新课标人教A版高中数学必修3期末测试题文科

合集下载

2021新教材人教版高中数学A版选择性必修第三册模块练习题--7.3.2 离散型随机变量的方差

2021新教材人教版高中数学A版选择性必修第三册模块练习题--7.3.2 离散型随机变量的方差

7.3.2离散型随机变量的方差基础过关练题组一离散型随机变量的方差与标准差1.(2020广东佛山顺德一中高二下期末)已知离散型随机变量X的分布列如下,则D(X)=( )X 0 2 4P 141214A.1B.2C.3D.42.(2020广东实验中学南海学校高二下期中)已知随机变量X的分布列如下表,则X的标准差为( )X 1 3 5P 0.4 0.1 xA.3.56B.√3.2C.3.2D.√3.563.(2020山东临沂罗庄第一中学高二下期中)编号为1,2,3的3位同学随意入座编号为1,2,3的3个座位,每位同学坐一个座位,设与座位编号相同的学生个数是X,则X的方差为( )A.√2B.√22C.12D.14.(多选)已知离散型随机变量X 的分布列如下表,则( )X -1 0 1 P121316A.P(X=0)=13B.E(X)=-13C.D(X)=2327D.D(X 2)=295.(2020天津静海第一中学高二期中)随机变量X 的可能取值为0,1,2,若P(X=0)=14,E(X)=1,则D(X)= .题组二 离散型随机变量的方差的性质6.(2020江苏宿迁宿豫中学高二下阶段检测)已知随机变量Y,X 之间的关系为Y=2X+3,且D(X)=7,则D(Y)=( ) A.7 B.17 C.28 D.637.若随机变量X 满足E(2X+3)=7,D(2X+3)=16,则下列结论正确的是( ) A.E(X)=72,D(X)=132B.E(X)=2,D(X)=4C.E(X)=2,D(X)=8D.E(X)=74,D(X)=88.(2020海南海口四中高三上月考)已知随机变量X 的分布列为X 0 1 x P12 13 pE(X)=23.(1)求D(X);(2)若Y=3X-2,求D(Y).题组三 均值与方差的简单应用9.若X 是离散型随机变量,P(X=x 1)=23,P(X=x 2)=13,且x 1<x 2,已知E(X)=43,D(X)=29,则x 1+x 2的值为( ) A.53B.73C.3D.11310.(2019山东枣庄高二下期末)已知随机变量X 的分布列如下表,若E(X)=1,D(2X+1)=2,则p=( )X 0 a 2 P 12-p 12pA.13B.14C.15D.1611.(2019山东菏泽鄄城一中高二下月考)有三张形状、大小、质地完全相同的卡片,在卡片上分别写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,将其上数字记作y,令X=xy.求: (1)X 的分布列; (2)X 的数学期望与方差.能力提升练题组一离散型随机变量的方差1.()随机变量X的分布列如下表,其中a,b,c成等差数列,则D(X)的最大值为( )X 1 2 3P a b cA.29B.59C.34D.232.(多选)(2020河南顶级名校高三联考,)已知随机变量X的分布列如下表,则下列说法正确的是( )X x yP y xA.存在x,y∈(0,1),E(X)>12B.对任意x,y∈(0,1),E(X)≤12C.对任意x,y∈(0,1),D(X)≤E(X)D.存在x,y∈(0,1),D(X)>143.(2020山东德州高三上期末,)随机变量X 的可能取值为0,1,2,P(X=0)=0.2,D(X)=0.4,则E(X)= . 4.(原创)()已知随机变量X 的分布列如下:X 0 1 2 Pabc在①a=b -c,②E(X)=1这两个条件中任选一个,并判断当a 在(0,12)内增大时,D(X)是否随着a 的增大而增大,请说明理由.题组二 离散型随机变量的均值与方差的应用 5.()如图,某工人的住所在A 处,上班的企业在D 处,开车上、下班时有三条路程几乎相等的路线可供选择:环城南路经过路口C,环城北路经过路口F,中间路线经过路口G.如果开车到B,C,E,F,G 五个路口时因遇到红灯而堵车的概率分别为15,12,14,13,16,此外再无别的路口会遇到红灯.(1)为了减少开车到路口时因遇到红灯而堵车的次数,这位工人应该选择哪条行驶路线?(2)对于(1)中所选择的路线,求其堵车次数的方差.6.(2019福建龙岩一级达标校高二下期末联考,)为回馈顾客,某购物商场拟通过摸球兑奖的方式对500位顾客进行奖励.规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球(球的大小、形状完全相同),球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为40元,其余3个所标的面值均为20元,求顾客所获的奖励额X的分布列及数学期望;(2)商场对奖励总额的预算是30 000元,并规定袋中的4个球由标有面值为20元和40元的两种球共同组成,或标有面值为15元和45元的两种球共同组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的4个球的面值给出一个合适的设计,并说明理由.提示:袋中的4个球由标有面值为a元和b元的两种球共同组成,即袋中的4个球所标的面值“既有a元又有b元”.答案全解全析7.3.2 离散型随机变量的方差基础过关练1.B 由已知得E(X)=0×14+2×12+4×14=2,所以D(X)=(0-2)2×14+(2-2)2×12+(4-2)2×14=2.2.D 易知0.4+0.1+x=1,解得x=0.5, ∴E(X)=1×0.4+3×0.1+5×0.5=3.2,∴D(X)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56, ∴X 的标准差为√D (X )=√3.56. 故选D.3.D 由题意得X 的可能取值为0,1,3, P(X=0)=2A 33=13,P(X=1)=3A 33=12, P(X=3)=1A 33=16,∴E(X)=0×13+1×12+3×16=1,∴D(X)=(0-1)2×13+(1-1)2×12+(3-1)2×16=1.故选D.4.ABD 由X 的分布列可知P(X=0)=13,所以A 正确;根据离散型随机变量分布列的期望与方差的计算公式可得,E(X)=(-1)×12+0×13+1×16=-13,所以D(X)=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,所以B 正确,C 不正确;因为P(X 2=0)=13,P(X 2=1)=23,所以E(X 2)=23,所以D(X 2)=(0-23)2×13+(1-23)2×23=29,所以D 正确. 故选ABD.5.答案 12解析 P(X=0)=14,则P(X=1)+P(X=2)=34,E(X)=P(X=1)+2P(X=2)=1,故P(X=1)=12,P(X=2)=14,所以D(X)=14×(0-1)2+12×(1-1)2+14×(2-1)2=12.6.C ∵Y=2X+3,D(X)=7, ∴D(Y)=D(2X+3)=22D(X)=28. 故选C.7.B ∵E(2X+3)=2E(X)+3=7,D(2X+3)=4D(X)=16,∴E(X)=2,D(X)=4,故选B. 8.解析 (1)由题意可得12+13+p=1,解得p=16.又E(X)=0×12+1×13+x×16=23,∴x=2,∴D(X)=(0-23)2×12+(1-23)2×13+(2-23)2×16=59.(2)∵Y=3X -2,∴D(Y)=D(3X -2)=9D(X)=9×59=5.9.C ∵E(X)=43,D(X)=29,∴{23x 1+13x 2=43,23(x 1-43)2+13(x 2-43)2=29,解得{x 1=1,x 2=2,或{x 1=53,x 2=23(不合题意,舍), ∴x 1+x 2=3.10.B 由题意得,E(X)=0×(12-p)+a×12+2×p=1,∴a2+2p=1,①又知D(2X+1)=2,由方差的性质知,D(2X+1)=4D(X),∴D(X)=12,∴D(X)=(0-1)2×(12-p)+(a-1)2×12+(2-1)2×p=12,即a 2-2a+1=0,所以a=1.将a=1代入①式,得p=14.故选B.11.解析 (1)随机变量X 的可能取值为0,1,2,4,“X=0”是指两次取的卡片上的数字至少有一次为0,其概率P(X=0)=1-23×23=59,“X=1”是指两次取的卡片上的数字均为1,其概率P(X=1)=13×13=19,“X=2”是指两次取的卡片上一个数字为1,另一个数字为2,其概率P(X=2)=2×13×13=29,“X=4”是指两次取的卡片上的数字均为2,其概率P(X=4)=13×13=19.则X 的分布列为X 0 1 2 4 P591929 19(2)由(1)知,E(X)=0×59+1×19+2×29+4×19=1,所以D(X)=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.能力提升练1.D ∵a,b,c 成等差数列,∴2b=a+c, 又∵a+b+c=1, ∴b=13,c=23-a,0≤a≤23,∴E(X)=a+2b+3c=83-2a,则D(X)=[1-(83-2a)]2×a+[2-(83-2a)]2×13+[3-(83-2a)]2×(23-a)=-4a 2+83a+29=-4(a -13)2+23,又0≤a≤23,∴当a=13,即a=b=c=13时,D(X)取得最大值23.故选D.2.BC 依题意可得x+y=1,E(X)=2xy,又2xy≤(x+y )22=12,所以E(X)≤12,当且仅当x=y=12时取等号,∴A 错误,B 正确;D(X)=(x-2xy)2y+(y-2xy)2x=(1-2y)2x 2y+(1-2x)2y 2x=[(1-2y)2x+(1-2x)2y]yx=[(2x-1)2x+(1-2x)2y]yx=(1-2x)2(x+y)yx=(1-2x)2yx, ∵0<x<1, ∴-1<2x-1<1, ∴0<(2x -1)2<1,∴D(X)<yx,即D(X)<12E(X),∴C 正确;∵D(X)=(1-2x)2yx<xy≤(x+y )24=14,当且仅当x=y=12时取等号. ∴D 错误. 故选BC. 3.答案 1解析 设P(X=2)=x,其中0≤x≤0.8, 则P(X=1)=0.8-x,∴E(X)=0×0.2+1×(0.8-x)+2x=x+0.8,∴D(X)=(x+0.8)2×0.2+(0.2-x)2×(0.8-x)+(1.2-x)2x=0.4, 解得x=0.2(x=1.2舍去), 因此,E(X)=0.2+0.8=1.4.解析 若选择①,则有{a +b +c =1,a =b -c ,可得b=12,则E(X)=b+2c=32-2a,所以D(X)=(2a -32)2a+(2a -12)2b+(2a +12)2c=-4a 2+2a+14=-4(a -14)2+12,所以当a∈(0,14)时,D(X)随着a 的增大而增大,当a∈(14,12)时,D(X)随着a 的增大而减小. 若选择②,则有{a +b +c =1,E (X )=b +2c =1,可得a=c,因此D(X)=a+c=2a,所以当a 在(0,12)内增大时,D(X)随着a 的增大而增大.5.解析 (1)设这位工人选择行驶路线A —B —C —D 、A —F —E —D 、A —B —G —E —D 时堵车的次数分别为X 1、X 2、X 3,则X 1、X 2的可能取值均为0,1,2,X 3的可能取值为0,1,2,3. P(X 1=0)=45×12=25,P(X 1=1)=15×12+45×12=12,P(X 1=2)=15×12=110,所以E(X 1)=0×25+1×12+2×110=710.P(X 2=0)=23×34=12,P(X 2=1)=13×34+23×14=512,P(X 2=2)=13×14=112,所以E(X 2)=0×12+1×512+2×112=712.P(X 3=0)=45×56×34=12,P(X 3=1)=15×56×34+45×16×34+45×56×14=47120,P(X 3=2)=45×16×14+15×56×14+15×16×34=110, P(X 3=3)=15×16×14=1120,所以E(X 3)=0×12+1×47120+2×110+3×1120=3760.综上,E(X 2)最小,所以这位工人应该选择行驶路线A —F —E —D.(2)由(1)知E(X 2)=712,P(X 2=0)=12,P(X 2=1)=512,P(X 2=2)=112,则D(X 2)=(0-712)2×12+(1-712)2×512+(2-712)2×112=59144,所以该条行驶路线堵车次数的方差为59144.6.解析 (1)由题意得随机变量X 的可能取值为40,60, P(X=40)=C 32C 42=12,P(X=60)=C 11C 31C 42=12.所以X 的分布列为X 40 60 P12 12所以顾客所获的奖励额的期望E(X)=40×12+60×12=50.(2)根据商场的预算,每个顾客的平均奖励额为30 000÷500=60元, 所以可先寻找使期望为60的可能方案: ①当球标有的面值为20元和40元时,若选择“20,20,20,40”的面值设计,因为60元是面值之和的最大值,所以期望不可能为60;若选择“40,40,40,20”的面值设计,因为60元是面值之和的最小值,所以期望不可能为60.因此可能的面值设计是选择“20,20,40,40”,设此方案中顾客所获的奖励额为X 1,则X 1的可能取值为40,60,80, P(X 1=40)=C 22C 42=16,P(X 1=60)=C 21C 21C 42=23,P(X 1=80)=C 22C 42=16.所以X 1的分布列为X 1 40 60 80 P162316所以E(X 1)=40×16+60×23+80×16=60.D(X 1)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.②当球标有的面值为15元和45元时,同理可排除“15,15,15,45”和“45,45,45,15”的面值设计,所以可能的面值设计是选择“15,15,45,45”,设此方案中顾客所获的奖励额为X 2,则X 2的可能取值为30,60,90, P(X 2=30)=C 22C 42=16,P(X 2=60)=C 21C 21C 42=23,P(X 2=90)=C 22C 42=16.所以X 2的分布列为X 2 30 60 90 P162316所以E(X 2)=30×16+60×23+90×16=60.D(X 2)=(30-60)2×16+(60-60)2×23+(90-60)2×16=300.因为E(X 1)=E(X 2)=60,D(X 1)<D(X 2), 所以两种方案奖励额的期望都符合要求,但面值设计方案为“20,20,40,40”的奖励额的方差要比面值设计方案为“15,15,45,45”的奖励额的方差小,所以应该选择面值设计方案“20,20,40,40”,即标有面值20元和面值40元的球各2个.。

新人教A版必修3 高中数学2.3.4第二章统计复习小结测试 文

新人教A版必修3 高中数学2.3.4第二章统计复习小结测试 文

高中数学 2.3.4第二章统计复习小结测试文新人教A版必修3一、选择题1.下列说法错误的是()A.在统计里,把所需考察的对象的全体叫做总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大2.为了了解参加一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个样本容量为10的样本,那么从总体中应随机剔除个体的数目是()A.2 B.3 C.4 D.53.从某年级2000名学生中抽取200名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A.应采用分层抽样抽取样本B.每个被抽查的学生是个体C.抽取的200名学生的体重是一个样本D.抽取的200名学生的体重是样本容量4.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是()A.7,11,9 B.6,12,18 C.6,13,17 D.7,12,175.下列抽样问题中最适合用系统抽样发抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解某些情况6.已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图(如图所示),则()3 6 8 2 54 3 8 9 3 1 6 1 6 7 9 2 4 4 9 15 0A.甲篮球运动员比赛得分更稳定,中位数为26B.甲篮球运动员比赛得分更稳定,中位数为27C.乙篮球运动员比赛得分更稳定,中位数为31D.乙篮球运动员比赛得分更稳定,中位数为367. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( ) A .1 B .2 C .3 D .4A.0.001B.0.1C.0.2D.0.38. 给出两组数据x 、y 的对应值如下表,若已知x 、y 是线性相关的,且线性回归方程:x b a yˆˆˆ+=,经计算知:4.1ˆ-=b ,则=a ˆ( )A.17.4B.-1.74C.0.6D.-0.69. 某中学有学生270人,其中一年级108人,二、三年级各81人,现在用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2,…,270,如果抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265; ②7,34,61,88,115,142,169,196,223,250; ③30,57,84,111,138,165,192,219,246,270;④11,38,65,92,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为( ) A. ①② B.②③ C.①③ D.①④ 二、填空题11.一组数据:23,27,20,18,x ,12,它们的平均数为21,那么x 是 .12.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是 13.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.由表中数据得线性方程x b a yˆˆˆ+=中2ˆ-=b ,据此预测当气温为5℃时,用电量的度数约为 .14.某单位有技工18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n 的样本;如果采用系统抽样和分层抽样方法,都不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中剔除一个个体,则样本容量n 为 . 15.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是 ,三、解答题16.一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样和分层抽样的方法,从这批产品中抽取一个容量为20的样本.17.要从甲、乙两名运动员中选拔一人参加射击比赛,为此对他们的射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下: 甲:7 8 6 8 6 5 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7(1)计算甲、乙两人射击命中环数的平均数和标准差; (2)比较两人的成绩,然后决定选择哪一人参加比赛.18.为了研究三月下旬的平均气温(x )与四月棉花害虫化蛹高峰(y )的关系,某地区观察了2003年至2008年的情况,得到下面数据:已知与之间具有线性相关关系,据气象预测该地区在2010年三月下旬平均气温为27℃,试估计2010年四月化蛹高峰日为哪天?19.为参加连队组织的射击比赛,班长在本班安排射击选拔赛,每人每轮10发,共安排10(1)根据表中数据画出茎叶图(以个数为叶,并且排序);(2)请你替班长选出1名战士参加连队的射击比赛,并说明理由.20.一般来说,一个人的身高越高,他的手就越大.为调查这一问题,对10名高三男生的身高与右手一拃长测量得如下数据(单位:cm):(2)如果近似成线性关系,求回归方程.(3)如果一个学生身高185cm,估计他的右手一拃长.21.某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109〕3株;[109,111〕9株;[111,113〕13株;[113,115〕16株;[115,117〕26株;[117,119〕20株;[119,121〕7株;[121,123〕4株;[123,125〕2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据[109,121〕范围内的可能性是百分之几?必修3 第二章《统计》单元测试题[供教师备课参考]参考答案: BACBC DDDAC11.26 12.62.8 3.6 13.40 14.6 15.42 3 16.解:(1)系统抽样的方法:先将200个产品随机编号,001,0020,…,200,再将200个产品按001~010,011~020,…,191~200,分成20组,每组10个产品,在第一组内用简单随机抽样确定起始的个体编号,按事先确定的规则,从每组中分别抽取样本,这样就得到一个容量为20的样本.(2)分层抽样的方法:先将总体按其级别分为三层,一级品有100个,产品按00,01,…,99编号,二级品有60个,产品按00,01,…,59编号,三级品有40个,产品按00,01,…,39编号.因总体个数:样本容量为10:1,故用简单随机抽样的方法,在一级品中抽10个,二级品中抽6个,三级品中抽4个.这样就得到一个容量为20的样本.17.解:(1).10.1,73.1,7ˆ,7ˆ≈≈==乙甲乙甲s s x x(2)由(1)知,甲、乙两人的平均成绩相等,但甲乙s s <,这表明乙的成绩比甲的成绩稳定一些,从成绩的稳定性考虑,可以选择乙参赛.18.解: 由题意知:,6.71ˆˆ,2.266ˆ,6.1222,92.5130,5,7,13.2926126161612≈-=-≈--=∴===≈∑∑∑∑====x b y ax xy x yx by x x y x i iii i i i i i i∴回归方程为6.712.2ˆ+-=x y. 当27=x 时,2.126.71272.2ˆ=+⨯-=y,据此,可估计该地区2010年4月12日或13日为化蛹高峰期日.19.解: (1)(2)应当安排战士乙参加比赛,因为这两个战士的平均成绩都是95环,叶的分布是“单峰”的,从叶在茎上的分布情况看,乙战士的得分更集于峰值附近,这说明乙战士的发挥更稳定,所以若只要派去的选手发挥水平,应选战士乙.20.解:(1)散点图如图:由上图可见,身高与右手一扎长之间的总体趋势成一条直线,即它们线性相关.(2).264.31303.0ˆ-=x y(3)当x=185时,.791.24264.31185303.0ˆ=-⨯=y即学生身高185cm 时,他的右手一拃长约为24.791cm. 21.解:(1)画出频率分布表如下:18 19 20 21 22 23 24 25 26167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182一拃长 身高0.14 0.12 0.1 0.08 0.06 0.04 0.02 0树苗高度/cm(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121〕范围内的频率为:0.94-0.03=0.91,即数据落在[109,121〕范围内的可能性是91%.频率/组距。

