2021中考数学专题训练——圆 (解析版)
2021年中考数学分类专题提分训练 圆之圆周角定理解答题专项(有答案)
圆之圆周角定理解答题专项——2021年中考数学分类专题提分训练(有答案)1.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.2.如图,点C在⊙O上,联结CO并延长交弦AB于点D,=,联结AC、OB,若CD=40,AC=20.(1)求弦AB的长;(2)求sin∠ABO的值.3.如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.4.已知AB是半圆O的直径,M,N是半圆不与A,B重合的两点,且点N在弧BM上.(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;(2)如图2,过点M作MC⊥AB于点C,点P是MN的中点,连接MB、NA、PC,试探究∠MCP、∠NAB、∠MBA之间的数量关系,并证明.5.如图,在⊙O中,AB是直径,CD是弦(不过圆心),AB⊥CD.(1)E是优弧CAD上一点(不与C、D重合),求证:∠CED=∠COB;(2)点E´在劣弧CD上(不与C、D重合)时,∠CE´D与∠COB有什么数量关系?请证明你的结论.6.如图,在⊙O中,AB为直径,且AB⊥CD,垂足为E,CD=,AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连结CF,当∠FCD=∠DOB时,直接写出EF的长,并在图中标出F点的具体位置.7.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.8.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围.9.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC、CE.(1)求证:∠B=∠D;(2)若AB=5,BC﹣AC=1,求CE的长.10.在△ABC中,∠BAC=45°,P是BC边上的一个动点,以AP为直径的⊙O分别交AB、AC 于点E和点F.(1)若EF=4时,则AP的长为多少?(2)若∠B=60°,AB=6,试探究:当BP长为多少时,EF最短?参考答案1.解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.2.解:(1)∵CD过圆心O,=,∴CD⊥AB,AB=2AD=2BD,∵CD=40,AC=20,∠ADC=90°,∴AD==20,∴AB=2AD=40;(2)设圆O的半径为r,则OD=40﹣r,∵BD=AD=20,∠ODB=90°,∴BD2+OD2=OB2,即202+(40﹣r)2=r2,解得,r=25,OD=15,∴sin∠ABO==.3.解:(1)∵AO⊥BD,∴=,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.4.解:(1)如图1,∵AB是半圆O的直径,∴∠M=90°,在Rt△AMB中,AB=,∴AB=10.∴OB=5,∵OB=ON,又∵∠NOB=60°,∴△NOB是等边三角形,。
2021中考数学压轴题满分训练 – 圆的专题含答案解析
2021中考数学压轴题满分训练–圆的专题1.如图,AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=4,求CE的长.2.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作⊙O的切线DE交AB于E.(1)求证:DE⊥AB;(2)如果tan B=,⊙O的直径是5,求AE的长.4.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为E,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.5.【发现】如图(1),AB为⊙O的一条弦,点C在弦AB所对的优弧上,根据圆周角性质,我们知道∠ACB的度数(填“变”或“不变”);若∠AOB=150°,则∠ACB =°.爱动脑筋的小明猜想,如果平面内线段AB的长度已知,∠ACB的大小确定,那么点C是不是在某一个确定的圆上运动呢?【研究】为了解决这个问题,小明先从一个特殊的例子开始研究.如图(2),若AB=2,直线AB上方一点C满足∠ACB=45°,为了画出点C所在的圆,小明以AB为底边构造了一个等腰Rt△AOB,再以O为圆心,OA为半径画圆,则点C在⊙O上.请根据小明的思路在图(2)中完成作图(要求尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗).后来,小明通过逆向思维及合情推理,得出一个一般性的结论,即:若线段AB的长度已知,∠ACB的大小确定,则点C一定在某一个确定的圆上,即定弦定角必定圆,我们把这样的几何模型称之为“定弦定角”模型.【应用】(1)如图(3),AB=2,平面内一点C满足∠ACB=60°,则△ABC面积的最大值为.(2)如图(4),已知正方形ABCD,以AB为腰向正方形内部作等腰△BAE,其中BE =BA,过点E作EF⊥AB于点F,点P是△BEF的内心.①∠BPE=°,∠BPA=°;②连接CP,若正方形ABCD的边长为2,则CP的最小值为.6.如图,BE为⊙O的直径,C为线段BE延长线上一点,CA为⊙O的切线,A为切点,连接AB,AE,AO.∠C=30°.(1)求∠ABC的度数;(2)求证:BO=CE;(3)已知⊙O的半径为6,求图中阴影部分的面积.(结果保留π)7.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长;(3)求证:CE2=CD•CA.8.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.9.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;(2)△ABC中,BC=14,tan B=,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.10.如图,DE是△DBC的外角∠FDC的平分线,交BC的延长线于点E,DE的延长线与△DBC的外接圆交于点A.(1)求证:AB=AC;(2)若∠DCB=90°,sin E=,AD=4,求BD的长.11.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.(1)如图1,求证:BD=ED.(2)如图2,AD为⊙O的直径.若BC=12,sin∠BAC=,求OE的长.12.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.13.已知△ABC是⊙O的内接三角形,AB为⊙O的直径.点D是⊙O外一点,连接AD 和OD,OD与AC相交于点E,且OD⊥AC.(1)如图1,若AD是⊙O的切线,tan∠BAC=,证明:AD=AB;(2)如图2,延长DO交⊙O于点F,连接CD,CF,AF.当四边形ADCF为菱形,且∠BAC=30°,BC=1时,求DF的长.14.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过C作CD∥AB,CD交⊙O于D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:AF是⊙O的切线;(2)求证:AB2﹣BE2=BE•EC;(3)如图2,若点G是△ACD的内心,BC•BE=64,求BG的长.15.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案1.解:(1)如图,连接OC,AE,过点A作AM⊥CE,垂足为M,∵PC是⊙O的切线,∴∠CAB=∠DCB,又∵CA=CD,∴∠CAB=∠CDB,∴∠DCB=∠CDB,∴BC=BD,又∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CBA=2∠CDB=2∠CAB,∴∠CBA=90°×=60°,∵OC=OB,∴△OBC是正三角形,∴BC=OB;(2)连接AE,过点A作AM⊥CE,垂足为M,∵E是中点,∴AE=BE=4,∠ACE=∠BCE=∠ACB=×90°=45°,在Rt△AEM中,AE=4,∠AEM=∠CBA=60°,∴EM=AE=2,AM=AE=2,在Rt△ACM中,AM=2,∠ACM=45°,∴CM=AM=2,∴CE=EM+CM=2+2,答:CE的长为2+2.2.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===12,在Rt△ACE中,S△ACE==,∵AE=AB=20,∴=CD,解得:CD=9.6.3.(1)证明:连接AD,OD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠BAD=∠ODA,∴AB∥OD,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)解:∵tan B==,∴设AD=k,BD=2k,∴AB==k,∵AB=AC=5,∴k=,∴AD=,BD=2,∵S△ABD=AB•DE=AD•BD,∴DE==2,∴AE===1.4.解:(1)∵O、I、N三点共线∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d.(2)BD=ID.理由如下:∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI ∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID.(3)由(2)知BD=ID∴式子②可改写为IA•ID=DE•IF又∵IA•ID=IM•IN∴DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr.(4)∵d2=R2﹣2Rr=62﹣2×6×2=12∴d=2.故答案为:2.5.解:【发现】根据圆周角性质,∠ACB的度数不变,∵∠AOB=150°,∴∠ACB=∠AOB=75°,故答案为:不变,75°;【研究】补全图形如图1所示,【应用】(1)如图2,记△ABC的外接圆的圆心为O,连接OA,OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,∴∠OAB=30°,过点O作OH⊥AB于H,∴AH=AB=,在Rt△AHO中,设⊙O的半径为2r,则OH=r,根据勾股定理得,(2r)2﹣r2=3,∴r=1(舍去负数),∴OA=2,OH=1,∵点C到AB的最大距离h为r+OH=2+1=3,∴S△ABC最大=AB•h=×2×3=3,故答案为:3;(2)①∵EF⊥AB,∴∠EFB=90°,∴∠BEF+∠EBF=90°,∵点P是△BEF的内心,∴PE,PB分别是∠BEF和∠EBF的角平分线,∴∠BEP=∠BEF,∠EBP=∠ABP=∠ABE,∴∠BPE=180°﹣(∠BEP+∠EBP)=180°﹣(∠BEF+∠EBF)=180°﹣×90°=135°;在△BPE和△BPA中,,∴△BPE≌△BPA(SAS).∴∠BPA=∠BPE=135°,故答案为:135°,135°;②如图3,作△ABP的外接圆,圆心记作点O,连接OA,OB,在优弧AB上取一点Q,连接AQ,BQ,则四边形APBQ是⊙O的圆内接四边形,∴∠AQB=180°∠BPA=45°,∴∠AOB=2∠AQB=90°,∴OA=OB=AB=,连接OC,与⊙O相交于点P'此时,CP'是CP的最小值,过点O作OM⊥AB于M,ON⊥CB,交CB的延长线于N,则四边形OMBN是正方形,∴ON=BN=BM=AB=1,∴CN=BC+BN=3,在Rt△ONC中,OC==,∴CP 的最小值=CP'=OC﹣OP'=﹣,故答案为:﹣.6.(1)解:∵CA为⊙O的切线,∴∠OAC=90°,∴∠AOC=90°﹣∠C=60°,由圆周角定理得,∠ABC=∠AOC=30°;(2)证明:在Rt△AOC中,∠C=30°,∴OA=OC,∵OA=OB=OE,∴OB=CE;(3)解:在Rt△AOC中,AC==6,∴图中阴影部分的面积=×6×6﹣=18﹣6π.7.(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC===2,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为.(3)证明:连接AE,DE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB+∠DEC=90°,∵BA是⊙O的切线,∴∠BAC=90°,∴∠BAE+∠EAD=90°,∵AB=BE,∴∠BAE=∠BEA,∴∠DEC=∠EAD,∴△EDC∽△AEC,∴,∴CE2=CD•CA.8.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.9.解:(1)如图:D即为△ABC边AB上的“好点”;(2)如答图1:过A作AH⊥BC于H,∵tan B=,tan C=1,∴,=1,设AH=3k,则BH=4k,CH=3k,∵BC=14,∴3k+4k=14,解得k=2,∴BH=8,AH=CH=6,设BD=x,则CD=14﹣x,DH=8﹣x,Rt△ADH中,AD2=AH2+DH2=62+(8﹣x)2,而点D是BC边上的“好点”,有AD2=BD•CD=x•(14﹣x),∴62+(8﹣x)2=x•(14﹣x),解得x=5或x=10,∴BD=5或BD=10;(3)①∵∠CAH=∠HDB,∠AHC=∠BHD,∴△ACH∽△DBH,∴,∴AH•BH=CH•DH,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴AH=BH,∴OH⊥AB;②如答图2:连接AD,∵OH⊥AB,OH∥BD,∴AB⊥BD,∴AD是直径,∵r=3OH,设OH=m,则OA=3m,BD=2m,Rt△AOH中,AH==2m,∴BH=2m,Rt△BHD中,HD==2m,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴CH==m,∴==.10.(1)证明:∵DE是△DBC的外角∠FDC的平分线,∴∠FDE=∠CDE,∵∠ADB=∠ACB=∠FDE,∠ABC=∠CDE,∴∠ABC=∠ACB,∴AB=AC;(2)解:∵∠DCB=90°,∴∠DCE=∠BAD=90°,∴∠E+∠CDE=∠ABD+∠ADB=90°,∵∠ADB=∠FDE=∠CDE,∴∠ABD=∠E,∵sin E=,∴sin∠ABD==,∵AD=4,∴BD=4.11.(1)证明:如图1,连接BE.∵E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD,∵∠DBC=∠CAD.∴∠DBC=∠BAD,∵∠BED=∠BAD+∠ABE,∴∠DBE=∠DEB,∴BD=ED;(2)如图2 所示;连接OB.∵AD是直径,AD平分∠BAC,∴AD⊥BC,且BF=FC=6,∵,∴OB=10.在Rt△BOF中,BF=6,OB=10,∴,∴DF=2,在Rt△BDF中,BF2+DF2=BD2,∴,∴,∴.12.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,∴O1D∥OC.又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.13.解:(1)证明:∵OD⊥AC,∴AE=EC=AC,∠DEA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠BAC==,∴BC=AC,∴AE=BC,∵AD是⊙O的切线,∴DA⊥AB,∴∠DAO=∠ACB=90°,∴∠DAE+∠CAB=∠ABC+∠CAB=90°,∴∠DAE=∠ABC,在△DAE和△ABC中,,∴△DAE≌△ABC(ASA),∴AD=AB;(2)在Rt△ABC中,∠BAC=30°,BC=1,∴AB=2,AC=,∵∠ABC=∠AFC=60°,∵四边形ADCF为菱形,∴AC=FC=,∴△AFC是等边三角形,∴∠DFC=AFC=30°,∴CE=FC=,∴EF=CE=,∴DF=2EF=3.14.解:(1)如图1,连接OA,∵AB=AC,∴=,∠ACB=∠B,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∵CD∥AB,∴∠BCD=∠B,∴∠ACB=∠BCD,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(2)∵∠BAD=∠BCD=∠ACB,∠B=∠B,∴△ABE∽△CBA,∴,∴AB2=BC•BE=BE(BE+CE)=BE2+BE•CE,∴AB2﹣BE2=BE•EC;(3)由(2)知:AB2=BC•BE,∵BC•BE=64,∴AB=8,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∠BAD=∠ACB,∴∠BAG=∠BGA,∴BG=AB=8.15.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。
2020-2021中考数学圆的综合(大题培优 易错 难题)及答案
2020-2021中考数学圆的综合(大题培优易错难题)及答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.3.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正=上半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=于点M,BC边交x轴于点N(如图).时停止旋转,旋转过程中,AB边交直线y x(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明(3)设MBN你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,∴OA 旋转了45°.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=. (2)∵MN ∥AC ,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM .∴BM=BN .又∵BA=BC ,∴AM=CN .又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .∴∠AOM=∠CON=12(∠AOC-∠MON )=12(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.4.如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB ,P 是半径OB 上一动点,Q 是AB 上的一动点,连接PQ.发现:∠POQ =________时,PQ 有最大值,最大值为________;思考:(1)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ 的长;(2)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积;探究:如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.【答案】发现: 90°,102; 思考:(1)10 3π=;(2)25π−1002+100;(3)点O 到折痕PQ 的距离为30.【解析】 分析:发现:先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2,解得OP=102−10,最后用面积的和差即可得出结论.探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出OO′的长,则OM=12OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是AB 上的一动点,∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ=90°,PQ=22OA OB +=102;思考:(1)如图,连接OQ ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =2,在Rt △B'OP 中,OP 22−10)2=(10-OP )2解得OP=102−10, S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,O′B=226425-=,在Rt △OBO′K ,OO′=2210(25)=230-,∴OM=12OO′=12×230=30, 即O 到折痕PQ 的距离为30.点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90° ∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE∴OC OE CF CE=即106=8 CF∴40CF3=点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.6.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有BG=ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴AD=BC BD∴,=AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12BD ,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴BG=ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.7.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC ==AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得; (2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.8.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+231n na ⎫⎪⎪⎝⎭ ,解得a n =24331n n + .9.如图1,延长⊙O 的直径AB 至点C ,使得BC=12AB ,点P 是⊙O 上半部分的一个动点(点P 不与A 、B 重合),连结OP ,CP .(1)∠C 的最大度数为 ;(2)当⊙O 的半径为3时,△OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO 交⊙O 于点D ,连结DB ,当CP=DB 时,求证:CP 是⊙O 的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC 与⊙O 相切时,∠OCP 的度数最大,根据切线的性质即可求得; (2)由△OPC 的边OC 是定值,得到当OC 边上的高为最大值时,△OPC 的面积最大,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB ,根据等腰三角形的性质得到∠A=∠C ,得到CO=OB+OB=AB ,推出△APB ≌△CPO ,根据全等三角形的性质得到∠CPO=∠APB ,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC 与⊙O 相切时,∠OCP 最大.如图1,所示:∵sin ∠OCP=OP OC =24=12,∴∠OCP=30° ∴∠OCP 的最大度数为30°,故答案为:30°;(2)有最大值,理由: ∵△OPC 的边OC 是定值,∴当OC 边上的高为最大值时,△OPC 的面积最大,而点P 在⊙O 上半圆上运动,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大, 也就是高为半径长,∴最大值S △OPC =12OC•OP=12×6×3=9; (3)连结AP ,BP ,如图2, 在△OAP 与△OBD 中,OA OD AOP BOD OP OB =⎧⎪∠=∠⎨⎪=⎩,∴△OAP ≌△OBD ,∴AP=DB ,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.10.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是32﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴QP=2AP=QB+BP=PC+PB,∴2AP=PC+PB.(2)如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,∵AB⊥AC,∴∠BAC=90°,由旋转可得QB=OC,AQ=OA,∠QAB=∠OAC,∴∠QAB+∠BAO=∠BAO+∠OAC=90°,∴在Rt△OAQ中,2,AO=3 ,∴在△OQB中,BQ≥OQ﹣2﹣3 ,即OC最小值是2﹣3;(3)如图③中,作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC ==43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2,∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.11.如图1,四边形ABCD 为⊙O 内接四边形,连接AC 、CO 、BO ,点C 为弧BD 的中点. (1)求证:∠DAC=∠ACO+∠ABO ;(2)如图2,点E 在OC 上,连接EB ,延长CO 交AB 于点F ,若∠DAB=∠OBA+∠EBA .求证:EF=EB ;(3)在(2)的条件下,如图3,若OE+EB=AB ,CE=2,AB=13,求AD 的长.【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.【解析】试题分析:(1)如图1中,连接OA ,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO ,由点C 是BD 中点,推出CD CB = ,推出∠BAC=∠DAC ,即可推出∠DAC=∠ACO+∠ABO ; (2)想办法证明∠EFB=∠EBF 即可;(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .首先证明△EFB 是等边三角形,再证明△ACK ≌△ACT ,Rt △DKC ≌Rt △BTC ,延长即可解决问题;试题解析:(1)如图1中,连接OA ,∵OA=OC ,∴∠1=∠ACO ,∵OA=OB ,∴∠2=∠ABO ,∴∠CAB=∠1+∠2=∠ACO+∠ABO ,∵点C 是BD 中点,∴CD CB =,∴∠BAC=∠DAC ,∴∠DAC=∠ACO+∠ABO .(2)如图2中,∵∠BAD=∠BAC+∠DAC=2∠CAB ,∠COB=2∠BAC ,∴∠BAD=∠BOC ,∵∠DAB=∠OBA+∠EBA ,∴∠BOC=∠OBA+∠EBA ,∴∠EFB=∠EBF ,∴EF=EB .(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,∵∠EFB=∠EBF ,∴∠G=∠HOF ,∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,∵OH ⊥AB ,∴AB=2HB ,∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,∴cos ∠GBA=12HB GB = ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,∵∠FOH=30°,∴OF=2FH=2a ,∵AB=13,∴EF=EB=FB=FH+BH=a+132,∴OE=EF﹣OF=FB﹣OF=132﹣a,OB=OC=OE+EC=132﹣a+2=172﹣a,∵NE=12EF=12a+134,∴ON=OE=EN=(132﹣a)﹣(12a+134)=134﹣32a,∵BO2﹣ON2=EB2﹣EN2,∴(172﹣a)2﹣(134﹣32a)2=(a+132)2﹣(12a+134)2,解得a=32或﹣10(舍弃),∴OE=5,EB=8,OB=7,∵∠K=∠ATC=90°,∠KAC=∠TAC,AC=AC,∴△ACK≌△ACT,∴CK=CT,AK=AT,∵CD CB,∴DC=BC,∴Rt△DKC≌Rt△BTC,∴DK=BT,∵FT=12FC=5,∴DK=TB=FB﹣FT=3,∴AK=AT=AB﹣TB=10,∴AD=AK﹣DK=10﹣3=7.12.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.13.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB 绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A =(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C=OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.14..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 35r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r ,由勾股定理得:(3r )2+9=36,解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==-②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2,即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.15.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ; (2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)22;(2)224r ≤≤;(3)25252t --<<--或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解;(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB 2244+2; (2)如图,当d(⊙O,AB)=0时,过点O作OE⊥AB,则OE=22,OB=OA=4,∵⊙O与线段AB的“非常距离”为0,∴224r≤≤;(3)当⊙T在△ABC左侧时,如图,当⊙T与BC相切时,d=0,2236+35,过点C作CE⊥y轴,过点T作TF⊥BC,则△TFH∽△BEC,∴TF THBE BC=,即2635,∴5∵HO∥CE,∴△BHO∽△BEC,∴HO=2,此时5,0);当d=2时,如图,同理可得,此时T (252--);∵0<d <2,∴25252t --<<--;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8;综上,25252t -<<或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.。
2021中考数学二轮冲刺训练:圆的有关性质含答案
2021中考数学 二轮冲刺训练:圆的有关性质一、选择题1. 已知:如图,OA ,OB 是⊙O的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°2. 如图,BC是半圆O 的直径,D ,E 是上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠A=70°,那么∠DOE 的度数为 ( )A .35°B .38°C .40°D .42°3. 如图,在⊙O中,若C 是AB ︵的中点,∠A =50°,则∠BOC 的度数是( )A .40°B .45°C .50°D .60°4. 如图所示,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,CD ⊥AB.若∠DAB =65°,则∠BOC 等于( )A .25°B .50°C .130°D .155°5. 2018·济宁如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A.50°B.60°C.80°D.100°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为()A.3 B.2.5 C.4 D.3.57. 如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°8. (2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,DC CB=.若∠=︒,则ABC∠的度数等于110CA.55︒B.60︒C.65︒D.70︒二、填空题9. 在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.10. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC 上,连接AE,若∠ABC=64°,则∠BAE的度数为.11.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=________度.12. 已知:如图,A ,B是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)13. 如图,半径为5的⊙P 与y 轴交于点M(0,-4),N(0,-10),则圆心P 的坐标为________.14. 如图所示,在半圆O 中,AB 为直径,P 为AB ︵的中点,分别在AP ︵和PB ︵上取其中点A 1和B 1,再在P A ︵1和PB ︵1上分别取其中点A 2和B 2.若一直这样取下去,则∠A n OB n =________°.15. 已知⊙O的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,直线AO 与BC交于点D ,则AD 的长为________.16. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P.若CD =3,AB =8,PM =l ,则l 的最大值是________.三、解答题17. 如图,AB 是☉O 的直径,C 是☉O 上一点,过点O 作OD ⊥AB ,交BC 的延长线于点D ,交AC 于点E ,F 是DE 的中点,连接CF . (1)求证:CF 是☉O 的切线; (2)若∠A=22.5°,求证:AC=DC.18. 如图,在⊙O中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E.求证:AD =BE.19. 如图,AB是☉O 的直径,DO ⊥AB 于点O ,连接DA 交☉O 于点C ,过点C 作☉O的切线交DO 于点E ,连接BC 交DO 于点F . (1)求证:CE=EF .(2)连接AF 并延长,交☉O 于点G .填空:①当∠D 的度数为 时,四边形ECFG 为菱形; ②当∠D 的度数为 时,四边形ECOG 为正方形.20.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF·ED;(3)求证:AD是⊙O的切线.21.如图,AB为⊙O的直径,P点为半径OA上异于点O和点A的一个点,过P点作与直径AB 垂直的弦CD,连接AD,作BE⊥AB,OE//AD交BE于E点,连接AE、DE,AE交CD于点F.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为3,sin∠ADP=13,求AD;(3)请猜想PF与FD的数量关系,并加以证明.22.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx +c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1).Q(m2,n2)就是符合要求的一对固定点?答案一、选择题1. 【答案】A2. 【答案】C[解析]∵∠A=70°,∴∠B +∠C=110°,∴∠BOE +∠COD=220°,∴∠DOE=∠BOE +∠COD -180°=40°,故选C .3. 【答案】A[解析] ∵∠A =50°,OA =OB ,∴∠B =∠A =50°,∴∠AOB =180°-50°-50°=80°. ∵C 是AB ︵的中点, ∴∠BOC =12∠AOB =40°. 故选A.4. 【答案】C5. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.6. 【答案】C7. 【答案】C[解析] 设圆心为O ,连接OA ,OB ,如图.∵弦AB 的长度等于圆半径的2倍, 即AB =2OA ,∴AB2=2OA2.∵OA =OB ,∴AB2=OA2+OB2,∴△OAB 为等腰直角三角形,∠AOB =90°, ∴∠ASB =12∠AOB =45°.故选C.8. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB ,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .二、填空题9. 【答案】5 [解析]如图,已知☉O ,圆内接正方形ABCD.连接OB ,OC ,过O 作OE ⊥BC ,设此正方形的边长为a ,由垂径定理及正方形的性质得出OE=BE=,由勾股定理得OE 2+BE 2=OB 2,即2+2=52,解得a=5.10. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.11.