sas中的描述统计
几种描述性统计分分析的SAS过程
几种描述性统计分分析的SAS过程描述性统计是统计学中的一种方法,用于总结和描述数据集的主要特征。
它有助于了解数据的整体分布、偏差和离散性等。
SAS(统计分析系统)是一种流行的统计软件,具有丰富的分析功能。
以下是几种常用的SAS过程,用于执行描述性统计分析。
1.PROCMEANS:PROCMEANS是一种计算统计指标的SAS过程,包括均值、总和、最小值、最大值、标准差等。
可以使用该过程对数值变量进行描述性统计,并在输出中显示这些统计指标。
可以通过指定多个变量和分组变量来计算针对不同子组的统计指标。
该过程还可以生成频数和百分比。
2.PROCFREQ:PROCFREQ是一种用于计算分类变量频数和百分比的SAS过程。
它可以计算每个类别的频数,并使用该信息生成频数表。
该过程还可以计算两个或更多分类变量之间的交叉频数表,并计算出每个类别的百分比。
3.PROCUNIVARIATE:PROCUNIVARIATE是一种用于执行单变量分析的SAS过程。
它可以计算变量的均值、标准差、峰度、偏度等统计指标。
该过程可以绘制直方图、箱线图、正态检验图和PP图等,以帮助理解数据的分布特征。
还可以执行分位数分析、离散度分析和异常值识别等。
4.PROCCORR:PROCCORR是一种用于计算变量之间相关性的SAS过程。
它可以计算变量间的皮尔逊相关系数,并使用协方差矩阵和相关系数矩阵来描述变量之间的线性关系。
该过程还可以绘制散点图矩阵和相关系数图,以直观地显示变量之间的关系。
5.PROCGLM:PROCGLM是一种用于执行多因素方差分析的SAS过程。
它可以根据自变量的水平和交互作用来分解因变量的方差,并进行显著性检验。
该过程可以计算组间差异的F值和p值,并生成方差分析表。
PROCGLM还支持使用协变量进行调整的方差分析,以控制对方差的影响。
以上是几种常用的SAS过程,用于执行描述性统计分析。
每个过程都有各自的功能和输出,可以根据数据和分析需求选择合适的过程。
SAS中的描述性统计过程
SAS中的描述性统计过程(2012-08-01 18:07:01)▼分类:数据分析挖掘标签:杂谈SAS中的描述性统计过程描述性统计指标的计算可以用四个不同的过程来实现,它们分别是means过程、summary过程、univariate过程以及tabulate过程。
它们在功能范围和具体的操作方法上存在一定的差别,下面我们大概了解一下它们的异同点。
相同点:他们均可计算出均数、标准差、方差、标准误、总和、加权值的总和、最大值、最小值、全距、校正的和未校正的离差平方和、变异系数、样本分布位置的t检验统计量、遗漏数据和有效数据个数等,均可应用by语句将样本分割为若干个更小的样本,以便分别进行分析。
不同点:(1)means过程、summary过程、univariate过程可以计算样本的偏度(skewness)和峰度(kurtosis),而tabulate过程不计算这些统计量;(2)univariate过程可以计算出样本的众数(mode),其它三个过程不计算众数;(3)summary过程执行后不会自动给出分析的结果,须引用output语句和print过程来显示分析结果,而其它三个过程则会自动显示分析的结果;(4)univariate过程具有统计制图的功能,其它三个过程则没有;(5)tabulate过程不产生输出资料文件(存储各种输出数据的文件),其它三个均产生输出资料文件。
统计制图的过程均可以实现对样本分布特征的图形表示,一般情况下可以使用的有chart过程、plot过程、gchart过程和gplot过程。
大家有没有发现前两个和后两个只有一个字母‘g’(代表graph)的差别,其实它们之间(只差一个字母g的过程之间)的统计描述功能是相同的,区别仅在于绘制出的图形的复杂和美观程度。
chart过程和plot过程绘制的图形类似于我们用文本字符堆积起来的图形,只能概括地反映出资料分布的大体形状,实际上这两个过程绘制的图形并不能称之为图形,因为他根本就没有涉及一般意义上图形的任何一种元素(如颜色、分辨率等)。
SAS数据的描述性统计分析答案
实验一数据的描述性统计分析一、选择题1、以下( B )语句对变量进行分组,在使用前需按分组变量进行排序?以下( C )语句可对变量进行分类,在使用前不必按分类变量进行排序?用( A )语句可以选择输入数据集的一个行子集来进行分析?(A)WHERE语句(B)BY语句(C)CLASS语句(D)FREQ语句2、排序过程步中必须用什么语句对变量进行排序?( A )(A)BY语句(B)CLASS语句(C)WHERE语句3、如果要对数据集中的数据进行正态性检验,需要使用哪个过程?( B )(A)MEANS (B)UNIV ARIATE (C)FREQ4、用UNIV ARIATE过程进行数据分析,要求此过程输出茎叶图、正态概率图等,应在语句中加上什么选项?(plot )5、用UNIV ARIATE过程进行数据分析,在输出结果中哪个统计量是对样本均值为零的T检验的概率值?( A )(A)T: Mean (B)Prob>|S| (C)Sgn Rank (D)Prob>|T|二、假设某校100名女生的血清总蛋白含量(g/L)服从均值为75,标准差为3的正态分布,试产生样本数据,并利用SAS软件解决下面问题:1、计算样本均值、方差、标准差、极差、四分位极差、变异系数、偏度、峰度;2、画出直方图(垂直条形图);3、画出茎叶图、盒形图和正态概率图;4、试进行正态性检验。
Data N;DO i=1to100;x=75+3*normal(12345);output;end;proc print;run;proc univariate data=N;var x;run;proc gchart data=N;block x;run;proc univariate data=N plot;var x;run;proc univariate data=N normal;var x;run;三、某校测得20名学生的四项指标:性别、年龄、身高(CM)和体重(KG),具体数据如表1所示。
SAS各过程笔记+描述性统计+线性回归+logistic回归+生存分析+判别分析+聚类分析+主成分分析+因子分析
第一部分:基本统计方法注:主要讲述过程:means(描述性统计);freq(算频数表);univariate(检验);anova(方差分析);ttest(检验);glm(广义线性回归);npar1way(非参,wilcox)一:计量资料的统计分析方法1.01均值+频数表+百分位数+正态检验、茎叶图、箱形图、正态概率图data ex2_1;input x@@;low=2.3;dis=0.3;z=x-mod(x-low,dis);cards;3.964.23 4.42 3.595.12 4.02 4.32 3.72 4.76 4.164.61 4.263.774.20 4.36 3.07 4.89 3.97 4.28 3.64 4.66 4.044.55 4.254.63 3.91 4.41 3.525.03 4.01 4.30 4.19 4.75 4.144.57 4.264.56 3.79 3.89 4.21 4.95 3.98 4.29 3.67 4.69 4.124.56 4.264.66 4.28 3.83 4.205.24 4.02 4.33 3.76 4.81 4.173.96 3.274.61 4.26 3.96 4.23 3.76 4.01 4.29 3.67 3.39 4.124.27 3.614.98 4.24 3.83 4.20 3.71 4.03 4.34 4.69 3.62 4.184.26 4.365.28 4.21 4.42 4.36 3.66 4.02 4.31 4.83 3.59 3.973.964.495.11 4.20 4.36 4.54 3.72 3.97 4.28 4.76 3.21 4.044.56 4.254.92 4.23 4.47 3.605.23 4.02 4.32 4.68 4.76 3.694.61 4.263.894.21 4.36 3.425.01 4.01 4.29 3.68 4.71 4.134.57 4.264.035.46 4.16 3.64 4.16 3.76;/*freq语句,算频数表*/proc freq;tables z;run;proc means data=ex2_1n mean std stderr clm;var x;run;data ex2_1;input x f@@;cards;3.07 23.27 33.47 93.67 143.87 224.07 304.27 214.47 154.67 104.87 65.07 45.27 2;run;proc means;freq f;var x;run;/*把freq f改成weight f就是把f当权重或频数来算,f则在0,1之间*//*计算x的95%的置信区间*/proc univariate data=ex2_1;var x;output out=pctpctlpre=ppctlpts=2.5 97.5;run;proc print data=pct;run;/*正态检验、茎叶图、箱形图、正态概率图*/proc univariate data=ex2_1normalplot;var x;run;/*Extreme Observation显示的值是最小的5个极值和最大的5个极值*/1.02几何均值data ex2_5;input x f@@;y=log10(x);cards;10 420 340 1080 10160 11320 15640 141280 2;proc means noprint;/*调用means过程,不显示结果*/var y;freq f;output out=b/*结果输出到数据集b中*/mean=logmean;/*把数据集b中均数的变量名mean改为logmean*/run;data c;/*新建数据集c*/set b;/*调用数据集b*/g=10**logmean;/*计算变量logmean的反对数,该值就是x的几何均数,将该值赋值给变量g*/ proc print data=c;var g;run;/*这个是计算平通平均数的值*/proc means data=ex2_5;var x;freq f;run;1.03已知均值和方差求置信区间-单样本+单样本与总体/*单样本*/data ex3_2;n=10;mean=166.95;std=3.64;t=tinv(0.975,n-1);pts=t*std/sqrt(n);lclm=mean-pts;uclm=mean+pts;proc print;var lclm uclm;run;/*单样本与总体均值*/data ex3_5;n=36;/*样本量*/s_m=130.83;/*样本均值*/std=25.74;/*样本标准差*/p_m=140;/*总体均值*/df=n-1;/*自由度*/t=(s_m-p_m)/(std/sqrt(n));p=(1-probt(abs(t),df))*2;/*根据t值计算p值*/run;proc print;var t p;run;1.06双样本均值相等检验+两组分开+两组一起算+两组样本量不同/*双样本分开算*/data ex3_4;n1=29;n2=32;m1=20.10;m2=16.89;s1=7.02;s2=8.46;ss1=s1**2*(n1-1);ss2=s2**2*(n2-1);sc2=(ss1+ss2)/(n1+n2-2);se=sqrt(sc2*(1/n1+1/n2));t=tinv(0.975,n1+n2-2);lclm=(m1-m2)-t*se;uclm=(m1-m2)+t*se;proc print;var t se lclm uclm;run;/*双样本相减后再算*//*用MEANS作配对资料两个样本均数比较的t检验*/data ex3_6;input x1 x2 @@;d=x1-x2;cards;0.840 0.5800.591 0.5090.674 0.5000.632 0.3160.687 0.3370.978 0.5170.750 0.4540.730 0.5121.200 0.9970.870 