单片机电子时钟设计(内含源程序和电路图仿真地址)
电子时钟基于某AT89c51单片机设计电路图及程序
电子时钟基于AT89c51单片机的设计电子时钟原理图开机显示仿真图: 当按下仿真键时电子时钟开机页面显示第一行显示JD12102Class--16,第二行显示动态TINE:12:00:04。
电子时钟调时间仿真图:当按下K1为1次时,光标直接跳到电子时钟的秒,可以按下K2进行调节。
当按下K1为2次时,光标直接跳到电子时钟的分,可以按下K2进行调节。
当按下K1为3次时,光标直接跳到电子时钟的时,可以按下K2进行调节。
当按下K1为4次时,光标直接跳完,电子时钟可以进行正常计时。
电子时钟闹钟调节仿真:当按下K3为1次时,直接跳到闹钟显示界面00:00:00,按下K2可以对闹钟的秒进行调节。
当按下K3为2次时,可以调到分,按下K2可以对闹钟的分进行调节。
当按下K3为3次时,可以调到时,按下K2可以对闹钟的时进行调节。
当按下K3为4次时,直接跳到计时界面,对闹钟进行到计时,时间到可以发出滴滴声。
#include<reg51.h>#define uchar unsigned char //预定义一下#define uint unsigned intuchar table[]="JD12102Class--21"; //显示内容sbit lcden=P3^4; //寄存器EN片选引脚sbit lcdrs=P3^5; //寄存器RS选择引脚sbit beep=P3^6; //接蜂鸣器extern void key1();extern void key2();extern void key3();uchar num,hour=12,minite,second,ahour,aminite,asecond,a,F_k1,F_k2,F_k3; //定义变量void delay(uint z) //延时{uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}void write_com(uchar com){lcdrs=0;P0=com; //送出指令,写指令时序delay(5);lcden=1;delay(5);lcden=0;}void write_data(uchar date){lcdrs=1;P0=date; //送出数据,写指令程序delay(5);lcden=1;delay(5);lcden=0;}void write_add(uchar add,uchar date){uchar aa,bb;aa=date/10;bb=date%10;write_com(0x80+add);write_data(0x30+aa);write_data(0x30+bb);}void init() //初始化{lcden=0;write_com(0x38); //设置16*2显示,5*7点阵write_com(0x0c); //开显示,不显示光标write_com(0x06); //地址加1,写入数据是光标右移1位write_com(0x01); //清屏write_com(0x80); //起点为第一行第一个字符开始}void display(uchar h,uchar m,uchar s) //显示设计程序{{write_com(0x80+0x16);}{write_com(0xC0+0x00);write_data('T');write_data('I');write_data('M');write_data('E');write_data(':');write_data(0x30+(h/10));write_data(0x30+(h%10));write_data(':');write_data(0x30+(m/10));write_data(0x30+(m%10));write_data(':');write_data(0x30+(s/10));write_data(0x30+(s%10));write_data(' ');write_data(' ');write_data(' ');} }void main(){init();TMOD=0X01; //设置T0定时方式1TH0=(65535-50000)/256; //设置初值TL0=(65535-50000)%256;EA=1; //开总中断TR0=1; //启动T0ET0=1;for(num=0;num<16;num++) //依次读出数据{write_data(table[num]);}while(1){key1();key2();key3();if(ahour==hour&&aminite==minite&&second<10) //时间到闹钟响{beep=~beep;}if(F_k1==0&F_k3==0) //K1和K3按下次数为零就直接显示时分秒display(hour,minite,second);}}void timer0() interrupt 1 //T0中断函数{TH0=(65535-50000)/256; //装载计数器初值TL0=(65535-50000)%256;a++;if(a==20){ //进位设置60秒进1分,60分进1时,24时进0时a=0;second++;if(second==60){second=0;minite++;if(minite==60){minite=0;hour++;if(hour==24){hour=0;}}}}}#include <reg51.h> //调时间程序#define uchar unsigned char#define uint unsigned intsbit k1=P1^0; //定义3个变量sbit k2=P1^1;sbit k3=P1^2;extern uchar F_k1,F_k3,second,minite,hour,ahour,aminite,asecond; //预定义变量extern void write_com(uchar com);extern void write_add(uchar add,uchar date);extern void display(uchar h,uchar m,uchar s);void delay_key(int i){while(i--);}void key1(){if(k1==0) //按下K1零次时,直接计时与开机显示{delay_key(100);if(k1==0){TR0=0;while(!k1);F_k1++;if(F_k1==4){F_k1=0;write_com(0x0c);TR0=1;}}}if(F_k1==1|F_k3==1){write_com(0xC0+0x0c);write_com(0x0f);}if(F_k1==2|F_k3==2)write_com(0xC0+0x09);if(F_k1==3|F_k3==3)write_com(0xC0+0x06);}void key2(){if(k2==0){delay_key(100);{while(!k2);if(F_k1==1) //按下K1一次时设置闹钟的秒{second++;if(second==60)second=0;write_add(0x4b,second);}if(F_k1==2) //按下K3两次时设置闹钟的分{minite++;if(minite==60)minite=0;write_add(0x48,minite);}if(F_k1==3) // 按下K1三次时设置闹钟的时{hour++;if(hour==24)hour=0;write_add(0x45,hour);}if(F_k3==1) //按下K3一次时设置闹钟的秒{asecond++;if(asecond==60)asecond=0;write_add(0x4b,asecond);}if(F_k3==2) //按下K3两次时设置闹钟的分{aminite++;if(aminite==60)aminite=0;write_add(0x48,aminite);}if(F_k3==3) //按下K3三次时设置闹钟的时{ahour++;if(ahour==24)ahour=0;write_add(0x45,ahour);}}}}void key3(){if(k3==0){delay_key(100);if(k3==0){while(!k3);F_k3++;if(F_k3==4) //K3等于四次时直接跳入闹钟显示{F_k3=0;write_com(0x0c);}if(F_k3==1)display(ahour,aminite,asecond);}}}。
单片机制作数字钟(含万年历、秒表功能)