人教A版高中数学必修三试卷概率练习题 (2)

人教A版高中数学必修三试卷概率练习题  (2)

概率练习题(2)一、选择题1、下列正确的说法是()(A)互斥事件是独立事件(B)独立事件是互斥事件(C)两个非不可能事件不能同时互斥与独立(D)若事件A与事件B互斥,则A与B独立2、一个口袋中装有3个白球和3个黑球,独立事件是()(A)第一次摸出的是白球与第一次摸出的是黑球(B)摸出后不放回.第一次摸出的是白球,第二次摸出的是黑球(C)摸出后放回,第一次摸出的是白球,第二次摸出的是黑球(D)一次摸两个球,第一次摸出颜色相同的球与第一次摸出颜色不同的球3、一个均匀的正四面体,第一面是红色,第二面是白色,第三面是黑色,而第四面同时有红、白、黑三种颜色,P、Q、R表示投掷一次四面体接触桌面为红、白、黑颜色事件.则下列结论正确的是()(A)P、Q、R不相互独立(B)P、Q、R两两独立(C)P、Q、R不会同时发生(D)P、Q、R的概率是314、甲、乙两人独立答题,甲能解出的概率为p,乙能解出的概率为q,那么两人都能解出此题的概率是()(A)pq(B)p(1-q)(C)(1-p)(1-q)(D)1-(1-p)(1-q)5、推毁敌人一个工事,要命中三发炮弹才行,我炮兵射击的命中率是0.8.为了有95%的把握摧毁工事,需要发射炮弹的个数是()(A)6(B)5(C)4 (D)36、三个人独立地破译一个密码,他们能单独译出的概率分别为15,31,14,假设他们破译密码是彼此独立的,则此密码被译出的概率为()(A)35(B)25(C)160(D)不确定7、有一道竞赛试题,甲生解出它的概率为12,乙生解出它的概率为13,丙生解出它的概率为14,则甲、乙、丙三人独立解答此题,只有1人解出的概率为() (A )124(B )1124(C )1724(D )1 8、10个正四面体的小木块表面上,每一个侧面都分别标有数字1,2,3,4,如果把这10个小木块全部掷出,则恰有3个小木块上标的4因贴在平面上看不见的概率计算式是() (A )3101C (B )3371013()()44C (C )3731013()()44C (D )3101A 9、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为8081,则此射手的命中率为() (A )13(B )14(C )23(D )2510、假设每一架飞机的引擎在飞行中出现故障率为1-p ,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行.若使4引擎飞机比2引擎飞机更为安 全,则p 的取值范围是 ()(A )(1,13)(B )(0,23)(C )(23,1)(D )(0,14)二、填空题11、两雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,则有且仅有1名雷达发现飞行物的概率为 .12、甲、乙两人同时报考某一大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否录取互不影响,则甲、乙两人都被录取的概率是 .13、今有三门高射炮,同时射击一架敌人的侦察机,若每一门高射炮的命中率都是0.60,则至少有一门高射炮击中敌机的概率是 .14、盒中有7个白球和3个黑球,从中连取两次,每次取一球,且第一次取出球后又放回盒中,则两个球都是白球的概率为 .15、一个工人看管三台车床,在一小时内车床不需要工人照管的概率;第一台等于0.9,第二台等于0.8,第三台等于0.7,求在一小时内至少有一台车床需要工人照管的概率为 . 三、解答题16、在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某城市一个投保人能活到75岁的概率为0.60,试问: (1)3个投保人都能活到75岁的概率;(2)3个投保人中只有1人能活到75岁的概率; (3)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)17、某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21.从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52.试问:(1)第二次闭合后出现红灯的概率是多少;(2)三次发光中,出现一次红灯、两次绿灯的概率是多少.18、证明“五局三胜”制(即比赛五局,先胜三局者为优胜者)是公平的比赛制度,即如果比赛双方赢得每局是等可能的,各局比赛是独立进行的,则双方获胜的概率相同.19、有10台同样的机器,每台机器的故障率为0.03,各台机器独立工作,今配有2名维修工人,一般情况下,一台机器故障1个人维修即可,问机器故障无人修的概率是多少?20、有甲、乙、丙三批罐头,每100个,其中各1个是不合格的,从三批罐头中各抽出1个,计算:(1)3个中恰有一个不合格的概率; (2)3个中至少有1个不合格的概率.21、张华同学骑自行车上学途中要经过4个交叉路口,在各交叉路口遇到红灯的概率都是1 5(假设各交叉路口遇到红灯的事件是相互独立的).(1)求张华同学某次上学途中恰好遇到3次红灯的概率;(2)求张华同学某次上学时,在途中首次遇到红灯前已经过2个交叉路口的概率.22、如图:用A、B、C、D四类不同的元件连接成系统N,当元件A正常工作且元件B、C都正常工作,或当元件A正常工作且元件D正常工作时,系统N正常工作.已知元件A、B、C、D正常工作的概率依次为2334 ,,, 3445.(1)求元件A不正常工作的概率;(2)求元件A、B、C都正常工作的概率;(3)求系统N正常工作的概率.参考答案11、0.2612、0.4213、0.93614、0.4915、0.496 三、解答题16、(1)22.0)6.0()3(33≈=P ;(2)29.016.06.03)6.01(6.0)1(2133≈⨯⨯=-⨯⨯=C P ;(3)94.0064.01)6.01(13≈-=--=P .17、解(1)如果第一次出现红灯,则接着又出现红灯的概率是3121⨯;如果第一次出现绿灯,则接着出现红灯的概率为5321⨯.综上,第二次出现红灯的概率为3121⨯+1575321=⨯.(2)由题意,三次发光中,出现一次红灯、两次绿灯的情况共有如下三种方式:① 当出现绿、绿、红时的概率为535221⨯⨯;②当出现绿、红、绿时的概率为325321⨯⨯;③当出现红、绿、绿时的概率为523221⨯⨯;所以三次发光中,出现一次红灯、两次绿灯的概率为535221⨯⨯+325321⨯⨯+523221⨯⨯=.753418、证明:将每一局比赛看作一次试验,考察一方,如甲方胜或负(即乙方负或胜),问题归结为n =5的贝努里试验.设A 表示一局比赛中“甲获胜”事件,由题意,P(A)=21,记B k 为“五局比赛中甲胜k 局”事件,k =0、1、2、3、4、5.则P(“甲获胜”)=P(B 3∪B 4∪B 5).则利用概率的加法公式,注意到C 5k =C 55-k即得 P(“甲获胜”)=P(B 3)+P(B 4)+P(B 5)=C 53(21)5+C 54(21)5+C 55(21)5=21. 而P(“乙获胜”)=P(“甲获胜”)=1-21=21.19、解:A 表示机器故障无人修的事件,A 表示机器故障多不超过2,则P(A )=C 100(0.97)10+C 101(0.97)9(0.03)+C 103(0.97)8(0.03)2=0.9972, P(A)=1-P(A )=0.0028.20、解:(1)P 1=P(A ·B ·C)+P(A ·B ·C)+P(A ·B ·C )=P(A )·P(B)·P(C)+P(A)·P(B )·P(C)+P(A)·P(B)·P(C )=3×(0.01×0.992)≈0.03或者P 1=C 31×0.01×(1-0.01)2=3×0.01×0.992≈0.03.(2)1-0.993≈0.03 21、(1)经过各交叉路口遇到红灯,相当于独立重复试验,所以恰好遇到3次红灯的概率为.62516)511()51()3(3344=-=C P(2)记“经过交叉路口遇到红灯”事件A .张华在第1、2个交叉路口末遇到红灯,在第3个交叉路口遇到红灯的概率为)()()()(A P A P A P A A A P P ⋅⋅=⋅⋅==.1251651)511()511(=⨯-⨯-22、(1)元件A 正常工作的概率P (A )=32,它不正常工作的概率)(1)(A P A P -==;31(2)元件A 、B 、C 都正常工作的概率P(A ·B ·C)=P (A )P (B )P (C )2333;3448=⋅⋅=(3)系统N 正常工作可分为A 、B 、C 都正常工作和A 、D 正常工作但B 、C 不都正常工作两种情况,前者概率83,后者的概率为=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅)()()(D C B A P D C B A P D C B A P544141325441433254434132⋅⋅⋅+⋅⋅⋅+⋅⋅⋅730=. 所以系统N 正常工作的概率是3773830120+=.。