0.506;proc means t prt;var d;run;/*用UNIVARIATE过程作配对资料两样本均数比较的t检验*/ proc univariate data=ex3_6;var d;run;/*双样本两组样本量不同*/data ex3_7;input x@@;if _n_<21 then c=1;/*当观测数小于21时,变量c的值为1,表示试验组*/else c=2;/*其余变量c的值为2,表示对照组*/cards;-0.70 -5.60 2.00 2.80 0.70 3.50 4.00 5.80 7.10 -0.502.50 -1.60 1.703.00 0.404.50 4.60 2.50 6.00 -1.403.70 6.50 5.00 5.20 0.80 0.20 0.60 3.40 6.60 -1.106.00 3.80 2.00 1.60 2.00 2.20 1.20 3.10 1.70 -2.00;proc ttest;/*调用ttest过程*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;1.08-1.13anova方差分析过程+一维分组+二维分组+三维分组/*只有一组分组因素*/data ex4_2;input x c @@;cards;3.53 1 2.42 2 2.86 3 0.89 44.59 1 3.36 2 2.28 3 1.06 44.34 1 4.32 2 2.39 3 1.08 42.66 1 2.34 2 2.28 3 1.27 43.59 1 2.68 2 2.48 3 1.63 43.13 1 2.95 2 2.28 3 1.89 43.30 1 2.36 2 3.48 3 1.31 44.04 1 2.56 2 2.42 3 2.51 43.53 1 2.52 2 2.41 3 1.88 43.56 1 2.27 2 2.66 3 1.41 43.85 1 2.98 2 3.29 3 3.19 44.07 1 3.72 2 2.70 3 1.92 41.37 12.65 2 2.66 3 0.94 43.93 1 2.22 2 3.68 3 2.11 42.33 1 2.90 2 2.65 3 2.81 42.98 1 1.98 2 2.66 3 1.98 44.00 1 2.63 2 2.32 3 1.74 43.55 1 2.86 2 2.61 3 2.16 42.64 1 2.93 23.64 3 3.37 42.56 1 2.17 2 2.58 3 2.97 43.50 1 2.72 2 3.65 3 1.69 43.25 1 1.56 2 3.21 3 1.19 42.96 13.11 2 2.23 3 2.17 44.30 1 1.81 2 2.32 3 2.28 43.52 1 1.77 2 2.68 3 1.72 43.93 1 2.80 2 3.04 3 2.47 44.19 1 3.57 2 2.81 3 1.02 42.96 1 2.97 23.02 3 2.52 44.16 1 4.02 2 1.97 3 2.10 42.59 1 2.31 2 1.68 33.71 4;proc anova;/*调用anova过程*/class c;/*定义分组变量为c*/model x=c;/*定义模型,分析g对x的影响*/means c/dunnett;/*用LSD法对多组均数过行两两比较*/means c/hovtest;/*作方差齐性检验,默认levene法,p值大于0.05,则认为是g组方差相等*/run;quit;/*有两组分组因素*/data ex4_4;input x a b@@;cards;0.82 1 10.65 2 10.51 3 10.73 1 20.54 2 20.23 3 20.43 1 30.34 2 30.28 3 30.41 1 40.21 2 40.31 3 40.68 1 50.43 2 50.24 3 5;proc anova;class a b;/*定义分组变量a和b*/model x=a b;/*定义模型,分析a和b对x影响*/means a/snk;/*用SNK法对变量a的多组均数进行两两比较*/run;quit;1.15嵌套设计资料的方差分析glm过程一级因素+二组因素/*嵌套设计资料的方差分析*/data ex11_6;input x a b @@;cards;82 1 184 1 191 1 288 1 285 1 383 1 365 2 461 2 462 2 559 2 556 2 660 2 671 3 767 3 775 3 878 3 885 3 989 3 9;proc glm;/*调用glm过程*/class a b;/*定义分组变量为a和b*/model x=a a(b);/*定义模型,以a为一组因素,b为二级因素*/run;quit;1.17重复测量资料的方差分析data ex12_2;input t1 t2 g@@;/*确定变量名称,t1和t2分别为两个时间点的分析变量,g为处理因素变量,b为区组变量*/cards;130 114 1124 110 1136 126 1128 116 1122 102 1118 100 1116 98 1138 122 1126 108 1124 106 1118 124 2132 122 2134 132 2114 96 2118 124 2128 118 2118 116 2132 122 2120 124 2134 128 2;proc glm;/*调用glm过程*/class g;/*定义分组变量g*/model t1 t2=g;/*定义模型,分析g对变量t1和t2的影响*/repeated time 2/*命名重复因子为time,有2个水平*/contrast(1)/*表示以第一时间点为对照点*//summary;/*考察不同时间点与对照时间点比较的结果*/run;quit;data ex12_3;input t0-t4 g@@;cards;120 108 112 120 117 1118 109 115 126 123 1119 112 119 124 118 1121 112 119 126 120 1127 121 127 133 126 1121 120 118 131 137 2122 121 119 129 133 2128 129 126 135 142 2117 115 111 123 131 2118 114 116 123 133 2131 119 118 135 129 3129 128 121 148 132 3123 123 120 143 136 3123 121 116 145 126 3125 124 118 142 130 3;proc glm;class g;model t0-t4=g;repeated time 5/*命名重复因子为time,有2个水平*/contrast(1);run;quit;二:计数资料的统计分析方法2.1四格表资料的卡方检验data ex7_1;input r c f@@;/*确定变量名称,r为行变量,c为列变量,f为频数变量*/ cards;1 1 991 2 52 1 752 2 21;proc freq;/*调用freq过程*/weight f;/*定义f为频数变量*/tables r*c/*作r*c的列联表*//chisq/*对列联表作卡方检验*/expected;/*输出每个格的理论频数*/run;2.5阳性事件发生的概率(二项分布)data ex6_1;do x=6 to 8;/*建立循环,变量x从6到8*/p1=probbnml(0.7,10,x);/*计算二项分布随机变量不大于x的概率*/p2=probbnml(0.7,10,x-1);/*计算二项分布随机变量不大于x-1的概率*/p=p1-p2;*/计算出现x的概率*/output;/*结果输出*/end;proc print;var x p;run;2.6正态分布法计算总体率的可信区间data ex6_3;n=100;x=55;p=x/n;sp=sqrt(p*(1-p)/n);u=probit(0.975);usp=u*sp;lclm=p-usp;uclm=p+usp;proc print;var n p sp lclm uclm;run;2.7样本率与总体率的比较(直接法——单侧检验)data ex6_4;d=probbnml(0.55,10,8);p=1-d;proc print;var p;run;2.8样本率与总体率的比较(直接法——双侧检验)data ex6_5;p01=probbnml(0.6,10,9);p02=probbnml(0.6,10,8);p0=p01-p02;/*计算出现9的概率*/do i=0to10;/*建立循环,变量i从0到10*/p11=probbnml(0.6,10,i);p12=probbnml(0.6,10,i-1);p1=p11-p12;/*计算出现i的概率*/if i=0then p1=p11; /*定义出现0的概率*/if p1<=p0 then output; /*如果出现i的概率小于出现9的概率,则保留在数据集中*/ end;proc means sum;var p1;run;2.9两个样本率比较的z检验data ex6_7;n1=120;n2=110;x1=36;x2=22;p1=x1/n1;p2=x2/n2;pc=(x1+x2)/(n1+n2);/*计算合并发生率*/sp=sqrt(pc*(1-pc)*(1/n1+1/n2));/*计算两个率相差的标准误差*/u=(p1-p2)/sp;/*计算u值*/p=(1-probnorm(abs(u)))*2;/*计算p值*/format u p 5.4;/*输出格式为小数点后保留4位*/proc print;var pc sp u p;run;2.10.Poisson分布的样本均数与总体均数比较(直接法)data ex6_12;n=120;/*确定样本例数*/pai=0.008; /*确定总体率*/lam=n*pai; /*计算总体均数lamda*/x=4; /*确定实际发生数*/p=1-poisson(lam,x-1);/*计算实际发生数所对应的概率*/proc print;var lam p;run;2.11 Poisson分布的样本均数与总体均数比较(正态近似法)data ex6_12;n=25000;/*样本量*/x=123; /*样本均数*/pi=0.003; /*确定总体率*/lam=n*pi; /*计算总体均数*/u=(x-lam)/sqrt(lam*(1-pi)); /*计算u值*/p=1-probnorm(abs(u)); /*计算u值所对应的p值*/proc print;var lam u p;run;2.14负二项分布的参数估计data ex6_16;input x f@@;cards;0 301 142 83 44 25 06 2;proc univariate;var x;freq f;output out=mv2var=v;run;data k;set mv2;k=mu**2/(v-mu);proc print;var mu k;run;三、非参数统计方法3.2单个样本中位数和总体中位数比较data ex8_2;input x1@@;median=45.30;/*假设中位数为45.30*/d=x1-median; /*计算x1和假设中位数的差值*/cards;44.21 45.30 46.39 49.47 51.05 53.1653.26 54.37 57.16 67.37 71.05 87.37;proc univariate; /*调用univariate过程度*/var d;run;proc means median; /*调用means过程计算x1实际的中位数*/var x1;run;3.3两个独立样本比较的Wilcoxon秩和检验(R对应函数wilcox.test())data ex8_3;input x c @@;/*确定变量名称,x、c分别为分析变量和分组变量(类别多于两类一样的写法)*/2.78 13.23 14.20 14.87 15.12 16.21 17.18 18.05 18.56 