数字钟、万年历制作(基于单片机)电路原理图:程序://********************20131206****数字钟程序#pragma SMALL#include <reg51.h>#include <absacc.h>#include <intrins.h>//********************************************************* *********编译预处理void display(unsigned char *p); //显示函数,P为显示数据首地址unsigned char keytest(); //按键检测函数unsigned char search(); //按键识别函数void alarm(); //闹钟判断启动函数void ftion0(); //始终修改函数void ftion1(); //闹钟修改函数void ftion3(); //日期修改函数void cum(); //加1修改函数void minus(); //减1修改函数void jinzhi(); //进制修改函数void riqi(); //日期void stopwatch(); //秒表函数//********************************************************* *******函数声明sbit P2_7=P2^7;//********************************************************* *******端口定义unsigned char clockbuf[3]={0,0,0};unsigned char bellbuf[3]={0,0,0};unsigned char date[3]={1,1,1}; //日期存放数组unsigned char stop[3]={0,0,0};unsigned char msec1,msec2;unsigned char timdata,rtimdata,dtimdata;unsigned char count;unsigned char *dis_p;unsigned char or; //12进制控制标志unsigned char ri; //日期显示控制标志位unsigned char mb; //秒表控制标志位bit arm,rtim,rhour,rmin,hour,min,sec,day,mon,year; //定义位变量//********************************************************* *****全局变量定义void main(){unsigned char a;or=0; //12进制修改标志清零ri=0;mb=0;P2_7=0;arm=0;msec1=0;msec2=0;timdata=0;rtimdata=0;count=0;TMOD=0x12;TL0=0x06;TH0=0x06;TH1=(65536-10000)/256;TL1=(65536-10000)%256;EA=1;ET0=1;ET1=1;TR0=1;TR1=0;dis_p=clockbuf;while(1){a=keytest();if(a==0x78) //判断是否有键按下{display(dis_p);if(arm==1) alarm();}else{display(dis_p);a=keytest();if(a!=0x78){a=search();switch(a){case 0x00:ftion0();break;case 0x01:ftion1();break;case 0x02:cum();break;case 0x06:jinzhi();break;case 0x03:riqi();break;case 0x04:ftion3();break;case 0x05:minus();break;case 0x07:stopwatch();break;case 0x09:TR1=1;break;case 0x0a:TR1=0;break;case 0x0b:stop[0]=0;stop[1]=0;stop[2]=0;break;default:break;}}}}}//********************************************主函数【完】void display(unsigned char *p){unsigned char buffer[]={0,0,0,0,0,0};unsigned char k,i,j,m,temp;unsigned char led[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};buffer[0]=p[0]/10;buffer[1]=p[0]%10;buffer[2]=p[1]/10;buffer[3]=p[1]%10;buffer[4]=p[2]/10;buffer[5]=p[2]%10;if((sec==0)&&(min==0)&&(hour==0)&&(rmin==0)&&(rhour==0)&&( day==0)&&(mon==0)&&(year==0)) //没有修改标志,正常显示{for(k=0;k<3;k++){temp=0x01;for(i=0;i<6;i++){P0=0x00; //段选端口j=buffer[i];P0=led[j];P1=~temp; //位选端口temp<<=1;for(m=0;m<200;m++);}}}else //若有修改标志,则按以下标志分别显示{if(sec==1||day==1){P1=0x1f;i=buffer[5];P0=led[i];for(m=0;m<200;m++);P1=0x2f;j=buffer[4];P0=led[j];for(m=0;m<200;m++);}if(min==1||rmin==1||mon==1){P1=0x3b;i=buffer[2];P0=led[i];for(m=0;m<200;m++);P1=0x37;j=buffer[3];P0=led[j];for(m=0;m<200;m++);}if(hour==1||rhour==1||year==1) {P1=0x3e;i=buffer[0];P0=led[i];for(m=0;m<200;m++);P1=0x3d;j=buffer[1];P0=led[j];for(m=0;m<200;m++);}}}//**********************************LED显示函数【完】unsigned char keytest(){unsigned char c;P2=0x78; //检测是否有键按下c=P2;c=c&0x78;return(c);}//******************************************键盘检测函数【完】unsigned char search(){unsigned char a,b,c,d,e;c=0x3f;a=0; //行号while(1){P2=c;d=P2;d=d&0x07;if(d==0x03){b=0;break;} //列号else if(d==0x05){b=1;break;}else if(d==0x06){b=2;break;}a++;c>>=1;if(a==5){a=0;c=0x3f;}}e=a*3+b;do{display(dis_p);}while((d=keytest())!=0x78);return(e);}//***********************************************查键值函数【完】void alarm(){if((clockbuf[0]==bellbuf[0])&&(clockbuf[1]==bellbuf[1])){P2_7=1;rtim=1;if(count==10){count=0;P2_7=0;arm=0;rtim=0;}}}//****************************************闹钟判断启动函数【完】void ftion0(){TR0=0;rhour=0;rmin=0;dis_p=clockbuf;rtimdata=0;timdata++;switch(timdata){case 0x01:sec=1;break;case 0x02:sec=0;min=1;break;case 0x03:min=0;hour=1;break;case 0x04:timdata=0;hour=0;TR0=1;break;default:break;}}//*********************************************时钟设置函数【完】void ftion1(){if(TR0==0) TR0=1;sec=0;min=0;hour=0;dis_p=bellbuf;timdata=0;rtimdata++;switch(rtimdata){case 0x01:rmin=1;break;case 0x02:rmin=0;rhour=1;break;case 0x03:rtimdata=0;rhour=0;arm=1;dis_p=clockbuf;break;default:break;}}//*********************************************闹钟设置函数【完】void ftion3(){if(TR0==0) TR0=1;day=0;mon=0;year=0;dis_p=date;timdata=0;rtimdata=0;dtimdata++;switch(dtimdata){case 0x01:day=1;break;case 0x02:day=0;mon=1;break;case 0x03:mon=0;year=1;break;case 0x04:dtimdata=0;year=0;dis_p=clockbuf;break;default:break;}}//*************************************************日期修改函数【完】void minus(){if(sec==1){if(0==clockbuf[2]) clockbuf[2]=59;else clockbuf[2]--;}else