期末复习综合测试题(2)-【新教材】人教A版(2019)高中数学必修第一册

期末复习综合测试题(2)-【新教材】人教A版(2019)高中数学必修第一册

模块一复习测试题二一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是46.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=7.已知cos()3παα+=为锐角),则sin (α= )A B C D8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为()A .43π B .2π C .83π D .73π 二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+-三.填空题(共4小题)13.化简32a b-= (其中0a >,0)b >.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 . 15.若1lgx lgy +=,则25x y+的最小值为 . 16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 .四.参考解答题(共8小题) 17.已知0x >,0y >,且440x y +=. (Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x=>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围; (Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围. 19.解方程 (1)231981xx-=(2)444log (3)log (21)log (3)x x x -=+++20.设函数33()sin cos 2323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示.(Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.22.已知函数2()3sin 2cos 12xf x x =-+. (Ⅰ)若()23()6f παα=+,求tan α的值;(Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围.模块一复习测试题二参考正确答案与试题详细解析一.选择题(共10小题)1.若集合{|15}A x N x =∈,a =则下面结论中正确的是( ) A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉【详细分析】利用元素与集合的关系直接求解.【参考解答】解:集合{|15}{0A x N x =∈=,1,2,3},a =a A ∴∉.故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意元素与集合的关系的合理运用.2.已知实数1a >,1b >,则4a b +是22log log 1a b ⋅的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【详细分析】根据充分必要条件的定义以及基本不等式的性质判断即可. 【参考解答】解:1a >,1b >, 2log 0a ∴>,2log 0b >,2a b ab +,4a b +,故4ab ,222222222log log log ()log 4log log ()[]()1222a b ab a b +⋅==,反之,取16a =,152b =,则1522224log log log 16log 215a b ⋅=⋅=<, 但4a b +>,故4a b +是22log log 1a b ⋅的充分不必要条件, 故选:A .【点评】本题考查了充分必要条件,考查基本不等式的性质,是一道基础题.3.若命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则实数m 的取值范围是( ) A .(-∞,3]B .[1-,)+∞C .[1-,3]D .[3,)+∞【详细分析】直接利用命题的否定和一元二次方程的解的应用求出结果.【参考解答】解:命题“[0x ∀∈,3],都有220x x m --≠ “是假命题,则命题“[0x ∃∈,3],使得220x x m --= “成立是真命题, 故222(1)1m x x x =-=--. 由于[0x ∈,3],所以[1m ∈-,3]. 故选:C .【点评】本题考查的知识要点:命题的否定的应用,一元二次方程的根的存在性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.若函数2()44f x x x m =--+在区间[3,5)上有零点,则m 的取值范围是( ) A .(0,4)B .[4,9)C .[1,9)D .[1,4]【详细分析】判断出在区间[3,5)上单调递增,(3)0(5)0f f ⎧⎨>⎩得出即1090m m -⎧⎨->⎩即可.【参考解答】解:函数2()44f x x x m =--+,对称轴2x =,在区间[3,5)上单调递增 在区间[3,5)上有零点,∴(3)0(5)0f f ⎧⎨>⎩即1090m m -⎧⎨->⎩ 解得:19m <, 故选:C .【点评】本题考查了二次函数的单调性,零点的求解方法,属于中档题. 5.已知2x >,则12y x x =+-的( ) A .最小值是2 B .最小值是4 C .最大值是2 D .最大值是4【详细分析】直接利用不等式的基本性质和关系式的恒等变换的应用求出结果. 【参考解答】解:已知2x >,所以20x ->,故11222(2)2422y x x x x x =+=-++-=--(当3x =时,等号成立). 故选:B .【点评】本题考查的知识要点:不等式的基本性质,关系式的恒等变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.已知函数12x y +=的图象与函数()y f x =的图象关于直线0x y +=对称,则函数()y f x =的反函数是( )A .21log ()y x =--B .2log (1)y x =--C .12x y -+=-D .12x y -+=【详细分析】设(,)P x y 为()y f x =的反函数图象上的任意一点,则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,(,)P y x '关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,代入详细解析式变形可得.【参考解答】解:设(,)P x y 为()y f x =的反函数图象上的任意一点, 则P 关于y x =的对称点(,)P y x '一点在()y f x =的图象上,又函数()y f x =的图象与函数12x y +=的图象关于直线0x y +=对称,(,)P y x ∴'关于直线0x y +=的对称点(,)P x y ''--在函数12x y +=的图象上,∴必有12x y -+-=,即12x y -+=-,()y f x ∴=的反函数为:12x y -+=-;故选:C .【点评】本题考查反函数的性质和对称性,属中档题7.已知cos()3παα+=为锐角),则sin (α= )A B C D 【详细分析】由11sin sin[()]33ααππ=+-,结合已知及两角差的正弦公式即可求解.【参考解答】解:cos()3παα+=为锐角),∴1sin()3απ+=,则11111sin sin[()]sin())33233ααππαπαπ=+-=++,1(2=-,=故选:C .【点评】本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.8.设函数()sin f x x x =,[0x ∈,2]π,若01a <<,则方程()f x a =的所有根之和为( )A .43π B .2π C .83π D .73π 【详细分析】把已知函数详细解析式利用辅助角公式化积,求得函数值域,再由a 的范围可知方程()f x a =有两根1x ,2x ,然后利用对称性得正确答案.【参考解答】解:1()sin 2(sin )2sin()23f x x x x x x π=+=+=+,[0x ∈,2]π,()[2f x ∴∈-,2],又01a <<,∴方程()f x a =有两根1x ,2x ,由对称性得12()()33322x x πππ+++=,解得1273x x π+=.故选:D .【点评】本题考查两角和与差的三角函数,考查函数零点的判定及应用,正确理解题意是关键,是基础题.二.多选题(共4小题)9.若集合M N ⊆,则下列结论正确的是( ) A .MN N =B .M N N =C .()M M N ∈D .()M N N ⊆【详细分析】利用子集、并集、交集的定义直接求解. 【参考解答】解:集合M N ⊆,∴在A 中,M N M =,故A 错误;在B 中,M N N =,故B 正确;在C 中,()M M N ⊆,故C 错误;在D 中,M N N N =⊆,故D 正确.故选:BD .【点评】本题考查了子集、并集、交集定义等基础知识,考查运算求解能力,属于基础题. 10.下列说法中正确的有( )A .不等式2a b ab +恒成立B .存在a ,使得不等式12a a+成立 C .若a ,(0,)b ∈+∞,则2b a a b+ D .若正实数x ,y 满足21x y +=,则218x y+ 【详细分析】结合基本不等式的一正,二定三相等的条件检验各选项即可判断.【参考解答】解:不等式2a b ab +恒成立的条件是0a ,0b ,故A 不正确;当a 为负数时,不等式12a a+成立.故B 正确; 由基本不等式可知C 正确;对于212144()(2)4428y x y x x y x y x y x y x y+=++=+++=, 当且仅当4y x x y =,即12x =,14y =时取等号,故D 正确. 故选:BCD .【点评】本题考查基本不等式的应用,要注意应用条件的检验.11.已知函数||()1x f x x =+,则( ) A .()f x 是奇函数B .()f x 在[0,)+∞上单调递增C .函数()f x 的值域是(,1)[0-∞-,)+∞D .方程2()10f x x +-=有两个实数根【详细分析】根据函数的奇偶性判断A ,根据函数的单调性判断B ,结合图象判断C ,D 即可.【参考解答】解:对于||:()()1x A f x f x x --=≠--+,()f x 不是奇函数,故A 错误; 对于:0B x 时,1()111x f x x x ==-++在[0,)+∞递增,故B 正确; 对于C ,D ,画出函数()f x 和21y x =-的图象,如图示:,显然函数()f x 的值域是(,1)[0-∞-,)+∞,故C 正确,()f x 和21y x =-的图象有3个交点,故D 错误;故选:BC .【点评】本题考查了函数的单调性,奇偶性问题,考查数形结合思想,转化思想,是一道中档题.12.下列选项中,与11sin()6π-的值相等的是( ) A .22cos 151︒-B .cos18cos 42sin18sin 42︒︒-︒︒C .2sin15sin 75︒︒D .tan30tan151tan30tan15o oo o+- 【详细分析】求出11sin()6π-的值.利用二倍角的余弦求值判断A ;利用两角和的余弦求值判断B ;利用二倍角的正弦求值判断C ;利用两角和的正切求值判断D .【参考解答】解:111sin()sin(2)sin 6662ππππ-=-+==. 对于A ,22cos 1531cos30o -=︒=对于B ,1cos18cos42sin18sin 42cos(1842)cos602︒︒-︒︒=︒+︒=︒=; 对于C ,12sin15sin 752sin15cos15sin302︒︒=︒︒=︒=; 对于D ,tan30tan15tan(3015)tan 4511tan30tan15o oo o+=︒+︒=︒=-.∴与11sin()6π-的值相等的是BC . 故选:BC .【点评】本题考查三角函数的化简求值,考查诱导公式、倍角公式及两角和的三角函数,是基础题.三.填空题(共4小题)13.化简32a b -= a (其中0a >,0)b >.【详细分析】根据指数幂的运算法则即可求出.【参考解答】解1311132322()b b bb ⨯=== 原式2111()3322a b a ---==,故正确答案为:a .【点评】本题考查了指数幂的运算,属于基础题.14.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.4]4-=-,[2.7]2=.已知函数21()15x x e f x e =-+,则函数[()]y f x =的值域是 {1-,0,1} .【详细分析】先利用分离常数法将函数化为92()51x f x e =-+,进而求出()f x 的值域,再根据[]x 的定义可以求出[()]f x 的所有可能的值,进而得到函数的值域.【参考解答】解:212(1)212192()215151551x x x x x x e e f x e e e e+-=-=-=--=-++++, 0x e >,11x e ∴+>,∴2021x e <<+,∴19295515x e -<-<+, 即19()55f x -<<,①当1()05f x -<<时,[()]1f x =-, ②当0()1f x <时,[()]0f x =,③当91()5f x <<时,[()]1f x =, ∴函数[()]y f x =的值域是:{1-,0,1},故正确答案为:{1-,0,1}.【点评】本题主要考查了新定义运算的求解,关键是能通过分离常数的方式求得已知函数的值域,是中档题.15.若1lgx lgy +=,则25x y+的最小值为 2 . 【详细分析】根据对数的基本运算,结合不等式的解法即可得到结论.【参考解答】解:1lgx lgy +=,1lgxy ∴=,且0x >,0y >,即10xy =, ∴25251022210x y x y +=, 当且仅当25x y =,即2x =,5y =时取等号, 故正确答案为:2【点评】本题主要考查不等式的应用,利用对数的基本运算求出10xy =是解决本题的关键,比较基础.16.若42x ππ<<,则函数32tan 2tan y x x =的最大值为 16- .【详细分析】直接利用三角函数的性质和关系式的恒等变换的应用及二次函数的性质的应用求出结果.【参考解答】解:若42x ππ<<,则tan (1,)x ∈+∞, 另22tan tan 21tan x x x=-, 设tan x t =,(1)t >, 则422222244416111111()()24t y t t t t ===-----,当且仅当t =时,等号成立.故正确答案为:16-.【点评】本题考查的知识要点:三角函数关系式的变换,关系式的变换和二次函数的性质,主要考查学生的运算能力和转换能力及思维能力,属于中档题.四.参考解答题(共8小题)17.已知0x >,0y >,且440x y +=.(Ⅰ)求xy 的最大值; (Ⅱ)求11x y+的最小值. 【详细分析】(1)由已知得,40424x y xy =+=解不等式可求,(2)由题意得,11111()(4)40x y x y x y +=++,展开后结合基本不等式可求. 【参考解答】解:(1)0x >,0y >,40424x y xy ∴=+=当且仅当4x y =且440x y +=即20x =,5y =时取等号,解得,100xy ,故xy 的最大值100.(2)因为0x >,0y >,且440x y +=.所以111111419()(4)(5)(540404040y x x y x y x y x y +=++=+++=, 当且仅当2x y =且440x y +=即403x =,203y =时取等号, 所以11x y +的最小值940. 【点评】本题考查了基本不等式在求最值中的应用,属于中档题18.已知函数2()21f x x ax a =--+,a R ∈.(Ⅰ)若2a =,试求函数()(0)2f x y x x =>的最小值; (Ⅱ)对于任意的[0x ∈,2],不等式()f x a 成立,试求a 的取值范围;(Ⅲ)存在[0a ∈,2],使方程()2f x ax =-成立,试求x 的取值范围.【详细分析】(Ⅰ)对式子变形后,利用基本不等式即可求得结果;(Ⅱ)先由题设把问题转化为:2210x ax --对于任意的[0x ∈,2]恒成立,构造函数2()21g x x ax =--,[0x ∈,2],利用其最大值求得a 的取值范围;(Ⅲ)由题设把问题转化为:方程21a x =-在[0a ∈,2]有解,解出x 的范围.【参考解答】解:(Ⅰ)当2a =时,2()41111()22212222f x x x y x x x x -+===+-⨯-=-(当且仅当1x =时取“= “),1min y ∴=-;(Ⅱ)由题意知:221x ax a a --+对于任意的[0x ∈,2]恒成立,即2210x ax --对于任意的[0x ∈,2]恒成立,令2()21g x x ax =--,[0x ∈,2],则(0)10(2)340g g a =-⎧⎨=-⎩,解得:34a , a ∴的取值范围为3[4,)+∞; (Ⅲ)由()2f x ax =-可得:210x a -+=,即21a x =-, [0a ∈,2],2012x ∴-,解得:11x -,即x 的取值范围为[1-,1].【点评】本题主要考查基本不等式的应用、函数的性质及不等式的解法,属于中档题.19.解方程 (1)231981x x -= (2)444log (3)log (21)log (3)x x x -=+++【详细分析】(1)直接利用有理指数幂的运算法则求解方程的解即可.(2)利用对数运算法则,化简求解方程的解即可.【参考解答】解:(1)231981x x -=,可得232x x -=-,(2分) 解得2x =或1x =;(4分)(2)444log (3)log (21)log (3)x x x -=+++,可得44log (3)log (21)(3)x x x -=++,3(21)(3)x x x ∴-=++,(2分)得4x =-或0x =,经检验0x =为所求.(4分)【点评】本题考查函数的零点与方程根的关系,对数方程的解法,考查计算能力.20.设函数3()cos 323x x f x ππ=-. (1)求()f x 的最小正周期;(2)若函数()y g x =与()y f x =的图象关于x 轴对称,求当[0x ∈,3]2时,()y g x =的最大值. 【详细分析】(1)利用辅助角公式化积,再由周期公式求周期;(2)由对称性求得()g x 的详细解析式,再由x 的范围求得函数最值.【参考解答】解:(1)3()cos sin()32333x x f x x ππππ=-=-. ()f x ∴的最小正周期为263T ππ==;(2)函数()y g x =与()y f x =的图象关于x 轴对称,()()3sin()33x g x f x ππ∴=-=-. [0x ∈,3]2,∴[333x πππ-∈-,]6π, sin()[33xππ∴-∈,1]2,()[g x ∈,3]2. ∴当[0x ∈,3]2时,()y g x =的最大值为32. 【点评】本题考查sin()y A x ωϕ=+型函数的图象和性质,考查三角函数最值的求法,是中档题.21.已知函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象如图所示. (Ⅰ)求()f x 的详细解析式及对称中心坐标;(Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,再向右平移6π个单位,最后将图象向上平移1个单位后得到()g x 的图象,求函数()y g x =在3[,]124x ππ∈上的单调减区间和最值.【详细分析】(Ⅰ)由函数的图象的顶点坐标求出A ,B ,由周期求出ω,由特殊点的坐标求出ϕ的值,可得函数的详细解析式,再根据余弦函数的图象的对称性,得出结论. (Ⅱ)由题意利用函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,得出结论.【参考解答】解:(Ⅰ)由函数()cos()(0,0,||)2f x A x B A πωϕωϕ=++>><的部分图象知: 1(3)22A --==,1(3)12B +-==-,72212T πππωω-==⇒=, ()2cos(2)1f x x ϕ∴=+-,把点(,1)12π代入得:cos()16πϕ+=, 即26k πϕπ+=,k Z ∈. 又||2πϕ<,∴6πϕ=-,∴()2cos(2)16f x x π=--. 由图可知(,1)3π-是其中一个对称中心, 故所求对称中心坐标为:(,1)32k ππ+-,k Z ∈. (Ⅱ)先将()f x 的图象纵坐标缩短到原来的12,可得1cos(2)62y x π=--的图象,再向右平移6π个单位,可得11cos(2)sin 2222y x x π=--=- 的图象, 最后将图象向上平移1个单位后得到1()sin 22g x x =+的图象. 由22222k x k ππππ-++,k Z ∈,可得增区间是[4k ππ-,]4k ππ+,当3[,]124x ππ∈时,函数的增区间为[,]124ππ. 则32[,]62x ππ∈,当22x π=即,4x π=时,()g x 有最大值为32, 当322x π=,即34x π=时,()g x 有最小值为11122-+=-. 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求详细解析式,由函数的图象的顶点坐标求出A 、B ,由周期求出ω,由特殊点的坐标求出ϕ的值,余弦函数的图象的对称性.函数sin()y A x ωϕ=+的图象变换规律,正弦函数的单调性、定义域和值域,属于中档题.22.已知函数2()2cos 12x f x x =-+.(Ⅰ)若()()6f παα=+,求tan α的值; (Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在[0,]2π上有解,求m 的取值范围. 【详细分析】(Ⅰ)利用三角恒等变换,化简()f x 的详细解析式,根据条件,求得tan α的值. (Ⅱ)根据函数sin()y A x ωϕ=+的图象变换规律,求得()g x 的详细解析式,再利用正弦函数的定义域和值域,求得()g x 的范围,可得m 的范围.【参考解答】解:(Ⅰ)2()2cos 1cos 2sin()26x f x x x x x π-+-=-,()()6f παα=+,∴sin()6παα-=,∴1cos 2ααα-=,即cos αα-=,∴tan α=(Ⅱ)把()f x 图象上所有点横坐标变为原来的12倍得到函数()g x 的图象, 所以函数()g x 的详细解析式为()(2)2sin(2)6g x f x x π==-, 关于x 的方程()0g x m -=在[0,]2π上有解, 等价于求()g x 在[0,]2π上的值域, 因为02x π,所以52666x πππ--, 所以1()2g x -,故m 的取值范围为[1-,2].【点评】本题主要考查三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的定义域和值域,属于中档题.。

最新人教版高中数学必修三测试题及答案全套

最新人教版高中数学必修三测试题及答案全套

最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD ­A 1B 1C 1D 1中随机取点,则点落在四棱锥O ­ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ­ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。

2019年人教版高中数学必修三综合测试题(含答案)

2019年人教版高中数学必修三综合测试题(含答案)

必修3综合模拟测试卷A(含答案)一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是A、最大数B、最小数C、既不最大也不最小D、不确定2、甲、乙、丙三名同学站成一排,甲站在中间的概率是A、16B、12C、13D、233、某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A、6,12,18B、7,11,19C、6,13,17D、7,12,174、甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是A、甲B、乙C、甲、乙相同D、不能确定5、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是A、16B、C、13D、6、如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为A 、34B 、38C 、14D 、187、阅读下列程序:输入x ;if x <0, then y :=32x π+;else if x >0, then y :=52x π-+;else y :=0; 输出 y .如果输入x =-2,则输出结果y 为A 、3+πB 、3-πC 、π-5D 、-π-5 8、一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是 A 、31 B 、32 C 、41 D 、529、根据下面的基本语句可知,输出的结果T 为 i:=1; T:=1;For i:=1 to 10 do; Begin T:=T+1;End 输出T开始 S :=0 i :=3 i :=i +1S :=S +ii >5 输出S结束是 否A 、10B 、11C 、55D 、56 10、在如图所示的算法流程图中,输出S 的值为 A 、11 B 、12 C 、13 D 、15二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 11、一个容量为20的样本数据,分组后,组距与频数如下:(]10,20,2;(]20,30, 3;(]30,40,4;(]40,50,5;(]50,60,4 ;(]60,70,2。

【人教版】高中数学必修三期末试卷带答案

【人教版】高中数学必修三期末试卷带答案

一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为( )A .15B .25C .35D .453.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。

