中考数学 反比例函数综合试题及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .

(1)求反比例函数y= 和直线y=kx+b的解析式;

(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;

(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

【答案】(1)解:∵A(5,0),

∴OA=5.

∵,

∴,解得OC=2,

∴C(0,﹣2),

∴BD=OC=2,

∵B(0,3),BD∥x轴,

∴D(﹣2,3),

∴m=﹣2×3=﹣6,

∴,

设直线AC关系式为y=kx+b,

∵过A(5,0),C(0,﹣2),

∴,解得,

∴;

(2)解:∵B(0,3),C(0,﹣2),

∴BC=5=OA,

在△OAC和△BCD中

∴△OAC≌△BCD(SAS),

∴AC=CD,

∴∠OAC=∠BCD,

∴∠BCD+∠BCA=∠OAC+∠BCA=90°,

∴AC⊥CD;

(3)解:∠BMC=45°.

如图,连接AD,

∵AE=OC,BD=OC,AE=BD,

∴BD∥x轴,

∴四边形AEBD为平行四边形,

∴AD∥BM,

∴∠BMC=∠DAC,

∵△OAC≌△BCD,

∴AC=CD,

∵AC⊥CD,

∴△ACD为等腰直角三角形,

∴∠BMC=∠DAC=45°.

【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.

2.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).

(1)点C的坐标________;

(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;

(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,

使得S△PEF= S△CEF,求点P的坐标.

【答案】(1)(3,0)

(2)解:∵AB=CD=3,OB=1,

∴A的坐标为(1,3),又C(3,0),

设直线AC的解析式为y=ax+b,

则,解得:,

∴直线AC的解析式为y=﹣ x+ .

∵点E(2,m)在直线AC上,

∴m=﹣ ×2+ = ,

∴点E(2,).

∵反比例函数y= 的图象经过点E,

∴k=2× =3,

∴反比例函数的解析式为y=

(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).

在y= 中,当x=3时,y=1,

∴F(3,1).

过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.

设直线EF的解析式为y=a'x+b',

∴,解得,

∴y=﹣ x+ .

设直线PM的解析式为y=﹣ x+c,

代入M(3,﹣0.5),得:c=1,

∴y=﹣ x+1.

当x=1时,y=0.5,

∴点P(1,0.5).

同理可得点P(1,3.5).

∴点P坐标为(1,0.5)或(1,3.5).

【解析】【解答】解:(1)∵D(3,3),

∴OC=3,

∴C(3,0).

故答案为(3,0);

【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解

析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接

EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线

AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.

3.如图,点P( +1,﹣1)在双曲线y= (x>0)上.

(1)求k的值;

(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.

【答案】(1)解:点P(,)在双曲线上,

将x= ,y= 代入解析式可得:

k=2;

(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,

∵四边形ABCD是正方形,

∴AB=AD=BC,∠CBA=90°,

∴∠FBC+∠OBA=90°,

∵∠CFB=∠BOA=90°,

∴∠FCB+∠FBC=90°,

∴∠FBC=∠OAB,

相关文档
最新文档