if(min==1){if(0==clockbuf[1]) clockbuf[1]=59;else clockbuf[1]--;}else if(hour==1){if(or==0) //判断进制{if(0==clockbuf[0]) clockbuf[0]=23;else clockbuf[0]--;}if(or==1){if(1==clockbuf[0]) clockbuf[0]=12;else clockbuf[0]--;}}else if(rmin==1){if(bellbuf[1]==0) bellbuf[1]=59;else bellbuf[1]--;}else if(rhour==1){if(or==0){if(bellbuf[0]==0) bellbuf[0]=23;else bellbuf[0]--;}if(or==1){if(bellbuf[0]==1) bellbuf[0]=12;else bellbuf[0]--;}}else if(day==1){if(date[2]==1) date[2]=31;else date[2]--;}else if(mon==1){if(date[1]==1) date[1]=12;else date[1]--;}else if(year==1){if(date[0]==1) date[0]=99;else date[0]--;}}//*************************************减1修改功能函数【完】void cum(){if(sec==1){if(59==clockbuf[2]) clockbuf[2]=0;else clockbuf[2]++;}else if(min==1){if(59==clockbuf[1]) clockbuf[1]=0;else clockbuf[1]++;}else if(hour==1){if(or==0) //判断进制{if(23==clockbuf[0]) clockbuf[0]=0;else clockbuf[0]++;}if(or==1){if(12==clockbuf[0]) clockbuf[0]=1;else clockbuf[0]++;}}else if(rmin==1){if(bellbuf[1]==59) bellbuf[1]=0;else bellbuf[1]++;}else if(rhour==1){if(or==0){if(bellbuf[0]==23) bellbuf[0]=0;else bellbuf[0]++;}if(or==1){if(bellbuf[0]==12) bellbuf[0]=1;else bellbuf[0]++;}}else if(day==1){if(date[2]==31) date[2]=1;else date[2]++;}else if(mon==1){if(date[1]==12) date[1]=1;else date[1]++;}else if(year==1){if(date[0]==99) date[0]=0;else date[0]++;}}//*************************************加1修改功能函数【完】void jinzhi(){if(or==0) or=1;else or=0;}//***********************************进制修改控制函数【完】void riqi(){if(ri==0){dis_p=date;}if(ri==1){dis_p=clockbuf;}ri++;if(ri==2) ri=0;}//********************************日期控显示函数【完】void stopwatch(){if(mb==0){dis_p=stop;mb=1;}else{mb=0;dis_p=clockbuf;}}//************秒表**********秒表**********秒表函数【完】void clock() interrupt 1{EA=0;if(msec1!=0x14) msec1++; //6MHz晶振定时10mselse{msec1=0;if(msec2!=100) msec2++; //定时1selse{if(rtim==1) count++; //闹钟启动标志计时10smsec2=0;if(clockbuf[2]!=59) clockbuf[2]++;else{clockbuf[2]=0;if(clockbuf[1]!=59) clockbuf[1]++;else{clockbuf[1]=0;if(or==0){if(clockbuf[0]!=23) clockbuf[0]++;else{clockbuf[0]=0;if((date[1]==1)||(date[1]==1)||(date[1]==1)||(date[1]==3)||(date[ 1]==5)||(date[1]==7)||(date[1]==8)||(date[1]==10)||(date[1]==12)){if(date[2]!=30) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if((date[1]==4)||(date[1]==6)||(date[1]==9)||(date[1]==11)){if(date[2]!=29) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if(date[1]==2){if((((date[0]%4==0)&&(date[0]%100!=0))||(date[0]%400==0))){if(date[2]!=28) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}else{if(date[2]!=27) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}}}}if(or==1){if(clockbuf[0]!=12) clockbuf[0]++;else{clockbuf[0]=0;if((date[1]==1)||(date[1]==1)||(date[1]==1)||(date[1]==3)||(date[ 1]==5)||(date[1]==7)||(date[1]==8)||(date[1]==10)||(date[1]==12)){if(date[2]!=30) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if((date[1]==4)||(date[1]==6)||(date[1]==9)||(date[1]==11)){if(date[2]!=29) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}if(date[1]==2){if((((date[0]%4==0)&&(date[0]%100!=0))||(date[0]%400==0))){if(date[2]!=28) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}else{if(date[2]!=27) date[2]++;else{date[2]=1;if(date[1]!=11) date[1]++;else{date[1]=1;date[0]++;}}}}}}}}}}EA=1;}//*******************************定时器0中断函数【完】void miaobiao() interrupt 3{TH1=(65536-10000)/256;TL1=(65536-10000)%256;if(stop[2]!=99) stop[2]++;else{stop[2]=0;if(stop[1]!=59) stop[1]++;else{stop[1]=0;if(stop[0]!=59) stop[0]++;else stop[0]=0;}}}//***********************************定时器1中断函数【完】。
单片机万年历电子钟设计报告含电路图和源程序
万年历设计报告学院:武夷学院班级:09电信1班组员:林巧文一、设计要求与方案论证21.1 设计要求:21.1.1根本要求21.1.2发挥局部21.2 系统根本方案选择和论证21.2.1单片机芯片的选择方案和论证:21.2.2 显示模块选择方案和论证:21.2.3时钟芯片的选择方案和论证:31.3 电路设计最终方案决定3二、理论分析与计算32.1,秒数的产生由定时器T0产生:3三.系统的硬件设计与实现43.1 电路设计框图:43.2 系统硬件概述:43.3 主要单元电路的设计53.3.1单片机主控制模块的设计53.3.2显示模块的设计53.3.3闹钟模块的设计73.3.4电源稳压模块7四、系统的软件设计74.1程序流程框图74.2闹钟模块流程图:74.3按键调整模块流程图:7五、测试方案与测试结果分析75.1 测试仪器 (7)5.2软件测试平台 Keil C5185.3 模块测试85.3.1显示模块测试85.4测试结果分析与结论85.4.1测试结果分析85.4.2 测试结论 (8)六、作品总结9参考文献9附录一:系统电路图9附录三:系统C程序10一、设计要求与方案论证1.1 设计要求:根本要求〔1〕准确显示:时、分、秒〔24小时制〕〔2〕显示星期〔3〕显示公历〔4〕时间、日期、星期可调节〔5〕断电记忆功能发挥局部〔1〕闹钟功能〔2〕显示阴历〔3〕显示24节气〔4〕其他1.2 系统根本方案选择和论证单片机芯片的选择方案和论证:方案一:采用89C51芯片作为硬件核心,采用Flash ROM,内部具有4KB ROM 存储空间,能于3V的超低压工作,而且与MCS-51系列单片机完全兼容,但是运用于电路设计中时由于不具备ISP在线编程技术, 当在对电路进展调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,对芯片的屡次拔插会对芯片造成一定的损坏。