【答案】35 【解析】∵OA =OB =OC ,∴∠OAB =∠B ,∠C =∠OAC ,∵∠AOB =40°,∴∠B=∠OAB =70°,∵CD ∥AB ,∴∠BAC =∠C ,∴∠OAC =∠BAC =12∠OAB =35°.12. 【答案】菱形[解析] 连接OC.∵C 是AB ︵的中点,∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形, ∴OA =AC =BC =OB , ∴四边形OACB 是菱形.13. 【答案】(-4,-7)[解析] 过点P 作PH ⊥MN 于点H ,连接PM ,则MH =12MN =3,OH =OM +MH =7.由勾股定理,得PH =4,∴圆心P 的坐标为(-4,-7).14. 【答案】(902n -1) [解析] 当n =1时,∠A 1OB 1=90°;当n =2时,∠A 2OB 2=90°2=45°所以∠A n OB n =(902n -1)°.15. 【答案】3或1 [解析] 如图所示:∵⊙O 的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵, ∴AO ⊥BC ,垂足为D , 则BD =12BC = 3. 在Rt △OBD 中, ∵BD2+OD2=OB2, 即(3)2+OD2=22, 解得OD =1.∴当点A 在如图①所示的位置时,AD =OA -OD =2-1=1; 当点A 在如图②所示的位置时,AD =OA +OD =2+1=3.16. 【答案】34 [解析] 如图,当CD ∥AB 时,PM 的长最大,连接OM ,OC .∵CD ∥AB ,CP ⊥AB ,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】证明:(1)∵AB是☉O的直径,∴∠ACB=90°,∴∠ACD=90°.∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE.∵OA=OC,∴∠OCA=∠OAC.∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∵OC是☉O的半径,∴CF与☉O相切.(2)∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°.∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°.连接AD ,∵AO=BO ,OD ⊥AB ,∴AD=BD ,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=90°-∠ADB=45°=∠ADB ,∴AC=CD.18. 【答案】证明:如图,连接OC. ∵AC ︵=CB ︵,∴∠AOC =∠BOC.∵CD ⊥OA 于点D ,CE ⊥OB 于点E ,∴∠CDO =∠CEO =90°.在△COD 与△COE 中,⎩⎨⎧∠AOC =∠BOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS),∴OD =OE.又∵AO =BO ,∴AO -OD =BO -OE ,即AD =BE.19. 【答案】解:(1)证明:连接OC.∵CE 是☉O 的切线,∴OC ⊥CE.∴∠FCO +∠ECF=90°.∵DO ⊥AB ,∴∠B +∠BFO=90°.∵∠CFE=∠BFO ,∴∠B +∠CFE=90°.∵OC=OB ,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF .(2)∵AB 是☉O 的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE +∠ECF=90°,∠D +∠EFC=90°.由(1)得∠ECF=∠CFE ,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF .即点E 为线段DF 的中点.①四边形ECFG 为菱形时,CF=CE.∵CE=EF ,∴CE=CF=EF .∴△CEF 为等边三角形.∴∠CFE=60°.∴∠D=30°.故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形.∴∠CEF=45°.∵∠CEF=∠D +∠DCE ,∴∠D=∠DCE=22.5°.故填22.5°.20. 【答案】(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°,∵BD 平分∠ABC ,∴∠DBC =36°,∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA , ∴AE DE =EF EA ,∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC ,∴AG 垂直平分BC ,∴AG 过圆心O ,∵AD ∥BC ,∴AD ⊥AG ,∴AD 是⊙O 的切线.解图21. 【答案】(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE, ∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;解图 (3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE ∠P AD =∠BOE , ∴△APD ∽△OBE ,∴PD BE =AP OB, ∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .22. 【答案】【思路分析】(1)因为点C 是x 轴上的一动点,且∠ACB =90°保持不变,所以由圆周角的性质得,点C 必在以AB 为直径的圆上,所以以AB 为直径画圆,与x 轴相交于两点,除点C 的另一点就是所求;(2)因为∠ACB =90°,∠AOC =90°,所以过点B 作BE ⊥x 轴,垂足为E ,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m 2-5m +2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A 的横坐标与点B 的横坐标的和的相反数;常数项是点A的纵坐标与点B 的纵坐标的积,先把方程ax 2+bx +c =0,化为 x 2+b a x +c a=0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P 、Q 两点分别在AD 、BD 上,过P 、Q 分别作x 轴垂线,垂足为M 、N ,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.图① 图②(1)解:如解图①,先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆.x 轴上另外一个交点即为D 点;(4分)(2)证明:如解图①,过点B 作x 轴的垂线交x 轴于点E ,∵∠ADB =90°,∴∠ADO +∠BDE =90°,∵∠OAD +∠ADO =90°,∴∠OAD =∠BDE ,∵∠AOD =∠DEB =90°,∴△AOD ∽△DEB ,(6分)∴AO DE =OD EB ,即15-m =m 2,∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实根;(8分)(3)解:(0,1),(-b a ,c a )或(0,1a ),(-b a ,c );(10分)(4)解:在解图②中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x 轴于M ,N.由(2)知△PMD ∽△DNQ ,∴n 1m 2-x =x -m 1n 2,(12分) ∴x 2-(m 1+m 2)x +m 1m 2+n 1n 2=0与ax 2+bx +c =0同解,∴-b a =m 1+m 2;c a =m 1m 2+n 1n 2.(14分)【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB =90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m 的等量关系,从而使问题得以解决.。
2021中考数学压轴题 – 圆的专题含答案解析
2021中考数学压轴题满分训练–圆的专题1.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=4cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)2.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.3.如图,四边形ABCD内接于⊙O,BC为⊙O的直径,⊙O的切线AP与CB的延长线交于点P.(1)求证:∠PAB=∠ACB;(2)若AB=12,cos∠ADB=,求PB的长.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC =13,过点O作OD⊥AC于点D.(1)求证:∠B=∠COD;(2)求AB的长.5.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA 的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.6.如图,AD与⊙O相切于点D,点A在直径CB的延长线上.(1)求证:∠DCB=∠ADB;(2)若∠DCB=30°,AC=3,求AD的长.7.如图1,在⊙O中,弦AB⊥弦CD,垂足为点E,连接AD、BC、AO,AD=AB.(1)求证:∠CAO=2∠CDB;(2)如图2,过点O作OH⊥AD,垂足为点H,求证:2OH+CE=DE;(3)如图3,在(2)的条件下,延长DB、AC交于点F,过点D作DM⊥AC,垂足为M交AB于N,若BC=12,AF=3BF,求MN的长.8.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.9.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、CF、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以EF为腰的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.10.直线l与⊙O相离,OB⊥l于点B,且OB=5,OB与⊙O交于点P,A为圆上一点,AP的延长线交直线l于点C,且AB=BC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段AP的长.11.如图,已知直线l与⊙O无公共点,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)若BP=2,sin∠ACB=,求AB的长.12.如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,连接AD.过点D作DF⊥AC,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.14.如图,AB是⊙O的直径,点C和点D分别在AB和⊙O上,且AC=AD,DC的延长线交⊙O于点E,过E作AC的平行线交⊙O于点F,连接AF,DF.(1)求证:四边形ACEF是平行四边形;(2)当sin∠EDF=,BC=4时,求⊙O的半径.15.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC,分别交AC、AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.参考答案1.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°.∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD==2(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,=.∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°.在△CDE与△OBE中,.∴△CDE≌△OBE(AAS).∴S阴影=S扇OBC=π•42=(cm2),答:阴影部分的面积为cm2.2.(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.3.解:(1)证明:如图,连接OA,∵AP为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∴∠OAB+∠PAB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠PAB=90°,∵BC为⊙O的直径,∴∠ACB+∠OBA=90°,∴∠PAB=∠ACB;(2)由(1)知∵∠PAB=∠ACB,且∠ADB=∠ACB,∴∠PAB=∠ACB=∠ADB,∴,∵AB=12,∴AC=16,∴,∴OB=10,过B作BF⊥AP于F,∵∠ADB=∠FAB,,∴,∴,∴在Rt△ABF中,,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴,∴.答:PB的长为.4.解:(1)作直径AE,连接CE,∴∠ACE=90°,∴∠CAE+∠E=90°,∵OA=OC,∴∠CAE=∠OCD,∴∠OCD+∠E=90°,∵OD⊥AC,∴∠OCD+∠COD=90°,∴∠COD=∠E,∵∠B=∠E,∴∠B=∠COD;(2)∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==.5.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:∵OC⊥GC,GC∥AE,∴OC⊥AE,∵CD⊥AB,∴∠CHF=∠FDA=90°,∵∠CFH=∠AFD,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE,∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.6.(1)证明:如图,连接OD,∵AD与⊙O相切于点D,∴OD⊥AD,∴∠ODB+∠ADB=90°,∵CB是直径,∴∠CDB=90°,∴∠ODB+∠ODC=90°,∴∠ODC=∠ADB,∵OD=OC,∴∠ODC=∠OCD,∴∠C=∠ADB;(2)解:∵∠DCB=∠ADB,∠DAC=∠CAD,∴△ADB∽△ACD,∴=,∵CB是直径,∴∠CDB=90°,∠DCB=30°,∴tan∠DCB==,∴=,∵AC=3,∴AD=3.7.解:(1)如图,连接AO、DO,∵AB=AD,∴,∴∠AOB=∠AOD,∴AO=OB,AO=OD,∴△AOB≌△AOD,∴∠BAO=∠DAO,延长AO交BD于点H,∵AB=AD,∴AH⊥BD,∴∠AHB=∠AHD=90°,∵,∴∠ACD=∠ABD,∴∠CAB=∠BAO=∠OAD,∴∠CAO=2∠CDB.(2)过点O作OT⊥CD,则CT=DT,∵CD⊥AB,CD⊥OT,OQ⊥AB,∴∠OQB=∠OTE=∠AED=90°,∴四边形OTEQ为矩形,∴OQ=ET,∵TD=CT=ET+CE,∵AB=AD,∴OQ=OH,∴2OH+CE=DE.(3)如图,∵∠ACB+∠ADB=180°,∠FCB+∠ACB=180°,∴∠ADB=∠FCB,∵∠F=∠F,∴△FCB∽△FDA,∴,∵CB=12,∴AB=AD=36,∵∠BCD=∠BAD,∠AEB=∠AED,∴△CEB∽△AED,∴,设BE=x,则AE=36﹣x,ED=3x,∵AB⊥CD,∴∠AED=90°,则在Rt△AED中,AE2+ED2=AD2,(36﹣x)2+(3x)2=362,解得:,∴BD=∵CD⊥AB,∴∠BED=90°,∠NMA=90°,∠ANM=∠END,∴∠NED=∠MAN,∴∠BDE=∠EDN,∵ED=ED,∴△BED≌△NED,∴,∵∠CDB=∠CAB,∠NMA=∠BED,∴△AMN∽△DEB,∴,∴,∴MN=.8.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.9.解:(1)∵∠CFE=90°,∠CFE=∠CDE,∴∠CDE=45°,∵∠ACB=90°,∴∠DAC=45°,∴∠DAC=∠ADC,∴AC=CD=6;(2)证明:∵∠ACB=90°,∴∠BAC+∠B=90°,∵CF∥AB,∴∠B=∠FCB,又∵∠FCB=∠DEF,∴∠BAC+∠DEF=90°,∵CD为⊙O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)①如图1,当EF=CE时,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3;②如图2,当EF=CF时,则∠CEF=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CEF=∠CDF=∠BDG,∴∠ADG=∠BDG,∵FC∥AB,∠DFC=90°,∴∠FGA=90°,∴∠FGA=∠ACD,∵GD=GD,∴△BGD≌△AGD(ASA),∴BD=AD,在Rt△ACD中,设CD=x,∵CD2+AC2=AD2,∴x2+62=(8﹣x)2,∴x=,即CD=;综合以上可得CD的长为3或.10.证明:(1)连接OA,∵OA=OP,∴∠OPA=∠OAP=∠BPC,∵AB=BC,∴∠BAC=∠ACB,∵OB⊥l,∴∠ACB+∠BPC=90°,∴∠BAC+∠OAP=90°,即OA⊥AB,∴AB与⊙O相切;(2)解:如图,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△CPB,∴,即,解得,AP=.11.(1)证明:连接OB,如图1,∵AB=AC,∴∠ABC=∠ACB,∵OA⊥l,∴∠ACB+∠APC=90°,∵OB=OP,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠OBP+∠ACB=90°,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作直径BD,连接PD,则∠BPD=90°,如图2,∵AB是⊙O的切线,∴∠ABC=∠D,∵∠ABC=∠ACB,∴∠D=∠ABC=∠ACB,∵sin∠ACB=,∴sin∠D==,∵BP=2,∴BD=10,∴OB=OP=5,∵sin∠ACB=,∴=,∴=,设PA=x,则AB=AC=2x,在Rt△AOB中,AB=2x,OB=5,OA=5+x,∴(2x)2+52=(5+x)2,解得x=,∴AB=2x=.12.(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,D是BC的中点,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.13.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.14.(1)证明:∵AC=AD,∴∠ADC=∠ACD,∵AC∥EF,∴∠ACD=∠E,∴∠ADC=∠E,∴=,∴=,∴AD=EF,∵AD=AC,∴AC=EF,∵AC∥EF,∴四边形ACEF是平行四边形;(2)解:连接BD,∵四边形ACEF是平行四边形,∴AF∥CE,∴∠EDF=∠AFD,∵所对圆周角∠B和∠AFD,∴∠AFD=∠B,∴∠B=∠EDF,∵AB是⊙O的直径,∴∠ADB=90°,∵sin∠EDF=,∴sin B=sin∠EDF==,∴设AD=2x,AB=3x,∵AC=AD,BC=4,∴3x﹣2x=4,解得:x=4,即AB=3x=3×4=12,∵AB为⊙O的直径,∴⊙O的半径是6.15.(1)证明:连接OD交BC于H,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=AC=3,∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB===8.。
2021年中考数学一轮专题训练:与圆相关的计算含答案
2021中考数学一轮专题训练:与圆相关的计算一、选择题(本大题共10道小题)1. 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB =5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.92. 如图所示的扇形纸片半径为5 cm,用它围成一个圆锥的侧面,该圆锥的高是4 cm,则该圆锥的底面周长是( )A. 3πcmB. 4πcmC. 5πcmD. 6πcm3. (2020·南充)如图,AB是O的直径,CD是弦,点,C D在直径AB的两侧.若::2:7:11AOC AOD DOB∠∠∠=,4CD=,则CD的长为()O DCBAA.2πB.4πC2πD2π4. (2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.3π2B.2πC.3πD.6π5. 2019·唐山乐亭期末如图,圆锥的底面半径OB=6 cm,高OC=8 cm,则这个圆锥的侧面积是( )A .30 cm 2B .60π cm 2C .30π cm 2D .48π cm 26. 如图,一段公路的转弯处是一段圆弧(AB ︵),则AB ︵的展直长度为()A .3π mB .6π mC .9π mD .12π m7. 如图,△ABC 内接于⊙O ,若∠A =45°,⊙O 的半径r =4,则阴影部分的面积为( )A .4π-8B .2πC .4πD .8π-88. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3π B.3πC.32 3πD .4π9. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶910. 如图,将两张完全相同的正六边形纸片(边长为2a )重合在一起,下面一张纸片保持不动,将上面一张纸片沿水平方向向左平移a 个单位长度,则空白部分与阴影部分的面积之比是( )A .5∶2B .3∶2C .3∶1D .2∶1二、填空题(本大题共10道小题)11. 若正六边形的内切圆半径为2,则其外接圆半径为 .12. 如图,△ABC 是☉O 的内接三角形,∠BAC=60°,的长是,则☉O 的半径是 .13. (2020·哈尔滨)一个扇形的面积是13π2cm ,半径是6cm ,则此扇形的圆心角是 度.14. 已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是________.15. (2020·武威)若一个扇形的圆心角为60°,面积为cm2,则这个扇形的弧长为cm(结果保留π).16. (2020·新疆)如图,⊙O的半径是2,扇形BAC的圆心角为60°,若将扇形BAC剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.17. (2019•海南)如图,O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧BD所对的圆心角BOD∠的大小为__________度.18. (2020·凉山州)如图,点C、D分别是半圆AOB上的三等分点.若阴影部分的面积是32π,则半圆的半径OA的长为.DCB19. 如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则BD︵所对的圆心角∠BOD的大小为________度.20. 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10 m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4 m,则S=________m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.①②三、解答题(本大题共6道小题)21. 如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦且与小半圆相切,AB=24,求图中阴影部分的面积.22. 如图,在△ABC中,AB=AC,以AB为直径的☉O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与☉O的位置关系,并说明理由;(2)求证:点H为CE的中点.23. 如图,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.24. 当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻璃上的雨刷.如图是某汽车的一个雨刷的转动示意图,雨刷杆AB与雨刷CD在B处固定连接(不能转动),当杆AB绕点A转动90°时,雨刷CD扫过的面积是图中阴影部分的面积,现量得CD=90 cm,∠DBA=20°,AC=115 cm,DA=35 cm,试从以上信息中选择所需要的数据,求出雨刷扫过的面积.25. 已知扇形的圆心角为120°,面积为300π cm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的体积是多少?26. (2019•襄阳)如图,点E 是ABC △的内心,AE 的延长线和ABC △的外接圆圆O相交于点D ,过D 作直线DG BC ∥. (1)求证:DG 是圆O 的切线;(2)若6DE =,63BC =,求优弧BAC 的长.答案一、选择题(本大题共10道小题)1. 【答案】A2.【答案】D 【解析】如解图,由题意可知,OA =4 cm ,AB =5cm ,在Rt △AOB 中,利用勾股定理可求得OB =3 cm ,∴该圆锥的底面周长是6π cm.3. 【答案】D【解析】∵AB 是直接,∠AOD :∠ DOB=7:11,∴∠AOD=70°.又∵∠COA :∠ AOD=2:7,∴∠=20°,∴∠COD=90°. ∵CD=4,∴22OC =∴222CD ππ==.故选D. 4. 【答案】C【解析】该扇形的弧长=90π63π180⨯=.故选C .5. 【答案】B6. 【答案】B[解析] AB ︵的展直长度=108π·10180=6π(m).故选B.7. 【答案】A[解析] 由题意可知∠BOC =2∠A =45°×2=90°.∵S 阴影=S 扇形OBC -S △OBC ,S 扇形OBC =14S 圆=14π×42=4π,S △OBC =12×42=8,所以阴影部分的面积为4π-8.故选A.8. 【答案】C[解析] 如图∵D为AC的中点,AC=AO=6,∴OD⊥AC,∴AD=12AC=12AO,∴∠AOD=30°,OD=3 3. 作BF=AC,E为BF的中点.同理可得∠BOE=30°,∴∠DOE=150°-60°=90°,∴点D所经过的路径长为nπR180=90π×3 3180=3 32π.9. 【答案】D10. 【答案】C[解析] 正六边形的面积=6×34×(2a)2=6 3a2,阴影部分的面积=a·2 3a=2 3a2,∴空白部分与阴影部分的面积之比是=6 3a2∶2 3a2=3∶1.二、填空题(本大题共10道小题)11. 【答案】[解析]如图,已知正六边形ABCDEF,连接OE,作OM⊥EF于M,则OE=EF,EM=FM,OM=2,∠EOM=30°,在Rt△OEM中,cos∠EOM=,∴=,解得OE=,故其外接圆半径为.12. 【答案】2[解析]连接OB,OC,∵∠BAC=60°,∴∠BOC=120°,∵的长为π,∴设☉O半径为r,得=π,解得r=2.即☉O的半径为2.13. 【答案】130【解析】本题考查了扇形面积公式计算,注意公式的灵活运用是解题关键,根据S =360r 2πn =36062 πn =13π,解得:n =130°,因此本题答案为130.14. 【答案】24π15. 【答案】设扇形的半径为R ,弧长为l ,根据扇形面积公式得;=,解得:R =1, ∵扇形的面积=lR =,解得:l =π. 故答案为:.16. 【答案】3【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,ADOD ⊥AC ,所以AC =2AD=BC l =60180×π×.设此圆锥的底面圆的半径为r ,则2πr,解得r.17. 【答案】144【解析】五边形ABCDE 是正五边形,∴(52)1801085E A -⨯︒∠=∠==︒.∵AB 、DE 与O 相切,∴90OBA ODE ∠=∠=︒,∴(52)1809010810890144BOD ∠=-⨯----=︒︒︒︒︒︒,故答案为:144.18. 【答案】3【解析】如答图,连接OC 、OD 、CD ,则∠AOC =∠COD =∠BOD =60°.∵OB =OD =OC ,∴△OCD 和△OBD 均为正三角形.∴∠ODC =∠BOD =60°.∴AB ∥CD .∴S △BCD =S △OCD .∴S 阴影部分=S 扇形OCD .∴26033602r ππ⋅=.解得r =3,于是半圆的半径OA 的长为3.故答案为3.19. 【答案】144[解析] ∵⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,∴OB ⊥AB ,OD ⊥DE.∵正五边形每个内角均为108°, ∴∠BOD =∠C +∠OBC +∠ODC =108°×3-90°×2=144°.20. 【答案】88π;52 【解析】(1)因为AB +BC =10 m ,BC =4 m ,则AB =6m ,小狗活动的范围包括三个部分,第一部分是以点B 为圆心,10为半径,圆心角为270°的扇面;第二部分是以C 为圆心,6为半径,圆心角为90°的扇形,第三部分是以A 为圆心,4为半径,圆心角为90°的扇形,则S =270π·102360+90π·62360+90π·42360=88πm 2;(2)当在右侧有一个等边三角形时,设BC =x 米,根据题意得S =270π·102360+30π·(10-x )2360+90π·x 2360=π3x 2-53πx +2503π,所以当x =-(-53π)÷(2×π3)=52时,S 最小,即此时BC 的长为52米.三、解答题(本大题共6道小题)21. 【答案】[解析] 小圆向右平移,使它的圆心与大圆的圆心重合,于是阴影部分的面积可转化为大半圆的面积减去小半圆的面积.解:将小半圆向右平移,使两半圆的圆心重合,如图,连接OB ,过点O 作OC ⊥AB 于点C ,则AC =BC =12.∵AB 是大半圆的弦且与小半圆相切, ∴OC 为小半圆的半径,∴S 阴影=S 大半圆-S 小半圆=12π·OB2-12π·OC2=12π(OB2-OC2)=12π·BC2=72π.22. 【答案】[解析](1)连接OD ,AD ,先利用圆周角定理得到∠ADB=90°,再根据等腰三角形的性质得BD=CD ,再证明OD 为△ABC 的中位线得到OD ∥AC ,根据DH ⊥AC ,所以OD ⊥DH ,然后根据切线的判定定理可判断DH 为☉O 的切线.(2)连接DE ,由圆内接四边形的性质得∠DEC=∠B ,再证明∠DEC=∠C ,然后根据等腰三角形的性质得到CH=EH. 解:(1)DH 与☉O 相切.理由如下: 连接OD ,AD ,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为☉O的切线.(2)证明:连接DE,如图,∵四边形ABDE为☉O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点.23. 【答案】解:(1)证明:连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=OC,∴△AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是☉O的直径,AC为☉O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO=∠OCA=90°,∴OD⊥AB.∵OD为☉O的半径,∴AB 是☉O 的切线.(2)∵CE=6,∴OD=OC=3, ∵∠BDO=180°-∠ADO=90°, ∴BO 2=BD 2+OD 2, ∴OB==5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B , ∴△BDO ∽△BCA , ∴=,∴=, ∴AC=6.24. 【答案】解:由题意可知△ACD ≌△AC′D′,所以可将△AC′D′旋转到△ACD 处,使阴影部分面积成为一部分环形面积,可通过两扇形面积之差求得, 即雨刷CD 扫过的面积S 阴影=S 扇形ACC′-S 扇形ADD′=90π×1152360-90π×352360=π4(115+35)×(115-35)=3000π(cm2). 答:雨刷扫过的面积为3000π cm2.25. 【答案】解:(1)设扇形的半径为r cm.由题意,得120π×r2360=300π,解得r =30,∴扇形的弧长=120π×30180=20π(cm). (2)设圆锥的底面圆的半径为x cm , 则2π·x =20π,解得x =10,∴圆锥的高=302-102=20 2(cm), ∴圆锥的体积=13·π·102·20 2= 2000 23π(cm3).26. 【答案】(1)连接OD 交BC 于H ,如图,∵点E 是ABC △的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠, ∴BD CD =,∴OD BC ,BH CH =,∵DG BC ∥, ∴OD DG ⊥, ∴DG 是圆O 的切线. (2)连接BD 、OB ,如图, ∵点E 是ABC △的内心, ∴ABE CBE ∠=∠, ∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠, ∴6DB DE ==, ∵1332BH BC == 在Rt BDH △中,333sin 62BH BDH BD ∠===, ∴60BDH ∠=︒, 而OB OD =,∴OBD △为等边三角形, ∴60BOD ∠=︒,6OB BD ==, ∴120BOC ∠=︒, ∴优弧BAC 的长=(360120)π68π180-⋅⋅=.2021中考数学 一轮专题训练:与圆有关的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A .与圆有公共点的直线B .垂直于圆的半径的直线C .到圆心的距离等于半径的直线D .经过圆的直径一端的直线2. 2019·泰安如图,△ABC 是⊙O 的内接三角形,∠A =119°,过点C 的圆的切线交BO 的延长线于点P ,则∠P 的度数为( )A .32°B .31°C .29°D .61°3. 2018·舟山用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A .点在圆内B .点在圆上C .点在圆心上D .点在圆上或圆内4. 2020·武汉模拟在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以点A 为圆心,4.8为半径的圆与直线BC 的公共点的个数为( ) A .0B .1C .2D .不能确定5. 如图,在矩形ABCD 中,AB =3,AD =4.若以点A 为圆心,4为半径作⊙A ,则下列各点中在⊙A 外的是( )A.点A B.点BC.点C D.点D6. 在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O为圆心,OA长为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为()A.E,F,G B.F,G,HC.G,H,E D.H,E,F7.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°.过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A. 25°B. 40°C. 50°D. 65°8. 如图,⊙O的半径为2,点O到直线l的距离为3,P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.13B. 5 C.3 D.29. 如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 的最小值为( )A .5B .4 2C .4.75D .4.810. 如图0,在Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )图0A.32 B .2C.81313 D.121313二、填空题(本大题共10道小题)11. 如图,P A ,PB是☉O 的切线,A ,B 为切点,点C ,D 在☉O 上.若∠P=102°,则∠A+∠C= .12. 如图,菱形ABOC 的边AB ,AC 分别与☉O 相切于点D ,E ,若点D 是AB的中点,则∠DOE= .13. (2019•河池)如图,PA、PB是O的切线,A、B为切点,∠OAB=38°,则∠P=__________ .14. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A 上,点________在⊙A外.15. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.16. 2019·兴化期中已知等边三角形ABC的边长为2,D为BC的中点,连接AD.点O在线段AD上运动(不与端点A,D重合),以点O为圆心,33为半径作圆,当⊙O与△ABC的边有且只有两个公共点时,DO的取值范围为________.17. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是______________.18. 已知l1∥l2,l1,l2之间的距离是3 cm,圆心O到直线l1的距离是1 cm,如果圆O与直线l1,l2有三个公共点,那么圆O的半径为________cm.19. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O的半径为________.20. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共6道小题)21. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.22. 