在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .134.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D .225.若执行如图所示的程序框图,则输出S 的值是( )A.63 B.15 C.31 D.32 6.执行如图的程序框图,若输入1t=-,则输出t的值等于( )A.3 B.5 C.7 D.15 7.执行如图所示的程序框图,若输入的6n=,则输出S=A.514B.13C.2756D.3108.执行如图所示的程序框图,输出的结果为()A .201921-B .201922-C .202022-D .202021- 9.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+10.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和6711.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,812.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.14.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.如果执行如图的程序框图,那么输出的S =__________.17.执行如图所示的程序框图,若1ln2a=,22be=,ln22c=(其中e是自然对数的底),则输出的结果是__________.18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.20.已知一组数据126,,,x x x ⋅⋅⋅的方差是2,并且()()()22212611118x x x -+-+⋅⋅⋅+-=,0x ≠,则x =______.三、解答题21.某校从高三年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)估计这次考试的及格率(60分及以上为及格)和平均分;(2)按分层抽样从成绩是80分以上(包括80分)的学生中选取6人,再从这6人中选取两人作为代表参加交流活动,求他们在不同分数段的概率.22.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.23.某算法框图如图所示.(1)求函数()y f x =的解析式及7[()]6f f -的值;(2)若在区间[2,2]-内随机输入一个x 值,求输出y 的值小于0的概率.24.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.25.某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y (单位:万只)与相应年份x (序号)的数据表和散点图(如图所示),根据散点图,发现y 与x 有较强的线性相关关系,李四提供了该县山羊养殖场的个数z (单位:个)关于x 的回归方程ˆ230z x =-+.年份序号x 1 2 3 4 5 6 7 8 9 年养殖山羊y /万只1.21.51.61.61.82.52.52.62.7y x (2)试估计:①该县第一年养殖山羊多少万只? ②到第几年,该县养殖山羊的数量与第1年相比减少了? 参考统计量:()92160ii x x =⋅-=∑,()()9112i i i x x y y =⋅--=∑.附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u βα=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆv u αβ=-. 26.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷 非古文迷 合计 男生 26 24 50 女生 30 20 50 合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==,∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.3.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题. 4.B解析:B【分析】 分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a - ∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a --∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C【分析】根据程序框图模拟程序计算即可求解.【详解】模拟程序的运行,可得1S =,1i =;满足条件5i <,执行循环体,3S =,2i =;满足条件5i <,执行循环体,7=S ,3i =;满足条件5i <,执行循环体,15S =,4i =;满足条件5i <,执行循环体,31S =,5i =;此时,不满足条件5i <,退出循环,输出S 的值为31.故选:C【点睛】本题主要考查了程序框图,循环结构,属于中档题.6.C【分析】直接根据程序框图依次计算得到答案.【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<,不满足条件0t >,1t =,满足条件()()250t t +-<,满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7.故选:C.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.7.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S =+++⋯+的值,由于()2019232019202021222222212S -=+++⋯+==--.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.10.B解析:B【解析】【分析】根据平均数、方差的概念表示出更正前的平均数、方差和更正后的平均数、方差,比较其异同,然后整体代入即可求解.【详解】设更正前甲,乙,…的成绩依次为a 1,a 2,…,a 50,则a 1+a 2+…+a 50=50×70,即60+90+a 3+…+a 50=50×70,(a 1﹣70)2+(a 2﹣70)2+…+(a 50﹣70)2=50×75,即102+202+(a 3﹣70)2+…+(a 50﹣70)2=50×75. 更正后平均分为x =150×(80+70+a 3+…+a 50)=70; 方差为s 2=150×[(80﹣70)2+(70﹣70)2+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+(a 3﹣70)2+…+(a 50﹣70)2] =150×[100+50×75﹣102﹣202]=67. 故选B .【点睛】本题考查平均数与方差的概念与应用问题,是基础题.11.C解析:C【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图 12.C解析:C【解析】【分析】 细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论.【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位,即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.二、填空题13.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2.【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14.80【分析】本道题一一列举把满足条件的编号一一排除即可【详解】该数可以表示为故该数一定是5的倍数所以5的倍数有5101520253035404550556065707580859095100该数满足解析:80【分析】本道题一一列举,把满足条件的编号一一排除,即可.【详解】该数可以表示为32,5,73k m n ++,故该数一定是5的倍数,所以5的倍数有5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,该数满足减去3能够被7整除,只有10,45,80,而同时要满足减去2被3整除,所以只有80.【点睛】本道题考查了列举法计算锁编号问题,难度一般.15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 16.42【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42【分析】输入1k =,由循环语句,依次执行,即可计算出结果【详解】当1k =时,0212S =+⨯=当2k =时,021226S =+⨯+⨯=当3k =时,021222312S =+⨯+⨯+⨯=当4k =时,021********S =+⨯+⨯+⨯+⨯=当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯=当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯=故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础17.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该 解析:ln 22(注:填c 也得分). 【解析】 分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4【分析】执行程序,当4K =时循环结束,即可得出【详解】因为第一次进入循环后1,1S K ==;第二次进入循环后3,2S K ==;第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.【分析】先分别求出这3组的人数再利用分层抽样的方法即可得出答案【详解】第3组的人数为第4组的人数为第5组的人数为所以这三组共有60名志愿者所以利用分层抽样的方法在60名志愿者中抽取6名志愿者第三组应解析:3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案.【详解】第3组的人数为10050.0630⨯⨯=,第4组的人数为10050.0420⨯⨯=,第5组的人数为1000.02510⨯⨯=,所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3.【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等. 20.2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果【详解】由题意结合方差的定义有:①而②①-②有:③注意到将其代入③式整理可得:又故故答案为2【点睛】本题主要考查方差的计算公式整体的数学解析:2【解析】【分析】由题意结合方差的定义整理计算即可求得最终结果.【详解】由题意结合方差的定义有:()()()22212612x x x x x x -+-++-= ①, 而()()()22212611118x x x -+-+⋅⋅⋅+-=, ②,①-②有:()()212612666226x x x x x x x x --+++++++=-, ③,注意到1266x x x x +++=,将其代入③式整理可得:26120x x -+=, 又0x ≠,故2x =.故答案为2.【点睛】本题主要考查方差的计算公式,整体的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)及格率是80%;平均分是72分(2)13【分析】(1)由频率分布直方图直接可计算得及格率以及平均分;(2)按分层抽样知[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F ,写出基本事件,事件“不同分数段”所包含的基本事件数5种,利用古典概型即可得到结论.【详解】(1)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.0200.0300.0250.005)100.80+++⨯=,所以抽样学生成绩的合格率是80%.-利用组中值估算抽样学生的平均分:123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅450.05550.15650.2750.3850.25950.05=⨯+⨯+⨯+⨯+⨯+⨯72=.估计这次考试的平均分是72分(2)按分层抽样抽取[80,90)5人A ,B ,C ,D ,E ,[90,100]”1人F .,则基本事件(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,事件“不同分数段”所包含的基本事件数5种, 故所求概率为:51153p ==. 【点睛】本题考查利用频率分布直方图求平均数,考查分层抽样的定义,古典概型,属于基础题. 22.(1)0.012a =,125;(2)112人;(3)25 【分析】(1)根据频率分布直方图中矩形的面积和为1求出0.012a =,再求中位数得解;(2)直接利用频率分布直方图估计职工一天行走步数不大于13000的人数;(3)先求出在区间(]150,170中有32人,在区间(]170,190中有8人,在区间(]190,210中有8人,再利用古典概型的概率公式求出这两人均来自区间150,(170]的概率.【详解】(1)由题意得0.002200.006200.00820200.010200.008200.002200.002201a ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=解得0.012a = .设中位数为110x +,则0.002200.006200.008200.0120.5x ⨯+⨯+⨯+=解得15x = .∴中位数是125.(2)由()2000.002200.006200.008200.01220112⨯⨯+⨯+⨯+⨯=∴估计职工一天步行数不大于13000步的人数为112人(3)在区间(]150,170中有2000.0082032⨯⨯=人在区间(]170,190中有2000.002208⨯⨯=人在区间(]190,210中有2000.002208⨯⨯=人按分层抽样抽取6人,则从(]150,170抽取4人,(]170,190抽取1人,(]190,210抽取1人设从(]150,170抽取职工为1A ,2A ,3A ,4A ,从(]170,190抽取职工为B ,从(]190,210抽取职工为C ,则从6人中抽取2人的情况有12A A ,13A A ,41A A ,1A B ,1A C ,23A A ,24A A ,2A B ,2A C ,34A A ,3A B ,3A C ,4A B ,4A C ,BC 共15种情况,它们是等可能的,其中满足两人均来自区间(]150,170的有12A A ,13A A ,41A A ,23A A ,24A A ,34A A 共有6种情况, ∴62155P == ∴两人均来自区间(]150,170的概率为25. 【点睛】本题主要考查频率分布直方图的应用,考查频率分布直方图中中位数的计算,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力》23.(1)24;(2)14 【分析】 (1)从程序框图可提炼出分段函数的函数表达式,从而计算得到76f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值; (2)此题为几何概型,分类讨论得到满足条件下的函数x 值,从而求得结果.【详解】(1)由算法框图得:当0x >时,2πcos 2x y =,当0x =时,0y =,当0x <时,1y x =--,()2πcos ,020,01,0x xy f xx x x ⎧>⎪⎪∴===⎨⎪--<⎪⎩7711666f ⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭,2π1cos 71π236cos 66122f f f +⎡⎤+⎛⎫⎛⎫∴-==== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (2)当02x ≤≤时,()[]0,1f x ∈,当20x -≤<时,由0y <得10x -<< 故所求概率为()()011224P --==-- 【点睛】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力. 24.见解析;【解析】试题分析: 先利用INPUT 语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资.试题程序如下:点睛:25.(1)ˆ0.21yx =+;(2)①33.6万只;②到第10年该县养殖山羊的数量相比第1年减少了.【分析】(1)由已知求得,x y ,进一步套公式求出ˆb 和ˆa 的值,就求出线性回归方程; (2)由题意求得()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++, 在①中,令x =1求解,在②中,令20.443033.6x x -++<,解不等式即可.【详解】解:(1)设y 关于x 的线性回归方程为y bx a =+,12345678959x ++++++++==, 1.2 1.5 1.6 1.6 1.8 2.5 2.5 2.6 2.729y ++++++++==, ()()()9192112ˆ0.260i ii i i x x y y b x x ==--===-∑∑, ˆ20.251a=-⨯=. 所以y 关于x 的线性回归方程为ˆ0.21yx =+. (2)估计第x 年山羊养殖的只数为()()2ˆˆ0.212300.4430z y x x x x ⋅=+⋅-+=-++ 令1x =,则0.443033.6-++=,故该县第一年养殖山羊约33.6万只.由题意,得20.443033.6x x -++<,整理得()()910x x -->,解得9x >或1x <(舍去),所以到第10年该县养殖山羊的数量相比第1年减少了.【点睛】方法点睛:求线性回归方程的步骤:(1)先求 x 、y 的平均数,x y ;(2)套公式求出ˆb和ˆa 的值:()()()91921ˆi i i i i x x y y b x x ==--=-∑∑,ˆa y b x =-⨯; (3)写出回归直线的方程.26.(I )没有的把握认为“古文迷”与性别有关;(II )“古文迷”的人数为3,“非古文迷”有2;(III )分布列见解析,期望为95. 【详解】(I)由列联表得所以没有的把握认为“古文迷”与性别有关.(II)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为人,“非古文迷”有人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(III)因为为所抽取的3人中“古文迷”的人数,所以的所有取值为1,2,3.,,.所以随机变量ξ的分布列为123于是.。

高中数学人教A版必修三 章末综合测评3 Word版含答案.doc

高中数学人教A版必修三 章末综合测评3 Word版含答案.doc

章末综合测评(三) 概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4℃时结冰. A .1 B .2 C .3D .4【解析】 ①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一张不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.【答案】 C2.下列说法正确的是( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场 B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%【解析】 概率只是说明事件发生的可能性大小,其发生具有随机性.故选D.【答案】 D3.(2016·开封高一检测)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A.16 B .13 C.12D .23【解析】 给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13.故选B.【答案】 B4.在区间[-2,1]上随机取一个数x ,则x ∈[0,1]的概率为( ) A.13 B .14 C.12D .23【解析】 由几何概型的概率计算公式可知x ∈[0,1]的概率P =1-01-(-2)=13.故选A.【答案】 A5.1升水中有1只微生物,任取0.1升化验,则有微生物的概率为()A.0.1 B.0.2C.0.3 D.0.4【解析】本题考查的是体积型几何概型.【答案】 A6.(2016·天水高一检测)从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥【解析】互斥事件是不可能同时发生的事件,所以B与C互斥.【答案】 B7.某人从甲地去乙地共走了500 m,途中要过一条宽为x m的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为()A.100 m B.80 m C.50 m D.40 m【解析】设河宽为x m,则1-x500=45,所以x=100.【答案】 A8.从一批羽毛球中任取一个,如果其质量小于4.8 g 的概率是0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)范围内的概率是( )A .0.62B .0.38C .0.70D .0.68【解析】 记“取到质量小于4.8 g ”为事件A ,“取到质量不小于4.85 g ”为事件B ,“取到质量在[4.8,4.85)范围内”为事件C .易知事件A ,B ,C 互斥,且A ∪B ∪C 为必然事件.所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.3+0.32+P (C )=1,即P (C )=1-0.3-0.32=0.38.【答案】 B9.如图1,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) 【导学号:28750071】图1A.14 B .13 C.12D .23【解析】 点E 为边CD 的中点,故所求的概率P =△ABE 的面积矩形ABCD 的面积=12.【答案】 C10.将区间[0,1]内的均匀随机数x1转化为区间[-2,2]内的均匀随机数x,需要实施的变换为()A.x=x1*2 B.x=x1*4C.x=x1*2-2 D.x=x1*4-2【解析】由题意可知x=x1*(2+2)-2=4x1-2.【答案】 D11.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则()A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解析】先后抛掷两颗骰子的点数共有36个基本事件:(1,1),(1,2),(1,3),…,(6,6),并且每个基本事件都是等可能发生的.而点数之和为12的只有1个:(6,6);点数之和为11的有2个:(5,6),(6,5);点数之和为10的有3个:(4,6),(5,5),(6,4),故P1<P2<P3.【答案】 B12.在5件产品中,有3件一等品和2件二等品,从中任取2件,则下列选项中以710为概率的事件是()A.恰有1件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P 1=610,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P 2=310,其对立事件是“至多有一件一等品”,概率为P 3=1-P 2=1-310=710.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A ={摸出黑球},B ={摸出白球},C ={摸出绿球},D ={摸出红球},则P (A )=________;P (B )=________;P (C ∪D )=________.【解析】 由古典概型的算法可得P (A )=820=25,P (B )=320,P (C ∪D )=P (C )+P (D )=420+520=920.【答案】 25 320 92014.在区间(0,1)内任取一个数a ,能使方程x 2+2ax +12=0有两个相异实根的概率为________.【解析】 方程有两个相异实根的条件是Δ=(2a )2-4×1×12=4a 2-2>0,解得|a |>22,又a ∈(0,1),所以22<a <1,区间⎝ ⎛⎭⎪⎫22,1的长度为1-22,而区间(0,1)的长度为1,所以方程有两个相异实根的概率为1-221=2-22.【答案】2-2215.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图2所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.图2【解析】 由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P =19.【答案】 1916.(2016·合肥高一检测)甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a 、b ∈{0,1,2,…,9}.若|a -b |≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为________.【解析】 此题可化为任意从0~9中取两数(可重复)共有10×10=100种取法.若|a -b |≤1分两类,当甲取0或9时,乙只能猜0、1或8、9共4种,当甲取2~8中的任一数字时,分别有3种选择,共3×8=24种,所以P =24+410×10=725.【答案】 725三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2015·陕西高考)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨...的概率; (2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率. 【解】 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.18.(本小题满分12分)对某班一次测验成绩进行统计,如下表所示:(1)求该班成绩在[80,100]内的概率; (2)求该班成绩在[60,100]内的概率.【解】 记该班的测试成绩在[60,70),[70,80),[80,90),[90,100]内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[80,100]内的概率是P (C ∪D )=P (C )+P (D )=0.25+0.15=0.4.(2)该班成绩在[60,100]内的概率是P (A ∪B ∪C ∪D )=P (A )+P (B )+P (C )+P (D )=0.17+0.36+0.25+0.15=0.93.19.(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x ;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由. 【导学号:28750072】【解】(1)由于x,y取值为1,2,3,4,5,6,则以(x,y)为坐标的点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个,即以(x,y)为坐标的点共有36个.(2)满足x+y≥10的点有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,所以小王赢的概率是636=1 6,满足x+y≤4的点有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个,所以小李赢的概率是636=1 6,则小王赢的概率等于小李赢的概率,所以这个游戏规则公平.20.(本小题满分12分)(2014·天津高考)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.【解】(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.21.(本小题满分12分)(2014·四川高考)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.【解】(1)由题意知,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.22.(本小题满分12分)把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图3所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.图3(1)求这次铅球投掷成绩合格的人数;(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a、b两位同学的成绩均为优秀,求a、b两位同学中至少有1人被选到的概率.【解】(1)∵第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14.∴参加这次铅球投掷的总人数为70.14=50.根据规定,第4、5、6组的成绩均为合格,人数为(0.28+0.30+0.14)×50=36.(2)∵成绩在第1、2、3组的人数为(0.04+0.10+0.14)×50=14,成绩在第5、6组的人数为(0.30+0.14)×50=22,参加这次铅球投掷的总人数为50,∴这次铅球投掷的同学的成绩的中位数在[7.95,8.85)内,即第4组.(3)设这次铅球投掷成绩优秀的5人分别为a、b、c、d、e,则选出2人的所有可能的情况为:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10种,其中a、b至少有1人的情况为:ab,ac,ad,ae,bc,bd,be,共有7种,∴a、b两位同学中至少有1人被选到的概率为P=7 10.。

第三章函数的概念与性质【新教材】人教A版(2019)高中数学必修【试题版】

第三章函数的概念与性质【新教材】人教A版(2019)高中数学必修【试题版】

第三章函数的概念与性质单元测试题1.函数f (x )=x -1x -2的定义域为( )A .(1,+∞)B .[1,+∞)C .[1,2)D .[1,2)∪(2,+∞)2.函数y =x 2+1的值域是( ) A .[0,+∞) B .[1,+∞) C .(0,+∞)D .(1,+∞) 3.已知f ⎝ ⎛⎭⎪⎫x 2-1=2x +3,则f (6)的值为( )A .15B .7C .31D .17 4.若函数f (x )=ax 2+bx +1是定义在[-1-a ,2a ]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3D .25.已知函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2-x -3,x >1,则f ⎝ ⎛⎭⎪⎫1f (3)的值为( )A.1516 B .-2716 C.89D .186.已知函数y =f (2x )+2x 是偶函数,且f (2)=1,则f (-2)=( ) A .5B .4C .3D .27.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -3)的解集是( ) A .(-∞,3) B .(3,+∞) C .(0,3)D.⎝ ⎛⎭⎪⎫32 ,3 8.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( )A .40万元B .60万元C .120万元D .140万元9.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( )A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7 D.这个函数在其定义域内有最小值是-7 10.函数f(x)=x2-2ax+a+2在[0,a]上的最大值为3,最小值为2,则a的值为() A.0 B.1或2C.1 D.211.定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有f(x2)−f(x1)x2−x1<0,则()A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)12. 函数f(x)是定义在R上的奇函数,下列命题:①f(0)=0;②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最大值1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确命题的个数是()A.1 B.2C.3 D.413. 已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________. 14.设函数f (x )=x 2+(a +1)x +ax为奇函数,则实数a =________.15.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤-2,x +1,-2<x <4,3x ,x ≥4,若f (a )<-3,则a 的取值范围是________.16.设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f x -f-xx<0的解集为.17.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值范围为 .18.具有性质f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1中满足“倒负”变换的函数是________(填序号).19. 已知函数f (x )=2x -a x ,且f ⎝ ⎛⎭⎪⎫12=3.(1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义证明.20.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,2],4x,x ∈(2,4].(1)在图中画出函数f (x )的大致图象; (2)写出函数f (x )的最大值和单调递减区间.21.已知f (x )是R 上的奇函数,且当x >0时,f (x )=x 2-x -1.(1)求f (x )的解析式;(2)作出函数f (x )的图象(不用列表),并指出它的单调递增区间.22.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.23.已知函数f(x)是定义在R上的奇函数,当x≤0时,f(x)=2xx-1.求:(1)f(x)的解析式;(2)f(x)在[2,6]上的最大值和最小值.24.已知f(x)是定义在R上的奇函数,且f(x)=x+mx2+nx+1.(1)求m,n的值;(2)用定义证明f(x)在(-1,1)上为增函数;(3)若f(x)≤a3对x∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求a的取值范围.。

高中数学人教A版必修三习题第二章-用样本的数字特征估计总体的数字特征含答案

高中数学人教A版必修三习题第二章-用样本的数字特征估计总体的数字特征含答案

;x =
5

5
=30,
2.所以-x 甲<-x 乙,s 甲>s 乙.
答案:B 二、填空题 6.甲、乙两位同学某学科连续五次的考试成绩用茎叶图表示如图所示,则平均分数较 高的是________,成绩较为稳定的是________.
解析:-x
甲=70,-x 乙
=68,s甲2
=1 5
×(22+12+12+22)=2,s乙2
11
= =6. 11
答案:A
2.甲、乙两同学在高考前各做了 5 次立定跳远测试,测得甲的成绩如下(单位:米):
2.20, 2.30, 2.30, 2.40, 2.30, 若 甲 、 乙 两 人 的 平 均 成 绩 相 同 , 乙 的 成 绩 的 方 差 是
0.005,那么甲、乙两人成绩较稳定的是________. 解析:求得甲的平均成绩为 2.30米,甲的成绩的方差是 0.004.由已知得甲、乙平均成
而 2(k1-3),2(k2-3),…,2(k6-3)的平均数为 2(k -3),则所求方差为
16[4(k1--k )2+4(k2--k )2+…+4(k6-
- k )2]=4×3=12.
答案:12
8.若有一个企业,70%的员工年收入 1 万元,25%的员工年收入 3 万元,5%的员工年收
入 11万元,则该企业员工的年收入的平均数是________万元,中位数是________万元,众
乙品种的样本平均数也为 10,样本方差为
[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2)+(9.8-10)2]÷5=0.24.
因为 0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定.