方案二:采用AT89S52,片内ROM全都采用Flash ROM;能以3V的超底压工作;同时也与MCS-51系列单片机完全该芯片内部存储器为8KB ROM 存储空间,同样具有89C51的功能,且具有在线编程可擦除技术,当在对电路进展调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,不需要对芯片屡次拔插,所以不会对芯片造成损坏。
基于51单片机的多功能电子时钟设计报告及其protel仿真电路及效果
单片机课程设计报告多功能电子数字钟姓名:学号:班级:指导教师:目录一课程设计题目-------------------------------- 3 二电路设计--------------------------------------- 4 三程序总体设计思路概述------------------- 5 四各模块程序设计及流程图---------------- 6 五课程设计心得及体会---------------------- 12 六程序、仿真电路效果见附录------------ 41一题目及要求本次单片机课程设计在Proteus软件仿真平台下实现,完成电路设计连接,编程、调试,仿真出实验结果。
具体要如下:用8051单片机设计扩展6位数码管的静态或动态显示电路,再连接几个按键和一个蜂鸣器报警电路,设计出一个多功能电子钟,实现以下功能:(1)走时(能实现时分秒,年月日的计时)(2)显示(分屏切换显示时分秒和年月日,修改时能定位闪烁显示)(3)校时(能用按键修改和校准时钟)(4)定时报警(能定点报时)本次课程设计要求每个学生使用Proteus仿真软件独立设计制作出电路图、完成程序设计和系统仿真调试,验收时能操作演示。
最后验收检查结果,评定成绩分为:(1)完成“走时+显示+秒闪”功能----及格(2)完成“校时修改”功能----中等(3)完成“校时修改位闪”----良好(4)完成“定点报警”功能,且使用资源少----优秀二电路设计(电路设计图见附件电路图)(1)采用89C51型号单片机(2)采用8位共阴数码管(3)因为单片机输出高电平时输出的电流不足以驱动数码管,所以在P0口与8位数码管之间加74LS373来驱动数码管(4)P2口与数码管选择位直接加74LS138译码器(5)蜂鸣器接P3.7口。
因为单片机输出高电平时输出的电流不足以驱动蜂鸣器所以蜂鸣器,所以P3.7口与蜂鸣器直接接反相器再接蜂鸣器的一端,蜂鸣器的另一端接5V电源。
电子时钟单片机设计图
基础设计proteus仿真原理图仿真结果:D1灯亮频率为1秒,即灭0.5秒,亮0.5秒。
D2灯亮频率为2秒,即灭1秒,亮1秒。
D1接管脚P1.18,D2接管脚P1.19。
D1由OneTask控制,D2由TwoTask控制。
电子钟设计proteus仿真原理图仿真结果:串口UART0输出:LED显示:LCD显示:串口,LED,LCD同步输出时间,时分秒。
按键1(EINT1 P0.3)和按键2(P1.16)可以实现调整时间。
在正常计时是按一下按键1,计时停止,按一下按键2可以实现秒加1,即此时按键2可以实现秒调整,再按一下按键1,按键2就可以实现分调整,再按一下按键1,按键2就可以实现时调整,在按一下按键1,时钟正常计时。
在调整过程中,串口,LED,LCD会同步显示调整后的时间。
const unsigned char LEDTable[]={ 0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0xff};const unsigned int ASCTable[]={ 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a};uint8dat0[]={0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00}; //0 uint8dat1[]={0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00}; //1 uint8dat2[]={0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00}; //2 uint8dat3[]={0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00}; //3 uint8dat4[]={0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00}; //4 uint8dat5[]={0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00}; //5 uint8dat6[]={0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00}; //6 uint8dat7[]={0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00}; //7 uint8dat8[]={0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00}; //8uint8dat9[]={0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00}; //9 uint8dat[]={0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00};//:void count (void ) //time change{if(sec==60){ sec=0;min++;}if(min==60){min=0;hour++;}if(hour==24)hour=0;}int main(void){OSInit();PINSEL2=PINSEL2&(~0x08); // p1.16~p1.25 is GPIOIO1DIR=LEDSET; //P1.18 ~P1.25 is outputIO1CLR=LEDSET; //p1.18~p1,25 is lowOSTaskCreate(StartTask,(void *)0,&StartTaskStk[TASK_STK_SIZE - 1],);OSStart();}void OneTask (void *pdata){uint32 led1;pdata = pdata;for(;;){led1=0x01<<18;IO1CLR=0X01<<18; //p1.18 is lowOSTimeDlyHMSM(0,0,0,500); //灭0.5秒IO1SET=led1; //p1.18 is highOSTimeDlyHMSM(0,0,0,500); //亮0.5秒}}void TwoTask (void *pdata){uint32 led2;pdata = pdata;for(;;){led2=0x01<<19;IO1CLR=led2; //p1.19 is lowOSTimeDlyHMSM(0,0,1,0); // 灭1秒IO1SET=led2; //p1.19 is hghOSTimeDlyHMSM(0,0,1,0); //亮1秒}}省略了任务StartTask,在此任务中初始化目标板TargetInit();并创建OneTask和TwoTask。
基于51的电子闹钟设计报告(附原理图、PCB图、程序)
基于51的电⼦闹钟设计报告(附原理图、PCB图、程序)成都信息⼯程学院第五届嵌⼊式创新技术⼤赛基于MCS51的智能电⼦闹钟设计报告姓名学院班级实物图⽬录1.电⼦时钟的设计原理和⽅法 (1)1.1设计原理 (1)1.2 硬件电路的设计 (1)1.2.1 STC89C51RC简介 (1)1.2.2 键盘电路的设计 (2)1.2.3蜂鸣器驱动电路 (3)1.2.4 数码管驱动电路 (3)1.2.5 电源电路 (4)1.3软件部分的设计 (4)1.3.1主程序部分的设计 (4)1.3.2中断计时器及时间进位 (5)1.3.3 闹钟⼦函数 (7)1.3.4 按键扫描 (8)1.3.5 时钟闹钟设置 (9)1.3.6 显⽰数字函数 (10)1.3.7 显⽰界⾯函数 (10)1.3.8 闹钟记录及读取 (11)2.硬件调试 (13)附录A:电路原理图 (15)附录B:电路PCB图 (16)附录C:源程序 (17)1.电⼦时钟的设计原理和⽅法1.1设计原理系统框图1.2硬件电路的设计1.2.1 STC89C51RC简介STC89C52R CSTC89C51RC是⼀种带8K闪烁可编程可擦除只读存储器(FPETOM-FlashProgrammabalandErasableReadOnlyMemory )的低电压、⾼性能CMOS8位微型处理器,即单⽚机芯⽚。