如图,在等腰三角形ABC中,AB=AC.以AC为直径作☉O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是☉O的切线.(2)若DE=,∠C=30°,求的长.23. 如图,已知平面直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标:(________,________);(2)判断点D(5,-2)与⊙M的位置关系.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.25. 如图,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为☉O的切线.(2)判断四边形AOCD是否为菱形?并说明理由.26. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】A[解析] 设小正方形的边长为1个单位长度,所以OA=12+22= 5. 因为OE=2<OA,所以点E在⊙O内;OF=2<OA,所以点F在⊙O内;OG=1<OA,所以点G在⊙O内;OH=22+22=2 2>OA,所以点H在⊙O外.故选A.7. 【答案】B 【解析】∵∠A=25°,∠ACB=90°,∴∠ABC=65°.如解图,连接OC.∵OB=O C,∴∠ABC=∠BCO=65°.∵CD是⊙的切线,∴OC⊥CD,∴∠OCD=90°,∴∠BCD=90°-∠BCO=25°,∴∠D=∠ABC-∠BCD=65°-25°=40°.解图8. 【答案】B[解析] ∵PQ与⊙O相切,∴∠OQP=90°,∴PQ=OP2-OQ2=OP2-22,∴当OP最小时,PQ最小.而OP的最小值是点O到直线l的距离3,∴PQ的最小值为32-22= 5.故选B.9. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.10. 【答案】B[解析] ∵∠ABC=90°,∴∠ABP+∠PBC=90°.∵∠P AB=∠PBC,∴∠ABP+∠P AB=90°,∴∠APB=90°,∴点P在以AB为直径的圆上,设圆心为O,连接OC交⊙O于点P,此时CP 最小.在Rt△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC=5,OP=OB=3,∴PC=OC-OP=5-3=2,∴PC的最小值为2.二、填空题(本大题共10道小题)11. 【答案】219°[解析]连接AB,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.12. 【答案】60°[解析]连接OA ,∵四边形ABOC 是菱形, ∴BA=BO ,∵AB 与☉O 相切于点D , ∴OD ⊥AB. ∵D 是AB 的中点,∴OD 是AB 的垂直平分线,∴OA=OB , ∴△AOB 是等边三角形, ∴∠AOD=∠AOB=30°, 同理∠AOE=30°,∴∠DOE=∠AOD +∠AOE=60°, 故答案为60°. 113. 【答案】76【解析】∵PA PB 、是O 的切线,∴PA PB PA OA =⊥,,∴90PAB PBA OAP ∠=∠∠=︒,,∴90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒, ∴180525276P ∠=︒-︒-︒=︒,故答案为:76.14. 【答案】OB ,DC [解析] ∵四边形ABCD 为正方形,∴AC ⊥BD ,AO=BO =CO =DO. 设AO =BO =x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x =22(负值已舍去),∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.15. 【答案】3<r <5[解析] 连接BD.在Rt △ABD 中,AB =4,AD =3,则BD=32+42=5.由题图可知3<r <5.16. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D 为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO <33时,⊙O 与△ABC 的BC 边有且只有两个公共点,(2)如图②所示,当DO =33时, ⊙O 与△ABC 的边有三个公共点;(3)如图③所示,当⊙O经过△ABC的顶点A时,⊙O与△ABC的边有三个公共点,则当33<DO≤2 33时,⊙O与△ABC的边有四个或三个公共点.(4)如图④所示,当2 33<DO<3时,⊙O与△ABC的边有两个公共点.综上,当0<DO<33或2 33<DO<3时,⊙O与△ABC的边只有两个公共点.故答案为0<DO<33或2 33<DO< 3.17. 【答案】R=4.8或6<R≤8[解析] 当⊙C与AB相切时,如图①,过点C作CD⊥AB于点D.根据勾股定理,得AB=AC2+BC2=62+82=10.根据三角形的面积公式,得12AB·CD=12AC·BC,解得CD=4.8,所以R=4.8;当⊙C与AB相交时,如图②,此时R大于AC的长,而小于或等于BC的长,即6<R≤8.18. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.19.【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵B C 与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △O DF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图20. 【答案】相交[解析] ∵⊙M 的圆心为M (-2,2),则⊙M 关于y 轴对称的⊙M ′的圆心为M ′(2,2).因为M ′B =2>点M ′到直线AB 的距离,所以直线AB 与⊙M ′相交.三、解答题(本大题共6道小题)21. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D. ∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.22. 【答案】解:(1)证明:如图,连接OD,∵OC=OD,AB=AC,∴∠1=∠C,∠C=∠B.∴∠1=∠B.∵DE⊥AB,∴∠2+∠B=90°.∴∠2+∠1=90°,∴∠ODE=90°,∴DE为☉O的切线.(2)连接AD,∵AC为☉O的直径,∴∠ADC=90°.∵AB=AC,∴∠B=∠C=30°,BD=CD.∴∠AOD=60°.∵DE=,∴BD=CD=2,∴OC=2,∴的长=π×2=π.23. 【答案】解:(1)20(2)∵⊙M的半径AM=22+42=2 5,线段MD=(5-2)2+22=13<2 5,∴点D在⊙M内.24. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.25. 【答案】解:(1)证明:如图,连接OD,∵点C,D为半圆O的三等分点,∴∠AOD=∠COD=∠COB=60°.∵OA=OD,∴△AOD为等边三角形,∴∠DAO=60°,∴AE∥OC.∵CE⊥AD,∴CE⊥OC,∴CE为☉O的切线.(2)四边形AOCD为菱形.理由:∵OD=OC,∠COD=60°,∴△OCD为等边三角形,∴CD=CO.同理:AD=AO.∵AO=CO,∴AD=AO=CO=DC,∴四边形AOCD为菱形.26. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l. 又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.。
2021年中考数学 一轮专题训练:圆的有关性质(含答案)
2021中考数学 一轮专题训练:圆的有关性质一、选择题(本大题共10道小题)1. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°2. 如图所示,AB是⊙O 的直径,C ,D 是⊙O 上的两点,CD ⊥AB.若∠DAB =65°,则∠BOC 等于( )A .25°B .50°C .130°D .155°3.如图,四边形ABCD 内接于⊙O ,F 是CD︵上一点,且DF︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BA C =25°,则∠E 的度数为( ) A . 45° B . 50° C . 55° D . 60°4. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A.30°B.40°C.50°D.60°5. 如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OPC.OB⊥AC D.AC平分OB6.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为( )A. 2B. 3C. 4D. 57. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 38. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()A.350 mm B.700 mmC.800 mm D.400 mm9. 如图,在半径为13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2 6 B.2 10 C.2 11 D.4 310. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°二、填空题(本大题共10道小题)11. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.12. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是________cm.13. 2018·毕节如图,AB是⊙O的直径,C,D为半圆的三等分点,CE⊥AB于点E,则∠ACE的度数为________.14. 当宽为3 cm的刻度尺的一边与⊙O相切于点A时,另一边与⊙O的两个交点B,C处的读数如图所示(单位:cm),那么该圆的半径为________cm.15. 如图0,A,B是⊙O上的两点,AB=10,P是⊙O上的动点(点P与A,B 两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.16. 如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为弧BD的中点.若∠DAB=40°,则∠ABC=________°.17. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.18. 如图,在⊙O中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD⊥OC 交⊙O 于点D ,则CD 的最大值为________.19. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升________cm. 链接听P39例4归纳总结20. 如图,AB ,CD是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O 的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.三、解答题(本大题共6道小题)21. 2018·牡丹江 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .22.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠A =2∠BCD ,点E 在AB 的延长线上,∠AED =∠ABC. (1)求证:DE 与⊙O 相切;(2)若BF =2,DF =10,求⊙O 的半径.23. 2018·天津 如图,已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,求∠ABC 和∠ABD 的大小;(2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OC D 的大小.24.如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F . (1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.25. 如图,AB是☉O的直径,点C为的中点,CF为☉O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.26. 已知OA=5,sin∠O=35,点D为线段OA上的动点,以A为圆心、AD为半径作⊙A.(1)如图1,若⊙A交∠O于B、C两点,设OD=x,BC=y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OB翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.2021中考数学一轮专题训练:圆的有关性质-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】C3. 【答案】B 【解析】∵四边形ABCD是圆内接四边形,∠ABC=105°,∴∠ADC=75°,∵=,∴∠BAC=∠DCF=25°,∴∠E=∠ADC-∠DCF=50°.4. 【答案】D5. 【答案】A[解析] ∵AD是⊙O的直径,∴∠ACD=90°.∵四边形OBCD是平行四边形,∴CD∥OB,CD=OB,∴∠CPO=90°,即OB⊥AC,∴选项C正确;∴CP=AP.又∵OA=OD,∴OP是△ACD的中位线,∴CD=2OP,∴选项B正确;∴CD=OB=2OP,即P是OB的中点,∴AC平分OB,∴选项D正确.6. 【答案】B 【解析】由垂径定理可得DH=2,所以BH=BD2-DH2=1,又可得△DHB∽△ADB,所以有BD2=BH·BA,(3)2=1×BA,AB=3.7. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC= 3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.8. 【答案】C9. 【答案】C[解析] 过点O作OF⊥CD于点F,OG⊥AB于点G,连接OB,OD,OE,如图所示.则DF=CF,AG=BG=12AB=3,∴EG=AG-AE=2.在Rt△BOG中,OG=OB2-BG2=13-9=2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=2OG=2 2.∵∠DEB=75°,∴∠OEF=30°,∴OF=12OE= 2.在Rt△ODF中,DF=OD2-OF2=13-2=11,∴CD=2DF=2 11.故选C.10. 【答案】D[解析] ∵∠BOC=110°,∴∠AOC=70°.∵AD∥OC,∴∠A=∠AOC=70°.∵OA=OD,∴∠D=∠A=70°.在△OAD中,∠AOD=180°-(∠A+∠D)=40°.二、填空题(本大题共10道小题) 11. 【答案】52° [解析]∵圆内接四边形对角互补, ∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°.∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.12. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.13. 【答案】30°[解析] 如图,连接OC .∵AB 是⊙O 的直径,AC ︵=CD ︵=BD ︵,∴∠AOC =∠COD =∠DOB =60°. ∵OA =OC ,∴△AOC 是等边三角形, ∴∠A =60°.∵CE ⊥OA ,∴∠AEC =90°,∴∠ACE =90°-60°=30°.14. 【答案】25615. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线,∴EF =12AB =5.16. 【答案】70 [解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C 为弧BD 的中点,∴∠CAB =12∠DAB =20°, ∴∠ABC =70°.17. 【答案】52° [解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°. ∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E ,∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.18. 【答案】12 [解析] 连接OD.因为CD ⊥OC ,所以CD =OD2-OC2,根据题意可知圆的半径一定,故当OC 最小时CD 最大,故当OC ⊥AB 时CD 最大,此时CD =12AB =12.19. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.20. 【答案】7 2 [解析] 如图,连接OB ,OC ,BC ,则BC 的长即为P A +PC 的最小值.过点C 作CH ⊥AB 于点H ,则四边形EFCH 为矩形,∴CH =EF ,EH =CF .根据垂径定理,得BE =12AB =4,CF =12CD =3,∴OE =OB 2-BE 2=52-42=3,OF =OC 2-CF 2=52-32=4, ∴CH =EF =OE +OF =3+4=7,BH =BE +EH =BE +CF =4+3=7. 在Rt △BCH 中,由勾股定理,得BC =7 2,则P A +PC 的最小值为72.三、解答题(本大题共6道小题)21. 【答案】证明:如图,延长AD 交⊙O 于点E ,∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD .∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD .22. 【答案】(1)证明:如解图,连接DO ,∴∠BOD =2∠BCD =∠A ,(2分)解图又∵∠DEA =∠CBA ,∴∠DEA +∠DOE =∠CAB +∠CBA ,又∵∠ACB =90°,∴∠ODE =∠ACB =90°,(5分)∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 与⊙O 相切.(7分)(2)解:如解图,连接BD ,可得△FBD ∽△DBO ,∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.23. 【答案】解:(1)如图①,连接OD .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠BAC =90°-38°=52°.∵D 为AB ︵的中点,∠AOB =180°,∴∠AOD =90°,∴∠ABD =12∠AOD =45°.(2)如图②,连接OD .∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP =90°.∵DP ∥AC ,∠BAC =38°,∴∠P =∠BAC =38°.∵∠AOD 是△ODP 的一个外角,∴∠AOD =∠P +∠ODP =128°,∴∠ACD =64°.∵OC =OA ,∠BAC =38°,∴∠OCA =∠BAC =38°,∴∠OCD=∠ACD-∠OCA=64°-38°=26°.24. 【答案】(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12(180°-36°)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠DBC=36°,∵AD∥BC,∴∠D=∠DBC=36°,∴∠DAF=∠AFB-∠D=72°-36°=36°;(2)证明:∵∠EAF=∠FBC=∠D,∠AEF=∠AED,∴△EAF∽△EDA,∴AEDE=EF EA,∴AE2=EF·ED;(3)证明:如解图,过点A作BC的垂线,G为垂足,∵AB=AC,∴AG垂直平分BC,∴AG过圆心O,∵AD∥BC,∴AD⊥AG,∴AD是⊙O的切线.解图25. 【答案】解:(1)证明:∵C是的中点,∴=.∵AB是☉O的直径,且CF⊥AB,∴=,∴=,∴CD=BF.在△BFG和△CDG中,∵∴△BFG≌△CDG(AAS).(2)如图,过C作CH⊥AD,交AD延长线于H,连接AC,BC,∵=,∴∠HAC=∠BAC.∵CE⊥AB,∴CH=CE.∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH.∵=,∴CD=BC.又∵CH=CE,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=AD+DH=2+2=4,∴AB=4+2=6.∵AB是☉O的直径,∴∠ACB=90°,∴∠ACB=∠BEC,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴=,∴BC2=AB·BE=6×2=12,∴BF=BC=2.26. 【答案】(1)如图2,作AE ⊥BC ,垂足为E ,那么E 是BC 的中点.在Rt △OAE 中,OA =5,sin ∠O =35,所以AE =3. 在Rt △BAE 中,AB =AD =5-x ,AE =3,BE =1122BC y =, 由勾股定理,得2221(5)3()2x y -=+. 整理,得221016y x x =-+.定义域是0≤x <2.图2 图3(2)①如图3,将⊙A 沿直线OB 翻折后得到⊙A ′,AA ′=2AE =6.作A ′H ⊥OA ,垂足为H .在Rt △A ′AH 中,AA ′=6,sin ∠A ′=35,所以AH =185,A ′H =245. 若⊙A ′与直线OA 相切,那么半径等于A ′H .解方程2455x -=,得15x =. ②如图4,在Rt △A ′DH 中,222241814'()(5)25555A D x x x =+--=-+. 对于⊙A ′,R =5-x ;对于⊙D ,r =DO =x ;圆心距d =A ′D .如果两圆外切,由d =R +r ,得2142555x x x x -+=-+.解得145x =(如图4). 如果两圆内切,由d =|R -r |,得21425|5|5x x x x -+=--. 解得86515x =>.所以两圆不可能内切.图4 图5考点伸展当D为OA的中点时,⊙A′与以D为圆心、DA为半径的⊙D是什么位置关系?⊙A′和⊙D等圆,R=52,两圆不可能内切.当D为OA的中点时,DH=AH-AD=18511 5210-=.此时'5A D==<.因此两圆的半径和大于圆心距,此时两圆是相交的(如图5).。
2021年中考数学高频考点:《圆的综合》解答题专题练习(二)含答案
2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(二)1.在Rt△ABC中,∠ABC=90°,tan A=,AC=5,点M是射线AB上一点,以MC为半径的⊙M交直线AC于点D.(1)如图,当MC=AC时,求CD的长;(2)当点D在线段AC的延长线上时,设BM=x,四边形CBMD的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)如果直线MD与射线BC相交于点E,且△ECD与△EMC相似,求线段BM的长.2.如图,PA、PB为⊙O的切线,A、B为切点,点C为半圆弧的中点,连AC交PO于E 点.(1)求证:PB=PE;(2)若tan∠CPO=,求sin∠PAC的值.3.在梯形ABCD中,AD∥BC,AB⊥BC,AD=3,CD=5,cos C=(如图).M是边BC 上一个动点(不与点B、C重合),以点M为圆心,CM为半径作圆,⊙M与射线CD、射线MA分别相交于点E、F.(1)设CE=,求证:四边形AMCD是平行四边形;(2)联结EM,设∠FMB=∠EMC,求CE的长;(3)以点D为圆心,DA为半径作圆,⊙D与⊙M的公共弦恰好经过梯形的一个顶点,求此时⊙M的半径长.4.已知如图,⊙O的直径BC=4,==,点P是射线BD上的一个动点.(1)如图1,求BD的长;(2)如图1,若PB=8,连接PC,求证PC为⊙O的切线;(3)如图2,连接AP,点P在运动过程中,求AP+PB的最小值.5.如图,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PB=PA,射线PO交⊙O于C、D两点.(1)求证:PB是⊙O的切线;(2)求证:AC平分∠PAB;(3)若⊙O的直径是6,AB=2,则点D与△PAB的内切圆上各点之间距离的最大值为.6.国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,直线l经过点A,∠ABD =∠DAE=30°.试说明直线l与⊙O相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.(1)请你根据小明的思考,写出解决这一问题的过程;(2)图2中,若AD=,AB=4,求DC的长.7.如图,直线l1⊥l2,O为垂足,以O圆心,的半径作圆,交l1于点M,N,交l2于点P,Q.在⊙O上任取一点A,作△ABC,使∠A=90°,∠ACB=30°,顶点A,B,C按顺时针方向分布,点C落在射线ON上,且不在⊙O内.若△ABC的某一边所在直线与⊙O相切,我们称该边为⊙O的“相伴切边”.(1)如图1,CA为⊙O的“相伴切边”,CA平分∠OCB,求OC的长;(2)是否存在△ABC三边中两边都是⊙O的“相伴切边”的情形?若存在,请求出AC的长;若不存在,请说明理由.8.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC平分∠DAB,AC 与BD相交于点F,延长AC到点E,使CE=CF.(1)求证:BE是半圆O所在圆的切线;(2)若BC=AD=6,求⊙O的半径.9.如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,以AD为直径作⊙O交AB于点E,连接CE,且CB=CE.(1)求证:CE是⊙O的切线;(2)若CD=2,AB=4,求⊙O的半径.10.如图,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D.(1)判断△ABD的形状,并说明理由;(2)求点O到弦BD的距离.(3)求CD的长.11.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若,求弦AB的长;12.如图,在Rt△ABC中,∠ABC=90°.以AB为直径作⊙O交AC于点D,过点D作DE ⊥AB于点E,F为DE中点,连接AF并延长交BC于点G,连接DG.求证:(1)BG=CG;(2)DG是⊙O的切线.13.如图,直线AF与⊙O相切于点A,弦BC∥AF,连接BO并延长,交⊙O于点E,连接CE并延长,交AF于点D.(1)求证:CE∥OA;(2)若⊙O的半径R=13,BC=24,求DE的长.14.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O,交BC于E,过点B作∠CBD =∠A,过点C作CD⊥BD于D.(1)求证:BD是⊙O的切线;(2)若CD=2,BC=2,求⊙O的直径.15.如图,AB是⊙O的直径.四边形ABCD内接于⊙O,AD=CD,对角线AC与BD交于点E,在BD的延长线上取一点F,使DF=DE,连接AF.(1)求证:AF是⊙O的切线.(2)若AD=5,AC=8,求⊙O的半径.参考答案1.解:在Rt△ABC中,tan A=,AC=5,设∠A=α,则BC=3,AB=4=BM,sin A==sinα,cos A==cosα,(1)如图1,∵MC=MA=5,过点M作MN⊥CD于点N,∵MC=MD,则CN=CD,在Rt△AMN中,MN=AM sin A=(4+4)×=,则CD=2CN=2=2=;(2)如图1,设CD=2m,则CM2=BC2+MB2=9+x2,则MN2=CM2﹣m2=x2+9﹣m2,在Rt△AMN中,AN2+MN2=AM2,即(5+m)2+9+x2﹣m2=(4+x)2,解得m=(4x﹣9),则MN==(x+4);则S=CD•MN+×AM•BC=(8x2+39x﹣72);∵m=(4x﹣9)>0,∴x>;(3)如图2,过点M作MN⊥CD于点N,过点P作PD⊥CM于点P,设圆的半径为r,∵△ECD与△EMC相似,则∠ECD=∠EMC=∠ACB=α,在Rt△DPM中,DP=DM sin∠EMC=r sinα=r,MP=r cosα=r,则CP=r﹣MP=r﹣r=r,CD==r=2CN,∴MN==r,∵tan A==,解得r=3,则BM===6.2.(1)证明:连接OA,OC,∵OA=OC,∴∠OAC=∠OCA,∵点C为半圆弧的中点,∴∠COE=90°,∴∠OCA+∠OEC=90°,∵PA为⊙O的切线,∴∠PAO=90°,∴∠OAC+∠PAE=90°,∴∠PAE=∠OEC,∵∠OEC=∠AEP,∴∠PAE=∠AEP,∵PA、PB为⊙O的切线,∴PA=PE=PB;(2)解:∵tan∠CPO==,设OC=3k,OP=5k,∴OA=OC=3k,∴PA=PE=4k,过A作AH⊥PO于H,∴OP•AH=PA•OA,∴AH==k,∴OH==k,∵∠AHE=∠COE=90°,∠AEH=∠CEO,∴△AHE∽△COE,∴,∴OE=k,∴CE==k,∴sin∠PAC=sin∠CEO===.3.(1)证明:如图1中,连接EM,过点M作MG⊥CD于G,则EG=CG=,在Rt△CGM中,CM===3,∴AD=CM,∵AD∥CM,∴四边形AMCD是平行四边形.(2)解:如图2中,过点E作EH⊥BC于H,过点M作MT⊥EC于T.∵ME=MC,MT⊥EC,∴CT=ET,∴cos C==,设EC=6k,则CT=ET=3k,MC=ME=5k,在Rt△CEH中,EH=CE=k,CH=EC=k,∴MH=CM﹣CH=k,∴tan∠EMH=,∵∠FMB=∠EMC,∴tan∠FMB===,∴BM=,∴CM=BC﹣BM==5k,∴CE=6k=.(3)如图3﹣1中,当公共弦经过点A时,过点D作DP⊥BC于P,则四边形ABPD是矩形.∴AD=BP=3,在Rt△CDP中,cos C==,∵CD=5,∴PC=3,AB=PD=4,∴BC=3+3=6,设CM=AM=x,在Rt△ABM中,则有x2=42+(6﹣x)2,解得x=,∴⊙M的半径为.如图3﹣2中,当公共弦经过点D时,连接MD,MP,过点M作MN⊥AD于N.设CM=ME=MP=x,则DN=x﹣3,∵DM2=MN2+DN2=MP2﹣DP2,∴42+(x﹣3)2=x2﹣32,∴x=,综上所述,满足条件的⊙M的半径为或.4.解:(1)∵BC是直径,==,则、、均为60°的弧,则∠DBC=30°,连接OA交BD于点H,∵BC=4,则BO=CO=2,在Rt△BOH中,BH=BO cos∠DBC=2×=3,则BD=2BH=6;(2)在Rt△BCD中,BC=4,∠DBC=30°,则CD=CB=2,PD=PB﹣BD=8﹣6=2,在Rt△CDP中,PC2=CD2+PD2=4+(2)2=16,在△BCP中,BC2=(4)2=48,BP2=64,则PB2=CB2+PC2,故△BPC为直角三角形,故PC⊥CB,故PC为⊙O的切线;(3)过点A作AH⊥BC交BD于点P,在Rt△PBH中,∠DBC=30°,则PH=PB,即AP+PB=AP+PH=AH为最小,∵、均为60°的弧,则∠ABO=60°,而AO=BO,故△ABO为边长为2的等边三角形,则AH=AB sin60°=2×=3,即AP+PB的最小值为3.5.(1)证明:如图1中,连接OA,OB.∵PA是切线,∴PA⊥OA,∴∠PAO=90°,在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)证明:如图1中,设∠PAC=α.∵∠PAO=90°,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α,∵PA=PB,OA=OB,∴PO垂直平分线段AB,∴∠CAB=90°∠ACO=90°﹣(90°﹣α)=α,∴∠PAC=∠CAB,∴AC平分∠PAB.(3)解:如图2中,设AB交OP于点M.∵PA,PB是⊙O的切线,∴OP平分∠APB,∵AC平分∠PAB,∴点C是△PAB的内心,设△PAB的内切圆⊙C交PC于H,∵⊙O的直径为6,∴OA=3,∵OP垂直平分线AB,AB=2,∴AM=BM=,∴OM===2,∵OC=3,∴CH=CM=3﹣2=1,∵点D到⊙C上各点的最大距离为DH,∴最大距离DH=CD+CH=6+1=7.故答案为7.6.(1)证明:过A作直径AF,连接DF,如图2所示:∵AF是⊙O的直径,∴∠ADF=90°,∴∠AFD+∠FAD=90°,∵∠ABD=∠AFD,∠ABD=∠DAE,∴∠AFD=∠DAE,∴∠DAE+∠DAF=90°,即∠OAE=90°,∴OA⊥AE,∵点A是半径OA的外端,∴直线l与⊙O相切;(2)解:过点A作AG⊥BD,垂足为点G,∴∠AGB=∠AGD=90°,∵∠ABD=30°,∴∠AFD=30°,∴直径AF=2AD==BC,∵∠ABD=30°,AB=4,∴AG==2,BG=AG=2,∴DG===,∴BD=BG+DG=,∵BC是直径,∴∠BDC=90°,∴.7.解:(1)如图1,连接OA,则OA=,∵CA为⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠ACB=30°,CA平分∠OCB,∴∠OCA=∠ACB=30°,则在Rt△AOC中,OC=2OA=2;(2)存在.由题意可分三种情况,①当边AB,BC都是⊙O的“相伴切边”时,即OA⊥AB,∵∠BAC=90°,即AC⊥AB,∴O,A,C三点共线,又∵点C落在射线ON上,且不在⊙O内,∴点A只能在点M或点N处,如图2,当点A在点N处时,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC﹣AO=,当点A在点M处时,如图3,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC+AO=3,②当边AC,BC都是⊙O的“相伴切边”时,则OA⊥AC,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,如图4,设BC与⊙O相切于点D,连接OD,则OD⊥CD,设AB=x,则BC=2x,AC==x,∴OB=OA+AB=+x,∵∠BAC=∠BDO=90°,∠B=∠B,∴△ABC∽△DBO,∴,即,解得,x=2﹣或x=0(舍去),经检验,x=2﹣是所列方程的解.∴AC=x=2﹣3.③当边AC,AB都是⊙O的“相伴切边”时,∵AC是⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,∴AB不可能是⊙O的“相伴切边”,则AC,AB不能同时是⊙O的“相伴切边”;综上可得,AC的长是或3或2﹣3.8.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,∵CE=CF,∴BE=BF,∴∠E=∠BFE,∵AC平分∠DAB,∴∠DAF=∠BAF,∵∠DAF+∠AFD=90°,∴∠BAF+∠E=90°,∴BE是半圆O所在圆的切线;(2)解:∵∠DAF=∠BAF,∴=,∵BC=AD,∴=,∴==,∴∠CAB=30°,∴AB=2BC=12,∴⊙O的半径为6.9.(1)证明:如图,连接OE,DE,∵∠ACB=90°,∴∠A+∠B=90°,∵AD是⊙O的直径,∴∠AED=∠DEB=90°,∴∠DEC+∠CEB=90°,∵CE=BC,∴∠B=∠CEB,∴∠A=∠DEC,∵OE=OD,∴∠OED=∠ODE,∵∠A+∠ADE=90°,∴∠DEC+∠OED=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线;(2)解:在Rt△ABC中,∠ACB=90°,CD=2,AB=4,BC=CE,设⊙O的半径为r,则OD=OE=r,OC=r+2,AC=2r+2,∴AC2+BC2=AB2,∴(2r+2)2+BC2=(4)2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+BC2=(r+2)2,∴BC2=(r+2)2﹣r2,∴(2r+2)2+(r+2)2﹣r2=(4)2,解得r=3,或r=﹣6(舍去).∴⊙O的半径为3.10.解:(1)△ABD是等腰直角三角形,理由如下:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴,∴AD=BD,∴△ABD是等腰直角三角形;(2)过O作OE⊥DB于E,如图所示:则∠OEB=90°,∵AB=10cm,∴OB=AB=5(cm),由(1)得:△ABD是等腰直角三角形,∴∠ABD=45°,∴△OBE是等腰直角三角形,∴OE=OB=(cm),即点O到弦BD的距离为cm;(3)过B作BF⊥CD于F,如图所示:则∠BFC=∠BFD=90°,∵∠ACB=90°,∴BC===8(cm),∵∠BCD=45°,∴△BCF是等腰直角三角形,∴CF=BF=BC=4(cm),由(1)得:△ABD是等腰直角三角形,∴BD=AB=5(cm),∴DF===3,∴CD=CF+DF=4+3=7(cm).11.(1)证明:∵PG平分∠EPF,∴∠DPO=∠BPO,∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴PA=OA;(2)过点O作OH⊥AB于点H,如图,则AH=BH,在Rt△OPH中,tan∠OPH==,设OH=x,则PH=2x,由(1)可知PA=OA=10,∴AH=PH﹣PA=2x﹣10,∵AH2+OH2=OA2,∴(2x﹣10)2+x2=102解得x1=0(不合题意,舍去),x2=8,∴AH=6,∴AB=2AH=12.12.证明:(1)∵DE⊥AB,∴∠AED=∠ABC=90°,∴DE∥BC,∴△AEF∽△ABG,△ADF∽△ACG,∴,=,∴,∵F为DE中点,∴EF=DF,∴BG=CG;(2)连接OD,BD,OG,∵AB为⊙O的直径,∴AD⊥BD,∵AO=BO,BG=CG,∴OG∥AC,∴OG⊥BD,∴BF=DF,∴DG=BG,在△ODG与△OBG中,,∴△ODG≌△OBG(SSS),∴∠ODG=∠OBG=90°,∴DG是⊙O的切线.13.(1)证明:∵BE是⊙O的直径,∴∠BCE=90°,∵BC∥AF,∴∠CDF=∠ACE=90°,∵AF与⊙O相切于点A,∴∠OAF=90°,∴∠OAF=∠CDF,∴CE∥OA;(2)解:如图,作OH⊥CE于点H,由垂径定理知:CH=EH,∵OB=OE,∴OH是△ECB的中位线,∴OH=BC=24=12,在Rt△OEH中,根据勾股定理,得EH===5,∵OH⊥CE,∴∠OHD=90°,由(1)知:∠CDA=∠OAD=90°,∴四边形OADH是矩形,∴DH=OA=13,∴DE=DH﹣EH=13﹣5=8.14.解:(1)如图,连接AE,∵AB为直径,∴∠AEB=90°,∵△ABC是等腰三角形,AB=AC,∴∠BAE=BAC,∵∠CBD=∠BAC,∴∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBD=90°,∴∠ABD=90°,∴AB⊥BD,∵AB为直径,∴BD是⊙O的切线;(2)由(1)知:△ABC是等腰三角形,AE⊥BC,∴BE=CE=BC=,∵CD⊥BD,∴∠CDB=∠AEB=90°,∵∠CBD=∠BAE,∴△CBD∽△BAE,∴=,∴=,∴AB=3.∴⊙O的直径为3.15.解:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥EF,∠BAD+∠ABD=90°,又∵DF=DE,∴AF=AE,∴∠FAD=∠EAD.∴∠FAD=∠EAD=∠ACD=∠ABD,∴∠FAB=∠FAD+∠BAD=∠BAD+∠ABD=90°,∴AF是⊙O的切线.(2)如图,连接OD交AC于M,∵AD=CD,∴,∴OD⊥AC,AM=CM=AC=4,∴AD=CD=5,在Rt△DMC中,DM==3.设⊙O的半径为x,则OM=x﹣3,∵OM2+AM2=OA2,∴(x﹣3)2+42=x2,∴x=.⊙O的半径即OA=.。