19.60 13.23 23.50 24.04 24.15 24.28 24.34 24.47 24.64 24.75 24.82 24.95 25.10 2;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;3.4等级资料的两样本比较data ex8_4;input c g f@@;/*确定变量名称,f为频数,c为分类,g为要分析的变量(分类多种类似)*/ cards;1 1 11 2 81 3 161 4 101 5 42 1 22 2 232 3 112 5 0;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/freq f;/*确定频数变量为f*/var g;/*定义分析变量g*/class c;/*定义分组变量c*/run;第二部分:多元统计分析方法注:主要讲述过程:reg(回归),corr(相关分析),nlin(对数曲线回归),logistic(逻辑回归),phreg(条件logistic回归分析+cox回归),life test(生存分析),discrim(判别分析),stepdisc(逐步回归),cluster(聚类),varclus(指标聚类),princomp(主成分分析),factor(因子分析),cancorr(典型相关分析)一:回归和相关分析1.1两个变量的直线回归分析data ex9_1;input x y;/*确定变量名称*/cards;13 3.5411 3.019 3.096 2.488 2.5610 3.3612 3.187 2.65;proc reg;/*调用reg过程*/model y=x;/*定义模型,以y为应变量,以x为自变量*//*在model语句后面加上选项,得到一些有用的统计量,常用的有:stb(输出标准化偏回归系数)、p(输出每个观测的实际值、预测值和残差)、cli(输出每个观测预测值均数的双侧95%置信区间)、clm(输出每个观测预测值的双侧95%置信范围)*//*例如:model y=x /stb p cli */plot y*x;/*画出散点图*/run;1.2两个变量的直线相关分析data ex9_5;input x y;cards;43 217.2274 316.1851 231.1158 220.9650 254.7065 293.8454 263.2857 271.7367 263.4669 276.5380 341.1548 261.0038 213.2085 315.1254 252.08;proc corr;/*若要求作spearman相关分析,则可以写成proc corr spearman */ var x y;run;/*得到一个相关系数矩阵*/1.4加权直线加回data ex9_9;input x y;w=1/(x*x); /*设置权重变量w*/cards;0.11 4.000.12 5.100.21 9.500.30 9.000.34 17.200.44 14.000.56 18.900.60 29.400.69 22.100.80 41.50;proc reg;weight w;/*定义权重变量w*/model y=x;/*定义模型,以y为因变量,以x为自变量*/run;1.5两个直线回归系数的比较data ex9_12;input x y c@@;cards;13 3.54 111 3.01 19 3.09 16 2.48 18 2.56 110 3.36 112 3.18 17 2.65 110 3.01 29 2.83 211 2.92 212 3.09 215 3.98 216 3.89 28 2.21 27 2.39 210 2.74 215 3.36 2;proc glm;class c;model y=x c x*c;/*定义模型,分析x、c以及x和c的交互作用对y的影响,即判断两总体直线回归系数是否相同*/run;proc glm;class c;model y=x c;/*上一步已排除协变量的影响,然后再分析两分析变量是否来自同一总体*/run;1.6两个变量的对数曲线回归data ex9_13;input x y;cards;0.005 34.110.050 57.990.500 94.495.000 128.5025.000 169.98;proc nlin;/*调用nlin过程*/parms a=0 b=0; /*定义初始值*/model y=a+b*log10(x); /*定义对数模型,以y为因变以量,x为自变量*/ run;1.7两个变量的指数曲线回归分析data ex9_14;input x y;cards;2 545 507 4510 3714 3519 2526 2031 1634 1838 1345 852 1153 860 465 6;proc nlin;parms a=4 b=0.03;/*定义初始值*/model y=exp(a+b*x);/*定义指数模型,以y为因变量,x为自变量*/run;1.8多元回归data ex15_1;input x1-x4 y@@;/*确定变量名称,x1,x2,x3,x4分别为自变量,y为应变量*/ cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4;/*也可以写成model y=x1 x2 x3 x4;*/run;1.9逐步回归data ex12_2;input x1-x4 y@@;cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4/selection=stepwise/*定义模型,以y因变量,x1-x4为变量进行多元回归分析*/ sle=0.10/*定义入先变量的界值*/sls=0.10;/*定义剔除变量的界值*/run;三:logistic回归3.1 两个变量logistic回归分析data ex16_1;input y x1 x2 f@@;/*确定变量名称,y为发病情况,x1为吸烟情况,x2为饮酒情况,f为发生频数*/cards;1 0 0 631 0 1 631 1 0 441 1 1 2650 0 0 1360 0 1 1070 1 0 570 1 1 151;proc logistic;/*调用logistic过程*/freq f;/*定义频数变量f*/model y=x1 x2;/*定义模型,以y为因变量,x1和x2为自变量*/run;3.2 1:M配对资料的条件logistic回归分析data ex16_3;input i y x1-x6 @@;/*确定变量名称,i为区组变量,y为病人情况,1为病例,0为对照,x1-x6为危险因素*/t=2-y;/*定义时间变量*/cards;1 1 3 5 1 1 1 01 0 1 1 1 3 3 01 0 1 1 1 3 3 02 1 13 1 1 3 02 0 1 1 13 2 02 0 1 2 13 2 03 1 14 1 3 2 03 0 1 5 1 3 2 03 0 14 1 3 2 04 1 1 4 1 2 1 14 0 2 1 1 3 2 05 1 2 4 2 3 2 0 5 0 1 2 1 3 3 05 0 2 3 1 3 2 06 1 1 3 1 3 2 1 6 0 1 2 1 3 2 06 0 1 3 2 3 3 07 1 2 1 1 3 2 1 7 0 1 1 1 3 3 07 0 1 1 1 3 3 08 1 1 2 3 2 2 0 8 0 1 5 1 3 2 08 0 1 2 1 3 1 09 1 3 4 3 3 2 0 9 0 1 1 1 3 3 09 0 1 4 1 3 1 010 1 1 4 1 3 3 1 10 0 1 4 1 3 3 010 0 1 2 1 3 1 011 1 3 4 1 3 2 0 11 0 3 4 1 3 1 011 0 1 5 1 3 1 012 1 1 4 3 3 3 0 12 0 1 5 1 3 2 012 0 1 5 1 3 3 013 1 1 4 1 3 2 0 13 0 1 1 1 3 1 013 0 1 1 1 3 2 014 1 1 3 1 3 2 1 14 0 1 1 1 3 1 014 0 1 2 1 3 3 015 1 1 4 1 3 2 0 15 0 1 5 1 3 3 015 0 1 5 1 3 3 016 1 1 4 2 3 1 0 16 0 2 1 1 3 3 016 0 1 1 3 3 2 017 1 2 3 1 3 2 0 17 0 1 1 2 3 2 017 0 1 2 1 3 2 018 1 1 4 1 3 2 0 18 0 1 1 1 2 1 0 18 0 1 2 1 3 2 019 0 1 1 1 2 1 019 0 2 2 2 3 1 020 1 1 4 2 3 2 120 0 1 5 1 3 3 020 0 1 4 1 3 2 021 1 1 5 1 2 1 021 0 1 4 1 3 2 021 0 1 2 1 3 2 122 1 1 2 2 3 1 022 0 1 2 1 3 2 022 0 1 1 1 3 3 023 1 1 3 1 2 2 023 0 1 1 1 3 1 123 0 1 1 2 3 2 124 1 1 2 2 3 2 124 0 1 1 1 3 2 024 0 1 1 2 3 2 025 1 1 4 1 1 1 125 0 1 1 1 3 2 025 0 1 1 1 3 3 0;proc phreg;/*调用phreg过程*/model t*y(0)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,x1-x6为自变量*//selection=stepwise/*选择逐步回归方法筛选变量*/sle=0.1sls=0.1/*入选和剔除的界值均为0.1*/ties=discrete;/*用离散logistic模型替代比例危险模型*/strata i;/*定义区组变量*/run;2.3 应变量为多分类资料的logistic回归data ex16_5;input x1 x2 y f;/*x1是两个社区,x2是性别,Y是获取健康知识途径(传统大众媒介=1,网络=2,社区宣传=3,f为频数)*/cards;0 0 1 200 0 2 350 0 3 260 1 1 100 1 2 270 1 3 571 0 1 421 02 171 1 1 161 12 121 1 3 26;proc logistic;freq f;/*定义频数变量为f*/model y(ref='3')/*定义模型,以y为因变量,ref语句指时参照的类别为“社区宣传”,最后得到结果均为与“社区宣传”相对应*/=x1 x2/*定义x1和x2为自变量*//link=glogit;/*指定多分类应变量回归模型*/run;四:生存分析4.1乘积极限法估计生存率,例17-2甲、乙两种手术方法的生存率估计data ex17_2;input t d@@;/*确定变量名称,t为时间变量,d为截尾变量*/cards;1 13 15 15 15 16 16 16 17 18 110 110 114 017 119 020 022 026 034 134 044 159 1;proc lifetest;/*调用lifetest过程*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.2寿命表法估计生存率data ex17_3;input t d f@@;cards;0 0 00 1 4561 0 391 1 2262 0 222 1 1523 0 233 1 1714 0 244 1 1355 0 1075 1 1256 0 1336 1 837 0 1027 1 748 0 688 1 519 0 649 1 4210 0 4510 1 4311 0 5311 1 3412 0 3312 1 1813 0 2714 0 3314 1 615 0 2015 1 0;proc lifetest method=life/*调用lifetest过程,指定用寿命表法估计生存率*/ width=1;/*表示每间隔1估计生存率*/freq