单⽚机的可擦除只读存储器可以反复擦除1000次,内部FLASH 擦写次数为100000次以上。
该芯⽚使⽤⾼密度⾮易失存储制造技术,与⼯业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU 和闪烁存储器集成在单个芯⽚中,使得STC89C51RC 成为了⼀种性价⽐极⾼的微型处理器芯⽚,在许多电路设计中都得到了应⽤。
STC89C51RC 单⽚机特点:⼯作电压:5.5V-3.4V ⼯作频率:0-40MHz ⽤户应⽤程序空间:8K ⽚上集成128*8RAMISP (在系统可编程)/IAP (在应⽤可编程),⽆需专⽤编程器/仿真器可通过串⼝(P3.0/P3.1)直接下载⽤户程序EEPROM 功能共3个16位定时器/计数器,其中定时0还可以当成2个8位定时器使⽤外部中断4路通⽤异步串⾏⼝(UART ),还可⽤定时器软件实现多个UART ⼯作温度范围:0-75℃引脚说明:VCC:供电电压 GND :接地P0:P0是⼀个8位漏级开路双向I/O ⼝,低8位地址复⽤总线端⼝。
基于单片机的数字电子钟设计(含完整程序+PCB图)--课程设计
基于单片机的数字电子钟设计(含完整程序+PCB图)--课程设计1 课题设计任务、功能要求及总体方案1.1 课题设计任务本课程设计选题目为:数字电子钟。
设计一个具有特定功能的电子钟。
1.2 功能要求设计的数字电子钟上电或按键复位后能自动显示系统提示符“P.”,进入时钟准备状态;第一次按数字电子钟启动/调整键,数字电子钟从0时0分0秒开始运行,进入时钟运行状态;再次按数字电子钟启动/调整键,则数字电子钟进入时钟调整状态,并且时间停止不动,此时可分别利用各调整键调整时、分、秒,调整结束后可按启动/调整键再次进入时钟运行状态。
1.3 设计总体方案介绍及工作原理说明本课程设计采用AT89S52单片机设计一个数字电子钟,通过两个4位LED数码管显示时、分、秒,并设有9个按键。
其中一个用于单片机的复位;一个为启动/调整键;两个分别为加,减键;其他键本课题暂不用。
电路分为5部分,分别为复位电路、键盘电路、时钟电路、显示电路和控制电路。
复位电路采用按键复位方式。
键盘电路采用独立式键盘。
时钟电路用12MHz的晶振产生时钟信号。
显示电路采用8个三极管驱动两个4位LED显示。
控制电路采用8位的AT89S52单片机作为CPU;原理是:时钟用T0为时钟秒加1中断,时间常数位50MS,每20次加1S,T0用为时间加1中断,时间常数为50MS,中断20次时间加1。
其设计框图如图1.1所示:复位电路AT89S52 显示时钟电路键盘电路下载电路图1.1 设计方案框图42 数字电子钟硬件系统的设计2.1 硬件系统各模块功能简要介绍2.1.1 复位电路复位是单片机的硬件初始化操作。
经复位操作后,单片机系统才能开始正常工作。
单片机上有复位引脚RST,用于外接复位电路,这里复位电路采用按键电平复位。
2.1.2 时钟电路单片机工作所需的同步时钟信号由以下两种方法获得:由单片机片内时钟电路结合外部晶振、电容产生和直接从单片机外部引入脉冲信号。
电子钟单片机课程设计报告(含源码)
一、总设计思路电子时钟是我们日常生活中最常见的一种钟表,由于它结构简单、功耗低、时间精度比较准、等优点,使得广泛应用,在未来肯定有很大的市场。
这次课程设计我的目的就是尝试着做一个电子时钟。
1、系统功能显示时间、声音提示、调整时间、设置闹钟的功能。
2、功能硬件实现方案时间显示:时间的显示我选用的是六位七段数码管,由于数码管控制简单,而且显示效果好,所以选用它。
由于静态显示方式比较占资源,而且电路比较复杂,所以我们选择了动态显示方式,电路简单,效果挺好。
时间调整和闹钟设置:是通过外部两个按键触发单片机中断进而控制时间的调整。
其中一个按键是模式选择按键通过触发外部中断0来选择功能,功能主要是选择要调时、调分、调秒、闹钟调时、闹钟调分、闹钟调秒六种模式。
第二个按键通过触发外部中断1来在相应的模式下对时间的大小做调整。
声音提示:通过利用蜂鸣器来作为发生装置,有整点提示功能和闹铃功能。
时间发生:利用单片机自带定时器0做定时,通过软件控制来产生时、分、秒。
3、功能软件实现方案由于单片机C语言已经全面普及,它的程序容易理解、简单易写、可移植性好,所以我们选择用单片机C语言来写。
4、开发环境操作系统:window 7旗舰版64位程序编辑编译软件:KEIL μVision V4.60.6.10仿真软件;Proteus V ersion 7.85.、总设计原理框图STC89C52RC6位七段数码管显示时、分、秒蜂鸣器发声装置时钟复位电路按键调时模块一、硬件设计定时和程序执行及控制模块:我们选择的是宏晶科技生产的STC89C52RC芯片,它在很多硬件资源上比8051提升了不少,所以在后期我们可以做更多扩展和维护。
时间显示模块::采用六个七段带小数点的共阴极数码管。
声音提示模块:采用简单蜂鸣器做声音提示。
调时模块:通过两个简单按键来触发中断调时。
时钟复位模块:采用11.0592MHz的晶振,提供单片机工作频率。
二、设计原理图三、芯片解说STC89C52:是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash存储器。
51单片机的24c02电子时钟程序和电路图
fen++;
if(fen==60)fen=0;
write_sfm(shi,fen,miao);
write_cmd(0xc0+7);
write_add(2,fen);
}
if(s1num==3)
{
shi++;
if(shi==60)shi=0;
write_sfm(shi,fen,miao);
write_cmd(0xc0+4);
}
void keyscan()
{
if(s1==0)//如果功能按键1按下
{
delayms(5);//去抖动
if(s1==0)
{
while(!s1);//等待松手
s1num++;//主要还是记下次数
di();//蜂鸣器响
if(s1num==1)//按一下秒钟
{
TR0=0;
write_cmd(0xc0+10);//指针显示闪烁
sbit lcdrs=P2^4;//液晶的控制角
sbit lcdrw=P2^5;
sbit lcden=P2^6;
sbit s1=P3^0;//三个调时钟的按键
sbit s2=P3^1;
sbit s3=P3^2;
sbit beep=P2^3;//蜂鸣器
uchar count,s1num;
char miao,shi,fen;
delayms(1);
}
void write_sfm(uchar s,uchar f,uchar m)//数据在液晶显示
{
uchar ss,sg,fs,fg,ms,mg;
ss=s/10;sg=s%10;
基于单片机AT89C51控制的电子时钟课程设计报告
单片机电子时钟设计报告实现功能:显示时、分、秒,刚打开电源时,显示的数据为12:00:00,然后电路会自动开始计时。
电路中有时、分、秒各自单独的调整按钮,时间调整按钮每按一次,相应的显示时间加1。
所需材料:89C51单片机,多位数码管,数码管显示译码器74LS48,3线8线译码器74LS138,3个按钮,100Ω、22KΩ电阻若干,12MHZ晶振一个,30pf无极电容2个,10uf 有极电容一个,敷铜板。
电路设计:用P1端口的P1.0~P1.3来作为数码管显示数据的输出引脚,用P1.4~P1.6引脚作为3线8线译码器的控制输入引脚,用P0端口的P0.0~P0.2来分别作为时、分、秒的时间调整按钮。
当按下按钮时,相应的输入引脚上就会有低电平输入单片机。
3线8线译码器的控制端,Y0、Y1、Y2、Y3、Y4、Y5分别控制了数码管的显示控制线。
电路如下图1-1图1-1流程图:程序设计:ORG 00H 主程序起始地址JMP START 主程序STARTORG 0BH 定时器T0中断起始地址JMP TIM0 定时器T0中断子程序TIM0 START:MOV SP,#70H 设置堆栈指针MOV 28H,#00 设置显示位数扫描指针初值为0 MOV 2AH,#12H 设置时钟显示寄存器初值为12H MOV 2BH,#00 设置分钟显示寄存器初值为00H MOV 2CH,#00 设置秒钟显示寄存器初值为00H MOV TMOD,#01H 设置定时器T0工作在方式1 MOV TH0,#0F0H 定时4ms的初值,即0F060H MOV TL0,#60H 初值的低位MOV IE,#82H 定时器T0中断允许MOV R4,#250 保证后面实现中断250次,即1秒的延时SETB TR0 启动定时器T0LOOP:JB P0.0,N2 若没有按键,就转去下一步检查分CALL DELAY 延时5ms,消除抖动MOV A,2CH 将秒寄存器的值载入累加器AADD A,#01H A的内容加1DA A 十进制调整MOV 2CH,A A的值存入秒寄存器CJNE A,#60H,N1 看是否已经是60秒,若不是就继续检查MOV 2CH,#00 已经是60秒,就清空秒寄存器的值N1:JNB P0.0,$ 秒按键还没有放开就循环等待CALL DELAY 延时5ms,消除抖动N2:JB P0.1,N4 若分没有按键,就转去下一步检查分CALL DELAY 延时5ms,消除抖动MOV A,2BH 将分寄存器的值载入累加器AADD A,#01H A的内容加1DA A 十进制调整MOV 2BH,A A的值存入寄存器CJNE A,#60H,N3 看是否已经是60分,若不是就继续检查MOV 