2021年 中考数学 专题训练:与圆有关的性质(含答案)
2021 中考数学专题训练:与圆有关的性质一、选择题1. 如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°2. 已知⊙O的半径为5 cm,P是⊙O内一点,则OP的长可能是()A.4 cm B.5 cm C.6 cm D.7 cm3. 下列语句中不正确的有()①过圆上一点可以作圆中最长的弦无数条;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④在同圆或等圆中,优弧一定比劣弧长.A.1个B.2个C.3个D.4个4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A .30°B .40°C .50°D .60°6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87. 下列说法:①矩形的四个顶点在同一个圆上;②菱形的四个顶点在同一个圆上;③平行四边形的四个顶点在同一个圆上.其中正确的有( )链接听P37例3归纳总结 A .0个 B .1个 C .2个 D .3个8. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°9. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒10. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°二、填空题11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.︵13. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.14. 如图,AB为⊙O的直径,CD⊥AB.若AB=10,CD=8,则圆心O到弦CD 的距离为________.15. 如图所示,OB ,OC 是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.17. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题19.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥B C.20.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.21. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE2021 中考数学专题训练:与圆有关的性质-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】B[解析] ①②不正确.4. 【答案】A[解析]连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵=,∴∠CAB=∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】D6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B[解析] 矩形的两条对角线的交点到矩形的四个顶点的距离相等,故它的四个顶点在以对角线的交点为圆心、对角线长的一半为半径的圆上.8. 【答案】B9. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB =,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .10. 【答案】C二、填空题11.【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°. 14. 【答案】315. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.17. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.18. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A作直径AD,连接BD,则∠ABD=90°,∴∠C=∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题19. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.20. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π。
2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)(含答案)
2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)1.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2;以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3;以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中弧的长 .2.如图,△ABC 的内切圆⊙O 分别与三角形三边相切于点D 、E 、F ,若∠DFE =55°,则∠A = °.3.如图,在Rt △ABC 中,点D 是AB 上的一点,将Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 的对应点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,若AC =2BC =2,则阴影部分的面积是 .4.如图,以半圆的一条弦AN为对称轴,将AN弧折叠过来和直径MN交于点B,如果MB:BN =2:3,若MN=10,那么弦AN的长为.5.如图,PA与⊙O切于点A,PO的延长线交⊙O于点B,若⊙O的半径为3,∠APB=54°,则弧AB的长度为.6.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为(用含m、n的代数式表示).7.如图△ABC中,AC=BC=5,AB=6,以AB为直径的⊙O与AC交于点D,若E为的中点,则DE.8.在矩形ABCD中,AB=4,BC=6,若点P是矩形ABCD上一动点,要使得∠APB=60°,则AP的长为.9.如图,在⊙O中,,AB=3,则AC=.10.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号).11.如图,⊙O是等边△ABC的外接圆,其半径为3.图中阴影部分的面积是.12.如图所示,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为D,如果CD=2,那么AB 的长是.13.过三点A(3,3)、B(7,3)、C(5,6)的圆的圆心坐标为.14.如图,在扇形OAB中,∠AOB=90°,OA=1,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则线段AC的长等于.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分=.面积S阴影16.如图,在边长为的正八边形ABCDEFGH中,点P在CD上,则△PGH的面积为.17.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.18.如图,四边形ABCD内接于以AC为直径的⊙O,AD=,CD=2,BC=BA,AC与BD 相交于点F,将△ABF沿AB翻折,得到△ABG,连接CG交AB于E,则BE长为.19.如图,⊙O的半径为5,弦AB的长为5,C为⊙O内一动点,且△ACB=90°,则△ABC的周长的最大值为.20.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为.参考答案1.解:连接P1O1,P2O2,P3O3,P4Q4,…,如图所示:∵P1是⊙1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,P n O n垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO n=2n﹣1,∴=×2π•OO n=π×2n﹣1=2n﹣2π,∴n=2020时,=22020﹣2π=22018π,故答案为:22018π.2.解:连接OD,OE,如图所示:则∠ADO=∠AEO=90°;由圆周角定理知,∠DOE=2∠DFE=110°;∴∠A =360°﹣∠ADO ﹣∠AEO ﹣∠DOE =70°.故答案为:70.3.解:如图,连接CD 、CD ′,∵Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 与点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,∴∠DCD ′=∠ACA ′=∠BCB ′=90°,CB =CD =CB ′=CD ′=,AC =A ′C =2,∴∠BCD +∠DCB ′=∠B ′CD ′+∠DCB ′=90°,∴∠DCB =∠D ′CB ′,∴△DCB ≌△D ′CB ′(SAS ),由旋转可知:△ABC ≌△A ′CB ′,∴S △DCB =S △D ′CB ′,S △ABC =S △A ′CB ′,∴S △BCD +S △A ′CD ′=S △ABC∴S 阴影=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △BCD ﹣S △A ′CD ′=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣(S △BCD +S △A ′CD ′)=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △A ′CB ′=S 扇形ACA ′﹣S 扇形DCD ′=﹣=.故答案为.4.解:连接MA并延长至M',使AM'=AM,连接M'N,交半圆于D,连接AD,如图所示:∵MN是半圆的直径,∴∠MAN=90°,∴AN⊥AM,∵AM'=AM,∴M′N=MN=10,∵MB:BN=2:3,∴MB=4,BN=6,由折叠的性质得:AD=AB,BN=DN,∴DM'=BM=4,∵四边形AMND是圆内接四边形,∴∠M'AD=∠M'NM,∵∠M'=∠M',∴△M'AD∽△M'NM,∴=,∴M′A•M′M=M′D•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2﹣AN2,∴20=100﹣AN2,∴AN=4.故答案为:4.5.解:连接OA,∵PA与⊙O切于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APB=54°,∴∠AOB=∠APB+∠PAO=54°+90°=144°,∵⊙O的半径为3,∴弧AB的长度为=π.故答案为:π.6.解:如图,作DE⊥CA与E,DF⊥BC于F.∵AB是直径,∴∠ECF=∠CED=∠CFD=90°,∴四边形DECF是矩形,∵DC平分∠ACB,DE⊥CA,DF⊥CB,∴DE=DF,∴四边形DECF是正方形,∵∠DCA=∠DCB,∴=,∴AD=BD,∴Rt△ADE≌Rt△FDB(HL),∴AE=BF,∴CE+CF=AC+AE+CB﹣BF=AC+BC=m+n,∴CE=CF=DE=DF=(m+n),∴CD=(m+n),故答案为:(m+n).7.解:连接OC、OE、BD,OE与BD交于点F,如图所示:∵AC=BC=5,O为AB的中点,∴OA=OB=3,OC⊥AB,∴OC===4,∵AB为⊙O的直径,∴∠ADB=90°∴AD⊥BD,∴BD===,∴AD===,∵E为的中点,∴OE⊥BD,∴OE∥AD,∵OA=OB,∴OF为△ABD的中位线,∴DF=BF=BD=,OF=AD=,∴EF=OE﹣OF=3﹣=,∴DE===;故答案为:.8.解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=6,∠D=∠C=90°,∵点P是CD中点,∴CP=DP=2,∴AP===4,BP===4,∴AP=PB=AB,∴△APB是等边三角形,∴∠APB=60°,过点A,点P,点B作圆与AD交于点P′,与BC交于点P″,连接BP′,AP″,此时∠AP′B=∠APB=60°,∠AP″B=60°,∴AP′==4,AP″==8,故答案为:4或4或8.9.解:∵在⊙O中,,∴AC=AB=3,故答案为:310.解:∵五边形ABCDE是正五边形,∴五边形ABCDE为圆内接正五边形,∴====,∴∠BAE==108°,∠HAN=∠AEH=∠BAC=∠DAE=∠ABE=∠BAE=×108°=36°,∴∠EAH=∠BAN=36°+36°=72°,∴∠AHE=180°﹣72°﹣36°=72°,∠ANB=180°﹣72°﹣36°=72°,∴∠EAH=∠EHA=72°,∠ANH=∠AHN=72°,∴AE=HE,∠EAH=∠EHA=∠ANH=∠AHN,∴△AEH∽△AHN,∴=,∵五角星的边框总长为40cm,∴AH=AN=EN==4,HN=HE﹣NE=AE﹣4,∴=,整理得:(AE﹣2)2=20,∴AE=2+2(cm),故答案为:2+2.11.解:∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π,故答案为:3π.12.解:连接OA,∵半径OC⊥AB,∴AD=BD=AB,∵OC=5,CD=2,∴OE=3,在Rt△AOD中,AD===4,∴AB=2AD=8,故答案为8.13.解:如图,在平面直角坐标系中画出点A、B、C,连接AB、AC、BC,过C作CE⊥AB于E,设所求的圆的圆心为D,半径为r,连接AD∵A(3,3)、B(7,3)∴圆心D在直线x=5上∴D的横坐标为5∵C(5,6)∴CE=3∵CD=r∴DE=3﹣r在Rt△DAE中,由勾股定理得:AE2+DE2=AD2∴22+(3﹣r)2=r2解得r=∴点D的纵坐标为6﹣=∴D(5,)故答案为:(5,).14.解:连接OD,BC,AB,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴OB=BD=OD,∴△BOD是等边三角形,∴∠OBD=60°,即旋转角等于60°,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=OB=,故答案为:15.解:连接OC.∵AB⊥CD,∴=,CE=DE=,∴∠COB=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC∥BD,∴S△BDC =S△BOD,∴S阴=S扇形OBD,∵OD==2,∴S阴==,故答案为.16.解:作正八边形的外接圆O,则∠HGD=×360°=90°,∠FGD=×360°=45°,在正八边形ABCDEFGH中,CD∥HG,∴S△HGP =S△CDH,过F作FM⊥DG于M,过E作EN⊥DG于N,在Rt△GMF中,∠FGD=45°,GF=,∴GM=GF=1,同理,DN=1,∵MN=EF=,∴GD=1++1=2+,∴S△HGP =S△HGD=HG•GD=.故答案为:+1.17.解:过D作DE⊥AB交⊙O于E,连接CE交AB于P,连接OE,作OF⊥CE于F,如图所示:此时CP+PD=CE最小.,∴∠BOE=∠BOD=36°,∵∠AOC=96°,∴∠BOC=84°,∴∠COE=∠BOC+∠BOE=120°,∵OC=OE=6,∴∠OCE=∠OEC=30°,∵OF⊥CE,∴CF=EF,OF=OC=3,CF=OF=3,∴CE=2CF=6.即CP+PD的最小值为6;故答案为:6.18.解:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵AD=,CD=2,∴AC==,∵AB=BC,∴∠1=∠2,过F作FM⊥AD于M,FN⊥CD于N,∴FM=FN,∴====2,∴AF=AC=,∵将△ABF沿AB翻折,得到△ABG,∴∠GAE=∠CAE,∴==3,∵AG=AF=,∵∠BAG=∠BAC=45°,∴∠GAC=90°,∴CG==,∴EG=CG=,∴tan∠CGA==3,过A作AH⊥EG于H,∴HG=AG•cos∠AGH=×=,AH=AG•sin∠AGH=×=1,∴EH=EG﹣HG=,∴AE==,∵AB=AC=,∴BE=AB﹣AE=.故答案为:.19.解:如图,连接OA、OB,∵OA=OB=5,AB=5,∵52+52=(5)2∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠AOB=90°,∵△ACB=90°,即当点C与点O重合时,△ABC的周长最大,因为AB是定值,AO+BO是直径最大,则△ABC的周长的最大值为:10+5.故答案为:10+5.20.解:如图,连接OB,∵∠DOC=2∠ACD=90°.∴∠ACD=45°,∵∠ACB=75°,∴∠BCD=∠ACB﹣∠ACD=30°,∵OC=OD,∠DOC=90°,∴∠DCO=45°,∴∠BCO=∠DCO﹣∠BCD=15°,∵OB=OC,∴∠CBO=∠BCO=15°,∴∠BOC=150°,∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,∵OB=OD,∴△BOD是等边三角形,∴BD=OD=2.故答案为2.。
备战中考数学分点透练真题与圆有关的计算(解析版)
第二十二讲与圆有关的计算命题点1 扇形的相关计算类型一弧长的计算1.(2021•梧州)若扇形的半径为3,圆心角为60°,则此扇形的弧长是()A.πB.πC.πD.2π【答案】B【解答】解:∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故选:B.2.(2021•云南)如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是()A.B.πC.D.2π【答案】B【解答】解:连接OB、BD,如图:∵△ABC为等边三角形,∴∠C=60°,∴∠D=∠C=60°,∵OB=OD,∴△BOD是等边三角形,∴∠BOD=60°,∵半径OA=3,∴劣弧BD的长为=π,故选:B.3.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A.6π﹣6B.6π﹣9C.12π﹣9D.12π﹣18【答案】D【解答】解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∠AOB=120°,∴∠A=∠B=(180°﹣∠AOB)=30°,在Rt△AOC中,OC=OA=9米,AC==米,∴AB=2AC=米,又∵的长=米,∴走便民路比走观赏路少走()米,故选:D.4.(2021秋•沭阳县校级月考)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走米.【答案】12π﹣18)【解答】解:过O作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∠AOB=120°,∴∠A=∠B=(180°﹣∠AOB)=30°,在Rt△AOC中,OA=18米,∠A=30°,∴OC=OA=9(米),∴AC===9(米),∴AB=2AC=18(米),又∵的长==12π(米),∴走便民路比走观赏路少走(12π﹣18)米,故答案为:(12π﹣18).5.(2021•长春)如图是圆弧形状的铁轨示意图,半径OA的长度为200米,圆心角∠AOB =90°,则这段铁轨的长度为米.(铁轨的宽度忽略不计,结果保留π)【答案】100π【解答】解:圆弧长是:=100π(米).故答案是:100π.6.(2021•娄底)如图所示的扇形中,已知OA=20,AC=30,=40,则=.【答案】100【解答】解:设∠AOB=n°.由题意=40,∴nπ=360,∴==100,故答案为:100.7.(2021•兰州)如图,传送带的一个转动轮的半径为10cm,转动轮转n°,传送带上的物品A被传送6πcm,则n=.【答案】108【解答】解:∵物品A被传送的距离等于转动了n°的弧长,∴=6π,解得:n=108,故答案为:108.8.(2021•河南)如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为.【答案】【解答】解:如图,圆心为O,连接OA,OB,OC,OD.∵OA=OB=OD=5,∠BOC=2∠BAC=45°,∴的长==.故答案为:.9.(2021•金华)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB 折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与所在的圆相切于点B.①求∠APO′的度数.②求AP的长.(2)如图2,BO′与相交于点D,若点D为的中点,且PD∥OB,求的长.【答案】(1)①∠APO′=60°,②AP=6﹣2.(2)的=【解答】解:(1)①如图1中,∵BO′是⊙O的切线,∴∠OBO′=90°,由翻折的性质可知,∠OBP=∠PBO′=45°,∠OPB=∠BPO′,∵∠AOB=75°,∴∠OPB=∠BPO′=180°﹣75°﹣45°=60°,∴∠OPO′=120°,∴∠APO′=180°﹣∠OPO′=180°﹣120°=60°.②如图1中,过点B作BH⊥OA于H,在BH上取一点F,使得OF=FB,连接OF.∵∠BHO=90°,∴∠OBH=90°﹣∠BOH=15°,∵FO=FB,∴∠FOB=∠FBO=15°,∴∠OFH=∠FOB+∠FBO=30°,设OH=m,则HF=m,OF=FB=2m,∵OB2=OH2+BH2,∴62=m2+(m+2m)2,∴m=或﹣(舍弃),∴OH=,BH=,在Rt△PBH中,PH==,∴P A=OA﹣OH﹣PH=6﹣﹣=6﹣2.解法二:连接OO′交PB于T,则BP⊥′OO′,在Rt△OBT中,OT=OB×sin45°=3.在Rt△OTP中,OP==2,∴AP=OA﹣OP=6﹣2.(2)如图2中,连接AD,OD.∵=,∴AD=BD,∠AOD=∠BOD,由翻折的性质可知,∠OBP=∠PBD,∵PD∥OB,∴∠DPB=∠OBP,∴∠DPB=∠PBD,∴DP=DB=AD,∴∠DAP=∠APD=∠AOB,∵AO=OD=OB,AD=DB,∴△AOD≌△BOD,∴∠OBD=∠OAD=∠AOB=2∠BOD,∵OB=OD,∴∠OBD=∠ODB=2∠DOB,∴∠DOB=36°,∴∠AOB=72°,∴的长==.类型二扇形面积的计算.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)【答案】4π【解答】解:S扇形==4π,故答案为:4π.11.(2021•嘉峪关)如图,从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为dm2.【答案】2π【解答】解:连接AC,∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=4dm,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=2dm,∴阴影部分的面积是=2π(dm2).故答案为:2π.12.(2021•重庆)如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为.(结果保留π)【答案】π【解答】解:∵四边形ABCD是矩形,∴AC=BD=4,OA=OC=OB=OD,AB∥CD,∴OA=OC=2,∠ACD=∠CAB=36°,∴图中阴影部分的面积为:2×=π,故答案为:π.命题点2与扇形有关的阴影部分面积计算类型一直接和差法13.(2021•青海)如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.πm2B.πm2C.πm2D.πm2【答案】B【解答】解:大扇形的圆心角是90度,半径是5,所以面积==π(m2);小扇形的圆心角是180°﹣120°=60°,半径是1m,则面积==(m2),则小羊A在草地上的最大活动区域面积=π+=π(m2).故选:B.14.(2021•怀化)如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是.(结果保留π)【答案】π﹣【解答】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB==π﹣.故答案为:π﹣.15.(2021•广东)如图,等腰直角三角形ABC中,∠A=90°,BC=4.分别以点B、点C为圆心,线段BC长的一半为半径作圆弧,交AB、BC、AC于点D、E、F,则图中阴影部分的面积为.【答案】4﹣π【解答】解:等腰直角三角形ABC中,∠A=90°,BC=4,∴∠B=∠C=45°,∴AB=AC=BC=2∵BE=CE=BC=2,∴阴影部分的面积S=S△ABC﹣S扇形BDE﹣S扇形CEF=2﹣×2=4﹣π,故答案为4﹣π.16.(2021•宜昌)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为平方厘米.(圆周率用π表示)【答案】(2π﹣2)【解答】解:过A作AD⊥BC于D,∵AB=AC=BC=2厘米,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1厘米,AD=BD=厘米,∴△ABC的面积为BC•AD=(厘米2),S扇形BAC==π(厘米2),∴莱洛三角形的面积S=3×π﹣2×=(2π﹣2)厘米2,故答案为:(2π﹣2).类型二构造和差法17.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是.【答案】﹣【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.18.(2021•资阳)如图,在矩形ABCD中,AB=2cm,AD=cm以点B为圆心,AB长为半径画弧,交CD于点E,则图中阴影部分的面积为cm2.【答案】(﹣π)【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AD=BC=cm,∠C=∠ABC=90°,CD∥AB,在Rt△BCE中,∵AB=BE=2cm,BC=cm,∴EC==1cm,∴∠EBC=30°,∴∠ABE=∠BEC=60°,∴S阴=S矩形ABCD﹣S△BEC﹣S扇形AEB,=2﹣×1×﹣•π•22,=(﹣π)cm2.故答案为:(﹣π).类型三等积转化法19.(2021•泰安)若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为.【答案】4【解答】解:设AB交半圆于点D,连接CD.∵BC是直径,∴∠BDC=90°,即CD⊥AB;又∵△ABC为等腰直角三角形,∴CD垂直平分斜边AB,∴CD=BD=AD,∴=,∴S弓形BD=S弓形CD,∴S阴影=S Rt△ABC﹣S Rt△BCD;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴S Rt△ABC=2S Rt△BCD;又S Rt△ABC=×4×4=8,∴S阴影=4;故答案为:4.20.(2020•朝阳)如图,点A,B,C是⊙O上的点,连接AB,AC,BC,且∠ACB=15°,过点O作OD∥AB交⊙O于点D,连接AD,BD,已知⊙O半径为2,则图中阴影面积为.【答案】【解答】解:∵∠ACB=15°,∴∠AOB=30°,∵OD∥AB,∴S△ABD=S△ABO,∴S阴影=S扇形AOB=.故答案为:.类型四容斥原理法21.(2021•荆门)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为.【答案】2﹣【解答】解:连接PB、PC,作PF⊥BC于F,∵PB=PC=BC,∴△PBC为等边三角形,∴∠PBC=60°,∠PBA=30°,∴BF=PB•cos60°=PB=1,PF=PB•sin60°=,则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2=[﹣(﹣×2×)]×2=2﹣,故答案为:2﹣.命题点3圆切线与阴影部分求面积结合22.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2,∠BCD=60°,求图中阴影部分的面积.【答案】(1)CD与⊙B相切(2)【解答】解:(1)过点B作BF⊥CD,垂足为F,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB.在△ABD和△FBD中,,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与⊙B相切;(2)∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=AB·tan30°=2,∴阴影部分的面积=S△ABD﹣S扇形ABE==.命题点4圆锥、圆柱的相关计算23.(2021•聊城)用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为cm2.【答案】80π【解答】解:∵扇形铁片的弧长16πcm,∴圆锥的底面周长为16πcm,∴圆锥的底面半径==8(cm),由勾股定理得:圆锥的母线长==10(cm),∴扇形铁片的面积=×16π×10=80π(cm2)故答案为:80π.24.(2021•扬州)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为cm2.【答案】100π【解答】解:由题意得圆柱的底面直径为10cm,高为10cm,∴侧面积=10π×10=100π(cm2).故答案为:100π.25.(2021•呼和浩特)已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为.(用含π的代数式表示),圆心角为度.【答案】12π,216【解答】解:设底面圆的半径为rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,根据题意得2π×6=,解得n=216,即这个圆锥的侧面展开图的圆心角为216°.故答案为:12π,216.26.(2021•黔东南州)如图,要用一个扇形纸片围成一个无底盖的圆锥(接缝处忽略不计),若该圆锥的底面圆周长为20πcm,侧面积为240πcm2,则这个扇形的圆心角的度数是度.【答案】150【解答】解:设圆锥的母线长为lcm,扇形的圆心角为n°,∵圆锥的底面圆周长为20πcm,∴圆锥的侧面展开图扇形的弧长为20πcm,由题意得:×20π×l=240π,解得:l=24,则=20π,解得,n=150,即扇形的圆心角为150°,故答案为:150.27.(2021•广西)如图,从一块边长为2,∠A=120°的菱形铁片上剪出一个扇形,这个扇形在以A为圆心的圆上(阴影部分),且圆弧与BC,CD分别相切于点E,F,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是.【答案】【解答】解:连接AC、AE,如图,∵四边形ABCD为菱形,∴∠BAC=∠BAD=×120°=60°,AB=BC,∴△ABC为等边三角形,∵圆弧与BC相切于E,∴AE⊥BC,∴BE=CE=1,∴AE===,设圆锥的底面圆半径为r,根据题意得2πr=,解得r=,即圆锥的底面圆半径为.故答案为.28.(2021•邵阳)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【答案】(1)∠BAC=90°(2)S阴=(100﹣25π)cm2【解答】解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.命题点5圆与正多边形的相关计算29.(2021秋•柯桥区期中)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,OB长为半径作半圆,交AC于点D,则图中阴影部分的面积是()A.B.C.D.【答案】A【解答】解:连接OD.∵AC=4,AB=2,∴AC=2AB,∵∠ABC=90°,∴∠C=30°,∴∠DOB=2∠C=60°,∵BC=AB=2,∴OC=OD=OB=,∴S阴=S△ACB﹣S△COD﹣S扇形ODB=×2×2﹣××﹣=2﹣﹣=﹣.故选:A.30.(2021•贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°【答案】A【解答】解:正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°,故选:A.31.(2021•成都)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【答案】D【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D.32.(2021•山西)如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得,连接AC,AE,则图中阴影部分的面积为()A.2πB.4πC.D.【答案】A【解答】解:∵正六边形ABCDEF的边长为2,∴AB=BC=2,∠ABC=∠BAF==120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=(180°﹣∠ABC)=×(180°﹣120°)=30°,过B作BH⊥AC于H,∴AH=CH,BH=AB=×2=1,在Rt△ABH中,AH===,∴AC=2,同理可证,∠EAF=30°,∴∠CAE=∠BAF﹣∠BAC﹣∠EAF=120°﹣30°﹣30°=60°,∴S扇形CAE==2π,∴图中阴影部分的面积为2π,故选:A.33.(2021•绥化)边长为4cm的正六边形,它的外接圆与内切圆半径的比值是.【答案】【解答】解:连接OA,OB,作OG⊥AB于点G,∵正六边形的边长为4cm,∴正六边形的外接圆的半径4cm,内切圆的半径是正六边形的边心距,因而是GO=×4=2,因而正六边形的外接圆的半径与内切圆的半径之比为=.故答案为:.34.(2021•大庆)如图,作⊙O的任意一条直径FC,分别以F、C为圆心,以FO的长为半径作弧,与⊙O相交于点E、A和D、B,顺次连接AB、BC、CD、DE、EF、F A,得到六边形ABCDEF,则⊙O的面积与阴影区域的面积的比值为.【答案】【解答】解:连接EB,AD,设⊙O的半径为r,⊙O的面积S=πr2,弓形EF,AF的面积与弓形EO,AO的面积相等,弓形CD,BC的面积与弓形OD,OB的面积相等,∴图中阴影部分的面积=S△EDO+S△ABO,∵OE=OD=AO=OB=OF=OC=r,∴△EDO、△AOB是正三角形,∴阴影部分的面积=×r×r×2=r2,∴⊙O的面积与阴影区域的面积的比值为,故答案为:.35.(2021•河北)如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11延长线于点P.(1)通过计算比较直径和劣弧长度哪个更长;(2)连接A7A11,则A7A11和P A1有什么特殊位置关系?请简要说明理由;(3)求切线长P A7的值.【答案】(1)比直径长(2)P A1⊥A7A11(3)P A7=A1A7•tan60°=12【解答】解:(1)由题意,∠A7OA11=120°,∴的长==4π>12,∴比直径长.(2)结论:P A1⊥A7A11.理由:连接A1A7,A7A11,OA11.∵A1A7是⊙O的直径,∴∠A7A11A1=90°,∴P A1⊥A7A11.(3)∵P A7是⊙O的切线,∴P A7⊥A1A7,∴∠P A7A1=90°,∵∠P A1A7=60°,A1A7=12,∴P A7=A1A7•tan60°=12.。
2021年数学中考复习专题之圆的考察:垂径定理的运用(二)
