实现数据的双向传输。

在计算机与外部设备通信时,MAX232芯片的引脚连接如下:1. 引脚2(T1IN)和引脚3(T1OUT)分别连接到计算机的发送线和接收线,用于传输TTL电平信号。

2. 引脚14(R1OUT)和引脚13(R1IN)分别连接到计算机的接收线和发送线,用于接收RS232电平信号。

3. 引脚6(VCC)和引脚11(GND)连接到系统的电源供给线和地线。

4. 引脚7(C1+)和引脚8(C1-)以及引脚5(C2+)和引脚4(C2-)分别连接到对应的电容器和电阻器。

MAX232详细中文总结

MAX232详细中文总结

MAX232详细资料总结max232 是用来做电平转换的,标准rs232 电平很高,达正负15V.常用的TTL 电平最高5V。

相互连接的话,必须进行电平转换!由于电脑串口输出电压高达12V,直接与单片机连接会烧坏芯片。

所以用MAX232来进行电平转换。

MAX232芯片采用单+5V电源供电,仅需几个外接电容即可完成从TTL到RS232电平的转换,共两路。

其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。

8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。

TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT送到电脑DP9插头;DP9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R1OUT、R2OUT输出。

MAX232通信电路图单片机中的UART和电脑串口RS232的区别仅在于电平的不同,电脑串口采用232电平,而单片机UART则采用TTL电平,如果不进行电平转换,单片机跟电脑串口就不能进行直接通信,RS232是UART的一种就意味着通信协议的格式是一样的,只要电平统一了,两者之间就可以直接通信,于是乎应用了MAX232这一芯片,MAX232对两者之间通信的数据没有任何作用,仅仅是中介而已,而其只是负责将两者之间的电平进行统一,使两者之间没有通信障碍。

1 TXD 输出数据输出到串口2 DTR_N 输出数据终端准备好,低电平有效3 RST_N 输出发送请求,低电平有效4 VDD_325 电源RS232电源3.3V5 RXD 输入串口数据输入6 RI_N 输入/输出串行端口(环指示器)7 GND 电源接地8 VDD 输入/输出电源9 DSR_N 输入/输出串行端口(数据集就绪)10 DCD_N 输入/输出串行端口(数据载波检测)11 CTS_N 输入/输出串行端口(清除发送)12 SHTD_N 输出控制RS232收发器关机13 EE_CLK 输入/输出串行EEPROM时钟14 EE_DATA 输入/输出串行EEPROM数据15 DP 输入/输出USB端口D+信号16 DM 输入/输出USB端口D-信号17 VO_33常规3.3V电源输出18 GND接地19 RESET复位引脚20 VDD_5 电源USB端口的5V电压电源21 GND接地22 GP0 输入/输出通用I/O引脚023 GP1 输入/输出通用I/O引脚124 VDD_PLL模拟正5v锁相环25 GND_PLL模拟地锁相环26 PLL_TEST 输入PLL锁相环测试模式控制27 OSC1 输入晶体振荡器输入28 OSC2 输入/输出晶体振荡器输出PL2303 是Prolific 公司生产的一种高度集成的RS232-USB 接口转换器,可提供一个RS232 全双工异步串行通信装置与USB 功能接口便利联接的解决方案。

MAX232中文资料

MAX232中文资料

________________________________ 应用
便携式计算机
_____________________________ 定购信息
PART
TEMP RANGE PIN-PACKAGE
低功耗调制解调器 接口转换 电池供电 RS-232系统
MAX220CPE MAX220CSE MAX220CWE MAX220C/D
19-4323; Rev 14; 8/04 电子发烧友
MAX220–MAX249
+5V 供电、多通道 RS-232 驱动器/接收器
________________________________ 概述
MAX220–MAX249系列线驱动器 /接收器,专为 EIA/TIA232E以及 V.28/V.24通信接口设计,尤其是无法提供 ±12V 电源的应用。
1.0 (0.1) 0.1 — — 1.0 (0.1) — 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 1.0 (0.1)
1.0 1.0 (0.1) 0.1 0.1 1.0 — — — 1.0 1.0
SHDN & ThreeState No Yes Yes Yes Yes No
No No No No No Yes Yes No No No
Yes Yes Yes No No Yes Yes Yes Yes Yes
Rx Active in SHDN — — ✔ ✔ — —
— — — — — — — — — —
— — ✔ — — ✔ ✔ ✔ ✔ ✔
Data Rate (kbps) 120 200 120 120 120 120
120 (64) 200 120 200 120 120 120 120 120 120

max232芯片

max232芯片

max232芯片MAX232是一款常见的RS-232级别转换芯片,用于将RS-232级别的信号转换为TTL/CMOS级别的信号,从而实现RS-232串口与微控制器或其他逻辑电路的连接。