2BH,#00H 已经是60分,就清空寄存器的值N3:JNB P0.1,$ 分按键还没有放开就循环等待CALL DELAY 延时5ms,消除抖动N4:JB P0.2,LOOP 若时没有按键,就转回去继续检查看是否有按键CALL DELAY 延时5ms,消除抖动MOV A,2AH 将时寄存器的值载入累加器AADD A,#01H A的内容加1DA A 十进制调整MOV 2AH,A A的值存入时寄存器CJNE A,#24H,N5 看是否已经是24时,若不是就继续检查MOV 2AH,#00H 已经是24时,就清空是寄存器的值N5:JNB P0.2,$ 时钟按键还没有放开就循环等待CALL DELAY 延时5ms,消除抖动JMP LOOP 返回重新检查看是否有按键******定时器T0中断子程序*******TIM0:MOV TH0,#0F0H 定时初值重设MOV TL0,#60HPUSH ACC 将累加器A的值暂存于堆栈PUSH PSW 将PSW的值暂存于堆栈DJNZ R4,X2 计时中断不满1s就退出继续中断MOV R4,#250 计时1sCALL CLOCK 调用计时器子程序CLOCKCALL DISP 调用显示子程序DISPX2:CALL SCAN 调用扫描子程序SCANPOP PSW 到堆栈取回PSW的值POP ACC 到堆栈取回累加器ACC的值RETI 返回主程序******扫描子程序*******SCAN:MOV R0,#28HINC @R0 显示位数扫描值加1CJNE @R0,#6,X3 扫描位数不为6就准备控制输出MOV @R0,#0 扫描位数为6,就令其置为0X3:MOV A,@R0 扫描位数载入AADD A,#20H A加上20H(显示寄存器地址)=各时间显示区地址MOV R1,A 各时间显示区地址存入AMOV A,@R0 扫描位数存入ASWAP A 将A的高低4位交换(其高4位为扫描的位数,低4位为显示数值)ORL A,@R1 将扫描值与显示数据组合MOV P1,A 显示输出RET******计时子程序*******CLOCK:MOV A,2CH 秒寄存器值载入AADD A,#1 加1sDA A 十进制调整MOV 2CH,A A的值存入秒寄存器CJNE A,#60H,X4 A不等于60秒,就跳出程序去显示MOV 2CH,#00H 已经是60秒,就清0MOV A,2BH 分寄存器值载入AADD A,#1 加1分DA A 十进制调整MOV 2BH,A A的值存入分寄存器CJNE A,#60H,X4 A不等于60分,就跳出程序去显示MOV 2BH,#00H 已经是60分,就清0MOV A,2AH 时寄存器值载入AADD A,#1 加1小时DA A 十进制调整MOV 2AH,A A的值存入时寄存器CJNE A,#24H,X4 A不等于24时,就跳出程序去显示MOV 2AH,#00H 已经是24时,就清0X4:RET******显示子程序*******DISP:MOV R1,#20H 20H为显示寄存器单元MOV A,2CH 将秒寄存器的内容存入AMOV B,#10H 设B累加器的值为10HDIV AB A/B,商存入A(十位数),余数存入(个位数)MOV @R1,B 将显示的个位数存入20H显示寄存器单元INC R1MOV @R1,A 将显示的十位数存入21H显示寄存器单元INC R1MOV A,2BH 将分寄存器的内容存入AMOV B,#10H 设B累加器的值为10HDIV AB A/B,商存入A(十位数),余数存入(个位数)MOV @R1,B 将显示的个位数存入22H显示寄存器单元INC R1MOV @R1,A 将显示的十位数存入23H显示寄存器单元INC R1MOV A,2AH 将时寄存器的内容存入AMOV B,#10H 设B累加器的值为10HDIV AB A/B,商存入A(十位数),余数存入(个位数)MOV @R1,B 将显示的个位数存入24H显示寄存器单元INC R1MOV @R1,A 将显示的十位数存入25H显示寄存器单元RET******延时5ms消除抖动*******DELAY:MOV R6,#60D1:MOV R7,#248DJNZ R7,$DJNZ R6,D1RETEND原理图:PCB图:。
电子实时时钟万年日历系统-单片机课程设计(含电路图、流程图、汇编语言)
一、题目:电子实时时钟/万年日历系统二、功能要求:1.基本要求:⑴显示准确的北京时间(时、分、秒),可用24小时制式;⑵随时可以调校时间。
2.发挥要求:⑴增加公历日期显示功能(年、月、日),年号只显示最后两位;⑵随时可以调校年、月、日;⑶允许通过转换功能键转换显示时间或日期。
三、方案考虑:1、硬件方案:⑴显示器采用6位LED数码管(共阳),可分别显示时间或日期。
⑵显示器的驱动采用动态扫描电路形式,以达到简化电路的目的。
但要注意所需的驱动电流比静态驱动时要大,因此要增加驱动电路。
可采用74LS244或者晶体管;其中74ls244是用来驱动段选码,晶体管是驱动位选码。
⑶采用“一键多用方案”,以减少按键数目。
本方案采用了4按键。
⑷整体上要考虑:结构简单、布局美观、操作方便、成本低廉。
2、设计电路图如下:3、元件清单:(我们使用的是TX-1C开发板)⑴ 89C52 1个⑵IC座(40脚) 3个(其中1个用于接插89C51、2个用于接插LED段数码管)。
⑶ 74LS244 1个(用于驱动6个共阳的LED段数码管)。
⑷ IC座(20脚) 1个(用于接插74LS244)。
(5)显示器:LED_8段数码管(共阳型)6个三极管:(6)PNP(8550)6个(用于驱动6个共阳型LED段数码管)。
(7)微型开关:3个(其中1个用于复位电路、其它用于键盘)。
(8)晶体振荡器(12MHz):1个(用于振荡电路)。
(9)电阻器:⑴ 3KΩ 1个(用于系统复位电路)。
⑵ 1KΩ 6个(用作PNP三极管基极电阻)。
⑶ 100Ω 7个(驱动器用作74LS244输出限流电阻)。
(10)电容器:⑴ 10μF1个(用于系统复位电路)。
⑵ 30 pF 2个(用于系统振荡电路)。
(11)其它:⑴万能电路板(10×15):1块⑵焊锡条: 2米⑶带插头、座的电源端子: 1条⑷各种颜色外皮的导线:各1米(12)工具:1.电烙铁:1把2.剪钳:1把3.镊子:1把4.万用表:1个(13)设备:编程器(MEP300或TOP851)6个4、软件方案:(1)使用全汇编编写(2)时钟基准时间由单片机内部定时中断来提供,定时时间应该乘以一个整数得到,且不宜太长或太短,最长不能超过16位定时器的最长定时时间,最短不能少于定时中断服务程序的执行时间。
基于单片机控制的智能定时闹钟方案设计书(含完整程序仿真图)
本设计是定时闹钟的设计,由单片机AT89C51芯片和LED数码管为核心,辅以必要的电路,构成的一个单片机电子定时闹钟。
电子钟设计可采用数字电路实现,也可以采用单片机来完成。
数字电子钟是用数字集成电路构成的,用数码管显示“时”,“分”,“秒”的现代计时装置。
若用数字电路完成,所设计的电路相当复杂,大概需要十几片数字集成块,其功能也主要依赖于数字电路的各功能模块的组合来实现,焊接的过程比较复杂,成本也非常高。
若用单片机来设计制作完成,由于其功能的实现主要通过软件编程来完成,那么就降低了硬件电路的复杂性,而且其成本也有所降低,所以在该设计中采用单片机利用AT89C51,它是低功耗、高性能的CMOS型8位单片机。
片内带有4KB的Flash存储器,且允许在系统内改写或用编程器编程。
另外,AT89C51的指令系统和引脚与8051完全兼容,片内有128B的RAM、32条I/O口线、2个16位定时计数器、5个中断源、一个全双工串行口等。
AT89C51单片机结合七段显示器设计的简易定时闹铃时钟,可以设置现在的时间及显示闹铃设置时间,若时间到则发出一阵声响,进—步可以扩充控制电器的启停。
设计内容包括了秒信号发生器、时间显示电路、按键电路、供电电源以及闹铃指示电路等几部分的设计。
采用四个开关来控制定时闹钟的工作状态,分别为:K1、设置时间和闹钟的小时;K2、设置小时以及设置闹钟的开关;K3、设置分钟和闹钟的分钟;K4、设置完成退出。
课设准备中我根据具体的要求,查找资料,然后按要求根据已学过的时钟程序编写定时闹钟的程序,依据程序利用proteus软件进行了仿真实验,对出现的问题进行分析和反复修改源程序,最终得到正确并符合要求的结果。
设计完成的定时闹钟达到课程设计的要求,在到达定时的时间便立即发出蜂鸣声音,持续一分钟。
显示采用的六位数码管电路,如果亮度感觉不够,可以通过提升电阻来调节,控制程序中延迟时间的长短,可以获得不同的效果。
基于单片机C语言电子时钟完整版(闹钟,整点报时)
《单片机技术》课程设计说明书数字电子钟系、部:电气与信息工程学院学生姓名:指导教师:职称专业:班级:完成时间:2013-06-07摘要电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。
所以设计一个简易数字电子钟很有必要。
本电子钟采用ATMEL公司的AT89S52单片机为核心,使用12MHz 晶振与单片机AT89S52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管(两个四位一体数码管)显示小时、分钟和秒的要求,并在计时过程中具有定时功能,当时间到达提前定好的时间进行蜂鸣报时。
该电子钟设有四个按键KEY1、KEY2、KEY3、KEY4和KEU5键,进行相应的操作就可实现校时、定时、复位功能。
具有时间显示、整点报时、校正等功能。