2021年九年级数学中考复习专题之圆的考察:垂径定理的运用(二)一・选择题1.为了测重一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:C. 8cmD. 6cm2.已知水平放責的圆柱形排水管道,管道截面半径是1力,若水面高0.2/77.则排水管道截面的水面宽度为()A.0.6EB. 0.8/77C. 1・2力D・1.6E3.如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2、MO交圆于F, EM=6、则圆的半径为()Q 1 ∩A. 4 B・2√2C•旨D・—4.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面的宽为8cm、水面最深的地方高度为2cm、则该输水管的半径为()5. 某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(C )O 直径)为IOs,弧S3的 度数约为90° ,则弓形铁片力09 (阴影部分)的面积约为()6. 我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是"等宽曲 线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图D , 它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧, 三段圆弧围成的曲边三角形・图2是等宽的勒洛三角形和圆形滚木的截面图.① 勒洛三角形是中心对称图形;② 图】中,点力到衣上任意一点的距离都相等;③ 图2中,勒洛三角形的周长与圆的周长相等;④ 使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动.上述结论中,所有正确结论的序号是()7. “圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?刀此问题即:“如图所(9∙A. 3cmB. 5cmC. 6cmD. 8 cmB. D. (25π -25) CnT-⅞) CnrA.①②B.②③C.②④D.③④B. 20 寸C. 26 寸D. 28 寸示,CQ 垂直平分弦SS CD=I ×r, /4—10寸,求圆的直径刀(1尺=10寸)根据题 意直径长为()9・如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CQ 为8m 、水面宽S3为8力,则 拱桥的半径OO 为()10.《九章算术》是我国古代著名数学碁作,书中记载:“今有圆材,埋在壁中,不知大 小以锯锯之,深一寸,锯道长一尺,问径几何? ”用数学语言可表述为:“如图,CD 为G )O 的直径,弦S3丄QU 于F, ED='寸,M=IO 寸,求直径Q?的长・刀则CD墙体A. 10 寸B. 20 寸C. 13 寸D. 26 寸8. 一条排水管的截面如图所示,已知排水管的半径OA=Im 9水面宽S3=】.2力,某天下 雨后,水管水面上升了 1・4E ,则此时排水管水面宽为(B. 1.4/77C. 1.6力D. 1.8 力C ・ 6/77 D. 8mCA. AmB. Sm CA. 13 寸二•埴空题H.如图,在残破的圆形工件上量得一条弦BC= ]6,缸的中点Q到30的距离ED=A,则这个圆形工件的半径是_______ ・12._________________ 如图是水平放責的水管截面示意图,已知水管的半径为50CΛT7,水面宽AB=QOCm I 则水深CQ约为cm.13.排水管的截面如图,水面宽S3=86T7,圆心O到水面的距离OC=3dm、则排水管14.(1)小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是 _______ .(2)如图,G)O是MBC的内切圆,与边3C G4,力3的切点分别为Q, E、F,若Z/1 = 70° ,则厶 BOC= _______ ,厶 EDF= _________ ・(3)边长为4的等边三角形内切圆半径和外接圆半径分别是_________ •(4)等腰三角形力30外接圆的半径是5,底边5C=4,则ASSC的面积为_______________ .15.如图,OO是一个油罐的截面图.已知OO的直径为5E,油的最大深度CD=Am(CD丄力3),则油面宽度S3为_______ m.三.解答题16.如图,破残的圆形轮片上,弦的垂直平分线交弧于C交弦力3于O求作此残片所在的圆(不写作法,保留作图痕迹)・17・如图,有一座圆弧形拱桥,桥下水面宽度/W为12/77,拱高OQ为4力・(1)求拱桥的半径;(2)有一艘宽为5〃的货船,月占舱顶部为长方形,并高出水面3.4/77,则此货船是否能顺利通过此圆弧形拱桥,并说明理由;18.—辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.19. 如图是一个隧道的横截面,它的形状是以点。
圆的有关性质(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)圆的有关性质(优选真题60道)一.选择题(共23小题)1.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°【分析】利用圆周角定理求得∠BOC的度数,然后利用三角形外角性质及等边对等角求得∠BPC的范围,继而得出答案.【解答】解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,=20°,∴∠OBC=∠OCB=180°−140°2∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.【点评】本题考查圆与三角形外角性质的综合应用,结合已知条件求得∠BPC的范围是解题的关键.2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°【分析】利用圆内接四边形的性质及圆周角定理求得∠BOD的度数,再结合已知条件求得∠COD的度数,然后利用圆周角定理求得∠CBD的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∠COD=25°,∴∠CBD=12故选:A.【点评】本题考查圆内接四边形性质及圆周角定理,结合已知条件求得∠BOD的度数是解题的关键.3.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB =2∠C ,∠C =55°,∴∠AOB =110°,故选:D .【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.4.(2023•广东)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A .20°B .40°C .50°D .80°【分析】由AB 是⊙O 的直径,得∠ACB =90°,而∠BAC =50°,即得∠ABC =40°,故∠D =∠ABC =40°,【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC+∠ABC =90°,∵∠BAC =50°,∴∠ABC =40°,∵AĈ=AC ̂, ∴∠D =∠ABC =40°,故选:B .【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.5.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到AD =372,再利用勾股定理列方程求解,即可得到答案. 【解答】解:由题意可知,AB =37m ,CD =7m ,设主桥拱半径为Rm ,∴OD =OC ﹣CD =(R ﹣7)m ,∵OC 是半径,OC ⊥AB ,∴AD =BD =12AB =372m ,在RtADO 中,AD2+OD2=OA2,∴(372)2+(R ﹣7)2=R2, 解得R =156556≈28.故选:B .【点评】本题主要考查垂径定理的应用,涉及勾股定理,解题的关键是用勾股定理列出关于R 的方程解决问题.6.(2023•广元)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是( )A .56°B .33°C .28°D .23°【分析】先由平角定义求得∠AOD =56°,再利用圆周角定理可求∠ACD .【解答】解:∵∠BOD =124°,∴∠AOD =180°﹣124°=56°,∴∠ACD =12∠AOD =28°,【点评】本题主要考查的是圆周角定理的应用,利用平角定义求得∠AOD =56°是解决本题的关键.7.(2023•温州)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =√3,则∠CAO 的度数与BC 的长分别为( )A .10°,1B .10°,√2C .15°,1D .15°,√2【分析】由平行线的性质,圆周角定理,垂直的定义,推出∠AOB =∠COD =90°,∠CAD =∠BDA =45°,求出∠BOC =60°,得到△BOC 是等边三角形,得到BC =OB ,由等腰三角形的性质求出圆的半径长,求出∠OAD 的度数,即可得到BC 的长,∠CAO 的度数.【解答】解:∵BC ∥AD ,∴∠DBC =∠ADB ,∴AB̂=CD ̂, ∴∠AOB =∠COD ,∠CAD =∠∵DB ⊥AC ,∴∠AED =90°,∴∠CAD =∠BDA =45°,∴∠AOB =2∠ADB =90°,∠COD =2∠CAD =90°,∵∠AOD =120°,∴∠BOC =360°﹣90°﹣90°﹣120°=60°,∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB ,∵OA =OD ,∠AOD =120°,∴∠OAD =∠ODA =30°,∴AD =√3OA =√3,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.【点评】本题考查圆周角定理,平行线的性质,等边三角形的判定和性质,等腰三角形的性质,关键是由圆周角定理推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,证明△OBC是等边三角形.8.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40°B.50°C.60°D.70°【分析】由圆周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性质可求解.【解答】解:∵BD经过圆心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故选:B.【点评】本题主要考查圆周角定理,直角三角形的性质,掌握圆周角定理是解题的关键.9.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A .5B .4C .3D .2【分析】根据垂径定理得OB ⊥AC ,在根据勾股定理得OA =√AD 2+OD 2=√82+62=10,即可求出答案.【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =√AD 2+OD 2=√82+62=10,∴OB =10,∴BD =10﹣6=4.故选:B .【点评】本题考查了垂径定理和勾股定理,由垂径定理得OB ⊥AC 是解题的关键.10.(2023•枣庄)如图,在⊙O 中,弦AB ,CD 相交于点P .若∠A =48°,∠APD =80°,则∠B 的度数为( )A .32°B .42°C .48°D .52°【分析】根据外角∠APD ,求出∠C ,由同弧所对圆周角相等即可求出∠B .【解答】解:∵∠A =48°,∠APD =80°,∴∠C =80°﹣48°=32°,∵AD̂=AD ̂, ∴∠B =∠C =32°.故选:A .【点评】本题考查了圆周角的性质的应用,三角形外角的性质应用是解题关键.11.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC =()A.23°B.24°C.25°D.26°【分析】连接OC,根据圆周角定理可求解∠AOC的度数,结合垂直的定义可求解∠BOC 的度数,再利用圆周角定理可求解.【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=1∠BOC=26°,2故选:D.【点评】本题主要考查圆周角定理,掌握圆周角定理是解题的关键.12.(2023•湖北)如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC =70°,则∠ADC=()A.70°B.60°C.50°D.40°【分析】先根据外角性质得∠BAC=∠BPC﹣∠C=50°=∠BDC,,再由AB是⊙O的直径得∠ADB=90°即可求得∠ADC.【解答】解:∵∠C=20°,∠BPC=70°,∴∠BAC=∠BPC﹣∠C=50°=∠BDC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB﹣∠BDC=40°,故选:D.【点评】本题主要考查了三角形的外角性质以及直径所对的圆周角是直角,熟练掌握各知识点是解决本题的关键.13.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2√3B.3√2C.2√5D.√5【分析】根据圆周角定理及推论解答即可.【解答】解:方法一:连接CO并延长CO交⊙O于点E,连接AE,∵OA=OC,∴∠OAC=∠OCA,∵∠ACD=∠CAB,∴∠ACD=∠ACO,∴AE=AD=2,∵CE是直径,∴∠EAC=90°,在Rt△EAC中,AE=2,AC=4,∴EC=√22+42=2√5,∴⊙O 的半径为√5.方法二:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠ACD =∠CAB ,∴AD̂=BC ̂, ∴AD =BC =2,在Rt △ABC 中,AB =√AC 2+BC 2=2√5,∴圆O 的半径为√5.故选:D .【点评】本题主要考查了圆周角定理及推论,熟练掌握这些性质定理是解决本题的关键.14.(2022•贵阳)如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )A .5B .5√2C .5√3D .5√5【分析】解法一:根据题意和等边三角形的判定,可以得到BE 的长.解法二:先根据直径所对的圆周角是90°,然后根据直角三角形的性质和直角三角形中30°角所对的直角边是斜边的一半,可以求得BE的长.【解答】解:解法一:连接OE,BD=5,由已知可得,OE=OB=12∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.解法二:由题意可得,BD为⊙O的直径,∴∠BED=90°,∵∠ABC=60°,∴∠EDB=30°,∵BD=10,∴BE=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE 的形状.15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是()A.40°B.45°C.50°D.55°【分析】根据直径所对的圆周角是直角得到∠ABC=90°,进而求出∠CAB,根据圆周角定理解答即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,∵∠ACB=40°,∴∠CAB=90°﹣40°=50°,由圆周角定理得:∠BPC=∠CAB=50°,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F ̂上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()是劣弧DEA.115°B.118°C.120°D.125°【分析】根据圆的内接四边形对角互补及等边△ABC的每一个内角是60°,求出∠EFD=120°.【解答】解:四边形EFDA是⊙O内接四边形,∴∠EFD+∠A=180°,∵等边△ABC的顶点A在⊙O上,∴∠A=60°,∴∠EFD=120°,故选:C.【点评】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.18.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36√3B.24√3C.18√3D.72√3【分析】根据AB=12,BE=3,求出OE=3,OC=6,并利用勾股定理求出EC,根据垂径定理求出CD,即可求出四边形的面积.【解答】解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=√OC2−OE2=√36−9=3√3,∴CD=2CE=6√3,∴四边形ACBD的面积=12AB⋅CD=12×12×6√3=36√3.故选:A.【点评】本题考查了垂径定理,解题的关键是熟练运用定理.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.19.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8/分C.1.2厘米/分D.1.4厘米/分【分析】连接OA,过点O作OD⊥AB于D,由垂径定理求出AD的长,再由勾股定理求出OD的长,然后计算出太阳在海平线以下部分的高度,即可求解.【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=12AB=8(厘米),∵OA=10厘米,∴OD=√OA2−AD2=√102−82=6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.【点评】本题考查的是垂径定理的运用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.52C.3D.√10【分析】当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可.【解答】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A为圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=√32+42=5,AM=AB=3,∴CM=5﹣3=2,故选:A.【点评】本题主要考查圆的性质,关键是要考虑到点M在以A为圆心,3为半径的圆上.21.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【分析】由圆内接四边形的性质得∠D度数为60°,再由∠APC为△PCD的外角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.22.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°【分析】根据圆内接四边形的性质得到∠BAD+∠BCD=180°,根据圆周角定理得到∠BOD=2∠BAD,根据菱形的性质得到∠BOD=∠BCD,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BAD+∠BCD =180°,由圆周角定理得:∠BOD =2∠BAD ,∵四边形OBCD 为菱形,∴∠BOD =∠BCD ,∴∠BAD+2∠BAD =180°,解得:∠BAD =60°,故选:B .【点评】本题考查的是圆内接四边形的性质、圆周角定理、菱形的性质,掌握圆内接四边形的对角互补是解题的关键.23.(2021•眉山)如图,在以AB 为直径的⊙O 中,点C 为圆上的一点,BĈ=3AC ̂,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°【分析】由圆周角定理可求∠ACB =90°,由弧的关系得出角的关系,进而可求∠ABC =22.5°,∠CAB =67.5CAH =∠ACE =22.5°,即可求解.【解答】解:∵AB 是直径,∴∠ACB =90°,∴∠ABC+∠CAB =90°,∵BĈ=3AC ̂, ∴∠CAB =3∠ABC ,∴∠ABC =22.5°,∠CAB =67.5°,∵CD ⊥AB ,∴∠ACE =22.5°,∵点H 是AG 的中点,∠ACB =90°,∴AH =CH =HG ,∴∠CAH =∠ACE =22.5°,∵∠CAF =∠CBF ,∴∠CBF =22.5°,故选:C .【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB 的度数是本题的关键.二.填空题(共25小题)24.(2023•长沙)如图,点A ,B ,C 在半径为2的⊙O 上,∠ACB =60°,OD ⊥AB ,垂足为E ,交⊙O 于点D ,连接OA ,则OE 的长度为 .【分析】连接OB ,利用圆周角定理及垂径定理易得∠AOD =60°,则∠OAE =30°,结合已知条件,利用直角三角形中30°角对的直角边等于斜边的一半即可求得答案.【解答】解:如图,连接OB ,∵∠ACB =60°,∴∠AOB =2∠ACB =120°,∵OD ⊥AB ,∴AD̂=BD ̂,∠OEA =90°, ∴∠AOD =∠BOD =12∠AOB =60°,∴∠OAE =90°﹣60°=30°,∴OE =12OA =12×2=1,故答案为:1.【点评】本题考查圆与直角三角形性质的综合应用,结合已知条件求得∠AOD =60°是解题的关键.25.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=°.【分析】先根据直径所对的圆周角是直角可得∠ACB=90°,再利用圆周角定理可得∠ADC=∠ABC=20°,然后利用直角三角形的两个锐角互余可得∠BAC=70°,从而利用角平分线的定义进行计算,即可解答.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ADC=20°,∴∠ADC=∠ABC=20°,∴∠BAC=90°﹣∠ABC=70°,∵AD平分∠BAC,∠BAC=35°,∴∠BAD=12故答案为:35.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.26.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.【分析】连接OA ,设⊙O 的半径是r 寸,由垂径定理得到AE =12AB =5寸,由勾股定理得到r2=(r ﹣1)2+52,求出r ,即可得到圆的直径长.【解答】解:连接OA ,设⊙O 的半径是r 寸,∵直径CD ⊥AB ,∴AE =12AB =12×10=5寸,∵CE =1寸,∴OE =(r ﹣1)寸,∵OA2=OE2+AE2,∴r2=(r ﹣1)2+52,∴r =13,∴直径CD 的长度为2r =26寸.故答案为:26.【点评】本题考查垂径定理的应用,勾股定理的应用,关键是连接OA 构造直角三角形,应用垂径定理,勾股定理列出关于圆半径的方程.27.(2023•郴州)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器 台.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半,得该圆周角所对的弧所对的圆心角是110°,则共需安装360°÷110°=3311≈4台.【解答】解:∵∠P=55°,∴∠P所对弧所对的圆心角是110°,,∵360°÷110°=3311∴最少需要在圆形边缘上共安装这样的监视器4台.故答案为:4.【点评】此题考查了要圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意把实际问题转化为数学问题,能够把数学和生活联系起来.28.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.【分析】由圆内接四边形的性质:圆内接四边形的对角互补,即可得到答案.【解答】解:∵四边形ABCD内接于圆O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案为:80°.【点评】本题考查圆内接四边形的性质,关键是掌握圆内接四边形的性质.29.(2023•南充)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【分析】根据垂径定理得OM⊥AC,根据圆周角定理得∠C=90°,根据勾股定理得AB=√122+52=13,BC=2.5,OD∥BC,所以OD⊥AC,MD=OM﹣OD=6.5﹣2.5=4.根据三角形中位线定理得OD=12【解答】解:∵点M是弧AC的中点,∴OM⊥AC,∵AB是⊙O的直径,∴∠C=90°,∵AC=12,BC=5,∴AB=√122+52=13,∴OM=6.5,∵点D是弦AC的中点,∴OD=1BC=2.5,OD∥BC,2∴OD⊥AC,∴O、D、M三点共线,∴MD=OM﹣OD=6.5﹣2.5=4.故答案为:4.【点评】本题考查了垂径定理,圆周角定理,勾股定理,三角形中位线定理,熟练掌握和运用这些定理是解题的关键.30.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC 的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB =90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.【点评】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.31.(2022•上海)如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为 .(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB ,过点O 作OD ⊥AB 于D ,∵OD ⊥AB ,OD 过圆心,AB 是弦,∴AD =BD =12AB =12(AC+BC )=12×(11+21)=16, ∴CD =BC ﹣BD =21﹣16=5,在Rt △COD 中,OD2=OC2﹣CD2=132﹣52=144,在Rt △BOD 中,OB2=OD2+BD2=144+256=400,∴S ⊙O =π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB =12cm ,BC =5cm ,则圆形镜面的半径为 .【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),所以圆形镜面的半径为13cm,2cm.故答案为:132【点评】本题考查了圆周角定理和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.33.(2022•阿坝州)如图,点A,B C在⊙O上,若∠ACB=30°,则∠AOB的大小为.【分析】根据圆周角定理即可得出答案.∠AOB,∠ACB=30°,【解答】解:∵∠ACB=12∴∠AOB=2∠ACB=2×30°=60°.故答案为:60°.【点评】本题主要考查了圆周角定理,熟练掌握圆周角定理是解题的关键.34.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O ̂所对的圆周角,则∠APD的度数是.于点D.若∠APD是AD【分析】由垂径定理得出AD̂=BD ̂,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =12∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴AD̂=BD ̂, ∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =12∠AOB =60°,∴∠APD =12∠AOD =12×60°=30°,故答案为:30°.【点评】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,35.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为 厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC ⊥AB ,AC =12AB =10(厘米),设镜面半径为x 厘米,由题意可得:x2=102+(x ﹣2)2,∴x =26,∴镜面半径为26厘米,故答案为:26.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,由勾股定理可求解.36.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是 .【分析】根据已知,列出关于α,β的方程组,可解得α,β的度数,即可求出答案.【解答】解:根据题意得:{αβ=0.6α+=360°,解得{α=135°β=225°, ∴β﹣α=225°﹣135°=90°,故答案为:90°.【点评】本题考查圆心角,解题的关键是根据周角为360°和已知,列出方程组.37.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为 cm (玻璃瓶厚度忽略不计).【分析】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=1AD2=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),AD=6(cm),由垂径定理得:AM=DM=12在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.38.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2√3,所以A(﹣2√3,0),B (0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∵∠ABO=60°,AB=2,∴OB=12∴OA=√3OB=2√3,∴A(﹣2√3,0),B(0,2),∴D点坐标为(−√3,1).故答案为(−√3,1).【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的90°的圆周角所对的弦是直径.也考查了坐标与图形性质.39.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O 的半径为cm.【分析】连接OC,证明△AOC是等边三角形,可得结论.【解答】解:如图,连接OC.∵∠AOC=2∠ADC,∠ADC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=5(cm),∴⊙O的半径为5cm.故答案为:5.【点评】本题考查圆周角定理,等边三角形的判定和性质等知识,解题的关键是证明△AOC是等边三角形.40.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B 在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【分析】(Ⅰ)利用勾股定理求解即可.(Ⅱ)取BC与网格线的交点D,连接OD延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC 交BE的延长线于F,连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC=√22+12=√5.故答案为:√5.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE 交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BFA的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△FAP≌△BAC,则点P即为所求.【点评】本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.41.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为.【分析】延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小.【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.∵CD⊥OB,∴∠DCB=90°,∵∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO,∴CDAO =BCBO,∴CD4=36,∴CD=2,在Rt△CDE中,DE=√CD2+CE2=√22+62=2√10,∴PC+PD的最小值为2√10.故答案为:2√10.【点评】本题考查圆周角定理,垂径定理,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.42.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是CD̂的中点,则∠ABE=.【分析】由∠ABC=90°,可得CD是⊙O的直径,由点B是CD̂的中点以及三角形的内角和,可得∠BDC=∠BCD=45°,利用三角形的内角和求出∠ACB,再根据角的和差关系求出∠DCE,由圆周角定理可得∠ABE =∠DCE得出答案.【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【点评】本题考查圆周角定理,弦、弧、圆心角之间的关系以及三角形内角和定理,掌握圆周角定理和推论是正确计算的前提.43.(2021•成都)如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .【分析】设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,先求出A 、C 坐标,得到OA 、OC 长度,可得∠CAO =30°,Rt △AOD 中求出AD 长度,从而根据垂径定理可得答案.【解答】解:设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,如图:在y =√33x +2√33中,令x =0得y =2√33, ∴C(0,2√33),OC =2√33, 在y =√33x +2√33中令y =0得√33x +2√33=0,解得x =﹣2,∴A(﹣2,0),OA =2,Rt △AOC 中,tan ∠CAO =OC OA =2√332=√33,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×√3=√3,2∵OD⊥AB,∴AD=BD=√3,∴AB=2√3,故答案为:2√3.得到【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=OCOA∠CAO=30°.44.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.【点评】本题考查圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.45.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC 的长为.【分析】连接OA,由AB⊥CD,设OC=5x,OM=3x,根据CD=10可得OC=5,OM=3,根据垂径定理得到AM=4,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解答】解:连接OA,∵OM:OC=3:5,设OC=5x,OM=3x,则OD=OC=5x,∵CD=10,∴OM=3,OA=OC=5,∵AB⊥CD,AB,∴AM=BM=12在Rt△OAM中,OA=5,AM=√OA2−OM2=√52−32=4,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=√AM2+CM2=√42+82=4√5;当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=√AM2+MC2=√42+22=2√5.综上所述,AC的长为4√5或2√5.故答案为:4√5或2√5.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.46.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB =6.4cm,很快求得圆形瓦片所在圆的半径为cm.【分析】先根据垂径定理的推论得到CD 过圆心,AD =BD =3.2cm ,设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,利用勾股定理得到(R ﹣1.6)2+3.22=R2,然后解方程即可.【解答】解:∵C 点是AB̂的中点,CD ⊥AB , ∴CD 过圆心,AD =BD =12AB =12×6.4=3.2(cm ),设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,在Rt △OAD 中,(R ﹣1.6)2+3.22=R2,解得R =4(cm ),所以圆形瓦片所在圆的半径为4cm .故答案为4.【点评】本题考查了垂径定理的应用:利用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.47.(2021•德阳)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 .【分析】如图,BC 为⊙O 的弦,OB =OC =2,证明△OBC 为等边三角形得到∠BOC =60°,则根据圆周角定理得到∠BAC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形,易得CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH ⊥BC ,所以BH =CH =1,OH =√3,则AH =2+√3,然后写出h 的范围.【解答】解:如图,BC 为⊙O 的弦,OB =OC =2,∵BC =2,∴OB =OC =BC ,∴△OBC 为等边三角形,∴∠BOC =60°,∴∠BAC =12∠BOC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,∴当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形, 在Rt △BCD 中,∵∠D =∠BAC =30°,∴CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大, 延长AO 交BC 于H ,如图,∵A 点为DÊ的中点, ∴AB̂=AC ̂, ∴AH ⊥BC ,∴BH =CH =1,∴OH =√3BH =√3,∴AH =OA+OH =2+√3,∴h 的范围为2√3<h ≤2+√3.故答案为2√3<h ≤2+√3.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,√3取1.73)。