f;/*表示以f为频数变量*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.3生存曲线比较的log-rank检验及制作生存曲线data ex17_4;input t d g @@;cards;1 1 13 1 15 1 15 1 15 1 16 1 16 1 16 1 17 1 18 1 110 1 110 1 114 0 117 1 119 0 120 0 122 0 126 0 131 0 134 1 134 0 144 1 159 1 11 1 21 1 22 1 23 1 23 1 24 1 24 1 24 1 26 1 26 1 28 1 29 1 29 1 210 1 211 1 212 1 213 1 215 1 217 1 218 1 2;proc lifetest plot=(s);/*调用lifetest过程并做生存曲线图*/ time t*d(0);strata g;/*定义变量g为分组变量*/run;4.4.cox回归分析data ex17_5;input x1-x6 t y @@;cards;54 0 0 1 1 0 52 057 0 1 0 0 0 51 058 0 0 0 1 1 35 143 1 1 1 1 0 103 048 0 1 0 0 0 7 140 0 1 0 0 0 60 044 0 1 0 0 0 58 036 0 0 0 1 1 29 139 1 1 1 0 1 70 042 0 1 0 0 1 67 042 0 1 0 0 0 66 042 1 0 1 1 0 87 051 1 1 1 0 0 85 055 0 1 0 0 1 82 052 1 1 1 0 1 74 0 48 1 1 1 0 0 63 0 54 1 0 1 1 1 101 0 38 0 1 0 0 0 100 0 40 1 1 1 0 1 66 1 38 0 0 0 1 0 93 0 19 0 0 0 1 0 24 1 67 1 0 1 1 0 93 0 37 0 0 1 1 0 90 0 43 1 0 0 1 0 15 149 0 0 0 1 0 3 150 1 1 1 1 1 87 0 53 1 1 1 0 0 120 0 32 1 1 1 0 0 120 0 46 0 1 0 0 1 120 043 1 0 1 1 0 120 044 1 0 1 1 0 120 0 62 0 0 0 1 0 120 0 40 1 1 1 0 1 40 1 50 1 0 0 1 0 26 1 33 1 1 0 0 0 120 0 57 1 1 1 0 0 120 0 48 1 0 0 1 0 120 0 28 0 0 0 1 0 3 1 54 1 0 1 1 0 120 1 35 0 1 0 1 1 7 1 47 0 0 0 1 0 18 1 49 1 0 1 1 0 120 0 43 0 1 0 0 0 120 0 48 1 1 0 0 0 15 1 44 0 0 0 1 0 4 1 60 1 1 1 0 0 120 0 40 0 0 0 1 0 16 1 32 0 1 0 0 1 24 1 44 0 0 0 1 1 19 1 48 1 0 0 1 0 120 0 72 0 1 0 1 0 24 1 42 0 0 0 1 0 2 1 63 1 0 1 1 0 120 0 55 0 1 1 0 0 12 1 39 0 0 0 1 0 5 1 44 0 0 0 1 0 120 0 42 1 1 1 0 0 120 061 0 1 0 1 0 40 145 1 0 1 1 0 108 038 0 1 0 0 0 24 162 0 0 0 1 0 16 1;proc phreg;model t*y(1)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,变量值1表示截尾数据,x1-x6为危险因素*//selection=stepwisesle=0.05sls=0.05;run;五:判别和聚类分析5.1判别分析data ex18_4;input x1-x4 g; /*确定变量名称,x1-x4为用于进行判别分析的指标,g为分组变量*/ cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc discrim;class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(结果横向是真实值,竖向的预测值)5.2逐步判别分析data ex18_5;input x1-x4 g;cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc stepdisc /*调用stepdisc过程*/slentry=0.2/*确定入选标准为0.2*/slstay=0.3;/*确定剔除标准为0.3*/class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(筛选出变量后,调用discrim过程对筛选出的变量作判别分析,即先做5.2再做5.1)5.3作样品聚类和指标聚类data ex19_3;input x1-x9;cards;46 25 5 2138 1.68 0.35 8.11 4 4 35 12 20 3510 2.76 1.43 6.84 3 3 52 25 20 2784 2.19 0.54 4.11 3 3 32 7 20 2451 1.93 0.47 11.45 9 6 38 22 0 3247 2.56 0.80 11.68 5 5 51 31 30 3710 2.92 0.37 11.60 2 2 40 9 10 3194 2.51 0.40 11.40 5 5 34 17 20 4658 3.67 0.46 11.35 3 3 50 29 0 5019 3.95 0.47 13.45 10 8 42 20 20 7482 5.89 0.12 13.11 0 0 57 30 15 3800 2.99 0.19 10.76 2 236 15 20 2478 1.95 0.25 10.00 0 037 12 0 3827 3.01 0.82 10.50 4 4 52 32 0 2984 2.35 0.16 11.15 3 3 52 32 10 3749 2.95 0.72 11.45 11 10 42 27 30 4941 3.89 0.73 13.80 7 6 44 27 20 3948 3.11 0.33 13.65 16 14 40 21 5 3360 2.64 0.37 11.40 0 0 38 21 5 2936 2.31 0.69 11.40 1 1 44 27 20 6851 5.39 0.99 12.28 7 6 43 27 0 3926 3.09 0.47 11.95 0 0 26 10 3 4381 3.45 0.52 11.80 7 5 37 18 20 7142 5.62 0.85 11.81 5 5 28 9 20 2612 2.06 0.37 11.65 1 1 25 9 30 2638 2.08 0.78 12.25 1 1 34 14 20 4322 3.40 0.41 15.00 5 5 50 32 20 2862 2.25 0.69 8.80 2 2;proc cluster/*调用cluster过程*/method=average;/*采用类平均法进行聚类*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;proc treegraphics haxis=axis1 horizontal;/*调用tree过程输出聚类图,并将图横向输出*/ run;/*对各个指标聚类,即对9个变量聚类*/proc varclus;/*调用varclus过程*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;六、主成分分析和因子分析6.1主成分分析data ex20_1;input x1-x6;cards;92 77 80 95 99 12697 75 77 80 95 12595 80 70 78 89 12075 75 73 88 98 11092 68 72 79 88 11390 85 80 70 78 10372 93 75 77 80 10088 70 76 72 81 10264 70 69 85 93 10570 73 70 87 84 10078 69 75 73 89 9778 72 71 68 75 9675 64 63 76 73 9284 66 77 55 65 7670 64 51 60 67 8858 72 75 62 52 7582 73 40 50 48 6145 65 42 47 43 60;proc princomp;/*调用princomp过程,对6个变量做主成分分析,结果包括主成分累积贡献率,特征向量矩阵*/run;6.2因子分析data ex20_2;input x1-x9;cards;4.34 389 99.06 1.23 25.46 93.15 3.56 97.51 61.663.45 271 88.28 0.85 23.55 94.31 2.44 97.94 73.334.38 385 103.97 1.21 26.54 92.53 4.02 98.484.18 377 99.48 1.19 26.89 93.86 2.92 99.41 63.164.32 378 102.01 1.19 27.63 93.18 1.99 99.71 80.004.13 349 97.55 1.10 27.34 90.63 4.38 99.03 63.164.57 361 91.66 1.14 24.89 90.60 2.73 99.69 73.534.31 209 62.18 0.52 31.74 91.67 3.65 99.48 61.114.06 425 83.27 0.93 26.56 93.81 3.09 99.48 70.734.43 458 92.39 0.95 24.26 91.12 4.21 99.76 79.074.13 496 95.43 1.03 28.75 93.43 3.50 99.10 80.494.10 514 92.99 1.07 26.31 93.24 4.22 100.00 78.954.11 490 80.90 0.97 26.90 93.68 4.97 99.77 80.533.53 344 79.66 0.68 31.87 94.77 3.59 100.00 81.974.16 508 90.98 1.01 29.43 95.75 2.77 98.72 62.864.17 545 92.98 1.08 26.92 94.89 3.14 99.41 82.354.16 507 95.10 1.01 25.82 94.41 2.80 99.35 60.614.86 540 93.17 1.07 27.59 93.47 2.77 99.80 70.215.06 552 84.38 1.10 27.56 95.15 3.10 98.63 69.234.03 453 72.69 0.90 26.03 91.94 4.50 99.05 60.424.15 529 86.53 1.05 22.40 91.52 3.84 98.58 68.423.94 515 91.01 1.02 25.44 94.88 2.56 99.36 73.914.12 552 89.14 1.10 25.70 92.65 3.87 95.52 66.674.42 597 90.18 1.18 26.94 93.03 3.76 99.28 73.813.05 437 78.81 0.87 23.05 94.46 4.03 96.223.94 477 87.34 0.95 26.78 91.784.57 94.28 87.344.14 638 88.57 1.27 26.53 95.16 1.67 94.50 91.673.87 583 89.82 1.16 22.66 93.43 3.55 94.49 89.074.08 552 90.19 1.10 22.53 90.36 