【人教版】高中数学必修三期末一模试卷及答案

【人教版】高中数学必修三期末一模试卷及答案

一、选择题1.如图,,,A B C 表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是( ).A .0.994B .0.686C .0.504D .0.4962.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1103.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .2 4.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D 2 5.执行如图所示的程序框图,则输出的a=( )A.-9 B.60 C.71 D.81 6.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭7.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出465S=,则输入m的值为()A.240 B.220 C.280 D.2608.执行如图的程序框图,则输出x的值是 ()A.2018B.2019C.12D.29.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据丢失(如图),但甲得分的折线图完好,则下列结论正确的是()A.甲得分的极差是11B.乙得分的中位数是18.5C.甲运动员得分有一半在区间[]20,30上D.甲运动员得分的平均值比乙运动员得分的平均值高10.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().7806657208026314294718219800 3204923449353623486969387481A.02B.14C.18D.2911.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x,2x,观察茎叶图,下列结论正确的是()A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定12.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .30二、填空题13.疫情防控期间,口罩的需求量很大,某地区有A .B 两家小型口罩加工厂,A 厂每天生产口罩4万到6万只,B 厂每天生产口罩3万到5万只.某药店预计购进至少10万只口罩,那么,他可以去该地区购买到所需口罩的概率是________.14.某种产品每箱装6个,其中有4个合格,2个不合格,现质检人员从中随机抽取2个进行检测,则检测出至少有一个不合格产品的概率是_______.15.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X 次球,则(4)P X ==_______.16.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.17.右图程序框图的运行结果是____________________18.程序如下:以上程序输出的结果是_________________19.水痘是一种传染性很强的病毒性疾病,容易在春天爆发,武汉疾控中心为了调查某高校高一年级学生注射水痘疫苗的人数,在高一年级随机抽取了5个班级,每个班级的人数互不相同,若把每个班抽取的人数作为样本数据,已知样本平均数为5,样本方差为4,则样本数据中最大值为__________.20.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.三、解答题21.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;满意不满意合计男生女生合计100(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取5名学生,再在这5名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:22()()()()()n ad bcKa b c d a c b d-=++++.()2P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82 22.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 23.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.24.读下列程序,写出此程序表示的函数,并求当输出的6y=时,输入的x的值.25.某学校因为今年寒假延期开学,根据教育部的停课不停学指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织了学生数学学科考试,随机抽取50名学生的成绩并制成频率分布直方图如图.(1)求m 的值并估计这50名学生的平均成绩;(2)估计高一年级所有学生数学成绩在[90,100)分与[)70,100分的学生所占的百分比. 26.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m μ) 0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题中意思可知,当A 、B 元件至少有一个在工作,且C 元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率. 【详解】由题意可知,该系统正常工作时,A 、B 元件至少有一个在工作,且C 元件在元件, 当A 、B 元件至少有一个在工作时,其概率为()()110.910.80.98--⨯-=, 由独立事件的概率乘法公式可知,该系统正常工作的概率为0.980.70.686⨯=, 故选B . 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题.2.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.3.D解析:D 【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.4.B解析:B 【分析】分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a -∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a--∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B 【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C 【分析】根据程序框图,模拟运算即可求解. 【详解】第一次执行程序后,1a =-,i=2; 第二次执行程序后,9a =-,i=3;第三次执行程序后,a=71,i=4>3,跳出循环,输出a=71. 故选:C 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.6.B解析:B 【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可. 【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环;以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭.故选:B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.7.A解析:A 【分析】根据程序框图,依次循环计算,可得输出的S 表达式.结合465S =,由等比数列求和公式,即可求得m 的值. 【详解】由程序框图可知,0,0S i ==,1S m i ==,22mS m i =+= ,324m mS m i =++= ,4248m m mS m i =+++= ,524816m m m mS m i =++++= 此时输出S .所以46524816m m m mm ++++= 即1111146524816m ⎛⎫++++= ⎪⎝⎭由等比数列前n 项和公式可得5112465112m ⎛⎫- ⎪⎝⎭⨯=- 解得240m = 故选:A 【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.8.D解析:D 【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解. 【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==;满足条件2019y <,执行循环体,1,4x y =-= ; …观察规律可知,x 的取值周期为3,由于20196733⨯=,可得: 满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2. 故选D . 【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.9.D解析:D 【分析】根据茎叶图和折线图依次判断每个选项得到答案. 【详解】A. 甲得分的极差是28919-=,A 错误;B. 乙得分的中位数是161716.52+=,B 错误; C. 甲运动员得分在区间[]20,30上有3个,C 错误; D. 甲运动员得分的平均值为:912131315202628178+++++++=,乙运动员得分的平均值为:914151617181920168+++++++=,故D 正确.故选:D . 【点睛】本题考查了茎叶图和折线图,意在考查学生的计算能力和理解能力.10.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.11.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定 故选:A . 【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.12.C解析:C 【分析】设该样本中高三年级的学生人数为x ,则1800601200x=,解之即可 【详解】设该样本中高三年级的学生人数为x ,则1800601200x =,解得40x =, 故选C . 【点睛】本题考查了分层抽样方法的应用问题,属基础题.二、填空题13.【分析】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则画出可行域计算正方形与三角形面积利用几何概型求即可【详解】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则可行域面积为因为药店预计购进至少10解析:18【分析】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,画出可行域,计算正方形与三角形面积,利用几何概型求即可. 【详解】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,可行域面积为224⨯=,因为药店预计购进至少10万只,所以10x y +≥,满足条件的阴影部分面积为111122⨯⨯=, 所以可以去该地区购买到所需口罩的概率是11248=,故答案为:18.【点睛】本题主要考查几何概型求概率,考查了线性规划的应用,属于中档题.14.【分析】首先明确试验发生包含的事件是从6个产品中抽2个共有种结果满足条件的事件是检测出至少有一个不合格产品共有种结果根据古典概型概率公式得到结果【详解】由题意知本题是一个等可能事件的概率因为试验发生解析:35【分析】首先明确试验发生包含的事件是从6个产品中抽2个,共有26C 种结果,满足条件的事件是检测出至少有一个不合格产品,共有112242C C C +种结果,根据古典概型概率公式得到结果.【详解】由题意知本题是一个等可能事件的概率,因为试验发生包含的事件是6个产品中抽取2个,共有2615C =种结果, 满足条件的事件是检测出至少有一个不合格产品,共有1122429C C C +=种结果,所以检测出至少有一个不合格产品的概率是93155=, 故答案是:35. 【点睛】该题考查的是有关等可能事件的概率的求解问题,在解题的过程中,注意对试验所包含的基本事件数以及满足条件的基本事件数,以及概率公式,属于简单题目.15.【解析】【分析】由题意可知最后一次取到的是红球前3次有1次取到红球由古典概型求得概率【详解】由题意可知最后一次取到的是红球前3次有1次取到红球所以填【点睛】求古典概型的概率关键是正确求出基本事件总数解析:427 【解析】 【分析】由题意可知最后一次取到的是红球,前3次有1次取到红球,由古典概型求得概率。

人教A版高中数学选择性必修第三册6.2.3组合、6.2.4 组合数 配套练习题

人教A版高中数学选择性必修第三册6.2.3组合、6.2.4 组合数 配套练习题

6.2.3组合、6.2.4 组合数一、单选题1.下列问题中是组合问题的个数是 ( ) ①从全班50人中选出5名组成班委会;②从全班50人中选出5名分别担任班长、副班长、团支部书记、学习委员、生活委员; ③从1,2,3,…,9中任取出两个数求积; ④从1,2,3,…,9中任取出两个数求差或商. A .1 B .2 C .3 D .4【答案】B【分析】根据组合及排列的定义即得.【解析】根据组合定义可知①③是组合,②④与顺序有关是排列.2.从10名学生中挑选出3名学生参加数学竞赛,不同的选法有 ( )A .310A 种B .3!C .310C 种D .以上均不对【答案】C【解析】根据组合数的概念可知C 选项正确.3.从5人中选3人参加座谈会,其中甲必须参加,则不同的选法有( ) A .60种 B .36种 C .10种 D .6种【答案】D【分析】由组合数公式即求.【解析】甲必须参加,因此只要从除甲之外的4人中选2人即可,有246C =(种).4.从2名教师和5名学生中,选出3人参加“我爱我的祖国”主题活动.要求入选的3人中至少有一名教师,则不同的选取方案的种数是( ) A .20 B .55 C .30 D .25【答案】D【分析】根据题意,用间接法分析:先计算从2名教师和5名学生中选出3人的选法,再计算其中“入选的3人没有教师”的选法数目,分析可得答案.【解析】解:根据题意,从2名教师和5名学生中,选出3人,有3735C =种选法,若入选的3人没有教师,即全部为学生的选法有3510C =种, 则有351025-=种不同的选取方案,5.旅游体验师小李受某网站邀请,决定在甲、乙、丙、丁这四个景区进行体验式旅游已知他不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则他可选的旅游路线的条数为( ) A .24B .18C .16D .10【答案】D【分析】小李可选的旅游路线分两种情况:① 最后去甲景区旅游,可的路线有33A 条;② 不最后去甲景区旅游,可选路线有222A 条.【解析】解:小李可选的旅游路线分两种情况:① 最后去甲景区旅游,则可选的路线有33A 条;② 不最后去甲景区旅游,则可选的路线有222A 条.所以小李可选的旅游路线的条数为3232A 2A 10+=.6.马路上亮着一排编号为1,2,3,4,5,6,7,8,9,10的10盏路灯.为节约用电,现要求把其中的两盏灯关掉,但不能同时关掉相邻的两盏,也不能关掉两端的路灯,则满足条件的关灯方法种数为( ) A .12 B .18 C .21 D .24【答案】C【分析】10盏路灯中要关掉不连续的两盏,所以利用插空法,又两端的灯不能关掉,则有7个符合条件的空位,进而在这7个空位中,任取2个空位插入关掉的2盏灯,即可得出答案. 【解析】解:根据题意,10盏路灯中要关掉不连续的两盏,所以利用插空法.先将剩下的8盏灯排成一排,因两端的灯不能关掉,则有7个符合条件的空位,进而在这7个空位中,任取2个空位插入关掉的2盏灯,所以共有27C 21=种关灯方法. 7.若整数x 满足232551616C C x x x +++=,则x 的值为( )A .1B .1-C .1或1-D .1或3【答案】C【分析】利用组合数的运算性质求解即可【解析】由题可知23255x x x ++=+或()()2325516x x x ++++=,整理得2230x x --=或2890x x +-=, 解得3x =或=1x -或1x =或9x =-.又20321605516x x x ⎧≤++≤⎨≤+≤⎩,所以只有=1x -和1x =满足条件, 故x 的值为1或1-.8.数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求.现某大学为提高数学系学生的数学素养,特开设了“古今数学思想”,“世界数学通史”,“几何原本”,“什么是数学”四门选修课程,要求数学系每位同学每学年至多选3门,大一到大三三学年必须将四门选修课程选完,则每位同学的不同选修方式有( ) A .60种 B .78种C .84种D .144种【答案】B且放在同一个盒子内的小球编号不相连,则不同的方法总数有( ) A .42 B .36 C .48 D .60【答案】A【解析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组,再分配到3个盒子即可求出.【解析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组.①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连, 故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种.综上所述,不同的放法种数为64362+=种.10.公元2020年年初,19COVID -肆虐着中国武汉,为了抗击19COVID -,中国上下众志成城,纷纷驰援武汉.达州市决定派出6个医疗小组驰援武汉市甲、乙、丙三个地区,每个地区分配2个医疗小组,其中A 医疗小组必须去甲地,则不同的安排方法种数为( ) A .30 B .60C .90D .180【答案】A【解析】利用分步乘法计数原理先分组再分配即可求解.和3时,2需排在3的前面(不一定相邻),这样的三位数有( ) A .51个 B .54个 C .12个 D .45个12.设集合12345,,,,|1,0,1,1,2,3,4,5i A x x x x x x i =∈-=,那么集合A 中满足条件 “1234513x x x x x ≤++++≤”的元素个数为 A .60 B .90 C .120 D .130二、多选题13.已知363434C C x x -=,则x =( )A .3B .6C .8D .10【答案】AD【分析】根据组合数的性质求解即可【解析】因为363434C C x x -=,故36x x =-或3634x x -=+,即3x =或10x =14.现有3个男生4个女生,若从中选取3个学生,则( ) A .选取的3个学生都是女生的不同选法共有4种 B .选取的3个学生恰有1个女生的不同选法共有24种 C .选取的3个学生至少有1个女生的不同选法共有34种 D .选取的3个学生至多有1个男生的不同选法共有18种 【答案】AC【分析】根据组合的定义和分步计数原理即可求出.【解析】解:选取的3个学生都是女生的不同选法共有344C =种,恰有1个女生的不同选法共有213412C C =种,至少有1个女生的不同选法共有337334C C -=种,选取的3个学生至多有1个男生的不同选法共有11234422C C C +=种.15.新高考按照“312++”的模式设置,其中“3”为全国统考科目语文、数学、外语,所有考生必考:“1”为首选科目,考生须在物理、历史两科中选择一科;“2”为再选科目,考生可结合自身特长兴趣在化学、生物、政治、地理四科中选择两科.下列说法正确的是( )A .若任意选科,选法总数为1224C CB .若化学必选,选法总数为1123C CC .若政治和地理至多选一门,选法总数为11112222C C C C + D .若物理必选,化学、生物至少选一门,选法总数为111222C C C + 【答案】ABC【分析】依次判断每个选项得到ABC 正确,D 选项的正确答案是1122C C 1+,错误,得到答案. 【解析】对选项A :若任意选科,选法总数为1224C C ,正确; 对选项B :若化学必选,选法总数为1123C C ,正确;对选项C :若政治和地理至多选一门,选政治或地理有112212C C C 种方法,政治地理都不选有1222C C ⨯种方法,故共有选法总数为11112222C C C C +,正确;对选项D :若物理必选,化学、生物选一门有1122C C 种,化学、生物都选有1种方法,故共有选法总数为1122C C 1+,D 错误.16.某工程队有6辆不同的工程车,按下列方式分给工地进行作业,每个工地至少分1辆工程车,则下列结论正确的有( )A .分给甲、乙、丙三地每地各2辆,有120种分配方式B .分给甲、乙两地每地各2辆,分给丙、丁两地每地各1辆,有180种分配方式C .分给甲、乙、丙三地,其中一地分4辆,另两地各分1辆,有60种分配方式D .分给甲、乙、丙、丁四地,其中两地各分2辆,另两地各分1辆,有1080种分配方式三、填空题17.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有______种不同的安排方法. 【答案】180【分析】依次选取1人,1人,2人分别值班第一天,第二天,第三天即可.【解析】解:由题,先从6人中挑选1人值第一天的班,有16C 种, 再从剩下的5人中挑选1人值第二天的班,有15C 种, 最后再从剩下的4人中挑选2人值第三天的班,有24C 种,所以,共有112654C C C 656180=⨯⨯=种不同的安排方法.18.在报名的 8 名男生和 5 名女生中,选取 6 人参加志愿者活动,要求男、女都有,则不同的选取方式的种数为_____(结果用数值表示) 【答案】1688【分析】随便选取6人减去选的全是男生的方法.【解析】从8名男生和5名女生共13人中选取6人,有613C 1716=种取法,其中只有男生的取法有68C 28=种,没有只有女生的取法,则男、女都有选取方式有1716281688-=种.19.近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A ,B 角色各1人,C 角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A ,B 角色不可同时为女生.则店主共有__________种选择方式. 【答案】348【分析】根据题意,按照选出的女生人数进行分类,分别求出每一类的选择种数,然后相加即可求解.【解析】由题意,根据选出的女生人数进行分类,第一类:选出1名女生,先从3名女生中选1人,再从四名男生中选3人,然后安排角色,两名男生扮演A ,B 角色有23A 种,剩余的1名男生和女生扮演C 角色,或A ,B 角色1名男生1名女生,女生先选有12C ,剩下的一个角色从3名男生中选1人,则13C 种,所以共有1321134323C C (A C C )144+=种,第二类:选出2名女生,先从3名女生中选2人,再从四名男生中选2人,然后安排角色,两名男生扮演A ,B 角色有22A 种,剩余的2名女生扮演C 角色,或A ,B 角色1名男生1名女生,选出1名女生先选角色有1122C C ,剩下的一个角色从2名男生中选1人,则12C 种,所以共有222111342222C C (A C C C )180+=种,第三类:选出3名女生,从先从3名女生中选3人,再从四名男生中选1人,然后安排角色,A ,B 角色1名男生1名女生,选出1名女生先选角色有1132C C ,剩下的一个角色让男生扮演,余下的2名女生扮演角色C ,所以共有31113432C C C C 24=种,由分类计数原理可得:店主共有14418024348++=种选择方式,20.我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为1,2,3,,1n ⋯+的+1n 个球的口袋中取出m 个球()0,,N m n m n <≤∈,共有+1C mn 种取法.在+1C mn 种取法中,不取1号球有C m n 种取法;取1号球有1C m n -种取法.所以11C C C m m m n n n -++=.试运用此方法,写出如下等式的结果:323232323142241C C C C C C C C n n n n n ----+⋅=+⋅++⋅+___________.【答案】63C n +【分析】将等式看作是从编号为1,2,3,...,3n +个球中,取出6个球,其中第3个球的编号依次为3,4,,...,n 的情况,利用分类加法计数原理得到的结果;再由从编号为1,2,3,...,3n +个球中,取出6个球,有63C n +种取法,即可得到结果.【解析】从编号为1,2,3,...,3n +个球中,取出6个球,记所选取的六个小球的编号分别为126,,...,a a a ,且126a a a <<<,当33a =时,分三步完成本次选取:第一步,从编号为1,2的球中选取2个;第二步,选取编号为3的球;第三步,从剩下的n 个球中任选3个,故选取的方法数为233211C C C C n n ⋅=⋅;当3=4a 时,分三步完成本次选取:第一步,从编号为1,2,3的球中选取2个;第二步,选取编号为4的球;第三步,从剩下的1n -个球中任选3个,故选取的方法数为2132331131C C C C C n n --⋅⋅=⋅; ……;当3a n =时,分三步完成本次选取:第一步,从编号为1,2,3,...,1n -的球中选取2个;第二步,选取编号为n 的球;第三步,从剩下的3个球中选3个,故选取的方法数为21311321C C C C n n --=⋅⋅;至此,完成了从编号为1,2,3,...,3n +个球中,选取6个球,第3个球的编号确定时的全部情况, 另外,从编号为1,2,3,...,3n +个球中,取出6个球,有63C n +种取法, 所以32323232314226413C C C C C C C C C n n n n n n ----++⋅+⋅++⋅+=.四、解答题 21.计算(1)315C ;(2)3200C ; (3)197200C ; (4)3488C C +. 【答案】(1)455(1)从口袋内取出3只球,共有多少种不同的取法?(2)从口袋内取出3只球,其中必有1只黑球,有多少种不同的取法?(3)从口袋内取出3只球,其中没有黑球,有多少种不同的取法?【答案】(1)56种(2)21种(3)35种【分析】(1)根据组合的定义可列出式子;(2)根据题干知,就是从剩下的白球中取出2个白球的取法种数,列出式子求解即可;(3)根据题意知,从7个白球中取出3个球即可,根据组合的定义列式求解即可.(1)从口袋内8个球取出3个球的取法共有C83=56种.(2)从口袋内8个球取出3个球,使其中恰有1个黑球,即从剩下的白球中取出2个白球的取法种数,共有C72=21种.(3)从口袋内取出3个球,其中没有黑球,即从7个白球中取出3个球即可,有C73=35种.23.现有6本不同的书,如果满足下列要求,分别求分法种数.(1)分成三组,一组3本,一组2本,一组1本;(2)分给三个人,一人3本,一人2本,一人1本;(3)平均分成三个组每组两本.【答案】(1)60;(1)若从甲、乙两组中各选1人担任组长,则有多少种不同的的选法? (2)若从甲、乙两组中各选1人担任正副班长,则有多少种不同的的选法?(3)若从甲、乙两组中各选2人参加核酸检测,则选出的4人中恰有1名男生的不同选法共有多少种? 【答案】(1)64; (2)128; (3)51.【分析】(1)利用分步原理即得; (2)利用先选后排可求; (3)先分类再分步即得(1)利用分步原理可得从甲、乙两组中各选1人担任组长,共有1188C C =64种不同的的选法;(2)先选后排,可得从甲、乙两组中各选1人担任正副班长有112882C C A 128=种不同的的选法; (3)先分类再分步:第一类:甲组1男生:112532C C C =15,第二类:乙组1男生:211362C C C =36, 则选出的4人中恰有1名男生的不同选法共有51种. 25.用组合数公式证明:(1)C C m n mn n-=; (2)11C C C m m m n n n -+=+.【答案】(1)证明见解析若不同的组合调查不同的项目算作不同的调查方式,求按下列要求进行组合时,有多少种不同的调查方式?(1)将9人分成人数分别为2人、3人、4人的三个组去进行社会实践;(2)将9人平均分成3个组去进行社会实践;(3)将9人平均分成每组既有男生又有女生的三个组去进行社会实践.【答案】(1)7560;(2)1680;(3)1080.【分析】(1)先将9人按2:3:4分组,再将三组分配到三个项目中去,列式计算作答.(2)利用平均分配直接列式计算作答.(3)将4个女生按2:1:1分组,再取男生到分成的三组,确保各组都为3人,然后将三组分配到三个项目中去,列式计算作答.【解析】(1)将9人按2:3:4分组,有234974C C C 种分组方法,再把各组分配到三个项目中去有33A 方法,由分步乘法计数原理得:23439743C C C A 7560=,所以不同的调查方式有7560.(2)从9人中任取3人去调查第一个项目,从余下6人中任取3人去调查第二个项目,最后3人去调查第三个项目,由分步乘法计数原理得:333963C C C 1680=,所以不同的调查方式有1680.(3)把4个女生按2:1:1分组,有24C 种分法,再从5个男生中任取1个到两个女生的一组,从余下4个男生中任取2人到1个女生的一组,最后2个男生到最后的1个女生组,分法种数为541222C C C ,将分得的三个小组分配到三个项目中去有33A 方法,由分步乘法计数原理得:5422122343C C C C A 1080=,所以不同的调查方式有1080.27.蓝天救援队有男救援员8名,女救援员4名,现选派5名救援员参加一项救援.(1)若男救援员甲与女救援员乙必须参加,共有多少种不同的选法?(2)若救援员甲、乙均不能参加,共有多少种不同的选法?(3)若至少有一名男救援员和一名女救援员参加,共有多少种不同的选法?【答案】(1)120(2)252(3)736【分析】(1)甲、乙必须参加,从剩下的10人中选3人即可;(2)甲、乙均不能参加,从剩下的10人中直接选5人即可;(3)采取正难则反的方法,用总选法减去全是男救援员的选法即可.(1)共有12名救援员,若甲、乙必须参加,则再从剩下的10名中选3名即可,有310C 120=种不同的选法.(2)若甲、乙两人均不能参加,则从剩下的10名中选5名即可,有510C 252=种不同的选法. (3)由总的选法数减去5名都是男救援员的选法数,得到的就是至少有一名男救援员和一名女救援员参加的选法数,即有55128C C 736-=种不同的选法.28.(1)把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?(2)把6个不同的小球放入4个相同的箱子中,每个箱子都不空,共有多少种放法?(3)把6个不同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法?【答案】(1)10;(2)65;(3)1560.【分析】(1)应用隔板法,在6个小球队列的5个空隙中插入3块隔板,即可得结果;(2)将6个不同的小球按{2,2,1,1}和{3,1,1,1}两种方案分组放入箱子,即得结果;29.规定C !m x m =,其中x ∈R ,m 是正整数,且0C 1x =,这是组合数C m n (n ,m 是正整数,且m n ≤)的一种推广.(1)求515C -的值.(2)组合数的两个性质:①C C m n m n n-=;②11C C C m m m n n n -++=是否都能推广到C m x (x ∈R ,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由;(3)已知组合数C mn 是正整数,证明:当x ∈Z ,m 是正整数时,C m x ∈Z . 1)(!x m m -+16)(19)-=2x =时C 性质②能推广,它的推广形式是:C C m m +()1)(1)(1)(2)!1!x m x x x m m m -+--++- ()1)(11!x m m -+⎫+⎪-⎭ 1)(!x m m -+x m ≥时,组合数m 时,C m x (1)(1)1)(!!x x m m m -+-+是正整数,所以。