2021年江苏省各市中考数学试题真题汇编——专题8圆
2021年江苏省中考数学试题分类——专题8圆一.选择题(共5小题)1.(2021•镇江)如图,∠BAC =36°,点O 在边AB 上,⊙O 与边AC 相切于点D ,交边AB 于点E ,F ,连接FD ,则∠AFD 等于( )A .27°B .29°C .35°D .37°2.(2021•镇江)设圆锥的底面圆半径为r ,圆锥的母线长为l ,满足2r +l =6,这样的圆锥的侧面积( )A .有最大值94πB .有最小值94πC .有最大值92πD .有最小值92π 3.(2021•徐州)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )A .27倍B .14倍C .9倍D .3倍4.(2021•常州)如图,BC 是⊙O 的直径,AB 是⊙O 的弦,若∠AOC =60°,则∠OAB 的度数是( )A .20°B .25°C .30°D .35°5.(2021•连云港)如图,正方形ABCD 内接于⊙O ,线段MN 在对角线BD 上运动,若⊙O 的面积为2π,MN =1,则△AMN 周长的最小值是( )A .3B .4C .5D .6二.填空题(共15小题)6.(2021•淮安)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠CAB =55°,则∠D 的度数是 .7.(2021•淮安)若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是 .8.(2021•南通)圆锥的母线长为2cm ,底面圆的半径长为1cm ,则该圆锥的侧面积为 cm 2.9.(2021•南通)如图,在△ABC 中,AC =BC ,∠ACB =90°,以点A 为圆心,AB 长为半径画弧,交AC延长线于点D ,过点C 作CE ∥AB ,交BD ̂于点E ,连接BE ,则CE BE 的值为 .10.(2021•泰州)如图,平面直角坐标系xOy 中,点A 的坐标为(8,5),⊙A 与x 轴相切,点P 在y 轴正半轴上,PB 与⊙A 相切于点B .若∠APB =30°,则点P 的坐标为 .11.(2021•徐州)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ADC=58°,则∠BAC=°.12.(2021•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为8cm,扇形的圆心角θ=90°,则圆锥的底面圆半径r为cm.13.(2021•无锡)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为.14.(2021•盐城)如图,在⊙O内接四边形ABCD中,若∠ABC=100°,则∠ADC=°.15.(2021•盐城)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为.16.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别̂的中点,则∠ABE=.交⊙O于D、E两点,点B是CD17.(2021•宿迁)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为.̂的中点,OC交AB于点D.若AB=8cm,CD=2cm,则18.(2021•南京)如图,AB是⊙O的弦,C是AB⊙O的半径为cm.19.(2021•南京)如图,F A,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=°.20.(2021•泰州)扇形的半径为8cm,圆心角为45°,则该扇形的弧长为cm.三.解答题(共12小题)21.(2021•镇江)如图1,正方形ABCD的边长为4,点P在边BC上,⨀O经过A,B,P三点.(1)若BP=3,判断边CD所在直线与⊙O的位置关系,并说明理由;(2)如图2,E是CD的中点,⊙O交射线AE于点Q,当AP平分∠EAB时,求tan∠EAP的值.22.(2021•淮安)如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=52,求⊙O的直径.23.(2021•南通)如图,AB为⊙O的直径,C为⊙O上一点,弦AE的延长线与过点C的切线互相垂直,垂足为D,∠CAD=35°,连接BC.(1)求∠B的度数;(2)若AB=2,求EĈ的长.24.(2021•泰州)如图,在⊙O中,AB为直径,P为AB上一点,P A=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为BĈ上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.25.(2021•徐州)如图,AB为⊙O的直径,点C、D在⊙O上,AC与OD交于点E,AE=EC,OE=ED.连接BC、CD.求证:(1)△AOE≌△CDE;(2)四边形OBCD是菱形.26.(2021•宿迁)如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)已知tan∠ODC=247,AB=40,求⊙O的半径.27.(2021•南京)在几何体表面上,蚂蚁怎样爬行路径最短?̂的长为4πcm.在图(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上,设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为(用含l,h的代数式表示).̂的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A②设AD爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.28.(2021•苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.29.(2021•苏州)如图①,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,EF=2EH.(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙﹣h甲=h,已知h(米)关于注水时间t(小时)的函数图象如图③所示,其中MN平行于横轴,根据图中所给信息,解决下列问题:①求a的值;②求图③中线段PN所在直线的解析式.30.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=2√3,∠BCD=60°,求图中阴影部分的面积.31.(2021•扬州)在一次数学探究活动中,李老师设计了一份活动单:已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:(1)这样的点A唯一吗?(2)点A的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②△ABC面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=4 3.①线段PB长的最小值为;②若S△PCD=23S△P AD,则线段PD长为.32.(2021•连云港)如图,Rt△ABC中,∠ABC=90°,以点C为圆心,CB为半径作⊙C,D为⊙C上一点,连接AD、CD,AB=AD,AC平分∠BAD.(1)求证:AD是⊙C的切线;(2)延长AD、BC相交于点E,若S△EDC=2S△ABC,求tan∠BAC的值.2021年江苏省中考数学试题分类——专题8圆参考答案与试题解析一.选择题(共5小题)1.【解答】解:连接OD ,∵⊙O 与边AC 相切于点D ,∴∠ADO =90°,∵∠BAC =36°,∴∠AOD =90°﹣36°=54°,∴∠AFD =12∠AOD =12×54°=27°, 故选:A .2.【解答】解:∵2r +l =6,∴l =6﹣2r ,∴圆锥的侧面积S 侧=πrl =πr (6﹣2r )=﹣2π(r 2﹣3r )=﹣2π[(r −32)2−94]=﹣2π(r −32)2+92π, ∴当r =32时,S 侧有最大值92π. 故选:C .3.【解答】解:设AB =6a ,因为CD :AB =1:3,所以CD =2a ,OA =3a ,因此正方形的面积为12CD •CD =2a 2, 圆的面积为π×(3a )2=9πa 2,所以圆的面积是正方形面积的9πa 2÷(2a 2)≈14(倍),故选:B .4.【解答】解:∵∠AOC=60°,∴∠B=12∠AOC=30°,∵OA=OB,∴∠OAB=∠B=30°,故选:C.5.【解答】解:⊙O的面积为2π,则圆的半径为√2,则BD=2√2=AC,由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,理由:∵A′C∥MN,且A′C=MN,则四边形MCA′N为平行四边形,则A′N=CM=AM,故△AMN的周长=AM+AN+MN=AA′+1为最小,则A′A=√(2√2)2+12=3,则△AMN的周长的最小值为3+1=4,故选:B.二.填空题(共15小题)6.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=55°,∴∠D=∠B=35°.故答案为:35°.7.【解答】解:底面半径为3,则底面周长=6π,设圆锥的母线长为x,圆锥的侧面积=12×6πx=18π.解得:x=6,故答案为:6.8.【解答】解:圆锥的侧面积为:πrl=2×1π=2πcm2,故答案为:2π.9.【解答】解:如图,过点A作CE的垂线交EC延长线于F,过E作EG⊥AB交AB于G,连AE,∵AC=BC,∠ACB=90°,∴∠CAB=45°,∵CE∥AB,∴∠F AB=90°,∴∠F AC=45°,∴△AFC为等腰直角三角形,设AF=x,则CF=x,∴AC=√AF2+CF2=√2x,∴AB=√AC2+BC2=√2AC=2x,∵AE、AB均为⊙的半径,∴AE=2x,∴EF=√AE2−AF2=√3x,∴CE=(√3−1)x,∴四边形F AGE 为矩形,∴AF =EG =x ,EF =AG =√3x ,∴BG =AB ﹣AG =(2−√3)x ,∴BE =√EG 2+BG 2=(√6−√2)x ,∴CE BE =√3−1√6−√2=√22. 故答案为:√22. 10.【解答】解:过点A 分别作AC ⊥x 轴于点C 、AD ⊥y 轴于点D ,连接AB ,如图,∵AD ⊥y 轴,AC ⊥x 轴,∴四边形ADOC 为矩形,∴AC =OD ,OC =AD ,∵⊙A 与x 轴相切,∴AC 为⊙A 的半径,∵点A 坐标为(8,5),∴AC =OD =5,OC =AD =8,∵PB 是切线,∴AB ⊥PB ,∵∠APB =30°,∴P A =2AB =10,在Rt △P AD 中,根据勾股定理得,PD =√PA 2−AD 2=√102−82=6,∴OP =PD +DO =11,∵点P 在y 轴上,∴点P 坐标为(0,11).故答案为:(0,11).11.【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠B =∠ADC =58°,∴∠BAC =90°﹣∠B =32°.故答案为32.12.【解答】解:∵扇形的圆心角为90°,母线长为8cm ,∴扇形的弧长为90π×8180=4π,设圆锥的底面半径为rcm ,则2πr =4π,解得:r =2,故答案为2.13.【解答】解:设圆锥的底面圆半径为r ,依题意,得2πr =120π×50180, 解得r =503.故答案为:503.14.【解答】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°,∴∠ADC =180°﹣100°=80°.故答案为:80.15.【解答】解:该圆锥的侧面积=π×2×3=6π.故答案为6π.16.【解答】解:如图,连接DC ,∵∠DBC =90°,∴DC 是⊙O 的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.17.【解答】解:设圆锥的母线长为R,∵圆锥的底面圆半径为4,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,∴120π×R180=8π,解得:R=12,∴圆锥的侧面展开图面积=120π×122360=48π,故答案为:48π.18.【解答】解:如图,连接OA,∵C是AB̂的中点,∴D是弦AB的中点,∴OC⊥AB,AD=BD=4,∵OA=OC,CD=2,∴OD=OC﹣CD=OA﹣CD,在Rt△OAD中,OA 2=AD 2+OD 2,即OA 2=16+(OA ﹣2)2,解得OA =5,故答案为:5.19.【解答】解:如图,设圆心为O ,连接OA ,OB ,OC ,OD 和OE ,∵F A ,GB ,HC ,ID ,JE 是五边形ABCDE 的外接圆的切线,∴∠OAF =∠OBG =∠OCH =∠ODI =∠OEJ =90°,即(∠BAF +∠OAB )+(∠CBG +∠OBC )+(∠DCH +∠OCD )+(∠EDI +∠ODE )+(∠AEJ +∠OEA )=90°×5=450°,∵OA =OB =OC =OD =OE ,∴∠OAB =∠OBA ,∠OBC =∠OCB ,∠OCD =∠ODC ,∠ODE =∠OED ,OEA =∠OAE ,∴∠OAB +∠OBC +∠OCD +∠ODE +∠OEA =12×五边形ABCDE 内角和=12×(5−2)×180°=270°, ∴∠BAF +∠CBG +∠DCH +∠EDI +∠AEJ =(∠BAF +∠OAB )+(∠CBG +∠OBC )+(∠DCH +∠OCD )+(∠EDI +∠ODE )+(∠AEJ +∠OEA )﹣(∠OAB +∠OBC +∠OCD +∠ODE +∠OEA )=450°﹣270°=180°,故答案为:180.20.【解答】解:由题意得,扇形的半径为8cm ,圆心角为45°,故此扇形的弧长为:45π×8180=2π(cm ),故答案为:2π三.解答题(共12小题)21.【解答】解:(1)如图1﹣1中,连接AP ,过点O 作OH ⊥AB 于H ,交CD 于E .∵四边形ABCD是正方形,∴AB=AD=4,∠ABP=90°,∴AP是直径,∴AP=√AB2+BP2=√42+32=5,∵OH⊥AB,∴AH=BH,∵OA=OP,AH=HB,∴OH=12PB=32,∵∠D=∠DAH=∠AHE=90°,∴四边形AHED是矩形,∴OE⊥CE,EH=AD=4,∴OE=EH﹣OH=4−32=52,∴OE=OP,∴直线CD与⊙O相切.(2)如图2中,延长AE交BC的延长线于T,连接PQ.∵∠D=∠ECT=90°,DE=EC,∠AED=∠TEC,∴△ADE≌△TCE(ASA),∴AD=CT=4,∴BT=BC+CT=4+4=8,∵∠ABT=90°,∴AT=√AB2+BT2=√42+82=4√5,∵AP是直径,∴∠AQP=90°,∵P A平分∠EAB,PQ⊥AQ,PB⊥AB,∴PB=PQ,设PB=PQ=x,∵S△ABT=S△ABP+S△APT,∴12×4×8=12×4√5×x+12×4×x,∴x=2√5−2,∴tan∠EAP=tan∠P AB=PBAB=√5−12.22.【解答】(1)证明:连接DO,如图,∵直径所对圆周角,∴∠ADC =90°,∴∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE ,∴∠EDC =∠ECD ,又∵OD =OC ,∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°,∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD 且OD 为半径,∴DE 与⊙O 相切;(2)由(1)得,∠CDB =90°, ∵CE =EB ,∴DE =12BC ,∴BC =5,∴BD =√BC 2−CD 2=√52−32=4, ∵∠BCA =∠BDC =90°,∠B =∠B , ∴△BCA ∽△BDC ,∴AC CD =BC BD , ∴AC 3=54,∴AC =154,∴⊙O 直径的长为154.23.【解答】解:(1)连接OC ,如图,∵CD 是⊙O 的切线,∴OC ⊥CD ,∵AE ⊥CD ,∴OC ∥AE ,∴∠CAD =∠OCA ,∵OA =OC ,∴∠OCA =∠OAC ,∴∠CAD =∠OAC =35°,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠OAC +∠B =90°,∴∠B =90°﹣∠OAC =90°﹣35°=55°;(2)连接OE ,∵⊙O 的直径AB =2,∴OA =1,∵CÊ=CE ̂, ∴∠COE =2∠CAE =2×35°=70°,∴EC ̂的长为:70π⋅1180=7π18.24.【解答】解:(1)①连接OD ,如图:∵m=3即PB=3,AP=1,∴AB=AP+PB=4,∴OA=OD=12AB=2,∴OP=OA﹣AP=1=AP,∴P是OA中点,又CD⊥AB,∴CD是OA的垂直平分线,∴AD=OD=OA=2,即△AOD是等边三角形,∴∠OAD=60°;②连接AQ,如图:∵AB是⊙O直径,∴∠AQB=90°,∵AH⊥DQ,∴∠AHD=90°,∴∠AQB=∠AHD,∵AQ̂=AQ̂,∴∠ADH=∠ABQ,∴△ADH∽△ABQ,∴BQDH=ABAD,由①知:AB=4,AD=2,∴BQDH=2;(2)连接AQ、BD,如图:∵AB是⊙O直径,∴∠ADB=90°,∴∠ADB=∠APD,又∠P AD=∠DAB,∴△APD∽△ADB,∴ADAB=APAD,∵AP=1,PB=m,∴AB=1+m,AD1+m =1AD,∴AD=√1+m,与(1)中②同理,可得:BQDH =ABAD,∴BQDH=√1+m=√1+m;(3)由(2)得BQDH=√1+m,∴BQ=√1+m•DH,即BQ2=(1+m)•DH2,∴BQ2﹣2DH2+PB2=(1+m)•DH2﹣2DH2+m2=(m﹣1)•DH2+m2,若BQ2﹣2DH2+PB2是定值,则(m﹣1)•DH2+m2的值与DH无关,∴当m=1时,BQ2﹣2DH2+PB2的定值为1,此时P与O重合,如图:∵AB ⊥CD ,OA =OD =1,∴△AOD 是等腰直角三角形,∴∠OAD =45°,∵BD̂=BD ̂, ∴∠BQD =45°,故存在半径为1的⊙O ,对Q 的任意位置,都有BQ 2﹣2DH 2+PB 2是定值1,此时∠BQD 为45°.25.【解答】证明:(1)在△AOE 和△CDE 中,{AE =CE ∠AEO =∠CED OE =DE,∴△AOE ≌△CDE (SAS );(2)∵△AOE ≌△CDE ,∴OA =CD ,∠AOE =∠D ,∴OB ∥CD ,∴四边形OBCD 为平行四边形,∵OB =OD ,∴四边形OBCD 是菱形.26.【解答】解:(1)直线CD 与⊙O 相切,理由如下:如图,连接OC ,∵OA=OC,CD=BD,∴∠A=∠ACO,∠B=∠DCB,∵∠AOB=90°,∴∠A+∠B=90°,∴∠ACO+∠DCB=90°,∴∠OCD=90°,∴OC⊥CD,又∵OC为半径,∴CD是⊙O的切线,∴直线CD与⊙O相切;(2)∵tan∠ODC=247=OCCD,∴设CD=7x=DB,OC=24x=OA,∵∠OCD=90°,∴OD=√OC2+CD2=√49x2+576x2=25x,∴OB=32x,∵∠AOB=90°,∴AB2=AO2+OB2,∴1600=576x2+1024x2,∴x=1,∴OA=OC=24,∴⊙O的半径为24.27.【解答】解:(1)如图②中连接AO,AC,AB.设∠AOC=n.∵AĈ的长=4π,∴nπ⋅12 180°=4π,∴∠COA =60°,∵OA =OC ,∴△AOC 是等边三角形,∵OB =BC =6,∴AB ⊥OC ,∴AB =√OA 2−OB 2=√122−62=6√3.最短的路径是线段AB ,最短路径的长为6√3.(2)①蚂蚁从点A 爬行到点O 的最短路径的长为母线的长加圆柱的高,即为h +l . 故答案为:h +l .②蚂蚁从点A 爬行到点B 的最短路径的示意图如图④,最短路径为AB ,思路:Ⅰ、过点O 作OF ⊥AD 于F ,交AB 于G ,此时,点G 在扇形的弧上,Ⅱ、设CG =x ,则C ′G ̂的长为x ,进而求出∠BOG 的度数,Ⅲ、再过点B 作BE ⊥OF 于E ,用三角函数求出OE ,BE ,得出FH ,即可求出AH , Ⅳ、求出EF ,进而求出BH ,Ⅶ、在Rt △ABH 中,利用勾股定理建立AB 关于x 的方程,求解最小值.28.【解答】(1)证明:∵四边形ABCD 内接于⊙O ,∴∠A =∠DCE ,∴AD̂=DC ̂, ∴AD =DC ,在△ABD 和△DCE 中,{AB =CE ∠A =∠DCE AD =DC,∴△ABD ≌△CED (SAS ),∴BD =ED ;(2)解:过点D 作DM ⊥BE 于M ,∵AB =4,BC =6,CE =AB ,∴BE =BC +EC =10,∵BD =ED ,DM ⊥BE ,∴BM =ME =12BE =5,∴CM =BC ﹣BM =1,∵∠ABC =60°,∠1=∠2,∴∠2=30°,∴DM =BM •tan ∠2=5×√33=5√33, ∴tan ∠DCB =DM CM =5√33.29.【解答】解:(1)如图②中,连接FH ,∵正方形ABCD 外切于一个半径为5米的圆O ,∴AB =10米,∴容器甲的容积=102×6=600(立方米),∵∠FEH =90°,∴FH 为直径,在Rt △EFH 中,EF =2EH ,FH =10米,∴EH 2+4EH 2=100,∴EH =2√5(米),EF =4√5(米),∴容器乙的容积=2√5×4√5×6=240(立方米).(2)①当t =4时,h =4×2540−4×25100=1.5,∵MN ∥t 轴,∴M (4,1.5),N (6,1.5),∵6小时后的高度差为1.5米,∴25×640−25×6+2a 100=1.5,解得a =37.5.②当注水t 小时后,由h 乙﹣h 甲=0,可得25t 40−25t+(t−4)×37.5+(t−6)×50100=0,解得t =9,即P (9,0),设线段PN 所在的直线的解析式为h =kt +m ,∵N (6,1.5),P (9,0)在直线PN 上,∴{6k +m =1.59k +m =0,解得{k =−12m =92, ∴线段PN 所在的直线的解析式为h =−12t +92.30.【解答】解:(1)过点B 作BF ⊥CD ,垂足为F , ∵AD ∥BC ,∴∠ADB =∠CBD ,∵CB =CD ,∴∠CBD =∠CDB ,∴∠ADB =∠CDB .在△ABD 和△FBD 中,{∠ADB =∠FDB∠BAD =∠BFD BD =BD,∴△ABD ≌△FBD (AAS ),∴BF =BA ,则点F 在圆B 上,∴CD 与⊙B 相切;(2)∵∠BCD =60°,CB =CD ,∴△BCD 是等边三角形,∴∠CBD =60°∵BF ⊥CD ,∴∠ABD =∠DBF =∠CBF =30°,∴∠ABF =60°,∵AB =BF =2√3,∴AD =DF =AB ·tan30°=2,∴阴影部分的面积=S △ABD ﹣S 扇形ABE=12×2√3×2−30×π×(2√3)2360=2√3−π.31.【解答】解:(1)①设O 为圆心,连接BO ,CO , ∵∠BCA =30°,∴∠BOC =60°,又OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =2,即半径为2;②∵△ABC 以BC 为底边,BC =2,∴当点A 到BC 的距离最大时,△ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D , ∴BE =CE =1,DO =BO =2,∴OE =√BO 2−BE 2=√3,∴DE =√3+2,∴△ABC 的最大面积为12×2×(√3+2)=√3+2;(2)如图,延长BA ′,交圆于点D ,连接CD ,∵点D 在圆上,∴∠BDC =∠BAC ,∵∠BA ′C =∠BDC +∠A ′CD ,∴∠BA ′C >∠BDC ,∴∠BA ′C >∠BAC ,即∠BA ′C >30°;(3)①如图,当点P 在BC 上,且PC =32时,∵∠PCD =90°,AB =CD =2,AD =BC =3,∴tan ∠DPC =CD PC =43,为定值,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆, ∴当点P 在优弧CPD 上时,tan ∠DPC =43,连接BQ ,与圆Q 交于P ′, 此时BP ′即为BP 的最小值,过点Q 作QE ⊥BE ,垂足为E , ∵点Q 是PD 中点,∴点E 为PC 中点,即QE =12CD =1,PE =CE =12PC =34, ∴BE =BC ﹣CE =3−34=94,∴BQ =√BE 2+QE 2=√974,∵PD =√CD 2+PC 2=52,∴圆Q 的半径为12×52=54, ∴BP ′=BQ ﹣P ′Q =√97−54,即BP 的最小值为√97−54;②∵AD =3,CD =2,S △PCD =23S △P AD ,则CD AD =23, ∴△P AD 中AD 边上的高=△PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在∠ADC 的平分线上,如图,过点C作CF⊥PD,垂足为F,∵PD平分∠ADC,∴∠ADP=∠CDP=45°,∴△CDF为等腰直角三角形,又CD=2,∴CF=DF=2√2=√2,∵tan∠DPC=CFPF=43,∴PF=3√2 4,∴PD=DF+PF=√2+3√24=7√24.32.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC.又∵AB=AD,AC=AC,∴△BAC≌△DAC(SAS),∴∠ADC=∠ABC=90°,∴CD⊥AD,即AD是⊙C的切线;(2)解:由(1)可知,∠EDC=∠ABC=90°,又∠E=∠E,∴△EDC∽△EBA.∵S△EDC=2S△ABC,且△BAC≌△DAC,∴S△EDC:S△EBA=1:2,∴DC:BA=1:√2.∵DC=CB,∴CB:BA=1:√2.∴tan∠BAC=CBBA=√22.。
2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)
2021年中考数学真题分类汇编:专题24圆的有关性质一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒ 【答案】D【分析】先证明,AB CD =再利用等弧的性质及圆周角定理可得答案.【详解】 解: 点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,,AB CD ∴=114221,22CED AOB ∴∠=∠=⨯︒=︒ 故选:.D【点睛】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在【答案】D【分析】根据垂径定理可直接进行排除选项.【详解】解:由垂径定理的推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧”可知:小铭忽略了垂径定理中的“弦不能是直径”这一条件,因为一个圆中的任意两条直径都互相平分,但不垂直,所以小铭说法错误,小熹所说的反例即为两条直径的情况下;故选D.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交AB 厘米.若从目前太阳所处位置到太阳完全跳出于A,B两点,他测得“图上”圆的半径为10厘米,16海平面的时间为16分钟,则“图上”太阳升起的速度为().A.1.0厘米/分B.0.8厘米分C.12厘米/分D.1.4厘米/分【答案】A【分析】首先过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.【详解】解:过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,⊙AC=12AB=12×16=8(厘米),在Rt⊙AOC中,6OC===(厘米),⊙CD=OC+OD=16(厘米),⊙从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,⊙16÷16=1(厘米/分).⊙“图上”太阳升起的速度为1.0厘米/分.故选:A.【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.4.(2021·山东聊城市·中考真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB⊙CAB=30°,则⊙ABC的度数为()A.95°B.100°C.105°D.110°【答案】C【分析】连接OB,OC,根据勾股定理逆定理可得⊙AOB=90°,⊙ABO=⊙BAO=45°,根据圆周角定理可得⊙COB=2⊙CAB=60°,⊙OBC=⊙OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,⊙OA =OB =1,AB⊙OA 2+OB 2=AB 2,⊙⊙AOB =90°,又⊙OA =OB ,⊙⊙ABO =⊙BAO =45°,⊙⊙CAB =30°,⊙⊙COB =2⊙CAB =60°,又⊙OC =OB ,⊙⊙OBC =⊙OCB =60°,⊙⊙ABC =⊙ABO +⊙OBC =105°,故选:C .【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键. 5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒【答案】B【分析】 根据画图过程,得到OD =OC ,由等边对等角与三角形内角和定理得到⊙ODC =⊙OCD =70︒,同理得到⊙DOE =⊙DEO =40⊙,由⊙OCD 为⊙DCE 的外角,得到结果.【详解】解:⊙以O 为圆心,OD 长为半径画MN ,交OB 于点C ,⊙OD =OC ,⊙⊙ODC =⊙OCD ,⊙⊙AOB =40⊙,⊙⊙ODC =⊙OCD =118040702⨯︒-︒=︒, ⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,⊙DO =DE ,⊙⊙DOE =⊙DEO =40⊙,⊙⊙OCD 为⊙DCE 的外角,⊙⊙OCD =⊙DEC +⊙CDE ,⊙70⊙=40⊙+⊙CDE ,⊙⊙CDE =30⊙,故选:B .【点睛】本题考查了等腰三角形的判定与性质、以及三角形外角的性质,关键在于等边对等角与三角形的外角等于与它不相邻的两个内角之和两个知识点的熟练运用.6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒【答案】A【分析】 先根据圆内接四边形的性质可得60BAD ∠=︒,再根据圆周角定理可得90BAE ∠=︒,然后根据角的和差即可得.【详解】 解:四边形ABCD 是O 的内接四边形,180BCD BAD ∴∠+∠=︒,2BCD BAD ∠=∠,1180603BAD =⨯︒∴∠=︒, BE 是O 的直径,90BAE ∴∠=︒,906030DAE BAE BAD ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质是解题关键.7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:⊙AB 为O 的直径,⊙90ACB AFB ∠=∠=︒,⊙3BC AC =,⊙=22.5ABC ∠︒,=67.5BAC ∠︒,⊙点H 是AG 的中点,⊙CE AH =,⊙CAH ACH ∠=∠,⊙CD AB ⊥,⊙AEC GCA ∽,又⊙,CAF CBF CGA FGB ∠=∠∠=∠,⊙AEC GCA GFB ∽∽,⊙90ACE ECB ABC ECB ∠+∠=∠+∠=︒,⊙ABE ABC ∠=∠,⊙AEC GCA GFB ACB ∽∽∽,⊙22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,⊙=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒【答案】B【分析】连接OD ,根据垂径定理得CD =2DE ,从而得ODE 是等腰直角三角形,根据圆周角定理即可求解.【详解】解:连接OD ,⊙AB 是O 的直径,弦CD AB ⊥于点E ,⊙CD =2DE ,⊙2CD OE =,⊙DE =OE ,⊙ODE 是等腰直角三角形,即⊙BOD =45°,⊙BCD ∠=12⊙BOD =22.5°, 故选B .【点睛】本题主要考查圆的基本性质,熟练掌握垂径定理和圆周角定理,是解题的关键.9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-【答案】D【分析】 作OC ⊙AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出⊙A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB 的长,最后求它们的差即可.【详解】解:作OC ⊙AB 于C ,如图,则AC =BC ,⊙OA =OB ,⊙⊙A =⊙B =12(180°-⊙AOB )=30°, 在Rt ⊙AOC 中,OC =12OA =9,AC =⊙AB =2AC =又⊙12018180AB π⨯⨯==12π,⊙走便民路比走观赏路少走12π-故选D .【点睛】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°【答案】A【分析】直接根据直径所对的圆周角为直角进行求解即可.【详解】⊙AB 是⊙O 的直径,⊙⊙ACB =90°,⊙在Rt ⊙ABC 中,⊙B =90°-⊙A =70°,故选:A .【点睛】本题考查直径所对的圆周角为直角,理解基本定理是解题关键.11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅【答案】B【分析】 根据垂径定理、锐角三角函数的定义进行判断即可解答.【详解】解:⊙AB 是O 的直径,弦CD OA ⊥于点E , ⊙12DE CD = 在Rt EDO ∆中,OD m =,AOD α∠=∠ ⊙tan =DE OEα ⊙=tan 2tan DE CD OE αα=,故选项A 错误,不符合题意;又sin DE ODα= ⊙sin DE OD α=⊙22sin CD DE m α==,故选项B 正确,符合题意; 又cos OE ODα= ⊙cos cos OE OD m αα==⊙AO DO m ==⊙cos AE AO OE m m α=-=-,故选项C 错误,不符合题意;⊙2sin CD m α=,cos OE m α= ⊙2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .【点睛】本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°【答案】B【分析】 连接AD ,由切线性质可得⊙ADB =⊙ADC =90°,根据AB=2AD 及锐角的三角函数可求得⊙BAD =60°,易求得⊙ADE =72°,由AD=AE 可求得⊙DAE =36°,则⊙GAC =96°,根据圆周角定理即可求得⊙GFE 的度数.【详解】解:连接AD ,则AD =AG =3,⊙BC与圆A相切于点D,⊙⊙ADB=⊙ADC=90°,在Rt⊙ADB中,AB=6,则cos⊙BAD=ADAB=12,⊙⊙BAD=60°,⊙⊙CDE=18°,⊙⊙ADE=90°﹣18°=72°,⊙AD=AE,⊙⊙ADE=⊙AED=72°,⊙⊙DAE=180°﹣2×72°=36°,⊙⊙GAC=36°+60°=96°,⊙⊙GFE=12⊙GAC=48°,故选:B.【点睛】本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得⊙BAD=60°是解答的关键.13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD内接于O,点P在AB上,则P∠的度数为()A.30B.45︒C.60︒D.90︒【答案】B【分析】连接OB ,OC ,由正方形ABCD 的性质得90BOC ∠=°,再根据圆周角与圆心角的关系即可得出结论.【详解】解:连接OB ,OC ,如图,⊙正方形ABCD 内接于O ,⊙90BOC ∠=° ⊙11904522BPC BOC ∠=∠=⨯︒=︒ 故选:B .【点睛】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm 【答案】B【分析】根据直径是圆中最长的弦,知该圆的直径是10cm ;最短弦即是过点P 且垂直于过点P 的直径的弦;根据垂径定理即可求得CP 的长,再进一步根据勾股定理,可以求得OP 的长.【详解】解:如图所示,CD ⊙AB 于点P .根据题意,得AB =10cm ,CD =6cm .⊙OC =5,CP =3⊙CD ⊙AB ,⊙CP =12CD =3cm .根据勾股定理,得OP .故选B .【点睛】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .19【答案】A【分析】 先利用垂径定理得出AE =EC ,CF =FD ,再利用勾股定理列方程即可【详解】解:连接OC⊙AB ⊙CD , OE ⊙AC⊙ AE =EC ,CF =FD⊙OE =3,OB =5⊙OB =OC =OA =5⊙在Rt ⊙OAE 中4AE =⊙AE =EC =4设OF =x ,则有2222AC AF OC OF -=-22228(5)5x x -+=-x =1.4在Rt ⊙OFC 中, 4.8FC ==⊙29.6CD FC ==故选:A【点睛】本题考查垂径定理、勾股定理、方程思想是解题关键16.