MAX232芯片由美国公司Maxim IntegratedProducts研发生产,广泛应用于电子设备中的串口通信。

MAX232芯片有多个型号,如MAX232、MAX232E等,不同型号之间参数可能存在差异,但基本原理和功能大致相同。

MAX232芯片包括两个发送器和两个接收器,可为两条RS-232串口提供TTL/CMOS级别的信号转换。

MAX232芯片的两个发送器使用外部电容来实现电压倍增功能,RS-232的电压范围是15V到-15V,而TTL/CMOS电平一般为5V到0V。

发送器将TTL/CMOS的逻辑电平转换为RS-232的正负电平,通过电容产生高于5V的电压,从而实现电平转换。

MAX232芯片的两个接收器使用电阻分压电路将RS-232的电压范围转换为TTL/CMOS电平范围。

接收器通过电阻分压将RS-232的正负电平转换为0V到5V的TTL/CMOS电平,从而实现电平转换。

MAX232芯片还包括一个内部的电压稳压器,用于实现5V的稳定电源供电。

在使用MAX232芯片时,只需提供外部一个较高的电压,如V+可以为5V到15V,然后芯片内部的电压稳压器会将该电压稳定为5V用于芯片内部的电路工作。

MAX232芯片常用于将RS-232接口的电平转换为TTL/CMOS 电平,以实现串口通信。

比如,它可以将计算机的RS-232串口信号转换为TTL/CMOS电平,通过与单片机连接,实现计算机与单片机的通信。

同时,它还可以用于其他类型电子设备的串口扩展和通信。

MAX232芯片结构简单、应用广泛,并且有较低的成本,因此在许多电子设备中被广泛使用。

它提供了一种简单可靠的RS-232与TTL/CMOS电平之间的转换方法,方便了串口设备之间的连接与通信。

Max232在智能网络化UPS中的应用

Max232在智能网络化UPS中的应用

Max232在智能网络化UPS中的应用智能化网络UPS系统网络UPS智能系统,主要是以整个网络为管理对象,是指在UPS的主机的输出端增设RS232、R485接口,SNMP(简单网络管理协议)卡通信接口。

利用这些接口经过专用的通信电缆同服务器、路由器、网关等设备上的相对应的通信接口相连,这样就能把UPS电源与计算机网络构成一个具有监控功能的智能化UPS供电系统。

目前UPS网络智能化技术主要有2个方面:一是加强UPS新功能,与服务器上的软件协调工作,使得UPS除了完成最基本的不间断功能外,还能实现网络上事件记录、故障告警、UPS参数自动测试分折、调节功能等;二是加强UPS节能功能。

智能化的网络UPS系统将传统式UPS通过与计算机相连的硬件接口,结合特殊设计的软件,提供完整的电源管理方案。

智能化网络UPS系统实现计算机与UPS电源是通过接口进行通信,要使供电系统的故障信息和UPS状态信息能够到计算机系统,首先要完成计算机与UPS之间连接电缆的自动查询,为保证通信的准确性,需按规定的通信协议进行初始化。

网络设计的软件和硬件产品通常基于SNMP,它在网络上与管理信息库交互起作用;通过发布SNMP命令,网络管理员可以通过在网络设备上检索信息和发布控制命令来控制网络;也还有处理消息软中断(消息软中断是警告网络管理站重要事件诸如UPS使用电池供电的消息)的能力。

网络UPS可以利用现有计算机通信接口与UPS通信接口相接,再在计算机上安装相应的监控软件。

有了监控软件后,计算机便与UPS建立了通信联系,计算机定时发送指令,UPS在规定的时间内返回信息,当电源出现异常时,UPS内部的微控制器会及时把异常信息发给计算机,并由监控软件在计算机上发出告警信息,提醒操作员或网络管理员及时处理,若有关人员不在现场,则监控软件会在UPS供电时间结束时自动中止各种软件的运行程序,禁止用户登录,自动存盘,保持现场等,并通过网络向用户发出警告信息,通报有关电源异常信息。