3.47 97.88 87.144.14 551 90.81 1.09 23.06 91.65 2.47 97.72 87.134.04 574 81.36 1.14 26.65 93.74 1.61 98.20 93.023.93 515 76.87 1.02 23.88 93.82 3.09 95.46 88.373.90 555 80.58 1.10 23.08 94.38 2.06 96.82 91.793.62 554 87.21 1.10 22.50 92.43 3.22 97.16 87.773.75 586 90.31 1.12 23.73 92.47 2.07 97.74 93.893.77 627 86.47 1.24 23.22 91.17 3.40 98.98 89.80;proc factor/*调用factor过程*/n=4;/*确定因子数为4,如果不写就默认为3*/run;proc factorn=4rotate=quartimax;/*因子旋转的方法为四次方最大正交旋转*/run;七、典型相关分析data ex21_1;input x1-x4 y1-y4;cards;1210 120.1 23.8 61.0 10.2 66.3 2.01 2.731210 120.7 23.4 59.8 11.3 67.6 1.92 2.711040 121.2 22.9 59.0 10.1 66.5 1.92 2.601620 121.5 24.6 59.5 9.5 67.8 1.95 2.641690 122.5 24.4 60.7 11.0 69.2 2.08 2.641150 122.7 27.2 64.5 10.5 69.1 2.19 2.841460 123.3 24.9 58.4 10.5 69.0 2.01 2.72 1190 123.4 21.8 59.0 10.6 67.4 1.90 2.71 1840 123.9 23.5 60.2 9.6 67.1 2.00 2.84 1250 124.5 25.2 63.0 11.2 67.8 2.05 2.78 1480 124.8 22.3 58.1 10.7 67.9 2.05 2.73 1310 124.9 22.0 58.0 10.5 67.8 1.98 2.68 1660 125.3 24.7 60.0 10.8 69.3 1.95 2.80 1580 125.6 22.8 59.0 9.4 69.1 2.00 2.65 1460 125.8 25.7 61.0 10.2 69.6 1.95 2.70 1240 126.0 30.2 68.0 9.2 67.1 2.14 2.88 1100 126.2 25.2 60.5 9.8 68.4 1.98 2.72 1250 126.8 23.6 58.5 10.2 67.5 1.94 2.74 1270 127.1 23.0 57.7 10.8 69.8 1.90 2.78 1300 127.6 24.3 59.0 10.3 67.9 1.93 2.84 1350 127.7 24.1 60.0 11.0 69.7 2.03 2.77 1250 128.3 21.6 55.5 10.4 68.5 1.83 2.70 1720 128.5 27.1 62.0 11.4 71.2 2.03 2.75 1480 128.5 22.6 57.4 10.0 67.3 2.04 2.83 1380 129.4 24.9 60.5 11.5 69.8 2.04 2.76 1170 129.0 26.7 63.7 9.6 67.4 2.13 2.98 1640 129.8 26.1 62.0 9.8 71.0 2.00 2.84 1640 131.6 28.7 62.8 9.7 70.7 1.89 2.89 1150 130.2 25.0 58.6 10.5 71.8 1.96 2.78 1430 130.5 26.1 60.7 10.8 68.6 2.05 2.77 1150 130.6 23.4 54.4 11.8 69.2 1.96 2.78 1150 131.4 25.5 63.2 10.2 70.4 2.05 2.84 1320 131.6 25.6 58.9 10.9 70.2 2.06 2.86 1360 131.7 27.4 62.0 10.9 73.5 1.99 2.70 1460 132.0 26.3 61.5 11.1 71.2 2.17 2.13 1380 132.2 25.7 61.4 10.1 70.1 1.96 2.83 1300 132.5 24.5 57.0 10.8 71.8 2.02 2.84 1220 132.7 27.0 61.3 10.1 72.2 2.08 2.80 1320 132.9 25.2 60.5 11.2 73.1 2.01 2.73 1910 133.1 30.1 67.0 9.0 87.1 2.15 2.97 1800 133.5 26.5 62.5 9.8 71.7 2.07 2.82 1560 133.6 24.8 58.5 10.3 72.2 1.93 2.79 1840 134.0 26.0 60.5 10.4 73.0 1.98 2.74 1470 134.3 28.2 62.0 11.3 87.2 2.66 4.03 1590 134.4 25.5 60.7 9.6 69.9 1.99 2.81 1430 134.1 26.6 63.0 11.2 72.2 2.06 2.90 1760 134.6 32.5 66.0 9.9 87.4 2.61 2.98 1470 135.3 27.9 61.8 10.1 73.3 2.20 2.78 1580 135.6 28.1 65.8 9.8 73.1 2.05 2.891840 137.1 27.6 62.8 9.5 72.4 2.11 2.91 1810 137.4 28.3 62.5 9.4 74.2 2.06 3.00 1850 138.1 29.5 62.4 9.7 72.3 2.12 4.02 2120 140.0 34.9 68.8 9.5 87.9 2.74 4.15 1760 140.7 32.0 64.4 10.2 74.0 2.17 4.05 1800 141.0 32.5 63.8 9.5 88.2 2.65 4.08 1260 141.7 29.1 65.0 9.7 88.2 2.68 2.90 1860 142.4 19.3 70.0 10.1 89.6 2.71 4.06 1800 144.7 27.0 58.3 10.8 74.8 2.10 2.82 1470 136.8 26.3 61.4 10.0 72.2 2.07 2.93 1260 121.1 22.9 59.0 10.6 66.3 2.05 2.76 1570 132.7 25.3 58.6 11.5 73.6 2.16 2.78 1290 125.0 25.7 60.5 10.1 68.8 2.00 2.69 1580 133.2 27.3 60.7 9.6 71.7 2.11 2.85 1690 132.8 28.6 64.7 9.6 72.9 2.19 4.08 1670 131.6 25.4 59.7 10.6 69.8 2.14 2.76 1300 133.1 25.9 58.0 10.1 69.7 2.12 2.83 1610 134.0 25.8 59.6 9.4 70.8 2.10 2.88 1580 134.3 26.3 61.2 10.2 72.2 2.14 2.84 1570 129.1 27.7 62.2 11.1 72.9 2.09 2.93 1660 140.1 32.1 67.0 9.3 87.1 2.15 4.03 1040 132.6 27.9 62.0 10.3 72.5 2.08 2.81 1290 128.3 23.6 58.5 9.3 69.0 1.97 2.76 1980 145.8 34.5 68.0 9.8 89.7 2.68 4.25 1210 133.3 25.6 61.5 9.9 71.0 2.11 2.82 1300 134.3 25.6 61.0 10.5 73.2 2.02 2.83 1310 138.1 27.8 61.2 9.9 73.5 2.09 2.78 1590 135.6 25.9 59.6 9.6 72.8 2.10 2.91 1270 128.3 24.1 58.5 10.3 69.2 1.92 2.77 1310 129.7 24.7 61.7 10.1 69.4 2.03 2.80 2280 143.6 37.6 70.0 9.7 88.8 2.17 4.18 1580 136.6 32.3 67.2 10.3 87.1 2.66 4.04 2370 147.4 38.8 73.0 10.8 90.7 2.82 4.38 ;proc cancorr;/*调用cancorr过程*/var x1-x4;/*定义一组变组变量*/with y1-y3;/*定义另一组变量*/run;。
样本量计算SAS程序大全
样本量计算SAS程序大全样本量计算是研究设计中非常重要的一环,它用于确定研究所需的样本数量,以保证研究的可靠性和有效性。
SAS(Statistical Analysis System)是一种流行的统计分析软件,它提供了多种方法用于计算样本量。
在本文中,我们将介绍一些常用的SAS程序,用于样本量的计算。
一、描述性统计方法:描述性统计方法是最常见的样本量计算方法之一、它基于对研究变量的统计特征进行估计,如均值、标准差等,然后根据所需的显著性水平和效应大小,通过一定的公式计算出样本量。
在SAS中,可以使用PROCPOWER来进行描述性统计方法的样本量计算。
以下是一个简单的示例程序:PROCPOWER;DESCRIPTIVE;MEANDIFF=5;STDDEV=10;ALPHA=0.05;RUN;在这个示例中,使用DESCRIPTIVE选项指定使用描述性统计方法。
然后,通过设置MEANDIFF(效应大小)、STDDEV(标准差)和ALPHA(显著性水平)的值,来计算所需的样本量。
二、T检验方法:T检验方法是另一种常用的样本量计算方法,它用于比较两组样本均值的显著性差异。
在SAS中,可以使用PROCPOWER来进行T检验方法的样本量计算。
以下是一个简单的示例程序:PROCPOWER;TTEST;MEANS=(1012);ALPHA=0.05;RUN;在这个示例中,使用TTEST选项指定使用T检验方法。
然后,通过设置MEANS(两组样本均值)和ALPHA的值,来计算所需的样本量。
三、双样本比较方法:双样本比较方法是用于比较两个独立样本所得的数据的差异性的一种方法。
在SAS中,可以使用PROCPOWER来进行双样本比较方法的样本量计算。
以下是一个简单的示例程序:PROCPOWER;TWOSAMPLETEST;MEAN1=10;MEAN2=12;STDDEV1=5;STDDEV2=6;ALPHA=0.05;RUN;在这个示例中,使用TWOSAMPLETEST选项指定使用双样本比较方法。
SAS的基本统计分析
SAS的基本统计分析SAS(统计分析系统)是一种广泛使用的统计分析软件,被广泛应用于数据分析和建模。
它提供了各种强大的统计分析功能,包括描述性统计、推断统计、回归分析、多元分析等。
在本文中,我们将介绍SAS的一些基本统计分析功能。
1.描述性统计分析:描述性统计是对数据集的基本特征进行分析和总结。
SAS提供了各种描述性统计分析功能,包括计算均值、中位数、百分位数、方差、标准差等。
例如,我们可以使用SAS的`MEANS`过程计算数据集中的变量的均值和标准差。
2.推断统计分析:推断统计分析是根据样本数据推断总体的参数估计和假设检验。
SAS提供了一系列的推断统计分析功能,包括参数估计、置信区间估计、假设检验等。
例如,我们可以使用SAS的`TTEST`过程进行两个样本的t检验,或者使用`ANOV`过程进行方差分析。
3.回归分析:回归分析用于研究自变量与因变量之间的关系,并建立预测模型。
在SAS中,我们可以使用`REG`过程进行回归分析。
该过程提供了许多回归模型,如一元线性回归、多元线性回归、逻辑回归等。