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒ 【答案】C【分析】由切线的性质得出⊙OAP =⊙OBP =90°,利用四边形内角和可求⊙AOB =110°,再利用圆周角定理可求⊙ADB =55°,再根据圆内接四边形对角互补可求⊙ACB .【详解】解:如图所示,连接OA ,OB ,在优弧AB 上取点D ,连接AD ,BD ,⊙AP 、BP 是切线,⊙⊙OAP =⊙OBP =90°,⊙⊙AOB =360°-90°-90°-70°=110°,⊙⊙ADB =55°,又⊙圆内接四边形的对角互补,⊙⊙ACB =180°-⊙ADB =180°-55°=125°.故选:C .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA 、OB ,求出⊙AOB .17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 【答案】D【分析】由题意知90APC ∠=︒,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt BCO ∆中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到PCO ∆是等边三角形,利用特殊Rt APC ∆三边关系即可求解.【详解】解:222PA PC AC +=∴90APC ∠=︒取AC 中点O ,并以O 为圆心,12AC 长为半径画圆 由题意知:当B 、P 、O 三点共线时,BP 最短AO PO CO ∴== 11322CO AC BC ==⨯==BO ∴=BP BO PO ∴=-=∴点P 是BO 的中点∴在Rt BCO ∆中,12CP BO PO === ∴PCO ∆是等边三角形∴60ACP ∠=︒ ∴在Rt APC ∆中,tan 603AP CP =⨯︒=12APC S AP CP ∆∴=⨯==【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B .2C D .4 【答案】A【分析】连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB ,结合直角三角形斜边中线等于斜边的一半求得点A ,D ,F ,E 四点共圆,⊙DFE =90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB⊙在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点,⊙AG =DG =EG又⊙AG =FG⊙点A ,D ,F ,E 四点共圆,且DE 是圆的直径⊙⊙DFE =90°⊙在Rt ⊙ABC 中,AB =AC =5,点F 是BC 的中点,⊙CF =BF =122BC =,FN =FM =52 又⊙FN ⊙AC ,FM ⊙AB ,90BAC ∠=︒⊙四边形NAMF 是正方形⊙AN =AM =FN =52又⊙90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒⊙NFD MFE ∠=∠⊙⊙NFD ⊙⊙MFE⊙ME =DN =AN -AD =12 ⊙AE =AM +ME =3⊙在Rt ⊙DAE 中,DE故选:A .【点睛】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.19.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6 【答案】D【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB⊙()8,0A ,()2,0C -⊙OA =8,OC =2⊙AC =AB =10在Rt ⊙OAB 中,6OB ==⊙B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 20.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .3【答案】C【分析】 根据圆周角定理求出⊙COB 的度数,再求出⊙OBD 的度数,根据“30°的锐角所对的直角边等于斜边的一半”求出OD 的长度.【详解】⊙ ⊙BAC =30°,⊙⊙COB =60°,⊙⊙ODB =90°,⊙⊙OBD =30°,⊙OB =4,⊙OD =12OB =142⨯=2. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.21.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒【答案】C【分析】连接OB ,由题意易得⊙BOD =60°,然后根据圆周角定理可进行求解.【详解】解:连接OB ,如图所示:⊙()2,0A ,()4,0D ,⊙2,4OA OB OE OD ====, ⊙12OA OB =, ⊙四边形OABC 是矩形,⊙90OAB ∠=︒,⊙30OBA ∠=︒,⊙9060BOD OBA ∠=︒-∠=︒, ⊙1302BED BOD ∠=∠=︒; 故选C .【点睛】本题主要考查圆周角定理、矩形的性质及含30°的直角三角形的性质,熟练掌握圆周角定理、矩形的性质及含30°的直角三角形的性质是解题的关键.22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒【答案】D【分析】 先利用直径所对的圆周角是直角得到⊙ACB =90°,从而求出⊙BAC ,再利用同弧所对的圆周角相等即可求出⊙BDC .【详解】解:⊙C ,D 是⊙O 上直径AB 两侧的两点,⊙⊙ACB =90°,⊙⊙ABC =25°,⊙⊙BAC =90°-25°=65°,⊙⊙BDC =⊙BAC =65°,故选:D .【点睛】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ;⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对【答案】D【分析】 ⊙、根据“弦的垂直平分线经过圆心”,可证四边形MENF 的形状;⊙、在确定点P 的过程中,看⊙MOF =40°是否唯一即可.【详解】解:⊙、如图所示.⊙MN 是AB 的垂直平分线,EF 是AP 的垂直平分线,⊙MN 和EF 都经过圆心O ,线段MN 和EF 是⊙O 的直径.⊙OM =ON ,OE =OF .⊙四边形MENF 是平行四边形.⊙线段MN 是⊙O 的直径,⊙⊙MEN =90°.⊙平行四边形MENF 是矩形.⊙结论⊙正确;⊙、如图2,当点P 在直线MN 左侧且AP =AB 时,⊙AP =AB ,⊙AB AP =.⊙MN ⊙AB ,EF ⊙AP , ⊙1122AE AP AN AB ==,. ⊙AE AN =. ⊙1===202AOE AON AOB ∠∠∠.⊙40EON =∠.⊙=40MOF EON =∠∠.⊙扇形OFM 与扇形OAB 的半径、圆心角度数都分别相等,⊙OFM OAB S S =扇形扇形.如图3,当点P 在直线MN 右侧且BP =AB 时,同理可证:FOM AOB S S =扇形扇形.⊙结论⊙错误.故选:D【点睛】本题考查了圆的有关性质、矩形的判定、扇形面积等知识点,熟知圆的有关性质、矩形的判定方法及扇形面积公式是解题的关键.24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .4【答案】A【分析】 先根据垂径定理可得4=AD ,再利用勾股定理可得5OE OA ==,然后根据三角形中位线定理即可得.【详解】解:,8OE AB AB ⊥=,142AD AB ∴==, 3OD =,5OA ∴=,5OE ∴=,OE AB ⊥,90A ADO BC =︒∠∴∠=,//OE FC ∴,又OA OC =,OE ∴是ACF 的中位线,210FC OE ∴==,故选:A .【点睛】本题考查了垂径定理、三角形中位线定理等知识点,熟练掌握垂径定理是解题关键.25.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒【答案】B【分析】首先根据圆周角定理求得BOC ∠的度数,根据AOC ∠的度数求AOB AOC BOC ∠=∠-∠即可.【详解】解:⊙30BAC ∠=︒⊙⊙BOC=223060BAC ∠=⨯︒=︒,⊙90AOC ∠=︒,906030AOB AOC BOC ,故选:B .【点睛】考查了圆周角定理及两锐角互余性质,求得BOC ∠的度数是解题的关键.26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为()A .27︒B .108︒C .116︒D .128︒【答案】B【分析】直接利用圆周角定理即可得.【详解】解:54BAC ∠=︒,∴由圆周角定理得:2108BOC BAC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒【答案】B【分析】 将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明AC DC DE EB ===,从而可得到弧AC 的度数,由弧AC 的度数可求得⊙B 的度数.【详解】解:将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.⊙⊙O 与⊙O ′为等圆,劣弧AC 与劣弧CD 所对的角均为⊙ABC ,⊙AC CD =.同理:DE CD =.又⊙F 是劣弧BD 的中点,⊙DE BE =.⊙AC DC DE EB ===.⊙弧AC 的度数=180°÷4=45°.⊙⊙B =12×45°=22.5°. ⊙α所在的范围是22.322.7α︒<<︒;故选:B .【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.【答案】5cm【分析】连接BC ,由题意易得30ABC ADC ∠=∠=︒,进而问题可求解.【详解】解:连接BC ,如图所示:⊙30ADC ∠=︒,⊙30ABC ADC ∠=∠=︒,⊙AB 是直径,⊙90ACB ∠=︒,⊙5cm AC =,⊙210cm AB AC ==,⊙O 的半径为5cm ;故答案为5cm .【点睛】本题主要考查圆周角定理及含30°直角三角形的性质,熟练掌握圆周角定理及含30°直角三角形的性质是解29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.【分析】先根据圆的半径相等及圆周角定理得出⊙ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊙AB⊙60A ∠=︒⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =30°又75B ∠=︒⊙⊙ABO =45°在Rt ⊙OBD 中,OB =1⊙BD⊙BD =AD =⊙AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.【答案】50︒【分析】圆上弧长对应的圆周角等于圆心角的一半,再利用等腰三角形三线合一的性质,即可得出答案.【详解】解:根据圆上弦长对应的圆周角等于圆心角的一半,12A BOC ∠=∠, 100BOC ∴∠=︒,OB OC =, BOC ∴为等腰三角形, 又点D 是BC 的中点,根据等腰三角形三线合一,OD ∴为BOC ∠的角平分线,50BO D ∴∠=︒,故答案是:50︒.【点睛】本题考查了弦长所对应的圆周角等于圆心角的一半和等腰三角形三线合一的性质,解题的关键是:根据性质求出BOC ∠,再利用角平分线或三角形全等都能求出解.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.-【分析】由已知45ADB ∠=︒,2AB =,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO OD -.【详解】如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==AO ∴==112ON OM AB ===,3BC =OC ∴==CO OD ∴-线段CD 长度的最小值为-.-【点睛】 本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,⊙C 是AB 的中点,⊙OC AB ⊥ ⊙14cm 2AD AB == 设O 的半径为R ,⊙2cm CD =⊙(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键. 34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.【答案】40︒【分析】连接BD ,则C D ∠=∠,再根据AD 为直径,求得BAD ∠的度数【详解】如图,连接BD ,则50D C ∠=∠=︒AD 为直径90ABD ∴∠=︒90905040BAD D ∴∠=︒-∠=︒-︒=︒故答案为40︒【点睛】此题主要考查了圆周角定理,圆周角定理是中考中考查重点,熟练掌握圆周角定理是解决问题的关键. 35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到⊙BOC =100°,求出⊙AOC ,根据等腰三角形的性质计算.【详解】解:连接OC ,⊙OC =OB ,⊙⊙OCB =⊙OBC =40°,⊙⊙BOC =180°-40°×2=100°,⊙⊙AOC =100°+30°=130°,⊙OC =OA ,⊙⊙OAC =⊙OCA =25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.【答案】【分析】过O 作OE ⊙AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD Rt ⊙AOD 中,由勾股定理AD =,可证⊙OAC ⊙⊙DAO ,由相似三角形性质可求AC 即可. 【详解】 解:过O 作OE ⊙AB 于C ,⊙AB 为弦,⊙AC =BC =12AB ,⊙直线33y x =+与O 相交于A ,B 两点,⊙当y =00x +=,解得x =-2, ⊙OA =2,⊙当x =0时,y =⊙OD=3, 在Rt ⊙AOD中,由勾股定理3AD ===, ⊙⊙ACO =⊙AOD =90°,⊙CAO =⊙OAD ,⊙⊙OAC ⊙⊙DAO ,AC AO AO AD =即2AO AC AD === ⊙AB =2AC故答案为【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.【答案】(1)⊙2;2;(2)见解析;(3);⊙4 【分析】(1)⊙设O 为圆心,连接BO ,CO ,根据圆周角定理得到⊙BOC =60°,证明⊙OBC 是等边三角形,可得半径;⊙过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,⊙ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)⊙根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;⊙根据AD ,CD 和23PCD PAD S S =推出点P 在⊙ADC 的平分线上,从而找到点P 的位置,过点C 作CF ⊙PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)⊙设O 为圆心,连接BO ,CO ,⊙⊙BAC =30°,⊙⊙BOC =60°,又OB =OC ,⊙⊙OBC 是等边三角形,⊙OB =OC =BC =2,即半径为2;⊙⊙⊙ABC 以BC 为底边,BC =2,⊙当点A 到BC 的距离最大时,⊙ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,⊙BE =CE =1,DO =BO =2,⊙OE⊙DE 2,⊙⊙ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,⊙点D 在圆上,⊙⊙BDC =⊙BAC ,⊙⊙BA ′C =⊙BDC +⊙A ′CD ,⊙⊙BA ′C >⊙BDC ,⊙⊙BA ′C >⊙BAC ,即⊙BA ′C >30°;(3)⊙如图,当点P在BC上,且PC=32时,⊙⊙PCD=90°,AB=CD=2,AD=BC=3,⊙tan⊙DPC=CDPC=43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,⊙当点P在优弧CPD上时,tan⊙DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊙BE,垂足为E,⊙点Q是PD中点,⊙点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,⊙BE=BC-CE=3-34=94,⊙BQ4,⊙PD 52,⊙圆Q的半径为155 224⨯=,⊙BP′=BQ-P′Q,即BP;⊙⊙AD =3,CD =2,23PCD PAD S S =, 则23CD AD =, ⊙⊙P AD 中AD 边上的高=⊙PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在⊙ADC 的平分线上,如图,过点C 作CF ⊙PD ,垂足为F ,⊙PD 平分⊙ADC ,⊙⊙ADP =⊙CDP =45°,⊙⊙CDF 为等腰直角三角形,又CD =2,⊙CF =DF⊙tan⊙DPC =CF PF =43,⊙PF =4,⊙PD =DF +PF【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P 的轨迹. 38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.。
2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析
2020-2021中考数学压轴题专题复习—圆的综合的综合附答案解析一、圆的综合1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2tan 3B =,求半圆的半径.【答案】(1)见解析;(2)413 【解析】分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.详解:(1)证明:如图,连接CO .∵AB 是半圆的直径, ∴∠ACB =90°.∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,∵在Rt △ACB 中,2tan 3AC B BC ==, ∴BC =3x .∴()()222313AB x x x =+=.∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴AC AOAB AD=. ∵1132OA AB x ==,AD =2x +10, ∴113221013xx x =+. 解得 x =8. ∴138413OA =⨯=. 则半圆的半径为413.点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.2.如图1O e ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC o ,∠=,过点P 作PD OP ⊥交O e 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当»»DC AC=时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O e 的切线;②求PC 的长.【答案】(1)262)333①见解析,②. 【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长;()2①首先得出OBD V 是等边三角形,进而得出ODE OFB 90∠∠==o ,求出答案即可;②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.详解:()1如图2,连接OD ,//OP PD PD AB ⊥Q ,,90POB ∴∠=o ,O Q e 的直径12AB =,6OB OD ∴==,在Rt POB V 中,30ABC o ∠=,3tan30623OP OB ∴=⋅=⨯=o , 在Rt POD V 中,22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,»»DC AC =Q ,30DBC ABC ∴∠=∠=o , 60ABD o ∴∠=,OB OD =Q , OBD ∴V 是等边三角形, OD FB ∴⊥,12BE AB =Q ,OB BE ∴=, //BF ED ∴,90ODE OFB o ∴∠=∠=,DE ∴是O e 的切线; ②由①知,OD BC ⊥,3cos30633CF FB OB ∴==⋅=⨯=o , 在Rt POD V 中,OF DF =,13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD V 是等边三角形是解题关键.3.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动. (1)当t =0时,点F 的坐标为 ; (2)当t =4时,求OE 的长及点B 下滑的距离; (3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-33)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标; (2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论; (4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF =22FD AD +=5,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t=,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为245或325. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.4.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠部分的面积为S.①试求S关于t的函数表达式;②以点C为圆心,12t为半径作⊙C,当⊙C与GH所在的直线相切时,求此时S的值.【答案】(1)t=2s或10s;(2)①S=22 2 9?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.5.如图,AB是圆O的直径,射线AM⊥AB,点D在AM上,连接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接O C、BC、CE.(1)求证:CD是⊙O的切线;(2)若圆O的直径等于2,填空:①当AD=时,四边形OADC是正方形;②当AD=时,四边形OECB是菱形.【答案】(1)见解析;(2)①1;②3.【解析】试题分析:(1)依据SSS证明△OAD≌△OCD,从而得到∠OCD=∠OAD=90°;(2)①依据正方形的四条边都相等可知AD=OA;②依据菱形的性质得到OE=CE,则△EOC为等边三角形,则∠CEO=60°,依据平行线的性质可知∠DOA=60°,利用特殊锐角三角函数可求得AD的长.试题解析:解:∵AM⊥AB,∴∠OAD=90°.∵OA=OC,OD=OD,AD=DC,∴△OAD≌△OCD,∴∠OCD=∠OAD=90°.∴OC⊥CD,∴CD是⊙O的切线.(2)①∵当四边形OADC是正方形,∴AO=AD=1.故答案为:1.②∵四边形OECB是菱形,∴OE=CE.又∵OC=OE,∴OC=OE=CE.∴∠CEO=60°.∵CE∥AB,∴∠AOD=60°.在Rt△OAD中,∠AOD=60°,AO=1,∴AD=.故答案为:.点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键.6.解决问题:()1如图①,半径为4的Oe上,则PA的最大值和e外有一点P,且7PO=,点A在O最小值分别是______和______.()2如图②,扇形AOB的半径为4,45∠=o,P为弧AB上一点,分别在OA边找AOBV周长的最小,请在图②中确定点E、F的位置并直点E,在OB边上找一点F,使得PEFV周长的最小值;接写出PEF拓展应用()3如图③,正方形ABCD 的边长为42;E 是CD 上一点(不与D 、C 重合),CF BE ⊥于F ,P 在BE 上,且PF CF =,M 、N 分别是AB 、AC 上动点,求PMN V 周长的最小值.【答案】(1)11,3;(2)图见解析,PEF V 周长最小值为423)41042. 【解析】 【分析】()1根据圆外一点P 到这个圆上所有点的距离中,最远是和最近的点是过圆心和该点的直线与圆的交点,容易求出最大值与最小值分别为11和3;()2作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求,此时PEF V 周长最小,然后根据等腰直角三角形求解即可;()3类似()2题作对称点,PMN V 周长最小12PP =,然后由三角形相似和勾股定理求解.【详解】解:()1如图①,Q 圆外一点P 到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP 上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.PA ∴的最大值227411PA PO OA ==+=+=,PA 的最小值11743PA PO OA ==-=-=, 故答案为11和3;()2如图②,以O 为圆心,OA 为半径,画弧AB 和弧BD ,作点P 关于直线OA 的对称点1P ,作点P 关于直线OB 的对称点2P ,连接1P 、2P ,与OA 、OB 分别交于点E 、F ,点E 、F 即为所求.连接1OP 、2OP 、OP 、PE 、PF ,由对称知识可知,1AOP AOP ∠∠=,2BOP BOP ∠∠=,1PE PE =,2PF P F = ∴1245AOP BOP AOP BOP AOB ∠∠∠∠∠+=+==o , 12454590POP o o o ∠=+=, 12POP ∴V 为等腰直角三角形,121PP ∴==PEF V 周长1212PE PF EF PE P F EF PP =++=++=,此时PEF V 周长最小.故答案为;()3作点P 关于直线AB 的对称1P ,连接1AP 、1BP ,作点P 关于直线AC 的对称2P ,连接1P 、2P ,与AB 、AC 分别交于点M 、N .如图③ 由对称知识可知,1PM PM =,2PN P N =,PMN V 周长1212PM PN MN PM P N MN PP =++=++=,此时,PMN V 周长最小12PP =.由对称性可知,1BAP BAP ∠∠=,2EAP EAP ∠∠=,12APAP AP ==, ∴1245BAP EAP BAP EAP BAC o∠∠∠∠∠+=+== 12454590P AP ∠=+=o o o ,12P AP V ∴为等腰直角三角形,PMN ∴V 周长最小值12PP =,当AP 最短时,周长最小. 连接DF .CF BE Q ⊥,且PF CF =,45PCF ∠∴=o ,PCCF=45ACD ∠=o Q ,PCF ACD ∠∠∴=,PCA FCD ∠∠=,又ACCD=, ∴在APC V 与DFC V 中,AC PCCD CF=,PCA FCD ∠∠=C AP ∴V ∽DFC V ,AP AC DF CD∴== ∴AP =90BFC ∠=o Q ,取AB 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短.DF DO FO OC =-===AP ∴最小值为AP = ∴此时,PMN V 周长最小值12PP ====.【点睛】本题考查圆以及正方形的性质,运用圆的对称性和正方形的对称性是解答本题的关键.7.已知,ABC ∆内接于O e ,点P 是弧AB 的中点,连接PA 、PB ; (1)如图1,若AC BC =,求证:AB PC ⊥; (2)如图2,若PA 平分CPM ∠,求证:AB AC =; (3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5 【解析】 【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BDBOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值. 【详解】解:(1)∵点P 是弧AB 的中点,如图1, ∴AP =BP , 在△APC 和△BPC 中AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩, ∴△APC ≌△BPC (SSS ), ∴∠ACP =∠BCP , 在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCE (SAS ), ∴∠AEC =∠BEC , ∵∠AEC +∠BEC =180°, ∴∠AEC =90°, ∴AB ⊥PC ;(2)∵PA 平分∠CPM , ∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°, ∴∠ACB =∠MPA =∠APC , ∵∠APC =∠ABC , ∴∠ABC =∠ACB , ∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC , ∴AD 平分BC , ∴点O 在AD 上,连结OB ,则∠BOD =∠BAC ,∵∠BPC =∠BAC , ∴sin sin BOD BPC ∠=∠=2425BDOB=, 设OB =25x ,则BD =24x , ∴OD =22OB BD -=7x ,在Rt ABD V 中,AD =25x +7x =32x ,BD =24x , ∴AB =22AD BD +=40x ,∵AC =8, ∴AB =40x =8, 解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4, ∵点P 是¶AB 的中点, ∴OP 垂直平分AB , ∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE =223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=. 【点睛】本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.8.已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =Q 中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m Q 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.9.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解: ⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.【答案】(1)详见解析;(2)详见解析;(3)P 的坐标(223-,13),(223,13).【解析】试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.试题解析:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ=,PM=1×2÷3=,由勾股定理可求得OM=,故点P的坐标(﹣,),(,).考点:圆的综合题.10.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=5tan∠CAB=2,BP228+(4)x-2880x x-+DA 25x,则BD=525x,如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ=5,sinβ=5, EB =BDcosβ=(45﹣25x )×5=4﹣25x , ∴PD ∥BE , ∴EB BF PD PF =,即:2024588x y x xx y -+--=, 整理得:y =25x x 8x 803x 20-++; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦,∵点Q 是弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA =90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5设圆的半径为r ,在△ADG 中,AD =2rcosβ=5,DG =5,AG =2r , 5+2r =45,解得:2r =51+, 则:DG =5=50﹣105, 相交所得的公共弦的长为50﹣105.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,»»BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC .∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.13.如图①,已知Rt ABC ∆中,90ACB ∠=o ,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O e ,过C 作CE 切O e 于E ,交AB 于F .(1)若O e 的半径为2,求线段CE 的长;(2)若AF BF =,求O e 的半径;(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)42CE =(2)O e 的半径为3;(3)G 、E 两点之间的距离为9.6.【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r =610,解得即可; (3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE .∵CE 切O e 于E ,∴90OEC ∠=︒.∵8AC =,O e 半径为2,∴6OC =,2OE =.∴2242CE OC OE =-=;(2)设O e 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC -=. ∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O e 于E ,∴90OEC ∠=︒.∴OEC ACB ∠=∠,∴OEC BCA ∆~∆.∴OE OC BC BA =, ∴8610r r -=, 解得3r =.∴O e 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =.又CE CB =,∴CE CG =.∴EGC GEC ∠=∠.∵CE 切O e 于E ,∴90GEC OEG ∠+∠=︒.又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠,∴OEG OME ∠=∠.∴OE OM =.∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上.连结AE 、BE ,∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒.又CE CB CG ==,∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒,∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠,∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE =. ∴9.6GE =.故G 、E 两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.14.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)求OE 的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果保留π)【答案】(1)OE的长为32;(2)阴影部分的面积为3 2π【解析】(1)OE=32(2)S=32π15.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•co s60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3x2+(m+n)x+mn]=3(3mn+mn)3.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.。
专题11 圆(第01期)-2021年中考数学试题分项版解析汇编(解析版)
专题11 圆一、选择题1.(2021浙江衢州第10题)运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB =10,CD =6,EF =8。