MAX232资料总结

MAX232资料总结

MAX232资料总结Max232总结为什么会想到总结max232呢?因为又一次我在整理芯片资料,想对芯片进分类时,竟然不知道要把max232归到哪一类。

后来自己查了一下资料,原来max232是进行电平转换的,于是把它归类到电平转换芯片内。

为什么是电平转换芯片呢?这就要明白它的工作范围?它是工作在电脑和单片机之间的。

这就存在着两种不同的电平,一个是TTL电平,一个是RS232电平。

我们都知道单片机是TTL电平,其逻辑1代表5V,逻辑0电表0V,而RS232电平逻辑1是-3V~-15V,逻辑0是+3V~+15V。

所以可以把它归类到电平转换芯片类。

下面总结一下,max232的电容的种类和作用。

使用的电容会因为max232不同的种类而有区别。

下面讲一下这些电容的作用。

因为232和TTL的电压是有很大的差别的。

下面这段话为网上复制的:232的工作电平高于收发器的工作电压,需要进行电压抬升。

MAX232所采用的方法是利用电荷泵(charge pump)抬升电压,因此需要这4个储能电容。

至于Vcc和GND之间的10uF电容器则是为了防止4路电荷泵的电源变化影响到前端。

此处其实加一片0.1uF更好。

怎么来理解这段话呢?从上图中可以看到,RS232电平到TTL电平传输时,下接了5千欧的电阻,这是为了降压。

那TTL到RS232呢?怎么样由5V升到15V呢?这就要使用电压泵了。

具体什么是电压泵我也没仔细查,但见名知意,就是提升电压的。

从上图中看到TTL到RS232传输时,5V的电压经过400千欧的电阻与其相连。

这最多也就升到5V,显然离15V还是有差距的。

这就发挥了232电容上4个电容的作用。

它的作用是储能、升压。

max232

max232

General DescriptionThe MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communica-tions interfaces, particularly applications where ±12V is not available.These parts are especially useful in battery-powered sys-tems, since their low-power shutdown mode reduces power dissipation to less than 5µW. The MAX225,MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for appli-cations where printed circuit board space is critical.________________________ApplicationsPortable Computers Low-Power Modems Interface TranslationBattery-Powered RS-232 Systems Multidrop RS-232 Networks____________________________Features Superior to Bipolaro Operate from Single +5V Power Supply (+5V and +12V—MAX231/MAX239)o Low-Power Receive Mode in Shutdown (MAX223/MAX242)o Meet All EIA/TIA-232E and V.28 Specifications o Multiple Drivers and Receiverso 3-State Driver and Receiver Outputs o Open-Line Detection (MAX243)Ordering InformationOrdering Information continued at end of data sheet.*Contact factory for dice specifications.MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers________________________________________________________________Maxim Integrated Products 1Selection Table19-4323; Rev 9; 4/00Power No. of NominalSHDN RxPart Supply RS-232No. of Cap. Value & Three-Active in Data Rate Number (V)Drivers/Rx Ext. Caps (µF)State SHDN (kbps)FeaturesMAX220+52/24 4.7/10No —120Ultra-low-power, industry-standard pinout MAX222+52/2 4 0.1Yes —200Low-power shutdownMAX223 (MAX213)+54/54 1.0 (0.1)Yes ✔120MAX241 and receivers active in shutdown MAX225+55/50—Yes ✔120Available in SOMAX230 (MAX200)+55/04 1.0 (0.1)Yes —120 5 drivers with shutdownMAX231 (MAX201)+5 and2/2 2 1.0 (0.1)No —120Standard +5/+12V or battery supplies; +7.5 to +13.2same functions as MAX232MAX232 (MAX202)+52/24 1.0 (0.1)No —120 (64)Industry standardMAX232A+52/240.1No —200Higher slew rate, small caps MAX233 (MAX203)+52/20— No —120No external capsMAX233A+52/20—No —200No external caps, high slew rate MAX234 (MAX204)+54/04 1.0 (0.1)No —120Replaces 1488MAX235 (MAX205)+55/50—Yes —120No external capsMAX236 (MAX206)+54/34 1.0 (0.1)Yes —120Shutdown, three stateMAX237 (MAX207)+55/34 1.0 (0.1)No —120Complements IBM PC serial port MAX238 (MAX208)+54/44 1.0 (0.1)No —120Replaces 1488 and 1489MAX239 (MAX209)+5 and3/52 1.0 (0.1)No —120Standard +5/+12V or battery supplies;+7.5 to +13.2single-package solution for IBM PC serial port MAX240+55/54 1.0Yes —120DIP or flatpack package MAX241 (MAX211)+54/54 1.0 (0.1)Yes —120Complete IBM PC serial port MAX242+52/240.1Yes ✔200Separate shutdown and enableMAX243+52/240.1No —200Open-line detection simplifies cabling MAX244+58/104 1.0No —120High slew rateMAX245+58/100—Yes ✔120High slew rate, int. caps, two shutdown modes MAX246+58/100—Yes ✔120High slew rate, int. caps, three shutdown modes MAX247+58/90—Yes ✔120High slew rate, int. caps, nine operating modes MAX248+58/84 1.0Yes ✔120High slew rate, selective half-chip enables MAX249+56/1041.0Yes✔120Available in quad flatpack packageFor free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/ReceiversABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243(V CC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, T A = T MIN to T MAX ‚ unless otherwise noted.)Note 1:Input voltage measured with T OUT in high-impedance state, SHDN or V CC = 0V.Note 2:For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ..............................................................-0.3V to (V CC - 0.3V)R IN (Except MAX220)........................................................±30V R IN (MAX220).....................................................................±25V T OUT (Except MAX220) (Note 1).......................................±15V T OUT (MAX220)...............................................................±13.2V Output VoltagesT OUT ...................................................................................±15V R OUT .........................................................-0.3V to (V CC + 0.3V)Driver/Receiver Output Short Circuited to GND.........Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW20-Pin Plastic DIP (derate 8.00mW/°C above +70°C)..440mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)...696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW 20-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW 18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW Operating Temperature RangesMAX2_ _AC_ _, MAX2_ _C_ _.............................0°C to +70°C MAX2_ _AE_ _, MAX2_ _E_ _..........................-40°C to +85°C MAX2_ _AM_ _, MAX2_ _M_ _.......................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________3Note 3:MAX243 R2OUT is guaranteed to be low when R2IN is ≥0V or is floating.ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)(V= +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, T = T to T ‚ unless otherwise noted.)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 4_________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243108-1051525OUTPUT VOLTAGE vs. LOAD CURRENT-4-6-8-2642LOAD CURRENT (mA)O U T P U T V O L T A G E (V )1002011104104060AVAILABLE OUTPUT CURRENTvs. DATA RATE65798DATA RATE (kbits/sec)O U T P U T C U R R E N T (m A )203050+10V-10VMAX222/MAX242ON-TIME EXITING SHUTDOWN+5V +5V 0V0V 500µs/div V +, V - V O L T A G E (V )MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________5V CC ...........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................+0.3V to -14V Input VoltagesT IN ............................................................-0.3V to (V CC + 0.3V)R IN ......................................................................................±30V Output VoltagesT OUT ...................................................(V+ + 0.3V) to (V- - 0.3V)R OUT .........................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T OUT ......................................Continuous Continuous Power Dissipation (T A = +70°C)14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C)..........1.07W24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW20-Pin Wide SO (derate 10 00mW/°C above +70°C).......800mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 44-Pin Plastic FP (derate 11.11mW/°C above +70°C).....889mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C)..........727mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C)........800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C)........889mW 24-Pin Narrow CERDIP(derate 12.50mW/°C above +70°C)..............1W24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W 28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW Operating Temperature RangesMAX2 _ _ C _ _......................................................0°C to +70°C MAX2 _ _ E _ _...................................................