【新教材】2020新人教版A高中数学必修第一册期末复习高中数学必修第3章测试卷

【新教材】2020新人教版A高中数学必修第一册期末复习高中数学必修第3章测试卷

第三章 函数的概念与性质考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2+1的值域是( B ) A .[0,+∞) B .[1,+∞) C .(0,+∞)D .(1,+∞)[解析] 由题意知,函数y =x 2+1的定义域为R ,则x 2+1≥1,∴y ≥1. 2.已知f (12x -1)=2x -5,且f (a )=6,则a 等于( B )A .-74B .74C .43D .-43[解析] 设12x -1=t ,则x =2t +2,t ∈R ,∴f (t )=2(2t +2)-5=4t -1,∴f (x )=4x -1.由f (a )=6得4a -1=6,即a =74.3.(2019·山东烟台高一期中测试)已知函数y =f (x )的部分x 与y 的对应关系如下表:则f [f (4)]A .-1 B .-2 C .-3D .3[解析] 由图表可知,f (4)=-3,∴f [f (4)]=f (-3)=3.4.已知幂函数f (x )=x α的图象过点(2,12),则函数g (x )=(x -2)f (x )在区间[12,1]上的最小值是( C )A .-1B .-2C .-3D .-4[解析] 由已知得2α=12,解得α=-1,∴g (x )=x -2x =1-2x 在区间[12,1]上单调递增,则g (x )min =g (12)=-3,故选C .5.(2019·吉林榆树一中高一期中测试)已知函数f (x -1)=x 2-3,则f (2)的值是( B ) A .-2B .6C.1 D.0[解析]解法一:令x-1=2,则x=3,∴f(2)=32-3=6.解法二:令x-1=t,则x=t+1,∴f(t)=(t+1)2-3=t2+2t-2,∴f(2)=22+2×2-2=6.6.(2019·吉林乾安七中高一期测试)已知函数f(x)=(m-1)x2+(m-2)x+m2-7m+12为偶函数,则m的值是(B)A.1 B.2C.3 D.4[解析]由题意得m-2=0,∴m=2.7.“龟兔赛跑”讲述了这样一个故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉,当它醒来时发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s1和s2分别表示乌龟和兔子所行的路程,t为时间,s为路程,则下列图象中与故事情节相吻合的是(D)[解析]根据题意:s1是匀速运动,路程一直在增加,s2有三个阶段:开始是路程增加,中间睡觉,路程不变;醒来时发现乌龟快到终点了急忙追赶,路程增加;但是乌龟还是先到终点,即s1在s2上方,故选D.8.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x)且在区间[0,2]上是增函数,则(D)A.f(-1)<f(3)<f(4) B.f(4)<f(3)<f(-1)C.f(3)<f(4)<f(-1) D.f(-1)<f(4)<f(3)[解析]因为f(x)是R上的奇函数,所以f(0)=0,又f(x)满足f(x-4)=-f(x),则f(4)=-f(0)=0,又f(x)=-f(-x)且f(x-4)=-f(x),所以f(3)=-f(-3)=-f(1-4)=f(1),又f (x )在区间[0,2]上是增函数,所以f (1)>f (0),即f (1)>0,所以f (-1)=-f (1)<0,f (3)=f (1)>0,可得f (-1)<f (4)<f (3),故选D . 二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列幂函数中,其图象过点(0,0),(1,1),且为偶函数的是( BD )A .y =x 12B .y =x 2C .y =x-14D .y =x 4[解析] 由题设知该幂函数为偶函数,且幂指数大于0,故选BD .10.若奇函数f (x )在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上( AB ) A .是增函数 B .最大值是-1 C .是减函数D .最小值是-1[解析] ∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y =f (x )在[-7,-3]上有最大值-1且为增函数.故选AB .11.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x )(若f (x )≥g (x ))f (x )(若f (x )<g (x )),则F (x )( BC )A .最小值-1B .最大值为7-27C .无最小值D .无最大值[解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选BC .12.已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( CD )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0[解析] 根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.三、填空题(本大题共4小题,每小题5分,共20分.) 13.(2019·陕西黄陵中学高一期末测试)函数f (x )=4-2x +1x +1的定义域是__{x |x ≤2且x ≠-1}__.[解析] 由题意得⎩⎪⎨⎪⎧4-2x ≥0x +1≠0,解得x ≤2且x ≠-1,∴函数f (x )的定义域为{x |x ≤2且x ≠-1}.14.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于__4__.[解析] ∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83,∴f (-43)+f (43)=43+83=4.15.已知幂函数f (x )=x α的图象经过点(9,3),则f (12)=2,函数f (1x -1)的定义域为__(0,1]__.[解析] 幂函数f (x )的图象经过点(9,3),所以3=9α,所以α=12,所以幂函数f (x )=x ,故f (12)=22,故1x-1≥0,解得0<x ≤1.16.设α∈{1,2,3,-1},则使y =x α为奇函数且在(0,+∞)上单调递增的α的值为__1或3__.[解析] 当α=1时,y =x 为奇函数,且在R 上单调递增,满足题意;当α=2时,y =x 2为偶函数不满足题意;当α=3时,y =x 3为奇函数,且在R 上单调递增,满足题意;当α=-1时,y =1x为奇函数,但在(0,+∞)上单调递减,不满足题意.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=ax +b ,且f (1)=2,f (2)=-1. (1)求f (m +1)的值;(2)判断函数f (x )的单调性,并用定义证明.[解析] (1)由f (1)=2,f (2)=-1,得a +b =2,2a +b =-1,即a =-3,b =5,故f (x )=-3x +5,f (m +1)=-3(m +1)+5=-3m +2.(2)f (x )在R 上是减函数.证明:任取x 1<x 2(x 1,x 2∈R ),则f (x 2)-f (x 1)=(-3x 2+5)-(-3x 1+5)=3x 1-3x 2=3(x 1-x 2),因为x 1<x 2,所以f (x 2)-f (x 1)<0,即函数f (x )在R 上单调递减. 18.(本小题满分12分)已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,求f (x )的定义域;(2)若f (x )在区间(0,1]上单调递减,求实数a 的取值范围.[解析] (1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a ,即函数f (x )的定义域是(-∞,3a ].(2)当a -1>0,即a >1时,要使f (x )在(0,1]上单调递减,则需3-a ×1≥0,此时1<a ≤3. 当a -1<0,即a <1时,要使f (x )在(0,1]上单调递减,则需-a >0,且3-a ×1≥0,此时a <0.综上所述,所求实数a 的取值范围是(-∞,0)∪(1,3].19.(本小题满分12分)某商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30(t ∈N *).设商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大时是第几天.[解析] 设日销售金额为y 元,则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800(0<t <25,t ∈N *),t 2-140t +4 000(25≤t ≤30,t ∈N *). 当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900.①当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125.②结合①②得y max =1 125.因此这种商品日销售金额的最大值为1 125元,且在第25天日销售金额最大.20.(本小题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围.[解析] (1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1,由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.故实数a 的取值范围(0,12).21.(本小题满分12分)如果函数y =f (x )(x ∈D )满足: ①f (x )在D 上是单调函数;②存在闭区间[a ,b ]⊆D ,使f (x )在区间[a ,b ]上的值域也是[a ,b ]. 那么就称函数y =f (x )为闭函数.试判断函数y =x 2+2x 在[-1,+∞)内是否为闭函数.如果是闭函数,那么求出符合条件的区间[a ,b ];如果不是闭函数,请说明理由.[解析] 设x 1,x 2是[-1,+∞)内的任意两个不相等的实数,且-1≤x 1<x 2,则有f (x 2)-f (x 1)=(x 22+2x 2)-(x 21+2x 1)=(x 22-x 21)+2(x 2-x 1)=(x 2-x 1)(x 1+x 2+2). ∵-1≤x 1<x 2,∴x 2-x 1>0,x 1+x 2+2>0. ∴(x 2-x 1)(x 1+x 2+2)>0. ∴f (x 2)>f (x 1).∴函数y =x 2+2x 在[-1,+∞)内是增函数. 假设存在符合条件的区间[a ,b ],则有⎩⎪⎨⎪⎧ f (a )=a f (b )=b ,即⎩⎪⎨⎪⎧a 2+2a =ab 2+2b =b. 解得⎩⎪⎨⎪⎧ a =0b =0或⎩⎪⎨⎪⎧ a =0b =-1或⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧a =-1b =-1.又∵-1≤a <b ,∴⎩⎪⎨⎪⎧a =-1b =0.∴函数y =x 2+2x 在[-1,+∞)内是闭函数,符合条件的区间是[-1,0].22.(本小题满分12分)已知函数y =x +tx 有如下性质:如果常数t >0,那么该函数在(0,t )上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.[解析] (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],∴1≤u ≤3,则y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以单调增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意知,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,∴a =32.。