走时准确、显示直观、运行稳定等优点。
具有极高的推广应用价值。
关键词电子钟;AT89S52;硬件设计;软件设计ABSTRACTClock is widely used in life, and a simple digital clock is more welcomed by people. So to design a simple digital electronic clock is necessary.The system use a single chip AT89S52 of ATMEL’s as its core to control The crystal oscillator clock,using of E-12MHZ is connected with the microcontroller AT89S52, through the software programming method to achieve a 24-hour cycle, and eight 7-segment LED digital tube (two four in one digital tube) displays hours, minutes and seconds requirements, and in the time course of a timing function, when the time arrived ahead of scheduled time to buzz a good timekeeping. The clock has four buttons KEY1, KEY2, KEY3,KEY4 and KEY5 key, and make the appropriate action can be achieved when the school, timing, reset. With a time display, alarm clock settings, timer function, corrective action. Accurate travel time, display and intuitive, precision, stability, and so on. With a high application value.Key words Electronic clock;;AT89S52;Hardware Design;Software Design目录1设计课题任务、功能要求说明及方案介绍 (1)1.1设计课题任务 (1)1.2功能要求说明 (1)1.3设计总体方案介绍及原理说明 (1)2设计课题硬件系统的设计 (2)2.1设计课题硬件系统各模块功能简要介绍 (2)2.2设计课题电路原理图、PCB图、元器件布局图 (2)2.3设计课题元器件清单 (5)3设计课题软件系统的设计 (6)3.1设计课题使用单片机资源的情况 (6)3.2设计课题软件系统各模块功能简要介绍 (6)3.3设计课题软件系统程序流程框图 (6)3.4设计课题软件系统程序清单 (10)4设计结论、仿真结果、误差分析、教学建议 (21)4.1设计课题的设计结论及使用说明 (21)4.2设计课题的仿真结果 (21)4.3设计课题的误差分析 (22)4.4设计体会 (22)4.5教学建议 (22)结束语 (23)参考文献 (24)致谢 (25)附录 (26)1 设计课题任务、功能要求说明及方案介绍1.1 设计课题任务设计一个具有特定功能的电子钟。
毕业设计(论文)-基于at89c51单片机的数字闹钟设计(电路图+源程序)[管理资料]
摘要近年来随着计算机在社会领域的渗透和大规模集成电路的发展,单片机的应用正在不断地走向深入,由于它具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此特别适合于与控制有关的系统,越来越广泛地应用于自动控制,智能化仪器,仪表,数据采集,军工产品以及家用电器等各个领域,单片机往往是作为一个核心部件来使用,在根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。
本次做的数字闹钟以89C51单片机作为控制核心,使用串行时钟芯片PCF8563实现时间的显示设置和闹钟功能。
为了方便驱动其它电路,通过总线驱动器74LS245增加单片机的驱动能力。
将数据及地址等信号通过40线的总线引出,便于将来对此单片机系统作进一步的扩展。
作为一款多功能数字闹钟它除具有括时钟显示、闹钟功能外,还有具有秒表、温度测量、电压测量等功能。
本次设计的难点与重点在于各个模块的设计。
关键词:单片机89C51数字闹钟时钟芯片PCF8563AbstractIn recent years, with computers in the infiltration and the development of large-scale integrated circuits. SCM application is steadily deepening, as it has strong function, small size, low power dissipation, low prices, reliable, easy to use features, it is particularly suited to and control of the system, increasingly widely used in automatic control, intelligent instruments, gauges, data acquisition, military products and household appliances, and other areas, is often microcontroller as a core component to use, In light of specific hardware architecture, and application specific software features object combine to make perfect.The figures do bell on SCM (AT89C51) at the core, Combined with the components, and factoring in the corresponding software, Easy to produce digital clock purposes, as part of the hardware components is a difficult choice, layout and welding.Keywords : Single Chip Microcomputer 89C51 bell PCF8563目录摘要 (I)Abstract ...................................................................................................... I I 第一章引言 (1)第二章方案设计与比较 (2) (2)系统工作原理: (2) (2)温度采集方案 (3)键盘显示方案 (3) (3) (4)闹钟功能方案 (4)电压、频率测量方案 (4)第三章主要元器件介绍与说明 (5)AT89C51单片机工作原理与性能 (5)AT89C51单片机管脚说明 (6)振荡器特性 (8)PCF8563时钟芯片及其应用 (8)PCF8563时钟芯片特性 (9)PCF8563时钟芯片管脚配置与描述 (9)功能描述 (10)报警功能模式 (11)定时器 (11)复位 (11)内部寄存器的功能 (11) (14)第四章系统硬件设计 (14) (14) (15)时钟接口电路设计 (15)液晶显示器(LCD)电路设计 (17)键盘接口电路电路设计 (17)声光报警接口电路设计 (18)温度测量电路设计 (19)交流电特性测量设计 (22) (25) (25)主程序流程图 (25)蜂鸣器闹铃中断服务子程序流程图 (27) (28) (28) (30)结束语 (31)致谢 (32)参考文献 (33)附录一:系统总电路图 (33)附录二:多功能数字闹钟主程序 (35)第一章引言现在是一个知识爆炸的新时代。
单片机电子时钟的设计
单片机原理与应用-----------基于单片机的电子时钟专业:计算机科学与技术班级:专升本1班小组成员:张琴张娜赵慧佩学号:23 24 25基于单片机的电子时钟设计摘要20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
现代生活的人们越来越重视起了时间观念,可以说是时间和金钱划上了等号。
对于那些对时间把握非常严格和准确的人或事来说,时间的不准确会带来非常大的麻烦,所以以数码管为显示器的时钟比指针式的时钟表现出了很大的优势。
数码管显示的时间简单明了而且读数快、时间准确显示到秒。
而机械式的依赖于晶体震荡器,可能会导致误差。
数字钟是采用数字电路实现对“时”、“分”、“秒”数字显示的计时装置。
数字钟的精度、稳定度远远超过老式机械钟。
在这次设计中,我们采用LED数码管显示时、分、秒,以24小时计时方式,根据数码管动态显示原理来进行显示,用12MHz的晶振产生振荡脉冲,定时器计数。
在此次设计中,电路具有显示时间的其本功能,还可以实现对时间的调整。