-40°C to +85°C MAX2 _ _ M _ _ ...............................................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 6_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued)(MAX223/230/232/234/236/237/238/240/241, V CC = +5V ±10; MAX233/MAX235, V CC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239,V CC = 5V ±10%; V+ = 7.5V to 13.2V; T A = T MIN to T MAX ; unless otherwise noted.)MAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________78.56.54.55.5TRANSMITTER OUTPUT VOLTAGE (V OH ) vs. V CC7.08.0V CC (V)V O H (V )5.07.57.46.02500TRANSMITTER OUTPUT VOLTAGE (V OH )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.46.27.27.0LOAD CAPACITANCE (pF)V O H (V )1500100050020006.86.612.04.02500TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE6.05.011.09.010.0LOAD CAPACITANCE (pF)S L E W R A T E (V /µs )1500100050020008.07.0-6.0-9.04.55.5TRANSMITTER OUTPUT VOLTAGE (V OL ) vs. V CC-8.0-8.5-6.5-7.0V CC (V)V O L (V )5.0-7.5-6.0-7.62500TRANSMITTER OUTPUT VOLTAGE (V OL )vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES-7.0-7.2-7.4-6.2-6.4LOAD CAPACITANCE (pF)V O L (V )150010005002000-6.6-6.810-105101520253035404550TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CURRENT-2-6-4-886CURRENT (mA)V +, V - (V )420__________________________________________Typical Operating CharacteristicsMAX223/MAX230–MAX241*SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTSV+, V- WHEN EXITING SHUTDOWN(1µF CAPACITORS)MAX220-13SHDN*V-O V+500ms/divM A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 8_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)Note 4:Input voltage measured with transmitter output in a high-impedance state, shutdown, or V CC = 0V.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC )...............................................-0.3V to +6V Input VoltagesT IN ‚ ENA , ENB , ENR , ENT , ENRA ,ENRB , ENTA , ENTB ..................................-0.3V to (V CC + 0.3V)R IN .....................................................................................±25V T OUT (Note 3).....................................................................±15V R OUT ........................................................-0.3V to (V CC + 0.3V)Short Circuit (one output at a time)T OUT to GND............................................................Continuous R OUT to GND............................................................ContinuousContinuous Power Dissipation (T A = +70°C)28-Pin Wide SO (derate 12.50mW/°C above +70°C).............1W 40-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...611mW 44-Pin PLCC (derate 13.33mW/°C above +70°C)...........1.07W Operating Temperature RangesMAX225C_ _, MAX24_C_ _ ..................................0°C to +70°C MAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering,10sec)..............................+300°CMAX220–MAX249+5V-Powered, Multichannel RS-232Drivers/Receivers_______________________________________________________________________________________9Note 5:The 300Ωminimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or V CC =0V is 10M Ωas is implied by the leakage specification.ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued)(MAX225, V CC = 5.0V ±5%; MAX244–MAX249, V CC = +5.0V ±10%, external capacitors C1–C4 = 1µF; T A = T MIN to T MAX ; unless oth-erwise noted.)M A X 220–M A X 249+5V-Powered, Multichannel RS-232Drivers/Receivers 10________________________________________________________________________________________________________________________________Typical Operating CharacteristicsMAX225/MAX244–MAX24918212345TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE86416LOAD CAPACITANCE (nF)T R A N S M I T T E R S L E W R A T E (V /µs )14121010-105101520253035OUTPUT VOLTAGEvs. LOAD CURRENT FOR V+ AND V--2-4-6-88LOAD CURRENT (mA)O U T P U T V O L T A G E (V )64209.05.012345TRANSMITTER OUTPUT VOLTAGE (V+, V-)vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES6.05.58.5LOAD CAPACITANCE (nF)V +, V (V )8.07.57.06.5MAX220–MAX249Drivers/Receivers______________________________________________________________________________________11Figure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay TimingFigure 3. Receiver-Output Enable and Disable Timing Figure 4. Transmitter-Output Disable TimingM A X 220–M A X 249Drivers/Receivers 12______________________________________________________________________________________ENT ENR OPERATION STATUS TRANSMITTERSRECEIVERS00Normal Operation All Active All Active 01Normal Operation All Active All 3-State10Shutdown All 3-State All Low-Power Receive Mode 11ShutdownAll 3-StateAll 3-StateTable 1a. MAX245 Control Pin ConfigurationsENT ENR OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All Active RA1–RA4 3-State,RA5 Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll 3-StateAll Low-Power Receive Mode All Low-Power Receive Mode 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RB5 Low-Power Receive ModeTable 1b. MAX245 Control Pin ConfigurationsTable 1c. MAX246 Control Pin ConfigurationsENA ENB OPERATION STATUS TRANSMITTERS RECEIVERSTA1–TA4TB1–TB4RA1–RA5RB1–RB500Normal Operation All Active All Active All Active All Active 01Normal Operation All Active All 3-State All Active RB1–RB4 3-State,RB5 Active 1ShutdownAll 3-StateAll ActiveRA1–RA4 3-State,RA5 Active All Active 11Shutdown All 3-State All 3-StateRA1–RA4 3-State,RA5 Low-Power Receive ModeRB1–RB4 3-State,RA5 Low-Power Receive ModeMAX220–MAX249Drivers/Receivers______________________________________________________________________________________13Table 1d. MAX247/MAX248/MAX249 Control Pin ConfigurationsM A X 220–M A X 249_______________Detailed DescriptionThe MAX220–MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 dri-vers, RS-232 receivers, and receiver and transmitter enable control inputs.Dual Charge-Pump Voltage ConverterThe MAX220–MAX249 have two internal charge-pumps that convert +5V to ±10V (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to dou-ble the +5V input to +10V on C3 at the V+ output. The second converter uses capacitor C2 to invert +10V to -10V on C4 at the V- output.A small amount of power may be drawn from the +10V (V+) and -10V (V-) outputs to power external circuitry (see the Typical Operating Characteristics section),except on the MAX225 and MAX245–MAX247, where these pins are not available. V+ and V- are not regulated,so the output voltage drops with increasing load current.Do not load V+ and V- to a point that violates the mini-mum ±5V EIA/TIA-232E driver output voltage when sourcing current from V+ and V- to external circuitry. When using the shutdown feature in the MAX222,MAX225, MAX230, MAX235, MAX236, MAX240,MAX241, and MAX245–MAX249, avoid using V+ and V-to power external circuitry. When these parts are shut down, V- falls to 0V, and V+ falls to +5V. For applica-tions where a +10V external supply is applied to the V+pin (instead