我们可以通过回归分析来了解变量之间的关系,发现影响因变量的重要因素,并进行预测。
4.多元分析:多元分析是一种分析多个自变量对因变量的影响的方法。
SAS提供了多种多元分析的方法,如多元方差分析(MANOVA)、主成分分析(PCA)、因子分析等。
我们可以使用SAS的`GLM`过程进行多元方差分析,或者使用`FACTOR`过程进行因子分析。
5.时间序列分析:时间序列分析是一种对时间相关数据进行建模和预测的方法。
SAS提供了一些时间序列分析的功能,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
我们可以使用SAS的`ARIMA`过程进行时间序列分析,拟合ARIMA模型并进行预测。
6.非参数统计分析:非参数统计分析是一种不需要对总体进行任何假设的统计分析方法。
SAS提供了一些非参数统计分析的功能,如Wilcoxon秩和检验、Kruskal-Wallis检验等。
SAS描述性统计
统计程式
MEANS过程 MEANS过程
统计程式
例题4.1,进入SAS的显示管理系统,在编辑窗口输入程式: 例题4.1,进入SAS的显示管理系统,在编辑窗口输入程式: 4.1,进入SAS的显示管理系统 ex; 9;输入一个数据集,其中一个变量长度为9 data ex;length name$ 9;输入一个数据集,其中一个变量长度为9 t1- @@; input name sex$ group$ t1-t3 @@;将数据行中的数分别赋给几个变量 Cards; Cards; wangdong 1 1 90 70 60 xueping 2 2 85 95 88 输入一组数据行 让其他SAS SAS语句使用 zhouhua 1 1 77 84 69 heyan 1 2 95 78 88 让其他SAS语句使用 hufang 1 2 78 77 69 zhangqun 1 1 93 91 89 ; maxdec=2;将数据集EX EX中的观测值进行简单描述性统计 proc means maxdec=2;将数据集EX中的观测值进行简单描述性统计 t1-t3; group;按组别将t1 t2、t3中的值分类统计 t1、 var t1-t3;class group;按组别将t1、t2、t3中的值分类统计 maxdec=4; proc means mean std cv maxdec=4;需要描述的变量 t1-t3; group;run; 按组别将t1 t2、t3值的分析结果打印 t1、 var t1-t3; class group;run; 按组别将t1、t2、t3值的分析结果打印
统计程式
MEANS过程 MEANS过程
统计程式
例题4.3,进入SAS的显示管理系统,在编辑窗口输入程式: 例题4.3,进入SAS的显示管理系统,在编辑窗口输入程式: 4.3,进入SAS的显示管理系统 ex; @@;d=xdata ex; input x y @@;d=x-y; Cards; Cards; 11.3 15 15 13.5 12.8 10 11 12 13 12.3 14 13.8 14 13.5 13.5 12 14.7 11.4 13.8 12 ; std; y; proc means n mean std; var x y; prt; d;run; proc means n mean std t prt; var d;run; 程式中的第一个proc means作 的简单的描述性统计, 程式中的第一个proc means作x与y的简单的描述性统计, 第二个proc means作 的总体均值差为0的显著性检验。 第二个proc means作x与y的总体均值差为0的显著性检验。
SAS软件和统计应用教程(1)PPT课件
-
2
SAS软件与统计应用教程
2.1.1 统计学的基本概念
STAT
1. 总体与样本
总体(population):总体是指所研究对象的全体组成 的集合。
样 本 (sample) : 样 本 是 指 从 总 体 中 抽 取 的 部 分 对 象 (个体)组成的集合。样本中包含个体的个数称为样本 容量。容量为n的样本常用n个随机变量X1,X2,…,Xn 表示,其观测值(样本数据)则表示为x1,...,xn,为 简单起见,有时不加区别。
SAS软件与统计应用教程
STAT
第二章 SAS的描述统计功能
2.1 描述性统计的基本概念 2.2 在SAS中计算统计量 2.3 统计图形
-
1
SAS软件与统计应用教程
STAT
2.1 描述性统计的基本概念
2.1.1 统计学的基本概念 2.1.2 表示数据位置的统计量 2.1.3 表示数据分散程度的统计量 2.1.4 表示数据分布形状的统计量 2.1.5 其它统计量
SAS软件与统计应用教程
2.1.3 表示数据分散程度的统计量
STAT
1. 极差(Range)与半极差(Interquartile range)
极差就是数据中的最大值和最小值之间的差:
极差 = max{xi} – min{xi} 上、下四分位数之差Q3 – Q1称为四分位极差或半极 差,它描述了中间半数观测值的散布情况。
SAS软件与统计应用教程
STAT
2. 峰度(kurtosis)
峰度描述数据向分布尾端散布的趋势。峰度的计算公
式为: K
n (n 1 )
n(x i x )43 (n 1 )2
(n 1 )n ( 2 )n ( 3 )i 1 s (n 2 )n ( 3 )
sas描述性统计分析
28
27
26
散点图
25
24
23
22
21 女 20 1900 1920 1940 1960 1980 2000 男
定性变量的图表示:饼图 定性变量(或属性变量,分类变量 )不能点出直方图、散点图或茎 叶图,但可以描绘出它们各类的 比例。
饼图
定性变量的图表示:条形图
从每一条可以看出讲各种语言的 实际人数,而且分别给出了每 个语种中母语和日常使用的人 数(在图中并排放置)。条形 图显示比例不如饼图直观。
数据的“尺度”
另一个常用的尺度统计量为(样本)标 准差 (standard deviation) 。度量样 本中各数值到均值距离的一种平均。 标准差实际上是方差 (variance) 的平方 根。如果记样本中的观测值为 x1,…,xn,则样本方差为
数据的“尺度”
两个均值一样,但右边的要 “胖”些,方差为左边的一 倍
描述性统计分析
East China JiaoTong University
如 同 给 人 画 像 一 样
数 据 的 描 述
在对数据进行深入加工之前,总 应该对数据有所印象。 可以借助于图形和简单的运算, 来了解数据的一些特征。 由于数据是从总体中产生的,其 特征也反映了总体的特征。对 数据的描述也是对其总体的一 个近似的描述。
其中茎叶图中茎的单位为10cm,而叶子单位为1cm。比如,由于 第一行茎为150cm,因此叶子中的九个数字001223344代表九个数 目150、150、151、152、152、153、153、154、154cm等。每 行左边有一个频数(比如第一行有9个数目,第二行有17个等等); 可以看出最长的一行为从165cm到169cm的一段(有35个数)。
数据分析(SAS描述性统计分析过程)
var
变量列表 ;
by
变量列表 ;
freq
变量 ;
weight 变量 ;
id
变量列表 ;
output <out=输出数据集名> <统计量关键字=变量名列表> <pctlpts= 百分位数 pctlpre=变量前缀名 pctlname=变量后缀名>;
run;
proc uiate过程旳主要控制语句如下:
proc means(5)
SAS程序 data examp1; input x @@; cards; 70.4 72.0 76.5 74.3 76.5 77.6 67.3 72.0 75.0 74.3 73.5 79.5 73.5 74.7 65.0 76.5 81.6 75.4 72.7 72.7 67.2 76.5 72.7 70.4 77.2 68.8 67.3 67.3 67.3 72.7 75.8 73.5 75.0 72.7 73.5 73.5 72.7 81.6 70.3 74.3 73.5 79.5 70.4 76.5 72.7 77.2 84.3 75.0 76.5 70.4 ; proc means data=examp1 n mean cv skewness kurtosis range median ; var x; run;
mode sumwgt max min range median t prt clm lclm uclm
众数,出现频数最高旳数 权数和 最大值 最小值 极差,max—min 中间值 总体均值等于0旳t统计量 t分布旳双尾p值 置信度上限和下限
置信度下限
置信度上限
kurtosis
对尾部陡平旳度量——峰度
------Quantile-----Percent Observed Estimated
实验报告3—— SAS描述统计分析
实验报告实验项目名称SAS描述统计分析所属课程名称现代统计软件实验类型验证性实验实验日期2014-10-28班级学号姓名成绩实验报告说明1.实验项目名称:要用最简练的语言反映实验的内容。
要求与实验指导书中相一致。
2.实验类型:一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。
3.实验目的与要求:目的要明确,要抓住重点,符合实验指导书中的要求。
4.实验原理:简要说明本实验项目所涉及的理论知识。
5.实验环境:实验用的软硬件环境(配置)。
6.实验方案设计(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于操作型实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计型和综合型实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新型实验,还应注明其创新点、特色。
7.实验过程(实验中涉及的记录、数据、分析):写明上述实验方案的具体实施,包括实验过程中的记录、数据和相应的分析(原程序、程序运行结果、结果分析解释)。
8.结论(结果):即根据实验过程中所见到的现象和测得的数据,做出结论。
9.小结:对本次实验的心得体会、思考和建议。
10.指导教师评语及成绩:指导教师依据学生的实际报告内容,用简练语言给出本次实验报告的评价和价值。
注意:∙每次实验开始时,交上一次的实验报告。
∙实验报告文档命名规则:“实验序号”+“_”+ “班级”+“_”+“学号”+“姓名”+“_”+ “.doc”例如:管信11班的张军同学学号为:2011312299 本次实验为第2次实验即:实验二、SAS编程基础;则实验报告文件名应为:实验二_管信11 _2011312299_张军.doc 。
几种描述性统计分分析 的SAS过程
2. PROC UNIVARIATE过程 过程
此过程除可完成PROC MEANS过程类似的一些分析外,还具有计 算数据的分位数、绘制茎叶图和QQ图、对数据进行正态性检验等功能。 基本语句: 基本语句 PROC UNIVARIATE options; VAR variables; OUTPUT OUT=dataset name keyword=name … ; RUN; 说明: 说明 (a) “options”部分的选项包括: (i) DATA=SAS dataset name: 指定欲分析的SAS数据集名称; (ii) PLOT: 要求对所分析的各变量的观测值产生一个茎叶图和一 个正态QQ图; (iii) NORMAL: 要求对各变量的观测值作做正态性检验并输出检 验统计量的观测值及检验p-值(n<=2000, W检验;n>2000, Kolmogorov-Smirnov检验)。
4. PROC CORR过程 过程
该过程主要用于计算SAS数据集中各数值变量间的协方差矩阵和 相关系数(包括Pearson相关系数阵和Spearman相关系数阵)矩阵, 并且在各对变量的相关系数下的括号中给出检验响应相关系数是否为零 的检验p-值。此外,此过程还自动输出一些描述性统计量(如各变量的 均值、标准差等等)。 基本语句为: 基本语句为: PROC CORR options; VAR variables; WITH varibles; RUN; 说明: 说明 (a) 第一句中“options”可包括如下选项: (i) DATA=SAS dataset name 指定所分析的SAS数据集; (ii) PEARSON: 要求输出Pearson相关系数矩阵;