数字钟是其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化而受广大消费的喜爱,因此得到了广泛的使用。
.目录第一章绪论1.1 数字电子钟的背景 (4)1.2 数字电子钟的意义 (4)1.3 数字电子钟的应用 (4)第二章整体设计方案2.1 单片机的选择 (5)2.2 单片机的基本结构 (7)第三章数字钟的硬件设计3.1最小系统设计.......................................................................................113.2 LED显示电路 (14)第四章数字钟的软件设计4.1 系统软件设计流程图 (16)4.2 数字电子钟的原理图 (19)第五章系统仿真5.1 PROTUES软件介绍 (20)5.2 电子钟系统PROTUES仿真 (21)第六章调试与功能说明6.1 硬盘调试 (22)6.2 系统性能测试与功能说明 (22)6.3 系统时钟误差分析................................................................................. 226.4 软件调试问题及解决 (22)附件:主程序……………………………………………………………………23第一章绪论1.1数字电子时钟的背景20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1
通过对多种单片机性能的分析,最终认为89C51是最理想的电子时钟开发芯片。89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,而且它与MCS-51兼容,且具有4K字节可编程闪烁存储器和1000写/擦循环,数据保留时间为10年等特点,是最好的选择。
本设计主要设计了一个基于AT89C51单片机的电子时钟。在数码管通过一个控制键转换来显示相应的时间和日期。并通过多个控制键用来实现时间和日期的调节。应用keil软件实现单片机电子时钟系统的程序设计,用Proteus的ISIS软件实现仿真。该方法仿真效果真实、准确,节省了硬件资源。
关键字:单片机时钟键盘控制
1.2
现在高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟、石英钟、石英表都采用了石英技术,因此走时精度高,稳定性好,使用方便,不需要经常调试,数字式电子钟用集成电路计时,译码代替机械式传动,用LED显示器代替指针显示进而显示时间和日期,减小了误差,这种表具有时、分、秒显示时间的功能和年月日显示日期的功能,还可以进行校对,片选的灵活性好。
3 . 16
1983年以后,集成电路的集成度可达几十万只管/片,各系列16位单片机纷纷面市。这一阶段的代表产品有1983年Intel公司推出的MCS-96系列,1987年Intel推出了80C96,美国国家半导体公司推出的HPC16040,NEC公司推出的783XX系列等。16位单片机主要用于工业控制,智能仪器仪表,便携式设备等场合。
一、设计的目的
单片计算机即单片微型计算机。由RAM ,ROM,CPU构成,定时,计数和多种接口于一体的微控制器。它体积小,成本低,功能强,广泛应用于智能产业和工业自动化上。而51系列单片机是各单片机中最为典型和最有代表性的一种。这次课程设计通过对它的学习,应用,从而达到学习、设计、开发软、硬的能力。
RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。
ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
(电路图仿真地址:/file/e70jgofp)
一、
1.1
1957年,Ventura发明了世界上第一个电子表,从而奠定了电子时钟的基础,电子时钟开始迅速发展起来。现代的电子时钟是基于单片机的一种计时工具,采用延时程序产生一定的时间中断,用于一秒的定义,通过计数方式进行满六十秒分钟进一,满六十分小时进一,满二十四小时小时清零。从而达到计时的功能,是人民日常生活补课缺少的工具。
图2共阴数码管
3.3 74LS373介绍:
373为三态输出的八D透明锁存器,373的输出端O0~O7可直接与总线相连。
当三态允许控制端OE为低电平时,O0~O7为正常逻辑状态,可用来驱动负载或总线。当OE为高电平时,O0~O7呈高阻态,即不驱动总线,也不为总线的负载,锁存器内部的逻辑操作不受影响。当锁存允许端LE为高电平时,O随数据D而变。当LE为低电平时,O被锁存在已建立的数据电平。当LE端施密特触发器的输入滞后作用,使交流和直流噪声抗扰度被改善400mV。
P3.0 RXD(串行输入口)
P3.1 TXD(串行输出口)
P3.2 /INT0(外部中断0)
P3.3 /INT1(外部中断1)
P3.4 T0(记时器0外部输入)
P3.5 T1(记时器1外部输入)
P3.6 /WR(外部数据存储器写选通)
P3.7 /RD(外部数据存储器读选通)
P3口同时为闪烁编程和编程校验接收一些控制信号。
二、设计的内容及要求
在数码管通过一个控制键转换来显示相应的时间和日期;
能通过多个控制键用来实现时间和日期的调节;
熟练运用应用keil软件实现单片机电子时钟系统的程序设计,用Proteus的ISIS软件实现仿真。
三、指导教师评语
四、成绩
指导教师(签章)
年月日
摘
单片计算机即单片微型计算机。由RAM ,ROM,CPU构成,定时,计数和多种接口于一体的微控制器。它体积小,成本低,功能强,广泛应用于智能产业和工业自动化上。而51系列单片机是各单片机中最为典型和最有代表性的一种。这次课程设计通过对它的学习,应用,从而达到学习、设计、开发软、硬的能力。
1.3
该电子时钟由AT89C51,74LS373,BUTTON,数码管等构成,采用晶振电路作为驱动电路,由延时程序和循环程序产生的一秒定时,达到时分秒的计时,六十秒为一分钟,六十分钟为一小时,满二十四小时为一天,满三十天(闰年二月满二十九天,平年二月满二十八天)为一个月,满十二个月为一年。电路中的键控1实现“年”和“分”的调节,键控2实现“月”和“时”的调节,键控3实现“日”和“分”的调节。每按一次就加一。
4 . 32
随着高新技术只智能机器人,光盘驱动器,激光打印机,图像与数据实时处理,复杂实时控制,网络服务器等领域的应用与发展,20世纪80年代末推出了32位单片机,如Motorlora公司的MC683XX系列,Intel的80960系列,以及近年来流行的ARM系列单片机。32位单片机是单片机的发展趋势,随着技术的发展及开发成本和产品价格的下降,将会与8位单片机并驾齐驱。
课程名称:单片机课程设计
设计题目:电子时钟设计
院系:电气工程系
专业:电子信息工程
年级:*****
姓名:* * *
指导教师:* * *
西南交通大学峨眉校区
2012年6月15日
课程设计任务书
专业电子信息工程姓名***学号********
开题日期:2012年3月1日完成日期:2012年6月15日
题目电子时钟设计
PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。
EA/VPP:当/EA保持低电平时,则在此期间外部程序存储(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
2.4
VCC:电源;GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
3.2
数码管是一种把多个LED(7SEG-MP*8-CA-BLUE)显示段集成在一起的显示设备。有两种类型,一种是共阳型,一种是共阴型。共阳型就是把多个LED显示段的阳极接在一起,又称为公共端。共阴型就是把多个LED显示段的阴极接在一起,即为公共商。阳极即为二极管的正极,又称为正极,阴极即为二极管的负极,又称为负极。通常的数码管又分为8段,即8个LED显示段,这是为工程应用方便如设计的,分别为A、B、C、D、E、F、G、DP,其中DP是小数点位段。而多位数码管,除某一位的公共端会连接在一起,不同位的数码管的相同端也会连接在一起。即,所有的A段都会连在一起,其它的段也是如此,这是实际最常用的用法。数码管显示方法可分为静态显示和动态显示两种。静态显示就是数码管的8段输入及其公共端电平一直有效。动态显示的原理是,各个数码管的相同段连接在一起,共同占用8位段引管线;每位数码管的阳极连在一起组成公共端。利用人眼的视觉暂留性,依次给出各个数码管公共端加有效信号,在此同时给出该数码管加有效的数据信号,当全段扫描速度大于视觉暂留速度时,显示就会清晰显示出来。
5 . 64
近年来,64位单片机在引擎控制,智能机器人,磁盘控制,语音图像通信,算法密集的实时控制场合已有应用,如英国Inmos公司的Transputer T800是高性能的64位单片机。
2.3
1 .单片机的存储器ROM和RAM时严格区分的。ROM称为程序存储器,只存放程序,固定常数,及数据表格。RAM则为数据存储器,用作工作区及存放用户数据。
2 .采用面向控制的指令系统。为满足控制需要,单片机有更强的逻辑控制能力,特别是单片机具有很强的位处理能力。
3 .单片机的I/O口通常时多功能的。由于单片机芯片上引脚数目有限,为了解决实际引脚数和需要的信号线的矛盾,采用了引脚功能复用的方法,引脚处于何种功能,可由指令来设置或由机器状态来区分。