of using the internal charge pump to gen-erate +10V), the C1 capacitor must not be installed and the SHDN pin must be tied to V CC . This is because V+is internally connected to V CC in shutdown mode.RS-232 DriversThe typical driver output voltage swing is ±8V when loaded with a nominal 5k ΩRS-232 receiver and V CC =+5V. Output swing is guaranteed to meet the EIA/TIA-232E and V.28 specification, which calls for ±5V mini-mum driver output levels under worst-case conditions.These include a minimum 3k Ωload, V CC = +4.5V, and maximum operating temperature. Unloaded driver out-put voltage ranges from (V+ -1.3V) to (V- +0.5V). Input thresholds are both TTL and CMOS compatible.The inputs of unused drivers can be left unconnected since 400k Ωinput pull-up resistors to V CC are built in (except for the MAX220). The pull-up resistors force the outputs of unused drivers low because all drivers invert.The internal input pull-up resistors typically source 12µA,except in shutdown mode where the pull-ups are dis-abled. Driver outputs turn off and enter a high-imped-ance state—where leakage current is typically microamperes (maximum 25µA)—when in shutdownmode, in three-state mode, or when device power is removed. Outputs can be driven to ±15V. The power-supply current typically drops to 8µA in shutdown mode.The MAX220 does not have pull-up resistors to force the ouputs of the unused drivers low. Connect unused inputs to GND or V CC .The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236, MAX240,and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver three-state control on the receiver outputs.The receiver TTL/CMOS outputs are in a high-imped-ance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239–MAX241), and are also high-impedance whenever the shutdown control line is high.When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1µA with the driver output pulled to ground. The driver output leakage remains less than 1µA, even if the transmitter output is backdriven between 0V and (V CC + 6V). Below -0.5V, the transmitter is diode clamped to ground with 1k Ωseries impedance. The transmitter is also zener clamped to approximately V CC + 6V, with a series impedance of 1k Ω.The driver output slew rate is limited to less than 30V/µs as required by the EIA/TIA-232E and V.28 specifica-tions. Typical slew rates are 24V/µs unloaded and 10V/µs loaded with 3Ωand 2500pF.RS-232 ReceiversEIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 0, so all receivers invert.Input thresholds are set at 0.8V and 2.4V, so receivers respond to TTL level inputs as well as EIA/TIA-232E and V.28 levels.The receiver inputs withstand an input overvoltage up to ±25V and provide input terminating resistors withDrivers/Receivers 14Table 2. Three-State Control of ReceiversMAX220–MAX249Drivers/Receivers______________________________________________________________________________________15nominal 5k Ωvalues. The receivers implement Type 1interpretation of the fault conditions of V.28 and EIA/TIA-232E.The receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear out-put transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction.Low-Power Receive ModeThe low-power receive-mode feature of the MAX223,MAX242, and MAX245–MAX249 puts the IC into shut-down mode but still allows it to receive information. This is important for applications where systems are periodi-cally awakened to look for activity. Using low-power receive mode, the system can still receive a signal that will activate it on command and prepare it for communi-cation at faster data rates. This operation conserves system power.Negative Threshold—MAX243The MAX243 is pin compatible with the MAX232A, differ-ing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment.The input threshold of the receiver without cable fault protection is -0.8V rather than +1.4V. Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven, it defaults to the 0 or “OK to send” state. Normally‚ the MAX243’s other receiver (+1.4V threshold) is used for the data line (TD or RD)‚ while the negative threshold receiver is con-nected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.). Other members of the RS-232 family implement the optional cable fault protection as specified by EIA/TIA-232E specifications. This means a receiver output goes high whenever its input is driven negative‚ left floating‚or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this‚the control lines must either be driven or connected with jumpers to an appropriate positive voltage level.Shutdown—MAX222–MAX242On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ and MAX241‚ all receivers are disabled during shutdown.On the MAX223 and MAX242‚ two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions‚ the propagation delay increases to about 2.5µs for a high-to-low input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices‚ SHDN (SH DN for MAX241) also disables the receiver outputs.The MAX225 provides five transmitters and five receivers‚ while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply cur-rent drops to less than 25µA and the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225‚ all five receivers are controlled by the ENR input. On the MAX245‚ eight of the receiver out-puts are controlled by the ENR input‚ while the remain-ing two receivers (RA5 and RB5) are always active.RA1–RA4 and RB1–RB4 are put in a three-state mode when ENR is a logic high.Receiver and Transmitter EnableControl InputsThe MAX225 and MAX245–MAX249 feature transmitter and receiver enable controls.The receivers have three modes of operation: full-speed receive (normal active)‚ three-state (disabled)‚ and low-power receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown.M A X 220–M A X 249Tables 1a–1d define the control states. The MAX244has no control pins and is not included in these tables. The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA )causes the four A-side receivers and drivers to go into a three-state mode. Similarly, the B-side control input (ENB ) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX245, one A-side and one B-side receiver (RA5 and RB5) remain active at all times. The entire device is put into shut-down mode when both the A and B sides are disabled (ENA = ENB = +5V).The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RB5) is always active.The device enters shutdown mode with a logic high on both ENTA and ENTB .The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and trans-mitters go into a three-state mode with a logic high on both ENTA and ENTB .The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRB receiver enable inputs each control five receiver outputs. The ENTA and ENTB transmitter enable inputs control three dri-vers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB . In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kbits/sec.__________Applications InformationFigures 5 through 25 show pin configurations and typi-cal operating circuits. In applications that are sensitive to power-supply noise, V CC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device.Drivers/Receivers16______________________________________________________________________________________。