3. PROC Cቤተ መጻሕፍቲ ባይዱPABILITY过程 过程
使用SAS进行统计分析和数据建模的方法
使用SAS进行统计分析和数据建模的方法1. 引言介绍SAS(统计分析系统), 这是一个广泛使用的统计软件,它提供了丰富的统计分析和数据建模功能。
2. 数据准备描述如何准备数据,包括数据清洗、数据预处理和数据转换等步骤。
3. 描述性统计分析使用SAS进行描述性统计分析,包括计算数据的均值、中位数、方差、标准差等基本统计指标,以及绘制频率分布图、直方图等。
4. 假设检验介绍如何使用SAS进行假设检验,包括t检验、方差分析、卡方检验等常用的统计检验方法。
讲解如何设置假设并根据样本数据判断是否拒绝假设。
5. 回归分析详细说明如何进行回归分析,包括简单线性回归和多元线性回归,介绍如何选择适当的回归模型,并解释模型的结果。
6. 非参数统计介绍如何使用非参数统计方法对数据进行分析,例如Wilcoxon秩和检验、Mann–Whitney U检验和Kruskal-Wallis单因素方差分析等。
7. 因子分析详细讲解如何使用SAS进行因子分析,包括主成分分析和因子旋转等步骤,解释如何提取因子并解释因子的含义。
8. 聚类分析介绍如何使用SAS进行聚类分析,包括层次聚类和K均值聚类方法,讲解如何选择合适的聚类数目并解释聚类结果。
9. 时间序列分析详细描述如何使用SAS进行时间序列分析,包括平稳性检验、ARIMA模型拟合、预测和模型诊断等。
10. 数据挖掘与机器学习介绍如何使用数据挖掘和机器学习方法进行预测和分类,包括决策树、随机森林、逻辑回归和支持向量机等。
11. 模型评估和验证讲解如何评估和验证统计模型的性能,包括拟合优度检验、交叉验证和ROC曲线等。
12. 结论总结使用SAS进行统计分析和数据建模的主要方法和步骤,并强调使用合适的方法来解决实际问题的重要性。
以上是使用SAS进行统计分析和数据建模的一些方法和步骤,虽然每个章节只是简要介绍了相关内容,但在实际应用中,每个章节都有更加详细和深入的讨论和分析。
了解并掌握这些方法和步骤,可以使我们更好地利用SAS进行统计分析和数据建模,为决策提供有力的支持。
SAS学习系列11. 对数据做简单的描述统计
11. 对数据做简单的描述统计(一)使用proc means描述数据用proc means过程步,可以对数据做简单的描述统计,包括:非缺省值个数、均值、标准差、最大值、最小值等。
基本语法:PROC MEANS data = 数据集<可选项>;V AR 变量列表;CLASS 分组变量;<BY 变量;><WEIGHT 变量;> (加权平均的权数)<FREQ 变量;> (相应观测出现的频数)说明:(1)可选项“MAXDEC = n”用来指定输出结果的小数位数;(2)默认是对数据集的所有数值变量的非缺省值做描述统计,若想包含缺省值,加上可选项“MISSING”;(3)V AR语句指定要做描述统计的变量;CLASS语句指定按分组变量对数据进行分组分别做描述统计;BY语句同CLASS语句(需要事先按BY变量排好序);(4)默认输出非缺省值个数、均值、标准差、最大值、最小值;也可以自己指定需要输出的描述统计量:MAX ——最大值;MIN——最小值;MEAN——均值;MEDIAN——中位数;MODE——众数;N——非缺省值个数;NMISS——缺省值个数;RANGE——极差;STDDEV——标准差;SUM——累和;例1 鲜花销售的数据(C:\MyRawData\Flowers.dat),变量包括顾客ID,销售日期,petunias,snapdragons,marigolds三种花的销量:读取数据,计算新变量销售月份month,并使用proc sort按照月份排序,并使用proc means的by语句来按照月份描述数据。
代码:data sales;infile'c:\MyRawData\Flowers.dat';input CustID $ @9SaleDate MMDDYY10.Petunia SnapDragon Marigold;Month = MONTH(SaleDate);proc sort data = sales;by Month;/* Calculate means by Month for flower sales; */proc means data = sales MAXDEC = 0;by Month;var Petunia SnapDragon Marigold;title'Summary of Flower Sales by Month';run;运行结果:(二)使用统计量有时候需要将统计量存入新数据集,以便进一步做数据分析,或者与原数据集合并。
SAS中的描述性统计过程
SAS中的描述性统计过程SAS是一种强大的统计分析软件,提供了丰富的描述性统计分析过程。
这些过程可以帮助统计分析师对数据进行总体的描述和了解。
下面将详细介绍SAS中的描述性统计过程及其应用。
一、数据准备在进行描述性统计之前,需要准备数据。
SAS可以导入各种格式的数据集,如SAS数据集、CSV文件、Excel文件等。
导入数据后,可以使用SAS的数据步骤对数据进行预处理,包括数据清洗、缺失值处理、变量转换等。
这样可以确保数据的质量和完整性。
二、数据探索1.频数统计SAS提供了PROCFREQ过程来计算变量的频数、百分比和交叉表。
可以使用该过程来了解变量的分布情况、缺失值情况和数据异常情况。
通过频数统计,可以发现数据集中的异常值或需要进一步处理的特殊情况。
2.描述性统计SAS中的PROCMEANS和PROCSUMMARY过程可计算变量的均值、标准差、最大值、最小值、中位数等描述性统计量。
这些统计量可以帮助我们了解数据的中心趋势、离散程度和分布情况。
此外,我们还可以使用PROCUNIVARIATE过程来绘制直方图、箱线图和正态概率图,以更直观地了解数据的分布情况。
3.相关分析SAS提供了PROCCORR过程来计算变量之间的相关系数。
通过相关分析,可以了解变量之间的线性关系强度和方向。
PROCCORR还可以生成相关矩阵和散点图,帮助我们观察变量之间的关系。
4.排序和排名SAS提供了PROCRANK过程来对变量进行排序和排名。
排序可以帮助我们找出变量中的异常值或极端值。
排名可以用于对变量进行等级分类,如将考试成绩按照从高到低进行排名。
5.缺失值处理SAS提供了多种方法来处理缺失值,如删除带有缺失值的观测、使用均值或中位数代替缺失值、使用插补方法进行缺失值估计等。
可以使用PROCMEANS、PROCUNIVARIATE和PROCMI过程对缺失值进行处理。
三、数据汇总和报告1.数据表汇总SAS中的PROCTABULATE和PROCREPORT过程可以生成数据表和报告。
医学统计学:SAS实验-统计描述
算第一层和交叉层的统计量。 • FREQ过程也可以将结果输出到SAS数据集中。
FREQ过程由下列语句控制:
Proc freq [选择项];
Tables 请求式┅[/选择项];
Weight 变量;
By
变量表;
Output [选择项];
FREQ过程——可以生成单向和多向的频数表和 交叉表。
MEANS过程——用来对数据集中的数值变量计 算简单的描述统计量( N、Mean、Std Dev、 Minimum、Maximum)。
• SUMMARY过程——用来计算单个变量的基本统计 量,它和MEANS过程的不同之处在于该过程不在 OUTPUT窗口输出结果,除非加上命令PRINT,而 MEANS过程总是在OUTPUT窗口输出。
173.6 175.3 178.4 181.5 170.5 176.4 170.8 171.8 180.7 170.7
173.8 164.4 170.0 175.0 177.7 171.4 162.9 179.0 174.9 178.3
174.5 174.3 170.4 173.2 174.5 173.7 173.4 173.9 172.9 177.9
171.2 177.1 170.7 173.6 167.2 170.7 174.7 171.8 167.3 174.8
168.5 178.7 177.3 165.9 174.0 170.2 169.5 172.1 178.2 170.9
171.3 176.1 169.7 177.9 171.1 179.3 183.5 168.5 175.5 175.9
**语句的简单说明**
• Tables语句
实验三 SAS描述统计分析
实验三SAS描述统计分析对数据进行频数统计、计算特征统计量和将数据图形化的过程称为描述统计。
其目的是为了揭示数据的集中趋势、分散程度和数据分布形态,展示极端数据,最后做出说明现象本质的初步结论。
用图形对数据进行描述性统计分析具有直观、鲜明、形象、便捷等特点,在表达统计数据时可以给人留下深刻的印象。
统计图形的种类很多,利用SAS可以方便的绘制常用的统计图形。
3.1 实验目的掌握使用SAS对数据作描述性统计分析的方法。
掌握SAS/GRAPH所提供的常用图形功能,能用SAS的统计图形对数据进行描述性统计分析。
3.2 实验内容一、用INSIGHT计算统计量、绘制统计图形二、用“分析家”计算统计量、绘制统计图形三、编程实现描述性统计(MEANS、UNIVARIATE、FREQ过程)、编程绘制统计图(GPLOT 和GCHART过程)3.3 实验指导一、用INSIGHT计算统计量【实验3-1】按性别分别计算SASHELP.CLASS中身高的均值、标准差、中位数和其它四分位数,简单分析学生身高的状况。
1. 在INSIGHT中打开数据集在菜单中选择“Solution(解决方案)”→“Analysis(分析)”→“Interactive Data Analysis (交互式数据分析)”,打开“SAS/INSIGHT Open”对话框,在对话框中选择数据集:SASHELP.CLASS,单击“Open(打开)”按钮,即可在INSIGHT中打开数据窗口,如图3-1左所示。
2. 用Distribution菜单项计算统计量(1) 选择菜单“Analyze(分析)”→“Distribution (Y)(分布)”,打开“Distribution (Y)”对话框。
在数据集CLASS的变量列表中,选择height,然后单击“Y”按钮,height被选为分析变量,选择sex,然后单击“Group”按钮,sex被选为分组变量,如图3-1右所示。
sas知识点总结
sas知识点总结SAS(Statistical Analysis System)是一种统计分析软件,由美国SAS公司开发。
SAS软件主要用于数据管理、数据分析、统计建模、商业智能等各种领域的数据分析。
SAS是业界领先的数据分析软件,被广泛应用于金融、医疗、零售、制造、政府等各个领域。
本文将对SAS软件的一些主要知识点进行总结,包括数据导入导出、数据清洗、数据处理、数据分析、统计建模和报告生成等内容,以便读者能够全面了解并掌握SAS软件的使用。
一、数据导入导出1. 数据导入SAS软件支持多种数据格式的导入,包括CSV、Excel、SPSS、STATA等常见格式。
可以通过DATA步骤或PROC IMPORT来导入数据。
例如,使用DATA步骤来导入CSV文件:```SASDATA dataset;INFILE 'input.csv' DLM=',';INPUT var1 var2 var3;RUN;```2. 数据导出SAS软件同样支持多种数据格式的导出,可以通过DATA步骤或PROC EXPORT来导出数据。
例如,使用PROC EXPORT来导出数据为Excel文件:```SASPROC EXPORT DATA=datasetOUTFILE='output.xlsx'DBMS=EXCEL REPLACE;RUN;```二、数据清洗数据清洗是数据分析的重要步骤,用于处理数据中的错误、缺失、重复等问题,使数据符合分析要求。
1. 缺失值处理SAS软件提供多种方法来处理缺失值,包括删除、填充、插值等。