2020_2021学年新教材高中数学模块质量检测含解析新人教A版选择性必修第三册

2020_2021学年新教材高中数学模块质量检测含解析新人教A版选择性必修第三册

模块质量检测一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x 与y 满足关系y =0.8x +9.6,变量y 与z 负相关.下列结论正确的是()A .变量x 与y 正相关,变量x 与z 正相关B .变量x 与y 正相关,变量x 与z 负相关C .变量x 与y 负相关,变量x 与z 正相关D .变量x 与y 负相关,变量x 与z 负相关2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P(A|B)等于()A .49B .29C .12D .133.某校高二期末考试学生的数学成绩ξ(满分150分)服从正态分布N(75,σ2),且P(60<ξ<90)=0.8,则P(ξ≥90)=()A .0.4B .0.3C .0.2bD .0.14.二项式⎝⎛⎭⎪⎫x -13x 8展开式中的常数项为()A .28B .-28C .56D .-565.已知离散型随机变量X 的分布列为:则随机变量X 的期望为() A .134B .114C .136D .1166.参加完某项活动的6名成员合影留念,前排和后排各3人,不同排法的种数为()A .360B .720C .2160D .43207.为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表:患病 未患病 合计 服用药 10 45 55 没服用药 20 30 50 合计3075105附表及公式:α 0.10 0.05 0.025 0.010 0.005 0.001 x α2.7063.8415.0246.6357.87910.828参考公式:χ2=2(a +b )(c +d )(a +c )(b +d )A .0.025B .0.010C .0.005D .0.0018.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,小球从上方的通道口落下后,将与层层小木块碰撞,最后掉入下方的某一个球槽内.若小球下落过程中向左、向右落下的机会均等,则小球最终落入④号球槽的概率为()A .332B .1564C .532D .516二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合效果越好B .经验回归直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个C.若D(X)=1,Y=2X-1,则D(Y)=4D.设随机变量X~N(μ,7),若P(X<2)=P(X>4),则μ=310.研究变量x,y得到一组样本数据,进行回归分析,以下说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好C.在经验回归方程y^=0.2x+0.8中,当解释变量x每增加1个单位时,响应变量y^平均增加0.2个单位D.若变量y和x之间的相关系数为r=-0.9462,则变量y和x之间的负相关很强11.一组数据2x1+1,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,记3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,则()A.a=7B.a=11C.b=12D.b=912.2020年3月,为促进疫情后复工复产期间安全生产,某医院派出甲、乙、丙、丁4名医生到A,B,C三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是()A.若C企业最多派1名医生,则所有不同分派方案共48种B.若每家企业至少分派1名医生,则所有不同分派方案共36种C.若每家企业至少分派1名医生,且医生甲必须到A企业,则所有不同分派方案共12种D.所有不同分派方案共43种三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=________.14.若随机变量X的分布列如下表,且E(X)=2,则D(2X-3)的值为________.15.某种品牌汽车的销量y()之间具有线性相关关系,样本数据如表所示:经计算得经验回归方程y=b x+a的斜率为0.7,若投入宣传费用为8万元,则该品牌汽车销量的预报值为________万辆.16.已知(ax-1)2020=a0+a1x+a2x2+…+a2020x2020(a>0),得a0=________.若(a0+a2+…+a2020)2-(a1+a3+…+a2019)2=1,则a=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎝⎛⎭⎪⎫x 2+1x n 的展开式中的所有二项式系数之和为32. (1)求n 的值;(2)求展开式中x 4的系数.18.(本小题满分12分)生男生女都一样,女儿也是传后人,由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.(1)完成下列2×2列联表:(2)附:χ2=n2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d).19.(本小题满分12分)据某县水资源管理部门估计,该县10%的乡村饮用水井中含有杂质A.为了弄清该估计值是否正确,需要进一步验证.由于对所有的水井进行检测花费太大,所以决定从全部饮用水井中随机抽取5口水井检测.(1)假设估计值是正确的,求抽取5口水井中至少有1口水井含有杂质A的概率;(2)在概率中,我们把发生概率非常小(一般以小于0.05为标准)的事件称为小概率事件,意思是说,在随机试验中,如果某事件发生的概率非常小,那么它在一次试验中几乎是不可能发生的.假设在随机抽取的5口水井中有3口水井含有杂质A,试判断“该县10%的乡村饮用水井中含有杂质A”的估计是否正确,并说明理由.参考数据:93=729,94=6561,95=59049.20.(本小题满分12分)在全国科技创新大会上,主席指出为建设世界科技强国而奋斗.某科技公司响应号召基于领先技术的支持,不断创新完善,业内预测月纯利润在短期内逐月攀升.该公司在第1个月至第9个月的月纯利润y(单位:万元)关于月份x 的数据如表:(2)请预测第12个月的纯利润. 附:经验回归的方程是:y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x -y -i =1n(x i -x -)2,a ^=y --b ^x -.参考数据:∑i =19x i y i =1002,i =19(x i -x -)2=60.21.(本小题满分12分)1933年7月11日,中华苏维埃某某国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日,中华人民某某国成立后,将此纪念日改称为中国人民解放军建军节,为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答,已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率; (2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.22.(本小题满分12分)某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如下:模型①:y ^=4.1x +11.8;模型②:y ^=21.3x -14.4;当x>16时,确定y 与x 满足的经验回归方程为:y ^=-0.7x +a.(1)根据下列表格中的数据,比较当0<x ≤16时模型①、②的相关指数R 2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.(附:刻画回归效果的相关指数R 2=1-i =1n(y i -y ^i )2i =1n(y i -y -)2.)(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16亿元与20亿元时公司实际收益的大小.(附:用最小二乘法求经验回归方程y ^=b ^x +a ^的系数公式b ^=∑i =1nx i y i -n x -·y -∑i =1n x 2i -n x -2=i =1n(x i -x -)(y i -y -)i =1n(x i -x -)2;a ^=y --b ^x -)(3)科技改造后,“东方红”款汽车发动机的热效率X 大幅提高,X 服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%,不予鼓励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的分布列和数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则 P(μ-σ<ξ<μ+σ)=0.6827, P(μ-2σ<ξ<μ+2σ)=0.9545.)模块质量检测1.解析:根据变量x 与y 满足关系y =0.8x +9.6可知,变量x 与y 正相关;再由变量y 与z 负相关知,变量x 与z 负相关.故选B .答案:B2.解析:甲独自去一个景点有3种,乙、丙有2×2=4种,则B “甲独自去一个景点”,共有3×4=12种,A “三个人去的景点不相同”,共有3×2×1=6种,概率P(A|B)=612 =12 .故选C .答案:C3.解析:∵数学成绩ξ服从正态分布N(75,σ2),则正态分布曲线的对称轴方程为x =75,又P(60<ξ<90)=0.8,∴P(ξ≥90)=12 [1-P(60<ξ<90)]=12(1-0.8)=0.1.故选D .答案:D4.解析:二项式⎝⎛⎭⎪⎫x -13x 8展开式的通项公式为T r +1=C r 8 x8-r ⎝ ⎛⎭⎪⎫-13x r=(-1)r C r 8 x 8-4r3,令8-4r 3=0,解得r =6,∴二项式⎝ ⎛⎭⎪⎫x -13x 8展开式中的常数项为(-1)6C 68=28.故选A .答案:A5.解析:由分布列的概率的和为1,可得:缺失数据:1-13 -16 =12.所以随机变量X 的期望为:1×13 +2×16 +3×12 =136 .故选C .答案:C6.解析:根据题意,分2步进行分析:①在6人中任选3人,安排在第一排,有C 36 A 33 =120种排法;②将剩下的3人全排列,安排在第二排,有A 33 =6种排法; 则有120×6=720种不同的排法;故选B . 答案:B7.解析:χ2=105(10×30-20×45)255×50×30×75 ≈6.109∈(5.024,6.635)所以这种推断犯错误的概率不超过0.025,故选A . 答案:A8.解析:设这个球落入④号球槽为时间A ,落入④号球槽要经过两次向左,三次向右,所以P(A)=C 35⎝ ⎛⎭⎪⎫12 3 ⎝ ⎛⎭⎪⎫12 2 =516 .故选D .答案:D9.解析:对于A ,在残差图中,残差点比较均匀的分布在水平带状区域中,带状区域越窄,说明模型的拟合效果越好,选项正确;对于B ,经验回归直线不一定经过样本数据中的一个点,它是最能体现这组数据的变化趋势的直线,选项错误;对于C ,D(Y)=D(2X -1)=22D(X)=4×1=4,选项正确;对于D ,随机变量X ~N(μ,7),若P(X<2)=P(X>4),则μ=2+42=3,选项正确;综上可得,正确的选项为A ,C ,D ,故选ACD . 答案:ACD10.解析:A 可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故A 正确;B 用相关指数R 2来刻画回归效果,R 2越大说明拟合效果越好,故B 错误;C 在经验回归方程y ^ =0.2x +0.8中,当解释变量x 每增加1个单位时,响应变量y ^平均增加0.2个单位,故C 正确;D 若变量y 和x 之间的相关系数为r =-0.946 2,r 的绝对值趋向于1,则变量y 和x 之间的负相关很强,故D 正确.故选ACD .答案:ACD11.解析:设X =(x 1,x 2,x 3,…,x n ),数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均值为7,方差为4, 即E(2X +1)=7,D(2X +1)=4, 由离散型随机变量均值公式可得E(2X +1)=2E(X)+1=7,所以E(X)=3,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的平均值为a =E(3X +2)=3E(X)+2=3×3+2=11;由离散型随机变量的方差公式可得 D(2X +1)=4D(X)=4,所以D(X)=1,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的方差为b =D(3X +2)=9D(X)=9,故选BD .答案:BD12.解析:对于选项A :若C 企业没有派医生去,每名医生有2种选择,则共有24=16种,若C 企业派1名医生则有C 14 ·23=32种,所以共有16+32=48种.对于选项B :若每家企业至少分派1名医生,则有C 24 C 12 C 11A 22·A 33 =36种.对于选项C :若每家企业至少分派1名医生,且医生甲必须到A 企业,若甲企业分2人,则有A 33 =6种;若甲企业分1人,则有C 23 C 11 A 22 =6种,所以共有6+6=12种.对于选项D :所有不同分派方案共有34种.故选ABC .答案:ABC13.解析:因为随机变量X ~N(1,σ2),P(X>2)=0.2,所以P(X<0)=P(X>2)=0.2,因此P(X>0)=1-P(X ≤0)=1-0.2=0.8.答案:0.814.解析:由题意可得:16 +p +13 =1,解得p =12 ,因为E(X)=2,所以:0×16 +2×12 +a ×13=2,解得a =3. D(X)=(0-2)2×16+(2-2)2×12+(3-2)2×13=1. D(2X -3)=4D(X)=4. 答案:415.解析:由题意可得x - =3+4+5+64 =4.5;y - =2.5+3+4+4.54=3.5;经验回归方程y ^ =b ^ x +a ^ 的斜率为0.7,可得y ^ =0.7x +a ^,所以3.5=0.7×4.5+a ^ ,可得a ^ =0.35,经验回归方程为:y ^=0.7x +0.35,投入宣传费用为8万元,则该品牌汽车销量的预报值为:0.7×8+0.35=5.95(万辆). 答案:5.9516.解析:已知(ax -1)2 020=a 0+a 1x +a 2x 2+…+a 2 020x 2 020(a>0), 令x =0,可得a 0=1.令x =1得,(a -1)2 020=a 0+a 1+a 2+…+a 2 020,令x =-1得,(-a -1)2 020=a 0-a 1+a 2-a 3+…+a 2 020,而(a 0+a 2+…+a 2 020)2-(a 1+a 3+…+a 2 019)2=(a 0+a 1+a 2+…+a 2 020)(a 0-a 1+a 2-a 3+…+a 2 020)=(a -1)2 020(-a -1)2 020=[(a -1)(-a -1)]2 020=(a 2-1)2 020=1,解得a =2 (负值和0舍).答案:1217.解析:(1)由题意可得,2n =32,解得n =5;(2)⎝ ⎛⎭⎪⎫x 2+1x n =⎝⎛⎭⎪⎫x 2+1x 5 , 二项展开式的通项为T r +1=C r5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5 x10-3r . 由10-3r =4,得r =2. ∴展开式中x 4的系数为C 25 =10.18.解析:(1)因为头胎为女孩的频率为0.5,所以头胎为女孩的总户数为200×0.5=100.因为生二孩的概率为0.525,所以生二孩的总户数为200×0.525=105. 2×2列联表如下:(2)由2×2列联表得:χ2=200(60×55-45×40)2105×95×100×100 =600133≈4.511>3.841=x 0.05故在犯错误的概率不超过0.05的前提下能认为是否生二孩与头胎的男女情况有关. 19.解析:(1)假设估计值是正确的,即随机抽一口水井,含有杂质A 的概率p =0.1.抽取5口水井中至少有1口水井含有杂质A 的概率P =1-(1-0.1)5=0.409 51;(2)在随机抽取的5口水井中有3口水井含有杂质A 的概率为C 35 ·(0.1)3·(0.9)2=0.0081<0.05.说明在随机抽取的5口水井中有3口水井含有杂质A 是小概率事件,它在一次试验中几乎是不可能发生的,说明“该县10%的乡村饮用水井中含有杂质A ”的估计是错误的.20.解析:(1)x -=19 (1+2+3+4+5+6+7+8+9)=5,y - =19(13+14+17+18+19+23+24+25+27)=20.b ^ =∑i =19x i y i -9x - y-∑i =19(x i -x -)2=1 002-9×5×2060=1.7.a ^=y --b ^x -=20-1.7×5=11.5.∴y 关于x 的经验回归方程为y =1.7x +11.5; (2)由y =1.7x +11.5,取x =12, 得y =1.7×12+11.5=31.9(万元). 故预测第12个月的纯利润为31.9万元.21.解析:(1)A ,B 两名学生各自从6个问题中随机抽取3个问题作答.这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的. A 恰好答对两个问题的概率为:P 1=C 24 C 12C 36=35.(2)B 恰好答对两个问题的概率为C 23⎝ ⎛⎭⎪⎫232·13=49. (3)X 所有可能的取值为1,2,3.P (X =1)=C 14 C 22 C 36 =15;P (X =2)=C 24 C 12 C 36 =35;P (X =3)=C 34 C 02 C 36=15.所以E (X )=1×15+2×35+3×15=2.由题意,随机变量Y ~B ⎝ ⎛⎭⎪⎫3,23,所以E (Y )=3×23=2.D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.D (Y )=3×23×13=23.因为E (X )=E (Y ),D (X )<D (Y ),可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定, 所以选择投票给学生A .22.解析:(1)由表格中的数据,有182.4>79.2,即182.4∑i =17(y i -y -)2>79.2∑i =17(y i -y -)2,所以模型①的R 2小于模型②,说明回归模型②刻画的拟合效果更好. 所以当x =16亿元时,科技改造直接收益的预测值为: y ^=21.3×16 -14.4=70.8(亿元).(2)由已知可得:x --20=1+2+3+4+55=3,∴x - =23,y --60=8.5+8+7.5+6+65 =7.2,∴y -=67.2,∴a =y - +0.7x -=67.2+0.7×23=83.3, ∴当x>16亿元时,y 与x 满足的经验回归方程为: y ^=-0.7x +83.3,∴当x =20亿元时,科技改造直接收益的预测值 y ^=-0.7×20+83.3=69.3,∴当x =20亿元时,实际收益的预测值为 69.3+10=79.3亿元>70.8亿元,∴科技改造投入20亿元时,公司的实际收益更大. (3)∵P(0.52-0.02<X<0.52+0.02)=0.954 5, P(X>0.50)=1+0.954 52 =0.977 25,P(X ≤0.5)=1-0.954 52 =0.022 75,∵P(0.52-0.1<X<0.52+0.1)=0.682 7, ∴P(X>0.53)=1-0.682 72=0.158 65,∴P(0.50<X ≤0.53)=0.977 25-0.158 65=0.818 6, 设每台发动机获得的奖励为Y(万元),则Y 的分布列为:∴每台发动机获得奖励的数学期望E(Y)=0×0.022 75+2×0.818 6+4×0.158 65=2.271 8(万元).。

人教A版高中数学必修3:终结性评价笔试试题(1)【含答案解析】

人教A版高中数学必修3:终结性评价笔试试题(1)【含答案解析】

数学必修3终结性评价笔试试题(一)本试卷分选择题和非选择题两部分,共4页.满分为150分.考试用时120分钟.注意事项:1.考生应在开始答题之前将自己的姓名、考生好和座位号填写在答题卷指定的位置上.2.应在答题卷上作答,答在试卷上的答案无效.3.选择题每小题选出答案后,应将对应题目的答案标号填涂在答题卷指定的位置上. 4.非选择题的答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.本次考试不允许使用函数计算器.6.考生必须保持答题卷的整洁,考试结束后,将答题卷交回.第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.在用样本频率估计总体分布的过程中,下列说法正确的是A.总体容量越大,估计越精确 B.总体容量越小,估计越精确 C.样本容量越大,估计越精确 D.样本容量越小,估计越精确 2.刻画数据的离散程度的度量,下列说法正确的是(1) 应充分利用所得的数据,以便提供更确切的信息; (2) 可以用多个数值来刻画数据的离散程度;(3) 对于不同的数据集,其离散程度大时,该数值应越小。

A .(1)和(3)B .(2)和(3)C . (1)和(2)D .都正确 3.数据5,7,7,8,10,11的标准差是A .8B .4C .2D .14.某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应该抽取多少人A .8,15,7B .16,2,2C .16,3,1D .12,3,55.阅读右面的流程图,若输入的a 、b 、c 分别 是21、32、75,则输出的a 、b 、c 分别是: A .75、21、32 B .21、32、75C .32、21、75D .75、32、21 6.已知两组样本数据}{n x x x ,......,21的平均数为h ,}{m y y y ,......,21的平均数为k, 则把两组数据合并成一组以后,这组样本的平均数为A .2k h + B .n m mk nh ++ C .n m nh mk ++ D .nm kh ++ 7.条件语句的一般形式如右所示,其中B 表示的是 A .条件 B .条件语句C .满足条件时执行的内容D .不满足条件时执行的内容 8.从一批产品中取出三件,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是A .A 与C 互斥B .B 与C 互斥 C .任两个均互斥D .任两个均不互斥(2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 10.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是 A .21 B .41 C .31 D .81第二部分 非选择题(共100分)二、填空题 :本大题共4小题,每小题5分,共20分.将最简答案填在题后横线上。