MAX232中文资料(官方版)

MAX232中文资料(官方版)
Part Number MAX220 MAX222 MAX223 (MAX213) MAX225 MAX230 (MAX200) MAX231 (MAX201) MAX232 (MAX202) MAX232A MAX233 (MAX203) MAX233A MAX234 (MAX204) MAX235 (MAX205) MAX236 (MAX206) MAX237 (MAX207) MAX238 (MAX208) MAX239 (MAX209) MAX240 MAX241 (MAX211) MAX242 MAX243 MAX244 MAX245 MAX246 MAX247 MAX248 MAX249 Power Supply (V) +5 +5 +5 +5 +5 +5 and +7.5 to +13.2 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 and +7.5 to +13.2 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 No. of RS-232 Drivers/Rx 2/2 2/2 4/5 5/5 5/0 2/2 2/2 2/2 2/2 2/2 4/0 5/5 4/3 5/3 4/4 3/5 5/5 4/5 2/2 2/2 8/10 8/10 8/10 8/9 8/8 6/10 No. of Ext. Caps 4 4 4 0 4 2 4 4 0 0 4 0 4 4 4 2 4 4 4 4 4 0 0 0 4 4 Nominal Cap. Value (µF) 0.047/0.33 0.1 1.0 (0.1) — 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 0.1 — — 1.0 (0.1) — 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 1.0 1.0 (0.1) 0.1 0.1 1.0 — — — 1.0 1.0 SHDN & ThreeState No Yes Yes Yes Yes No No No No No No Yes Yes No No No Yes Yes Yes No No Yes Yes Yes Yes Yes Rx Active in SHDN — — ✔ ✔ — — — — — — — — — — — — — — ✔ — — ✔ ✔ ✔ ✔ ✔ Data Rate (kbps) 120 200 120 120 120 120 120 (64) 200 120 200 120 120 120 120 120 120 120 120 200 200 120 120 120 120 120 120 Features Ultra-low-power, industry-standard pinout Low-power shutdown MAX241 and receivers active in shutdown Available in SO 5 drivers with shutdown Standard +5/+12V or battery supplies; same functions as MAX232 Industry standard Higher slew rate, small caps No external caps No external caps, high slew rate Replaces 1488 No external caps Shutdown, three state Complements IBM PC serial port Replaces 1488 and 1489 Standard +5/+12V or battery supplies; single-package solution for IBM PC serial port DIP or flatpack package Complete IBM PC serial port Separate shutdown and enable Open-line detection simplifies cabling High slew rate High slew rate, int. caps, two shutdown modes High slew rate, int. caps, three shutdown modes High slew rate, int. caps, nine operating modes High slew rate, selective half-chip enables Available in quad flatpack package

max232

max232

MAX232芯片简介MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的单电源电平转换芯片,使用+5v单电源供电。

编辑本段图片编辑本段引脚介绍第一部分是电荷泵电路。

由1、2、3、4、5、6脚和4只电容构成。

功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。

第二部分是数据转换通道。

由7、8、9、10、11、12、13、14脚构成两个数据通道。

其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。

8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。

TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT送到电脑DB9插头;DB9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R1OUT、R2OUT输出。

第三部分是供电。

15脚GND、16脚VCC(+5v)。

编辑本段主要特点1、符合所有的RS-232C技术标准2、只需要单一+5V电源供电3、片载电荷泵具有升压、电压极性反转能力,能够产生+10V和-10V电压V+、V-4、功耗低,典型供电电流5mA5、内部集成2个RS-232C驱动器6、内部集成两个RS-232C 接收器MAX232 一般说明:该max220 - max249家庭的线路驱动器/接收器是打算为所有eia/tia-232e和v.28/v.24通信筹措接口,特别是应用±12V的是无法使用。

这些零件是特别有用,在电池供电系统tems ,因为他们的低功耗停机模式,减少功耗要小于5μ瓦特该max225,max233,max235,max245/max246/max247使用无需外部元件,并建议应用- 阳离子如印刷电路板空间是至关重要的。

MAX232 特征:.优于双极.经营从单一的5伏供电(5V和12v-max231/max239 ).低功耗接收模式,在关机(max223/max242 ).满足所有eia/tia-232e和v.28规格.多个驱动器和接收器.3态驱动器和接收器输出开放式在线检测(max243 )MAX232 概述MAX232(MAX220–MAX249系列)是专为RS-232和V.28通信接口设计的收发器,尤其是±12V供压无法实现的情况。