```SASDATA dataset;SET dataset;IF var1=. THEN var1=0; /*填充缺失值为0*/RUN;```2. 异常值处理SAS软件可以通过PROC UNIVARIATE或PROC MEANS来检测异常值,并采取适当的处理方法。
SAS中的描述性统计过程
SAS中的描述性统计过程(2012-08—01 18:07:01)转载▼分类:数据分析挖掘标签:杂谈SAS中的描述性统计过程描述性统计指标的计算可以用四个不同的过程来实现,它们分别是means过程、summary过程、univariate过程以及tabulate过程。
它们在功能范围和具体的操作方法上存在一定的差别,下面我们大概了解一下它们的异同点。
相同点:他们均可计算出均数、标准差、方差、标准误、总和、加权值的总和、最大值、最小值、全距、校正的和未校正的离差平方和、变异系数、样本分布位置的t检验统计量、遗漏数据和有效数据个数等,均可应用by语句将样本分割为若干个更小的样本,以便分别进行分析。
不同点:(1)means过程、summary过程、univariate过程可以计算样本的偏度(skewness)和峰度(kurtosis),而tabulate过程不计算这些统计量;(2)univariate过程可以计算出样本的众数(mode),其它三个过程不计算众数;(3)summary过程执行后不会自动给出分析的结果,须引用output语句和print过程来显示分析结果,而其它三个过程则会自动显示分析的结果;(4)univariate过程具有统计制图的功能,其它三个过程则没有;(5)tabulate过程不产生输出资料文件(存储各种输出数据的文件),其它三个均产生输出资料文件.统计制图的过程均可以实现对样本分布特征的图形表示,一般情况下可以使用的有chart过程、plot过程、gchart过程和gplot过程。
大家有没有发现前两个和后两个只有一个字母‘g’(代表graph)的差别,其实它们之间(只差一个字母g的过程之间)的统计描述功能是相同的,区别仅在于绘制出的图形的复杂和美观程度.chart过程和plot过程绘制的图形类似于我们用文本字符堆积起来的图形,只能概括地反映出资料分布的大体形状,实际上这两个过程绘制的图形并不能称之为图形,因为他根本就没有涉及一般意义上图形的任何一种元素(如颜色、分辨率等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.众数是观测值中出现最频繁的数值,记为 m0 。 3.中位数 设 x1 , x2 ,, xn 是 n 个观测值,将它们按数值由小到大记为 x(1) x(2) x( n ) ,这就 是 次 序 统 计 量 。 显 然 , 最 小 次 序 计 量 x(1) 与 最 大 次 序 计 量 x( n ) 分 别 为
二.表示分散程度的特征量
表示分散程度的特征量有方差、标准差、极差、四分位极差、变异系数与标准误(即 均值的标准差)等。 方差是描述数据取值分散性的一个度量,它是数据相对于均值的偏差平方的平均:
s2
标准差
1 n ( xi x )2 n 1 i 1
方差的开方称为标准差。方差的量纲与数据的量纲不一致,它是数据量纲的平方,而 标准差的量纲与数据量纲一致。计算公式为
3
DATA new name; SET DATA=name; IF conditions THEN DELETE; 说明: “conditions”数据行的序号或某个变量的取值所满足的条件。 ◆删除数据集中某些变量及其观测值 语句形式: DATA new name; SET DATA=name; DROP variables(要删除的变量名) (或 KEEP variables 需要保留的变量名) ◆产生新变量及其观测值 语句形式: DATA new name; SET DATA=old name; 变量的变换公式; RUN;
s s2
1 n ( xi x )2 n 1 i 1
极差的计算公式是 R x( n ) x(1) . 它是描述数据分散性的数字特征,数据越分散,级 差越大。 四分位极差 上、下四分位数之差称为四分位极差(或半极差) : R1 Q3 Q1 ,它也是度量样本分 散性的重要数字特征,特别对于具有异常值的数据,它作为分散性的度量具有稳健性,因此 在稳健性数据分析中具有重要作用。 刻画数据相对分散性的度量是变异系数: CV 100 标准误: sm
一. 数据的输入与输出
◆数据集的建立 SAS 系统是按每个观测向量逐个处理数据,一个典型的 SAS 数据集由变量行和数据行 组成: 变量行 V1
V2 Vm
1
v11 v12 v 21 v22 数据行 vn1 vn 2
v1m v2 m vnm
建立 SAS 数据集的常用方法有两种,一是在程序窗口直接输入数据,二是利用已有数 据集建立 SAS 数据集。 1. 直接输入数据建立 SAS 数据集 在程序窗口直接输入数据,其基本语句形式为 DATA name; INPUT variables; CARDS; data lines ; ◆说明: 1 )要建立永久性数据集,要采用二级命名。若不赋予数据集名称,则自动赋予名称 DATA1、DATA2、„。 2)非数据变量,需要在变量名后空一格,再写“$” 。输入变量的格式有两种:自由和 固定。 ①自由格式输入。在“INPUT”后依次输入各变量,变量之间用空格分开; ②格式化输入。 方式一:通过指定每个变量的取值所占据的列数输入相应变量的值。在每个变量名后, 空一格指出该变量的值所占据的列数。例如, INPUT ID 1-2 NAME $ 4-20 VAR1 22-24 VAR2 26-30; 则 SAS 系统读入数据时,将第一、二列的数值赋给变量 ID,第 4 到第 20 列的字符赋给变量 NAME,依次类推。 方式二:W.d 格式。其中 W 表示变量取值所占据的总列数,d 表示从右到左小数部分的 列数。例如, INPUT ID 2. NAME $ 10. VAR1 5.2; 则 SAS 系统读入每行数据时,指针首先从第一列开始,将前两列的数值赋给变量 ID,这是 指针在第三列,从第 3 到开始,移过 10 列到第十三列,将前面 10 列内容赋给非数值型变量
二. 利用已有的 SAS 数据集建立新的 SAS 数据集
◆两个 SAS 数据集的合并 1)串联 语句形式: DATA name(新数据集名); SET A B; 说明:两数据集必须有相同的变量。 2)并联 语句形式: DATA name(新数据集名); MERGE A B; 说明:两数据集必须有相同数据行。 ◆变量值的排序 语句形式: DATA new name; PROC SORT DATA=name; BY (DESCENDING 降序,否则就是升序排列) variable; ◆删除数据集中的某些数据行 语句形式:
四. 逻辑语句与循环语句
◆逻辑语句 语句形式:
4
ቤተ መጻሕፍቲ ባይዱ
IF conditions THEN command; ELSE command; ◆循环语句 SAS 循环语句以“DO”开始, “END”结束,有三种形式: 1)DO variable=a TO b BY increment; 2)DO UNTIL (condition); 3)DO WHILE (condition)
第一节 描述统计量
已知一组试验数据或观测数据为 x1 , x2 ,, xn ,以下介绍描述这组数据的几种特征量。
一. 表示位置的特征量
表示位置的特征量有均值、众数、中位数和百分数等。 1.均值是 x1 , x2 ,, xn , 的平均数: x
1 n xi ,它表示数据的集中位置。 n i 1
2
NAME,将接下来 5 列的数值赋给变量 VAR1,并使最后两列为小数部分。 3)如果数据的每一行有多于二组观测向量,则在变量后加“@@” 。 4) “; ”表示数据结束。 2. 利用外部数据集建立 SAS 数据集 DATA name(新数据集名); INFILE ‘drive location: file name’(外部数据集的路径及数据集名称) ; INPUT variables(根据外部数据集的格式确定相应得变量输入格式); ◆SAS 数据集的输出 格式:PROC PRINT DATA=name; 说明:打印观测向量序号 OBS、各变量名及其取值。
x(1) min xi , x( n ) max xi 。
1i n 1i n
中位数 me 是将数据排序后属于中间位置的值,其计算公式是
n为奇数; x( n 1 2) , me 1 2 ( x( n 2) x( n 21) ), n为偶数.
中位数是描述数据中心位置的数字特征。大体上比中位数大或小的数据个数为整个数据个 数的一半。对于对称分布的数据,均值与中位数较接近;对于偏态分布的数据,均值与中 位数不同。中位数的又一显著特点是不受异常值(特大或特小)的影响,具有稳健性(解 释定义) ,因此它是数据分析中相当重要的统计量。 4。百分位数
4
范围较广,此种分布称为粗尾的。当 G2 0 时,两侧极端数据较少,此种分布成为细尾的。 计算数据的上述数字特征可以通过 SAS 系统 proc means 过程或 proc univariate 过程来实
n 1 s ( xi x ) 2 n(n 1) i 1 n
s (%) x
6
三.表示分布形状的特征量
偏度与峰度是刻度数据的偏态、尾重程度的度量,它们与数据的矩有关。数据的矩分为 原点矩与中心矩。 K 阶原点矩 vk
1 n 1 n k xi ,K 阶中心矩 uk ( xi x ) k 。显然,一阶原点矩 v1 即均 n i 1 n i 1 1 n ( xi x )2 也称为方差。 n i 1
值。二阶中心矩 u2
偏度的计算公式为
g1
n n 2u3 n ( xi x )3 3 (n 1)(n 2) s i 1 ( n 1)( n 2) s 3
其中 s 是标准差。偏度是刻画数据对称性的指标。关于均值对称的数据其偏度为 0,右侧更 分散的数据偏度为正,左侧更分散的数据偏度为负。 峰度的计算公式为
5
它是中位数的推广。把数据从小到大的排序后,处于 p % 位置的值称为 p 百分位数。 第 t 百分位数 yt 的计算公式是
j nt /100 x( j 1) , yt 1 (x( j ) x( j 1) ), j nt /100 2
其中 j [nt /100] 。第 50 百分位数就是中位数。在实际应用中,第 75 百分位与第 25 百分 位数比较重要,它们分别称为上、下四分位数,并分别简记为 Q3 , Q1 。
SAS(Statistical Analysis System 缩写)软件是应用最为广泛的数据分析软件之一,该软 件系统于 1966 年由美国 North Carolina 州立大学开始研制,十年后成立 SAS 研究所,经过 近四十年的不断发展与完善,目前已成为大型集成应用软件系统,即有完备的数据存取、管 理、分析和显示功能,被誉为数据处理和系统分析领域的国际标准软件系统。该软件包含了 从简单的描述性分析到复杂的多元统计、生存分析等广泛的数据分析方法。 为便于区分,我们约定对 SAS 系统的专用语句及编程语句用大写字母,对一些说明性 的语句用小写字母,而在具体上机编程中不必如此(即不分大小写) 。 SAS 系统是在 Windows 环境下的一个数据分析软件,其界面包括三部分:程序窗口 (Editor) 、log 窗口及输出结果窗口(Output) 。程序窗口用于编写 SAS 程序,当程序提交 执行后, Log 窗口显示所提交程序的主要语句, 输入、 输出数据集的有关信息(如变量个数, 观测值个数等)以及执行的情况说明,执行所提交程序所用的时间等。如程序有错,该窗口 还指出错误的地方及错误的信息。 输出窗口则按照程序要求或各过程的默认输出内容打印出 分析结果。在程序窗口中,按右键 submit all 或工具栏中 run 中 submit 即可执行语句。
第一章 描述统计
教学目标:本章是数据分析的描述性分析,需要掌握数据的一些基本数字特征、相关分 析,以及数据的分布检验,并能够熟练地运用 SAS 软件计算数字特征、相关分析、作出数 据的分布图及进行分布检验。 重难点:运用 SAS 软件计算数字特征、相关分析、作出数据的分布图及进行分布检验。