【人教版】高中数学必修三期末模拟试卷带答案

【人教版】高中数学必修三期末模拟试卷带答案

一、选择题1.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为( ) A .2764B .916C .81256D .7162.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .223.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .14.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .255.给出一个算法的程序框图如图所示,该程序框图的功能是( )A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列6.在如图所示的程序框图中,若函数12log (),?0()2,?0x x x f x x -<⎧⎪=⎨⎪≥⎩,则输出的结果是( )A .16B .8C .162D .827.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )A .94m >B .94m =C .35m =D .35m ≤8.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为() A .6B .720C .120D .50409.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙10.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-.A .①②③B .①③④C .①②④D .②③④11.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.14.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.15.如图,在半径为1的圆上随机地取两点,B E,连成一条弦BE,则弦长超过圆内接正BCD∆边长的概率是__________.16.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.17.如图所示的程序框图,输出S的结果是__________.18.将二进制数110 101(2)转为七进制数,结果为________.19.某市有A、B、C三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取______人.20.已知一组数据x,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bc K a b c d a c b d -=++++.优秀 非优秀 合计甲班 10 乙班 30合计11022.某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率: (2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t (单位:箱),统计结果如下表所示(视频率为概率): t /箱 4 5 6 频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;②记2log x s b x ⎡⎤=+⎢⎥⎣⎦,64x ≤,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b 的最小值(不考虑其他成本,2log x x ⎡⎤⎢⎥⎣⎦为2log x x 的整数部分,例如:[]2.12=,[]0.10=).23.编写一个程序,要求输入两个正数a 和b 的值,输出a b 和b a 的值,并画出程序框图.24.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句; (2)写出相应的程序.25.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料: 组号 1 2 3 4 5 温差x (C ︒) 10 11 13 12 8 发芽数y (颗)2325302616经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:()()()1122211ˆnni i i i i i nn i i i i x x y y x y nxy bx x x nx====---==--∑∑∑∑,ˆˆay bx =-) 26. 2.5PM 是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与 2.5PM 的浓度是否相关,现采集到某城市周一至周五某时间段车流量与2.5PM浓度的数据如下表:(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;(2)用最小二乘法求出y关于x的线性回归方程y bx a=+;(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时2.5PM的浓度是多少?(参考公式:()()()121ni iiniix x y ybx x==--=-∑∑,a y bx=-)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】求出4名同学去旅游的所有情况种数,再求出恰有一个地方未被选中的种数,由概率公式计算出概率.【详解】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有2113424322144C CC AA⋅⋅=种情况;所以恰有一个地方未被选中的概率:144925616 p==;故选:B.【点睛】本题考查古典概型,解题关键是求出基本事件的个数,本题属于中档题.2.D解析:D【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.3.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.4.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题5.A解析:A 【分析】对a 、b 、c 赋三个不等的值,并根据程序框图写出输出的结果,可得知该程序的功能. 【详解】令2a =,3b =,1c =,则23>不成立,21>成立,则1a =,输出的a 的值为1, 因此,该程序的功能是求出a 、b 、c 三数中的最小数,故选A . 【点睛】本题考查程序框图的功能,解题的关键就是根据题意将每个步骤表示出来,考查分析问题的能力,属于中等题.6.A解析:A 【解析】模拟执行程序框图,可得160a =-≤,执行循环体,12log 1640b ==-<,12log 420a ==-<,不满足条件4a >,执行循环体,12log 210b ==-<,12log 10a ==,不满足条件4a >,执行循环体,0210b ==>,1220a ==>,不满足条件4a >,执行循环体,2240b ==>,4216a ==,满足条件4a >,退出循环,输出a 的值为16.选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.B解析:B 【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件. 【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”. 故选B. 【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题.8.B解析:B 【解析】 【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案. 【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==; 第2次循环:满足判断条件,2,3S i ==; 第3次循环:满足判断条件,6,4S i ==; 第4次循环:满足判断条件,24,5S i ==; 第5次循环:满足判断条件,120,6S i ==; 第6次循环:满足判断条件,720,7S i ==; 不满足判断条件,终止循环,输出720S =,故选B. 【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.10.C解析:C 【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可. 【详解】①设某大学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ∧=0.85x ﹣85.71,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ,正确;②关于x 的方程x 2﹣mx +1=0(m >2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确; ③设定圆C 的方程为(x ﹣a )2+(x ﹣b )2=r 2,其上定点A (x 0,y 0),设B (a +r cosθ,b +r sinθ),P (x ,y ),由12OP =(OA OB +)得0022x a rcos x y b rsin y θθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x ﹣x 0﹣a )2+(2y﹣y 0﹣b )2=r 2,即动点P 的轨迹为圆, ∴故③不正确;④由22143x y +=,得a 2=4,b 2=3,∴1c ==.则F (﹣1,0),如图:过F 作垂直于x 轴的直线,交椭圆于A (x 轴上方),则x A =﹣1,代入椭圆方程可得32A y =. 当P 为椭圆上顶点时,P (0FP k =32OA k =-, ∴当直线FP时,直线OP 的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,. 当P 为椭圆下顶点时,P (0,∴当直线FP 时,直线OP 的斜率的取值范围是(8,32),综上,直线OP (O 为原点)的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,∪,32). 故选C 【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.11.B解析:B 【详解】试题分析:4235492639543.5,4244x y ++++++====, ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa =9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果 【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分 所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.14.【解析】【分析】选出的男女同学均不少于1名有两种情况:1名男生2名女生和2名男生1名女生根据组合数公式求出数量再用古典概型计算公式求解【详解】从5名男同学和2名女同学中选出3人有种选法;选出的男女同 解析:57【解析】 【分析】选出的男女同学均不少于1名有两种情况: 1名男生2名女生和2名男生1名女生,根据组合数公式求出数量,再用古典概型计算公式求解. 【详解】从5名男同学和2名女同学中选出3人,有3735C = 种选法;选出的男女同学均不少于1名,有12215252··25C C C C += 种选法; 故选出的同学中男女生均不少于1名的概率:255357P == . 【点睛】本题考查排列组合和古典概型. 排列组合方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.15.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BEBC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【解析:3 【解析】 【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可. 【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去); 当3x <时,210y x ==,解得5x = ,舍去, 综上,x 的值为3,故答案为3 . 【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.17.【解析】阅读流程图可得该流程图计算的数值为: 解析:【解析】阅读流程图可得,该流程图计算的数值为:13sin 0sin 1sin 52626262S ππππππ⎛⎫⎛⎫⎛⎫=⨯++⨯+++⨯+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 18.【解析】试题分析:把十进制的化为七进制则所以结果为考点:进位制解析:7104()【解析】试题分析:245(2)110101112121253=+⨯+⨯+⨯=,把十进制的53化为七进制,则53774÷=,7710÷=,1701÷=,所以结果为(7)104.考点:进位制.19.40【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分层抽样的解析:40 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人, 在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.20.【解析】因为平均数为所以方差为解析:45【解析】因为平均数为8,所以9,x = 方差为222214[10111]55++++=三、解答题21.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K ⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个. 所以P (A )=736,即抽到9号或10号的概率为736. 【点睛】本小题主要考查22⨯列联表独立性检验,考查古典概型概率计算,属于中档题. 22.(1)815;(2)①21;②4- 【分析】(1)根据古典概型概率公式计算可得; (2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得. 【详解】解:(1)设这6位顾客是A ,B ,C ,D ,E ,F .其中3点以前购买的顾客是A ,B ,C ,D .3点以后购买的顾客是E ,F .从这6为顾客中任选2位有15种选法:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A ,E ),(A ,F ),(B ,E ),(B ,F ),(C ,E ),(C ,F ),(D ,E ),(D ,F ). 根据古典概型的概率公式得815P =; (2)①依题意30100x s ++=, ∴70x s +=,所以估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是3070%21⨯=天;②批发店每天在购进4箱数量的玫瑰时所获得的平均利润为: 4×2000−4×500×3=2000元;批发店每天在购进5箱数量的玫瑰时所获得的平均利润为:3070(420001120055003)(5200055003)2260100100⨯⨯+⨯-⨯⨯+⨯⨯-⨯⨯=元; 批发店每天在购进6箱数量的玫瑰时所获得的平均利润为:30(420002120065003)(520001120065003)100100x ⨯⨯+⨯-⨯⨯+⨯⨯+⨯-⨯⨯ (6200065003)4202230100x s s+⨯⨯-⨯⨯=++ 由()2260420223070x x >++-, 解得:32.5x >, 则32.564x <≤所以270log x x b x ⎡⎤++=⎢⎥⎣⎦,要求b 的最小值,则求()2log x g x x x ⎡⎤=+⎢⎥⎣⎦的最大值,令()2log x f x x =,则()()()'22ln 2ln 1log ln x x f x x x -==,(]32.5,64x ∈ 明显()'0f x >,则()2log xf x x=在(]32.5,64上单调递增,则()2log x gx x x⎡⎤=+⎢⎥⎣⎦在(]32.5,64上单调递增, ()264646464641074log 646g x ⎡⎤⎡⎤∴=+=+=+=⎢⎥⎢⎥⎣⎦⎣⎦, 则b 的最小值为70744-=-. 【点睛】本题考查了古典概型及其概率计算公式,属中档题. 23.见解析; 【解析】试题分析: 先利用INPUT 语句输入两个正数a 和b 的值,再分别赋值a b 和b a 的值,最后输出a b 和b a 的值 试题程序和程序框图分别如下:24.(1)2TT =;(2)见解析 【解析】 【分析】⑴要计算239111112222S =+++++的一个程序框图的值需要用直到型循环结构,利用被累加数列的通项公式求解即可⑵根据框图写出对应得程序语句,即可得解 【详解】(1)的意图为表示各累加项,即数列的通项公式,故为2T T = (2)程序如下:【点睛】本题主要考查了程序框图的补全,结合题意运用数列的通项公式求出结果,然后再给出程序,需要熟练掌握各知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

眉山市高中2012级第三学期期末教学质量检测数 学 (文科) 2011.1本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、考号填写在机读卡和答题卷规定的位置上;2.答选择题时,必须使用2B 铅笔将机读卡上对应题号的答案标号涂黑,如需改动,用橡皮檫干净后,再选涂其它答案标号;3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卷规定的位置上; 4.选择题必须在机读卡上作答,非选择题必须在答题卷上作答,在试题卷上答题无效; 5.考试结束后,将机读卡和答题卷一并交回。

第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线L 倾斜角的余弦值为35,则直线L 的斜率为 (A )34 (B )43 (C )43± (D )34±2.已知a b >,则下列不等式①22a b > ②11a b < ③11a b a>-中不一定成立的个数是(A )3 (B )1 (C )0 (D )23.双曲线22981x y -=的渐近线方程为(A )13y x =± (B )3y x =± (C )19y x =± (D )9y x =±4.椭圆19822=++y k x 的离心率12e =,则k 的值等于 (A )4 (B )―45 (C )4或―45 (D )―4或455.已知0)13(log >-a a ,那么实数a 的取值范围是 A.310<<a B.3231<<a C.320<<a 或1>a D.3231<<a 或1>ax6.“直线()()2230m x m y -++-=与直线()2310m x my +++=相互垂直”是“12m =”的( )条件(A )充分必要 (B )充分而不必要 (C )必要而不充分 (D )既不充分也不必要 7.已知关于x 的不等式m x x >+-+|3||2|有解,则实数m 的取值范围是A.1-<mB.1≥mC.1≤mD.1<m8.已知抛物线的顶点在坐标原点,焦点在y 轴上,抛物线上的点(,2)m -到焦点的距离等于4,则m 的值为(A )4 (B )4或4- (C )2- (D )2或2- 9.给出平面区域为图中四边形ABOC 内部及其边界,目标函数为z ax y =-,当1,1x y ==时,目标函数z 取最小值,则实数a 的取值范围是(A )1a <- (B )12a >-(C )112a -<<-(D )112a -≤≤- 10.在平面直角坐标系xoy 中,已知△ABC 的顶点(6,0)A -和(6,0)C ,顶点B 在双曲线2212511x y -=的左支上,则sin sin sin BA C-等于 (A )56 (B )65 (C )1125(D )11611.已知定义域为R 的偶函数()f x 在[)0,+∞上是增函数,且0)21(=f ,则不等式()4log 0f x >的解集是(A ){}2x x >(B )102x x ⎧⎫<<⎨⎬⎩⎭ (C )1022x x x ⎧⎫<<>⎨⎬⎩⎭或 (D )1122x x x ⎧⎫<<>⎨⎬⎩⎭或 12.椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是(A )1,12⎡⎫⎪⎢⎣⎭ (B )10,2⎛⎤⎥⎝⎦ (C )⎛⎝⎦(D ))1,1第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分,将答案填在答题卷中的相应位置上) 13.若集合3{|(21)0},{|log (1)}A x x x B x y x =->==-,则B A 等于 . 14.已知0x >,则函数4()23f x x x=--的最大值是 . 15.若直线02)1(=-+++m y m x 与直线01642=++y mx 平行,则实数m 的值为 .16.如图所示,F 为双曲线C :221916x y -=的左焦点,双曲线C 上的点i P 与()71,2,3i P i -=关于y轴对称,则123456PF P F P F P F P F P F ++---的值是 .三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或推演步骤) 17.(本题满分12分)已知,a b 都是正数,求证:22222ab a b a b a b ++≤≤+,当且仅当a b =时等号成立.18.(本题满分12分)已知圆C 的圆心在直线30x y -=上,且圆C 与x 轴相切,若圆C 截直线y x =得弦长为27,求圆C 的方程.19.(本题满分12分)设经过双曲线1322=-y x 的左焦点1F 作倾斜角为6π的直线与双曲线左右两支分别交于点A ,B. 求(I )线段AB 的长;(II )设2F 为右焦点,求AB F 2∆的周长.20.(本题满分12分)直线l 过点)1,2(-P 且斜率为)1(>k k ,将直线l 绕点P 按逆时针方向旋转045得直线m ,若m 和l 分别与y 轴交于Q R ,两点,当k 为何值时,PQR ∆的面积最小,求此最小值.21.(本题满分12分)已知2()25(1)f x x ax a =-+>(I )若()f x 的定义域和值域均为1,a ⎡⎤⎣⎦,求a 的值;(II )若()f x 在区间(,2⎤-∞⎦上是减函数,且对任意的12,1,1x x a ⎡⎤∈+⎣⎦,总有12()()4f x f x -≤,求a 的取值范围. 22.(本题满分14分)设点)23,0(F ,动圆P 经过点F 且和直线32y =-相切 .记动圆的圆心P 的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过点F 作互相垂直的直线12,l l ,分别交曲线W 于,A B 和,C D . 求四边形ACBD 面积的最小值.眉山市高2012级第三期期末考试数学试题(文科)参考答案及评分意见二.填空题13.)1,21()0,( -∞; 14. 2- ; 15. 1; 16. 18; 三.解答题17.【证明】 因为0,0a b >>222242()2022()2()2ab a b ab a ab b a b ab a ba b a b a b a b +----+-==-≤⇒≤++++, 当且仅当a b =时取等号. …………5分22222222222()()24244a b a ab b a b a ab b a b ++++-+---=-==-2222()0()222a b a b a b +++⇒-≤⇒≤⇒≤当且仅当a b =时取等号. …………11分综上知:22ab a b a b +≤≤+当且仅当a b =时等号成立 .…………12分 注:分析法,综合法都可,这是课本习题。

18、解:(方法一)设所求的圆的方程是222)()(r b y a x =-+-, 则圆心),(b a 到直线0=-y x 的距离为2||b a -,222)7()2||(+-=∴b a r 即⋅⋅⋅⋅⋅⋅⋅⋅+-=14)(222b a r ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2分 由于所求的圆与x 轴相切,22b r =∴⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅②⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4分 又圆心在直线3x-y=0上,03=-∴b a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅③⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6分 联立①②③,解得9,3,12===r b a 或9,3,12==-=r b a ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅10分 故所求的圆的方程是:9)3()1(22=-+-y x 或9)3()1(22=+++y x ⋅⋅⋅⋅⋅⋅⋅⋅⋅12分(方法二)设所求的圆的方程是022=++++F Ey Dx y x ,则其圆心为)2,2(E D --, 半径为F E D 42122-+,令0=y 得02=++F Dx x ,由圆与x 轴相切, 得0=∆,即F D 42=④⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2分又圆心)2,2(ED --到直线0=-y x 的距离为2|22|E D +-,由已知得222)7()2|22|(r E D =++-, 即)4(256)(222F E D E D -+=+-⑤⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4分 又圆心)2,2(ED --在直线03=-y x 上,03=-∴E D ⑥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅6分 联立④⑤⑥,解得:1,6,1=-=-=F E D 或1,6,2===F E D ⋅⋅⋅⋅⋅⋅⋅⋅10分 故所求圆的方程是016222=+--+y x y x 或016222=++++y x y x ⋅⋅⋅⋅12分 (方法三)由题,设所求圆的圆心为)3,(t t ,则其半径||3t r =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4分 方程为2229)3()(t t y t x =-+-,圆心到直线0=-y x 的距离为2||2t ⋅⋅⋅⋅6分 2229)7()2||2(t t =+∴,解得1=t 或1-=t ⋅⋅⋅⋅⋅⋅⋅⋅10分 故所求的圆的方程是:9)3()1(22=-+-y x 或9)3()1(22=+++y x ⋅⋅⋅⋅12分 19.【解】((1)()0,21-F 336tan ==πk 设()11y x A ()22y x B 则直线()233:+=x y AB 代入03322=--y x 整理得013482=--x x 由距离公式812∆+=kAB 3= ………… 6分 (2)2122||21,||12F A x F B x =-=-()()212212122422x x x x x x B F A F -+⋅=-=+∴333232=⋅=23F AB L ∴∆=+的周长 ………… 12分20.【解】设l 的倾斜角为α,则k =αtan ,由1>k 知09045<<α,m ∴的倾斜角为045+α,m 的斜率为kkk -+=11', ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅2分 ∴l 的方程为)2(1+=-x k y ,m 的方程为)2(111+-+=-x kky ; 令0=x 得:12+=k y Q ,k k y R -+=13,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅4分)12(4]2)1(2)1[(2|1)1(2||2|||212+≥+-+-=-+=-⨯-=∴∆k k k k y y S R Q PQR……10分 由121-=-k k 得12+=k 或21-=k (舍), ∴当12+=k 时,PQR S ∆取得最小值)12(4+; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅12分21.【解】22()()5f x x a a =-+- ………………2分 (1).由()f x 的对称轴是x a =知函数在1,a ⎡⎤⎣⎦递减,故(1)()1f af a =⎧⎨=⎩,2a = …………6分(2)由()f x 在区间(,2⎤-∞⎦上是减函数得2a ≥,当12()()f x f x 、分别是函数()f x 的最小值与最大值时不等式恒成立.故函数在区间1,1a ⎡⎤+⎣⎦上的最小值是2()=5-f a a , …………8分又因为1(1)a a a -≥+-,所以函数的最大值是(1)62f a =- ………………10分 由12()()4f x f x -≤知()()26254a a ---≤,解得23a ≤≤ ……………12分 22.【解】(1)过点P 作PN 垂直直线32y =-于点.N 依题意得||||PF PN =,所以动点P 的轨迹为是以30,2F ⎛⎫⎪⎝⎭为焦点,直线32y =-为准线的抛物线, 即曲线W 的方程是26.x y = ………………4分 (2)依题意,直线12,l l 的斜率存在且不为0, 设直线1l 的方程为32y kx =+,由12l l ⊥得2l 的方程为132y x k =-+. 将32y kx =+代入26x y =, 化简得2690x kx --=.设1122() () A x y B x y ,,,, 则12126 9.x x k x x +==-,2 ||6(1)AB k ∴==+,同理可得21||61.CD k ⎛⎫=+ ⎪⎝⎭…………………………9分∴四边形ACBD 的面积2222111||||18(1)1182722S AB CD k k k k ⎛⎫⎛⎫=⋅=++=++≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当 221k k =, 即1k =±时,min 72.S = 故四边形ACBD 面积的最小值是72. ………………14分。

相关文档
最新文档