MAX232中文资料_数据手册_参数

MAX232中文资料_数据手册_参数

ቤተ መጻሕፍቲ ባይዱ
ESD保护, 5V RS-232收发器输出.所以经过PC板组装之后,机器模型与I / O端口不太相关.应用信息电容选择用于C1-C4的电容器类 型不是关键正确的操作. MAX202E,MAX206-MAX208E, MAX232E和MAX213E需要0.1μF电容, MAX232E和MAX241E需要1μF电 容 - 尽管在所有情况下电容器都可以达到10μF使用没有伤害.陶瓷,铝电解,或钽电容建议1μF建议使用电容器和陶瓷电介质 0.1μF电容.当使用小的推荐值时,修补电容值,确保电容价值不会像操作那样过度降低温度变化.如果有疑问,请使用电容器较大 (例如2倍)的标称值.电容器的有效性 TIVE串联电阻(ESR),通常在低位上升温度影响V +上的纹波量和V-.使用更大的电容(高 达10μF)来减少输出 V +和V-下的阻抗MAX232.这可能是有用的时候从V +或V-“窃取”电源. MAX232和 MAX205E具有内部电荷 泵电容. 旁路V CC 到地面至少0.1μF. 在应用中,对由此产生的电源噪声敏感 电荷泵, 通过电容去 耦V CC 到地,与电荷泵的尺寸 相同(或大于)电容器(C1-C4). V +和V-作为电源可以从V +和V-中获取少量功率,尽管这会减少驾驶员的输出摆动和噪音边际. 增加电荷泵的价值电容器(高达10μF)有助于保持性能当电源从V +或V-引出时.驱动多个接收器每个发射器都设计用来驱动一个 接收器.变送器可以并联驱动多个接收器.退出关机时的驱动程序输出驱动器输出不显示振铃或不合需要当他们从关机时出现瞬态.高 数据速率这些收发器保持RS-232±5.0V MINI-妈妈驱动器输出电压数据速率超过 120KBPS.对于120KBPS以上的数据速率,请参考发 射机输出电压与负载电容在图表中典型. 驱动器输出关闭并只吸取漏电流 - MAX232即使他们是反向驱动电压在0V和 12V.在关机时低于-0.5V,变送器输出为二极管钳位到地 面与1KΩ串联阻抗 - ANCE. RS-232接收器接收器将RS-232信号转换为CMOS逻辑产出水平.保证0.8V和2.4V接收器输入阈值比±3V严 格得多 EIA / TIA-232E规范要求的阈值.这允许接收器输入响应TTL / CMOS-逻辑电平以及RS-232电平.保证0.8V输入低阈值确保接地 短路的接收器具有逻辑1输出.该 5KΩ输入电阻接地保证了MAX232接收器其输入保持打开状态也将具有逻辑1输出.接收器输入具有 大约0.5V的滞后.这提供了干净的输出转换,即使MAX232速度很慢上升/下降时间信号,噪音适中并响起.关断时,MAX213E的R4和 R5接收器具有没有滞后.关机和启用控制 (MAX205E / MAX206E / MAX232E / MAX213E / MAX241E)在关机模式下,充电泵关闭, V +被拉低至V CC ,V-拉至接地,并且变送器输出被禁用.这减少了支持,通常为1μA(MAX213E为15μA).退出关机所需的时间 低于1MS,如如图5所示.接收器除R4和R5外,所有MAX213E接收机都被放入在关断模式下的高阻状态(见表 1A和1B). MAX213E的 R4和R5接收器依然如此功能在关机模式下.这两个清醒的,下行接收机可以监控外部活动,保持小的功耗.启用控件用于将接收器输 出插入一个高阻状态,以允许线或连接两个EIA / TIA-232E端口(或不同类型的端口) UART.它不影响RS-232驱动程序或者充电泵. MAXIM器件,ESD保护结构一样并入所有引脚以防止电 - MAX232处理过程中遇到静电放电部件.驱动器输出和接收器输入额外的防 静电保护. MAXIM的英文 - NEERS开发了先进的结构来保护这些引脚对±15KV的ESD没有损坏.该在所有状态下,ESD结构都能承受 高ESD操作,关机和关机.在ESD之后事件,MAXIM的E版本继续工作,没有闭锁,而竞争的RS-232产品可以锁定和必须断电以消除 闩锁. ESD保护可以通过各种方式进行测试;该本产品的发射机输出和接收机输入家庭的特点.