则图中阴影部分的面积是( )A. π225B. π10C. π424+D. π524+【答案】A.【解析】试题解析:作直径CG ,连接OD 、OE 、OF 、DG .∵CG 是圆的直径,∴∠CDG =90°,则DG 2222106CG CD -=-=8,又∵EF =8,.∴DG =EF ,∴DG EF =,∴S 扇形ODG =S 扇形OEF ,∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.考点:1.圆周角定理;2.扇形面积的计算.2.(2021浙江宁波第9题)如图,在Rt ABC △中,90A ∠°,22BC ,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE 的长为( )A.4B.2C.D.2 【答案】B.【解析】试题解析:如图,连接OD ,OE∵AC ,AB 是圆O 的切线∴OE ⊥AC ,OD ⊥AB∵O 是BC 的中点∴点E ,点D 分别是AC ,AB 的中点∴OE =12AB ,OD = 12AC∵OE =OD∴AC =AB∵BC 2由勾股定理得AB =2∴OE =1DE 的弧长=901180π⨯⨯=2π.考点:1.三角形的中位线;2.弧长的计算.3.(2021重庆A 卷第9题)如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .24π-B .324π-C .28π-D .328π- 【答案】B.∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF=1×2﹣12×1×1﹣245(2)360π⨯ =324π-. 故选B .考点:1.矩形的性质;2.扇形的面积计算.4.(2021广西贵港第9题)如图,,,,A B C D 是O 上的四个点,B 是AC 的中点,M 是半径OD 上任意一点,若40BDC ∠= ,则AMB ∠的度数不可能是( )A.45B.60 C. 75D.85【答案】D【解析】试题解析:∵B是AC的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D..考点:圆周角定理;圆心角、弧、弦的关系.5.(2021贵州如故经9题)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD 的长为()A.65B.85C.75D.235【答案】B【解析】试题解析:连接B D.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BO C.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC=25 OBOC,∴cos∠A=cos∠BOC=25.又∵cos∠A=ADAB,AB=4,∴AD=85.故选B.考点:解直角三角形;平行线的性质;圆周角定理.6.(2021湖北武汉第9题)已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为()A.32B.32C.3D.23【答案】C【解析】试题解析:如图,AB=7,BC=5,AC=8过A作AD⊥BC于D,设BD=x,则CD=5-x由勾腰定理得:72-x2=82-(5-x)2解得:x=1∴AD=43设ΔABC的内切圆的半径为r,则有:1 2(5r+7r+8r)=12×5×43解得:r=3故选C.考点:三角形的内切圆.7.(2021江苏无锡第9题)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD 都相切,AO=10,则⊙O的半径长等于()A .5B .6C .25D .32【答案】C.【解析】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB =20,面积为320,∴AB •DH =32O ,∴DH =16,在Rt △ADH 中,AH 22AD DH -,∴HB =AB ﹣AH =8,在Rt △BDH 中,BD 2285DH BH +=设⊙O 与AB 相切于F ,连接AF .∵AD =AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF +∠ABE =90°,∠ABE +∠BDH =90°, ∴∠OAF =∠BDH ,∵∠AFO =∠DHB =90°,∴△AOF ∽△DBH ,∴OA OFBD BH =,10885OF=,∴OF 5.故选C .考点:1.切线的性质;2.菱形的性质.8.(2021甘肃兰州第4题)如图,在O ⊙中,AB BC ,点D 在O ⊙上,25CDB ∠°,则AOB ∠()A.45°B.50°C.55°D.60°【答案】B考点:圆周角定理.9.(2021甘肃兰州第2题)如图,正方形ABCD 内接于半径为2的O ⊙,则图中阴影部分的面积为()A.1B.2C.1D.2【答案】D .【解析】试题解析:连接AO ,DO ,∵ABCD 是正方形,∴∠AOD =90°,AD 2222OA OD +=圆内接正方形的边长为2=14[4π﹣(2)2]=(π﹣2)cm 2.故选D .考点:1正多边形和圆;2.扇形面积的计算.10.(2021贵州黔东南州第5题)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.2D.4【答案】A.【解析】试题解析:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE=12OC=1,∴CD=2OE=2,故选A.考点:圆周角定理;勾股定理;垂径定理.11. (2021贵州黔东南州第8题)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD 于O,则∠DOC的度数为()A.60°B.67.5° C.75°D.54°【答案】A.【解析】试题解析:如图,连接DF 、BF .∵FE ⊥AB ,AE =EB ,∴F A =FB ,∵AF =2AE ,∴AF =AB =FB ,∴△AFB 是等边三角形,∵AF =AD =AB ,∴点A 是△DBF 的外接圆的圆心,∴∠FDB =12∠F AB =30°, ∵四边形ABCD 是正方形,∴AD =BC ,∠DAB =∠ABC =90°,∠ADB =∠DBC =45°,∴∠F AD =∠FBC ,∴△F AD ≌△FBC ,∴∠ADF =∠FCB =15°,∴∠DOC =∠OBC +∠OCB =60°.故选A .考点:正方形的性质.12.(2021山东烟台第9题)如图,□ABCD 中,070=∠B ,6=BC ,以AD 为直径的⊙O 交CD 于点E ,则弧DE 的长为( )A .π31B .π32 C.π67 D .π34 【答案】B .∴DE 的长=40321803ππ⨯=. 故选:B .考点:弧长的计算;平行四边形的性质;圆周角定理.13.(2021四川泸州第6题)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =8,AE =1,则弦CD 的长是( )7 7 C .6 D .8【答案】B.考点:1.垂径定理;2.勾股定理.14.(2021四川自贡第10题)AB是⊙O的直径,P A切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A.20°B.25°C.30°D.40°【答案】B.【解析】试题解析:∵P A切⊙O于点A,∴∠P AB=90°,∵∠P=40°,∴∠POA=90°﹣40°=50°,∵OC=OB,∴∠B=∠BCO=25°,故选B.考点:切线的性质.15.(2021新疆建设兵团第9题)如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O 于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A .12B .15C .16D .18【答案】A.【解析】考点:圆周角定理;垂径定理.16.(2021江苏徐州第6题)如图,点,,A B C ,在⊙O 上,72AOB ∠=,则ACB ∠=()A .28B .54 C.18 D .36【答案】D .【解析】试题解析:根据圆周角定理可知,∠AOB =2∠ACB =72°,即∠ACB =36°,故选D .考点:圆周角定理.二、填空题1.(2021浙江衢州第15题)如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线343+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是__________【答案】22.【解析】试题解析:连接AP ,PQ ,当AP 最小时,PQ 最小,∴当AP ⊥直线y =﹣34x +3时,PQ 最小, ∵A 的坐标为(﹣1,0),y =﹣34x +3可化为3x +4y ﹣12=0,∴AP =22|3(1)4012|34⨯-+⨯-+=3,∴PQ =223-1=22.考点:1.切线的性质;2.一次函数的性质.2.(2021山东德州第17题)某景区修建一栋复古建筑,其窗户设计如图所示.圆O 的圆心与矩形ABCD 对角线的交点重合,且圆与矩形上下两边相切(E 为上切点),与左右两边相交(,F G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m ,根据设计要求,若45EOF ∠= ,则此窗户的透光率(透光区域与矩形窗面的面枳的比值)为 .【答案】(+2)28π 【解析】试题解析:如图,过F 作FG ⊥OF ,连接OG ,OM ,ON△OFH 是等腰直角三角形,∴FH =OFsin 45°=22,AB =2,BC =2OF =2 ∴矩形ABCD 面积=22∴S 空白=2S 扇形FOM +2SΔAOG=290112+2113602π⨯⨯⨯⨯⨯⨯=+12π ∴窗户的透光率=(+2)28π 考点:扇形的面积及概率3.(2021重庆A 卷第15题)如图,BC 是⊙O 的直径,点A 在圆上,连接AO ,AC ,∠AOB =64°,则∠ACB = .【答案】32°.【解析】试题解析:∵AO =OC ,∴∠ACB =∠OAC ,∵∠AOB =64°,∴∠ACB +∠OAC =64°,∴∠ACB =64°÷2=32°.考点:圆周角定理.4.(2021甘肃庆阳第14题)如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C = °.【答案】58°.【解析】试题解析:如图,连接OB ,∵OA =OB ,∴△AOB 是等腰三角形,∴∠OAB =∠OBA ,∵∠OAB =32°,∴∠OAB =∠OAB =32°,∴∠AOB =116°,∴∠C =58°.考点:圆周角定理.5. (2021甘肃庆阳第17题)如图,在△ABC 中,∠ACB =90°,AC =1,AB =2,以点A 为圆心、AC 的长为半径画弧,交AB 边于点D ,则弧CD 的长等于 .(结果保留π)【答案】3π. 【解析】考点:弧长的计算;含30度角的直角三角形.6.(2021广西贵港第17题)如图,在扇形OAB 中,C 是OA 的中点,,CD OA CD ⊥ 与AB 交于点D ,以O 为圆心,OC 的长为半径作CE 交OB 于点E ,若4,120OA AOB =∠=,则图中阴影部分的面积为 .(结果保留π)【答案】4233π+.【解析】试题解析:连接OD、AD,∵点C为OA的中点,∴∠CDO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD=260483603ππ⨯=,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=221204120281(223) 36036032πππ⨯⨯---⨯⨯=164823 333πππ--+=4233π+.考点:扇形面积的计算;线段垂直平分线的性质.7.(2021湖南怀化第14题)如图,O⊙的半径为2,点A,B在O⊙上,90AOB∠°,则阴影部分的面积为.【答案】π﹣2.考点:扇形面积的计算.8. (2021湖南怀化第16题)如图,在菱形ABCD中,120∠°,10cmAB,点P是这个菱形内部或ABC边上的一点,若以,,P B C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为cm.【答案】310(cm).【解析】试题解析:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,P A最小,最小值P A=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为310;③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC 为等腰三角形,当点P与点A重合时,P A最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为3﹣10(cm)..考点:菱形的性质;等腰三角形的性质.9.(2021江苏无锡第17题)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD 的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由AE,EF,FB,AB 所围成图形(图中阴影部分)的面积等于.【答案】534﹣6π.【解析】试题解析:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过F⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=12,∵O1E=1,∴GE3∴111 2O GO E=;∴∠O 1EG =30°,∴∠AO 1E =30°,同理∠BO 2F =30°,∴阴影部分的面积=S 矩形ABO 2O 1﹣2S 扇形AO 1E ﹣S 梯形EFO 2O 1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π. 考点:1.扇形面积的计算;2.矩形的性质.10.(2021江苏盐城第14题)如图,将⊙O 沿弦AB 折叠,点C 在AmB 上,点D 在AB 上,若∠ACB =70°,则∠ADB = °.【答案】110°【解析】试题解析:∵点C 在AmB 上,点D 在AB 上,若∠ACB =70°,∴∠ADB +∠ACB =180°,∴∠ADB =110°考点:圆周角定理.11.(2021山东烟台第18题)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB .已知6=OA ,取OA 的中点C ,过点C 作OA CD ⊥交弧AB 于点D ,点F 是弧AB 上一点,若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合.用剪刀沿着线段FA DF BD ,,依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .【答案】36π﹣108【解析】试题解析:如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=12OA=12OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=12OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=2306360π⨯﹣12×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108考点:扇形面积的计算12.(2021四川宜宾第15题)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是.【答案】5﹣1【解析】考点:正多边形和圆.13.(2021四川宜宾第17题)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=433,则AD=.【答案】4.【解析】试题解析:∵AB=AC,∴∠ABC=∠ACB=∠ADB=30°,∵BD是直径,∴∠BAD=90°,∠ABD=60°,∴∠CBD=∠ABD﹣∠ABC=30°,∴∠ABC=∠CBD,∴AC CD AB==,∴CB AD=,∴AD=CB,∵∠BCD=90°,∴BC=CD•tan60°=433•3=4,∴AD=BC=4.考点:1.圆周角定理;2.等腰三角形的性质;3.含30°角的直角三角形.14.(2021江苏徐州第15题)正六边形的每个内角等于.【答案】120°.【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7206︒=120°.考点:多边形的内角与外角.15. (2021江苏徐州第16题)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为,2D AB BC==,则AOB∠=.【答案】60°.【解析】考点:切线的性质.ABm=︒,弓16.(2021浙江嘉兴第13题)如图,小明自制一块乒乓球拍,正面是半径为8cm的O,90形ACB(阴影部分)粘贴胶皮,则胶皮面积为.【答案】(32+48π)cm2【解析】试题解析:连接OA、OB,∵AB=90°,∴∠AOB=90°,∴S △AOB =12×8×8=32, 扇形ACB (阴影部分)=22036078π⨯⨯=48π, 则弓形ACB 胶皮面积为(32+48π)cm 2考点:1.垂径定理的应用;2.扇形面积的计算.三、解答题1.(2021浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。
备战中考数学分点透练真题圆的基本性质(解析版)
第二十讲圆的基本性质命题点1 圆周角定理及其推论有关的计算1.(2021•长沙)如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为()A.27°B.108°C.116°D.128°【答案】B【解答】解:∵∠A=54°,∴∠BOC=2∠A=108°,故选:B.2.(2021•重庆)如图,AB是⊙O的直径,AC,BC是⊙O的弦,若∠A=20°,则∠B的度数为()A.70°B.90°C.40°D.60°【答案】A【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=20°,∴∠B=90°﹣∠A=70°,故选:A.3.(2021•嘉峪关)如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED =()A.48°B.24°C.22°D.21°【答案】D【解答】解:连接OC、OD,∵AB=CD,∠AOB=42°,∴∠AOB=∠COD=42°,∴∠CED=∠COD=21°.故选:D.4.(2021•邵阳)如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB的大小为()A.25°B.30°C.35°D.40°【答案】B【解答】解:∵∠BAC与∠BOC所对弧为,由圆周角定理可知:∠BOC=2∠BAC=60°,又∠AOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.故选:B.5.(2021•武汉)如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°【答案】B【解答】解:如图,连接AC,CD,DE.∵=,∴ED=EB,∴∠EDB=∠EBD=α,∵==,∴AC=CD=DE,∴∠DCE=∠DEC=∠EDB+∠EBD=2α,∴∠CAD=∠CDA=∠DCE+∠EBD=3α,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∴4α=90°,∴α=22.5°,故选:B.6.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE=.【答案】13°【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.7.(2021•安徽)如图,圆O的半径为1,△ABC内接于圆O.若∠A=60°,∠B=75°,则AB=.【答案】【解答】解:如图,连接OA,OB,在△ABC中,∠BAC=60°,∠ABC=75°,∴∠ACB=180°﹣∠A﹣∠B=45°,∴∠AOB=90°,∵OA=OB,∴△OAB是等腰直角三角形,∴AB=OA=.故答案为:.8.(2021•烟台)如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.【答案】【解答】解:如图,连接AO并延长交⊙O于D,由圆周角定理得:∠ACB=∠ADB,由勾股定理得:AD==2,∴sin∠ACB=sin∠ADB===,故答案为:.命题点2 垂径定理及其推论类型一垂径定理及其推论有关的计算9.(2021•丽水)如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD=∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα【答案】B【解答】解:∵AB是⊙O的直径,弦CD⊥OA于点E,∴DE=CD,在Rt△EDO中,OD=m,∠AOD=∠α,∴tanα=,∴OE==,故选项A不符合题意;∵AB是⊙O的直径,CD⊥OA,∴CD=2DE,∵⊙O的半径为m,∠AOD=∠α,∴DE=OD•sinα=m•sinα,∴CD=2DE=2m•sinα,故选项B正确,符合题意;∵cosα=,∴OE=OD•cosα=m•cosα,∵AO=DO=m,∴AE=AO﹣OE=m﹣m•cosα,故选项C不符合题意;∵CD=2m•sinα,OE=m•cosα,∴S△COD=CD×OE=×2m•sinα×m•cosα=m2sinα•cosα,故选项D不符合题意;故选:B.10.(2021•营口)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D 是上任意一点,则∠ADB度数为()A.112°B.124°C.122°D.134°【答案】B【解答】解:作所对的圆周角∠APB,如图,∵C为AB的中点,OA=OB,∴OC⊥AB,OC平分∠AOB,∴∠AOC=∠BOC=56°,∴∠APB=∠AOB=56°,∵∠APB+∠ADB=180°,∴∠ADB=180°﹣56°=124°.故选:B.11.(2021•凉山州)点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm【答案】B【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=10cm,CD=6cm.∵AB是直径,且CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===4(cm).故选:B.12.(2021•黄冈)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.4【答案】A【解答】解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴AD=AB=×8=4,又∵OD=3,∴OA===5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.13.(2021•广东)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A.B.2C.1D.2【答案】B【解答】解:如图,过点D作DT⊥AB于T.∵AB是直径,∴∠ACB=90°,∴DC⊥BC,∵DB平分∠CBA,DC⊥BC,DT⊥BA,∴DC=DT=1,∵AC=3,∴AD=AC﹣CD=2,∴AD=2DT,∴∠A=30°,∴AB===2,解法二:AD=2DT由此处开始,可以在Rt△ADT中用勾股定理得AT=,再由垂径定理可得AB=2AT得解.故选:B.14.(2021•成都)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.【答案】2【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.类型二垂径定理的实际应用15.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分【答案】A【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=AB=8(厘米),∵OA=10厘米,∴OD===6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.16.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径寸.【答案】26【解答】解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:∵OC⊥AB,∴AC=BC=AB,.则CD=1寸,AC=BC=AB=5寸.设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故答案为:26.命题点3 圆内接四边形17.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【答案】D【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.18.(2021•泰安)如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为()A.2﹣2B.3﹣C.4﹣D.2【答案】C【解答】解:延长AD、BC交于E,∵∠BCD=120°,∴∠A=60°,∵∠B=90°,∴∠ADC=90°,∠E=30°,在Rt△ABE中,AE=2AB=4,在Rt△CDE中,DE==,∴AD=AE﹣DE=4﹣,故选:C.19.(2021•苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE =AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.【答案】(1)略(2)tan∠DCB=【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠A=∠DCE,∵∠1=∠2,∴=,∴AD=DC,在△ABD和△DCE中,,∴△ABD≌△CED(SAS),∴BD=ED;(2)解:过点D作DM⊥BE于M,∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10,∵BD=ED,DM⊥BE,∴BM=ME=BE=5,∴CM=BC﹣BM=1,∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM•tan∠2=5×=,∴tan∠DCB==.20.(2021秋•越秀区校级期中)已知:在圆O内,弦AD与弦BC交于点G,AD=CB,M,N分别是CB和AD的中点,联结MN,OG.(1)求证:OG⊥MN;(2)联结AC,AM,CN,当CN∥OG时,求证:四边形ACNM为矩形.【答案】(1)略(2)四边形AMNC是矩形.【解答】(1)证明:如图,连接OM,ON,OB,OD.∵M,N分别是CB和AD的中点∴OM⊥CB,ON⊥AD,∵AD=BC,∴BM=DN,在Rt△OMB和Rt△OND中,,∴Rt△OMB≌Rt△OND(HL),∴OM=ON,在Rt△OMG和Rt△ONG中,∴Rt△OMG≌Rt△ONG(HL),∴GM=GN,∵OM=ON,∴OG⊥MN;(2)证明:∵OG⊥MN,CN∥OG,∴CN⊥MN,∴∠MNC=90°,∵GM=GN,∴∠GMN=∠GNM,∵∠GMN+∠GCN=90°,∠GNM+∠GNC=90°,∴∠GCN=∠GNC,∴GC=GN,∵CM=CB,AN=AD,BC=AD,∴CM=AN,∴AG=CG,∴AG=GN=CG=GM,∴四边形AMNC是平行四边形,∵AN=CM,∴四边形AMNC是矩形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021中考数学专题训练——圆 考点一 圆的有关概念及性质 1.(2018衢州,10,3分)如图,AC 是☉O 的直径,弦BD ⊥AO 于E,连接BC,过点O 作OF ⊥BC 于F,若BD=8 cm,AE=2 cm,则OF 的长度是 ( )A.3 cmB.6cmC. 2.5cmD.5cm答案 D ∵AC ⊥BD,∴BE=DE=21BD=4 cm. 设☉O 的半径为r cm.连接OB,则在Rt △BOE 中,r 2=42+(r-2)2,解得r=5.∴CE=8 cm.∴BC=54 cm.又∵OF ⊥BC,∴CF=21BC=52 cm, ∵OC=5 cm,∴OF=5 cm.故选D.2.(2016杭州,8,3分)如图,已知AC 是☉O 的直径,点B 在圆周上(不与A,C 重合),点D 在AC 的延长线上,连接BD 交☉O 于点E.若∠AOB=3∠ADB,则 ( )A.DE=EBB. DE=2EBC.3DE=DOD.DE=OB答案 D 连接OE,∠AOB=∠ADB+∠B=3∠ADB,∴∠B=2∠ADB,∵OE=OB,∴∠OEB=∠B=2∠ADB=∠ADB+∠EOC,∴∠ADB=∠EOC,∴DE=EO,∴DE=OB.故选D.3. (2019台州,14,5分)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE,若∠ABC=64°,则∠BAE 的度数为_______ .答案 52°解析 由题意得∠D=180°-∠ABC=116°,∵点D 关于AC 的对称点E 在边BC 上,∴∠D=∠AEC=116°,∴∠BAE=116°-64°=52°.4.(2018杭州,14,4分)如图,AB 是☉O 的直径,点C 是半径OA 的中点,过点C 作DE ⊥AB,交☉O于D,E 两点,过点D 作直径DF,连接AF,则∠DFA=________ . 答案 30°解析 ∵点C 是半径OA 的中点,∴OC=21OA=21OD, 又∵DE ⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=21∠DOA=30°.5.(2018嘉兴、舟山,14,4分)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10 cm,点D 在量角器上的读数为60°,则该直尺的宽度为________cm.答案 335 解析 连接OC,OD,∵C 是☉O 的切点,∴CO ⊥CE 且CO ⊥AD,设CO 交AD 于H,则AH=HD=21AD=5 cm, ∵∠DOB=60°,∴∠AOD=120°,∴∠AOC=60°,∴AO=CO=3310 cm,OH=335 cm, ∴CH=335cm,即直尺的宽度为335 cm.6.(2017湖州,12,4分)如图,已知在△ABC 中,AB=AC,以AB 为直径作半圆O,交BC 于点D.若∠BAC=40°,则弧AD 的度数是_____度.答案 140解析 ∵AB=AC,∠BAC=40°,∴∠B=∠C=70°,∴ 的度数为2×70°=140°7.(2019杭州,23,12分)如图,已知锐角三角形ABC 内接于☉O,OD ⊥BC 于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA;②当OA=1时,求△ABC 面积的最大值; (2)点E 在线段OA 上,OE=OD.连接DE,设∠ABC=m ∠OED,∠ACB=n ∠OED(m,n 是正数).若∠ABC<∠ACB,求证:m-n+2=0.解析 (1)①证明:连接OB,OC.因为OB=OC,OD ⊥BC,所以∠BOD=12∠BOC=12×2∠BAC=60°, 所以∠OBD=30°,所以OD=12OB=12OA. ②作AF ⊥BC,垂足为点F, 所以AF ≤AD ≤AO+OD=23,等号当点A,O,D 在同一直线上时取到. 由①知,BC=2BD=3, 所以△ABC 的面积=12BC ·AF ≤12×3×23=343, 即△ABC 面积的最大值是343. (2)证明:设∠OED=∠ODE=α,∠COD=∠BOD=β.因为△ABC 是锐角三角形,所以∠ABC+∠ACB+∠BAC=180°,即(m+n)α+β=180°.(*)又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC=2m α+β.因为∠OED+∠ODE+∠EOD=180°,所以2(m+1)α+β=180°.(**)由(*) (**),得m+n=2(m+1),即m-n+2=0.8.(2018温州,22,10分)如图,D 是△ABC 的BC 边上一点,连接AD,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在弧BD 上.(1)求证:AE=AB;(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长. 解析 (1)证明:由折叠的性质可知,△ADE ≌△ADC,∴∠AED=∠ACD,AE=AC,∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB.(2)如图,过A 作AH ⊥BE 于点H,∵AB=AE,BE=2,∴BH=EH=1,∠ABE=∠AEB.∵∠AEB=∠ADB,cos ∠ADB=13, ∴cos ∠ABE=cos ∠ADB=13,∴AB BH =13,∴AB=3. ∵∠CAB=90°,AC=AB,∴BC=22AC AB =23.考点二 与圆有关的位置关系1.(2019杭州,3,3分)如图,P 为☉O 外一点,PA,PB 分别切☉O 于A,B 两点,若PA=3,则PB= ( )A.2B.3C.4D.5答案 B 连接OA,OB,OP . ∵PA,PB 分别切☉O 于A,B 两点,∴OA ⊥AP ,OB ⊥BP .∵OA=OB,OP=OP ,∴△OAP ≌△OBP(HL),∴PB=PA=3.故选B.2.(2019台州,7,4分)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB,AC 相切,则☉O 的半径为 ( )A.2 B.3C.4D.4-3答案 A 设☉O 与AC 的切点为E,连接AO,OE,∵等边三角形ABC 的边长为8,∴AC=8,∠C=∠BAC=60°,∵☉O 分别与边AB,AC 相切,∴∠BAO=∠CAO=21∠BAC=30°, ∴∠AOC=90°,∴OC=21AC=4, ∵OE ⊥AC,∴OE=23OC=32, ∴☉O 的半径为32,故选A.3.(2019温州,14,5分)如图,☉O 分别切∠BAC 的两边AB,AC 于点E,F,点P 在优弧(EDF)上.若∠BAC=66°,则∠EPF 等于______ 度.答案 57解析 连接OE,OF,则四边形OEAF 中,∠OFA=∠OEA=90°,∠A=66°(已知),∴∠FOE=180°-66°=114°,∵P 在☉O 上,∴∠EPF=2FOE ∠=57°. 4.(2019宁波,17,4分)如图,Rt △ABC 中,∠C=90°,AC=12,点D 在边BC 上,CD=5,BD=13.点P 是线段AD 上一动点,当半径为6的☉P 与△ABC 的一边相切时,AP 的长为_______ .答案 6.5或313解析 ∵在Rt △ABC 中,∠C=90°,AC=12,CB=BD+CD=18,∴AB=221812+=613.在Rt △ADC 中,∠C=90°,AC=12,CD=5,∴AD=22CD AD +=13.①当☉P 与BC 相切时,点P 到BC 的距离为6.过P 作PH ⊥BC 于H,则PH=6. ∵∠C=90°,∴AC ⊥BC,∴PH ∥AC.∴△DPH ∽△DAC,∴DA PD =AC PH ,∴13PD =12PH ,∴PD=6.5, ∴AP=6.5.②当☉P 与AB 相切时,点P 到AB 的距离为6.过P 作PG ⊥AB 于G,则PG=6.∵AD=BD=13,∴∠PAG=∠B,又∠AGP=∠C=90°,∴△AGP ∽△BCA,∴AB AP =ACPG . ∴136AP =126, ∴AP=133.③∵CD=5<6,∴半径为6的☉P 不能与△ABC 的AC 边相切.综上所述,AP=6.5或133.5.(2019温州,22,10分)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE,过A,C,E 三点的☉O 交AB 于另一点F,作直径AD,连接DE 并延长交AB 于点G,连接CD,CF.(1)求证:四边形DCFG 是平行四边形;(2)当BE=4,CD= AB 时,求☉O 的直径长. 解析 (1)证明:连接AE,∵∠BAC=90°,∴CF 为☉O 的直径,∵AC=EC,∴CF ⊥AE.∵AD 为☉O 的直径,∴∠AED=90°,即GD ⊥AE,∴CF ∥DG.∵AD 为☉O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB ∥CD,∴四边形DCFG 为平行四边形.(2)由CD=83AB,可设CD=3x,AB=8x,∴FG=CD=3x. ∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x-3x-3x=2x.∵GE ∥CF,∴EC BE =GF BG =32. 又∵BE=4,∴CE=6,∴BC=6+4=10,AC=6,∴AB=22610 =8=8x,∴x=1.在Rt △ACF 中,AF=3,AC=6, ∴CF=2263+=3 ,即☉O 的直径长为53.6.(2019衢州,21,8分)如图,在等腰△ABC 中,AB=AC,以AC 为直径作☉O 交BC 于点D,过点D 作DE ⊥AB,垂足为E.(1)求证:DE 是☉O 的切线;(2)若DE=3,∠C=30°,求弧AD 的长. 解析 (1)证明:连接OD.∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD ∥AB,∴∠ODE=∠DEB.∵DE ⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE ⊥OD,∴DE 是☉O 的切线.(2)连接AD,∵AC 是直径,∴∠ADC=90°,∵AB=AC,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD 是等边三角形,∴∠AOD=60°,∵DE=3,∠B=30°,∠BED=90°,∴CD=BD=2DE=23,∴OD=AD=tan 30°·CD=33×23=2, ∴AD ︵的长为18026•π=32π.7.(2018金华,21,8分)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC,AB 相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD 是☉O 的切线;(2)若BC=8,tan B= ,求☉O 的半径. 解析 (1)证明:连接OD,∵OB=OD,∴∠3=∠B.∵∠B=∠1,∴∠3=∠1.在Rt △ACD 中,∠1+∠2=90°,∴∠3+∠2=90°,∴∠4=180°-(∠2+∠3)=180°-90°=90°,∴OD ⊥AD,∴AD 是☉O 的切线.(2)设☉O 的半径为r.。