MAX232芯片介绍

MAX232芯片介绍
接头 3、MAX232 的串口下载与通信实验电路
2串口串口座用db9的母头这样就可以用买来的pc串口延长线进行和电脑相连接也可以直接接到电脑com口上
1、串口 232 芯片 、
RS232 接口芯片 MAX232, SOP 封装主要有以下型号: MAX232CSE、 MAX232ESE。 后缀第一个字母如果为“C”,代表商业级,如果为“E”,代表工业 级。 后缀第二个字母带“S”,代表 SOP 封装。 后缀最后一个字母带“+”的:表示无铅产品。 特殊说明: 带“A”的 MAX232A,有 MAX232ACSE、MAX232AESE,它们使 用的是 0.1uF 外部电容,最高速率 200kbps。而 MAX232 使用的是 1uF 外部电容,最高速率 120kbps。 2、串口 、 串口座用 DB9 的母头, 这样就可以用买来的 PC 串口延长线进行 和电脑相连接,也可以直接接到电脑 com 口上。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其次,RS-232C标准中所提到的“发送”和“接收”,都是站在DTE立场上,而不是站在DCE的立场来定义的。由于在计算机系统中,往往是CPU和I/O设备之间传送信息,两者都是DTE,因此双方都能发送和接收。
一、RS-232-C
RS-232C标准(协议)的全称是EIA-RS-232C标准,其中EIA(Electronic Industry Association)代表美国电子工业协会,RS(recommeded standard)代表推荐标准,232是标识号,C代表RS232的最新一次修改(1969),在这之前,有RS232B、RS232A。。它规定连接电缆和机械、电气特性、信号功能及传送过程。常用物理标准还有有EIA�RS-232-C、EIA�RS-422-A、EIA�RS-423A、EIA�RS-485。 这里只介绍EIA�RS-232-C(简称232,RS232)。 例如,目前在IBM PC机上的COM1、COM2接口,就是RS-232C接口。
3、RS-232C的接口信号
RS-232C规标准接口有25条线,4条数据线、11条控制线、3条定时线、7条备用和未定义线,常用的只有9根,它们是
(1)联络控制信号线:
数据装置准备好(Data set ready-DSR)——有效时(ON)状态,表明MODEM处于可以使用的状态。
2个数据信号:发送TXD;接收RXD。
1个信号地线:SG。
6个控制信号:
DSR��数传机(即modem)准备好,Data Set Ready.
DTR��数据终端(DTE,即微机接口电路,如Intel8250/8251,16550)准备好,Data Terminal Ready。
MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的接口电路,使用+5v单电源供电。
内部结构基本可分三个部分:
第一部分是电荷泵电路。由1、2、3、4、5、6脚和4只电容构成。功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。
第二部分是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。
串行通信接口标准经过使用和发展,目前已经有几种。但都是在RS-232标准的基础上经过改进而形成的。所以,以RS-232C为主来讨论。RS-323C标准是美国EIA(电子工业联合会)与BELL等公司一起开发的1969年公布的通信协议。它适合于数据传输速率在0~20000b/s范围内的通信。这个标准对串行通信接口的有关问题,如信号线功能、电器特性都作了明确规定。由于通行设备厂商都生产与RS-232C制式兼容的通信设备,因此,它作为一种标准,目前已在微机通信接口中广泛采用。
其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。
8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。
TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T1OUT、T2OUT送到电脑DP9插头;DP9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R1OUT、R2OUT输出。
数据终端准备好(Data set ready-DTR)——有效时(ON)状态,表明数据终端可以使用。
这两个信号有时连到电源上,一上电就立即有效。这两个设备状态信号有效,只表示设备本身可用,并不说明通信链路可以开始进行通信了,能否开始进行通信要由下面的控制信号决定。
请求发送(Request to send-RTS)——用来表示DTE请求DCE发送数据,即当终端要发送数据时,使该信号有效(ON状态),向MODEM请求发送。它用来控制MODEM是否要进入发送状态。
(3)地线
有两根线SG、PG——信号地和保护地信号线,无方向。
上述控制信号线何时有效,何时无效的顺序表示了接口信号的传送过程。例如,只有当DSR和DTR都处于有效(ON)状态时,才能在DTE和DCE之间进行传送操作。若DTE要发送数据,则预先将DTR线置成有效(ON)状态,等CTS线上收到有效(ON)状态的回答后,才能在TxD线上发送串行数据。这种顺序的规定对半双工的通信线路特别有用,因为半双工的通信才能确定DCE已由接收方向改为发送方向,这时线路才能开始发送。
允许发送(Clear to send-CTS)——用来表示DCE准备好接收DTE发来的数据,是对请求发送信号RTS的响应信号。当MODEM已准备好接收终端传来的数据,并向前发送时,使该信号有效,通知终端开始沿发送数据线TxD发送数据。
这对RTS/CTS请求应答联络信号是用于半双工MODEM系统中发送方式和接收方式之间的切换。在全双工系统中作发送方式和接收方式之间的切换。在全双工系统中,因配置双向通道,故不需要RTS/CTS联络信号,使其变高。
RS-232-C
RS-232-C是美国电子工业协会EIA(Electronic Industry Association)制定的一种串行物理接口标准。RS是英文“推荐标准”的缩写,232为标识号,C表示修改次数。RS-232-C总线标准设有25条信号线,包括一个主通道和一个辅助通道。
在多数情况下主要使用主通道,对于一般双工通信,仅需几条信号线就可实现,如一条发送线、一条接收线及一条地线。
接收线信号检出(Received Line detection-RLSD)——用来表示DCE已接通通信链路,告知DTE准备接收数据。当本地的MODEM收到由通信链路另一端(远地)的MODEM送来的载波信号时,使RLSD信号有效,通知终端准备接收,并且由MODEM将接收下来的载波信号解调成数字两数据后,沿接收数据线RxD送到终端。此线也叫做数据载波检出(Data Carrier dectection-DCD)线。
在讨论RS-232C接口标准的内容之前,先说明两点:
首先,RS-232-C标准最初是远程通信连接数据终端设备DTE(Data Terminal Equipment)与数据通信设备DCE(Data Communication Equipment)而制定的。因此这个标准的制定,并未考虑计算机系统的应用要求。但目前它又广泛地被借来连接标准。显然,这个标准的有些规定及和计算机系统是不一致的,甚至是相矛盾的。有了对这种背景的了解,我们对RS-232C标准与计算机不兼容的地方就不难理解了
电缆长度:在通信速率低于20kb/s时,RS-232C所直接连接的最大物理距离为15m(50英尺)。
最大直接传输距离说明:RS-232C标准规定,若不使用MODEM,在码元畸变小于4%的情况下,DTE和DCE之间最大传输距离为15m(50英尺)。可见这个最大的距离是在码元畸变小于4%的前提下给出的。为了保证码元畸变小于4%的要求,接口标准在电气特性中规定,驱动器的负载电容应小于2500pF。
RTS��DTE请求DCE发送(Request To Send)。
CTS��DCE允许DTE发送(Clear To Send),该信号是对RTS信号的回答。
DCD��数据载波检出,Data Carrier Detection当本地DCE设备(Modem)收到对方的DCE设备送来的载波信号时,使DCD有效,通知DTE准备接收, 并且由DCE将接收到的载波信号解调为数字信号, 经RXD线送给DTE。
EIA-RS-232C与TTL转换:EIA-RS-232C是用正负电压来表示逻辑状态,与TTL以高低电平表示逻辑状态的规定不同。因此,为了能够同计算机接口或终端的TTL器件连接,必须在EIA-RS-232C与TTL电路之间进行电平和逻辑关系的变换。实现这种变换的方法可用分立元件,也可用集成电路芯片。目前较为广泛地使用集成电路转换器件,如MC1488、SN75150芯片可完成TTL电平到EIA电平的转换,而MC1489、SN75154可实现EIA电平到TTL电平的转换。MAX232芯片可完成TTL←→EIA双向电平转换。
1.电气特性
EIA-RS-232C对电器特性、逻辑电平和各种信号线功能都作了规定。
在TxD和RxD上:逻辑1(MARK)=-3V~-15V
逻辑0(SPACE)=+3~+15V
在RTS、CTS、DSR、DTR和DCD等控制线上:
信号有效(接通,ON状态,正电压)=+3V~+15V
振铃指示(Ringing-RI)——当MODEM收到交换台送来的振铃呼叫信号时,使该信号有效(ON状态),通知终端,已被呼叫。
(2)数据发送与接收线:
发送数据(Transmitted data-TxD)——通过TxD终端将串行数据发送到MODEM,(DTE→DCE)。
接收数据(Received data-RxD)——通过RxD线终端接收从MODEM发来的串行数据,(DCE→DTE)。
(2)DB-9连接器
在AT机及以后,不支持20mA电流环接口,使用DB-9连接器,作为提供多功能I/O卡或主板上COM1和COM2两个串行接口的连接器。它只提供异步通信的9个信号。DB-25型连接器的引脚分配与DB-25型引脚信号完全不同。因此,若与配接DB-25型连接器的DCE设备连接,必须使用专门的电缆线。
第三部分是供电。15脚DNG、16脚VCC(+5v)。
-----------------------------------------------
是个人计算机上的通讯接口之一,由电子工业协会(Electronic Industries Association,EIA) 所制定的异步传输标准接口。通常 RS-232 接口以9个接脚 (DB-9) 或是25个接脚 (DB-25) 的型态出现,一般个人计算机上会有两组 RS-232 接口,分别称为 COM1 和 COM2。
相关文档
最新文档