中考数学 反比例函数综合试题及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .
(1)求反比例函数y= 和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.
【答案】(1)解:∵A(5,0),
∴OA=5.
∵,
∴,解得OC=2,
∴C(0,﹣2),
∴BD=OC=2,
∵B(0,3),BD∥x轴,
∴D(﹣2,3),
∴m=﹣2×3=﹣6,
∴,
设直线AC关系式为y=kx+b,
∵过A(5,0),C(0,﹣2),
∴,解得,
∴;
(2)解:∵B(0,3),C(0,﹣2),
∴BC=5=OA,
在△OAC和△BCD中
∴△OAC≌△BCD(SAS),
∴AC=CD,
∴∠OAC=∠BCD,
∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
∴AC⊥CD;
(3)解:∠BMC=45°.
如图,连接AD,
∵AE=OC,BD=OC,AE=BD,
∴BD∥x轴,
∴四边形AEBD为平行四边形,
∴AD∥BM,
∴∠BMC=∠DAC,
∵△OAC≌△BCD,
∴AC=CD,
∵AC⊥CD,
∴△ACD为等腰直角三角形,
∴∠BMC=∠DAC=45°.
【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.
2.如图直角坐标系中,矩形ABCD的边BC在x轴上,点B,D的坐标分别为B(1,0),D(3,3).
(1)点C的坐标________;
(2)若反比例函数y= (k≠0)的图象经过直线AC上的点E,且点E的坐标为(2,m),求m的值及反比例函数的解析式;
(3)若(2)中的反比例函数的图象与CD相交于点F,连接EF,在直线AB上找一点P,
使得S△PEF= S△CEF,求点P的坐标.
【答案】(1)(3,0)
(2)解:∵AB=CD=3,OB=1,
∴A的坐标为(1,3),又C(3,0),
设直线AC的解析式为y=ax+b,
则,解得:,
∴直线AC的解析式为y=﹣ x+ .
∵点E(2,m)在直线AC上,
∴m=﹣ ×2+ = ,
∴点E(2,).
∵反比例函数y= 的图象经过点E,
∴k=2× =3,
∴反比例函数的解析式为y=
(3)解:延长FC至M,使CM= CF,连接EM,则S△EFM= S△EFC, M(3,﹣0.5).
在y= 中,当x=3时,y=1,
∴F(3,1).
过点M作直线MP∥EF交直线AB于P,则S△PEF=S△MEF.
设直线EF的解析式为y=a'x+b',
∴,解得,
∴y=﹣ x+ .
设直线PM的解析式为y=﹣ x+c,
代入M(3,﹣0.5),得:c=1,
∴y=﹣ x+1.
当x=1时,y=0.5,
∴点P(1,0.5).
同理可得点P(1,3.5).
∴点P坐标为(1,0.5)或(1,3.5).
【解析】【解答】解:(1)∵D(3,3),
∴OC=3,
∴C(3,0).
故答案为(3,0);
【分析】(1)由D的横坐标为3,得到线段OC=3,即可确定出C的坐标;(2)由矩形的对边相等,得到AB=CD,由D的纵坐标确定出CD的长,即为AB的长,再由B的坐标确定出OB的长,再由A为第一象限角,确定出A的坐标,由A与C的坐标确定出直线AC的解析式,将E坐标代入直线AC解析式中,求出m的值,确定出E的坐标,代入反比例解
析式中求出k的值,即可确定出反比例解析式;(3)延长FC至M,使CM=CF,连接
EM,则S△EFM=S△EFC, M(3,﹣0.5).求出F(3,1),过点M作直线MP∥EF交直线
AB于P,利用平行线间的距离处处相等得到高相等,再利用同底等高得到S△PEF=S△MEF.此时直线EF与直线PM的斜率相同,由F的横坐标与C横坐标相同求出F 的横坐标,代入反比例解析式中,确定出F坐标,由E与F坐标确定出直线EF斜率,即为直线PM的斜率,再由M坐标,确定出直线PM解析式,由P横坐标与B横坐标相同,将B横坐标代入直线PM解析式中求出y的值,即为P的纵坐标,进而确定出此时P的坐标.
3.如图,点P( +1,﹣1)在双曲线y= (x>0)上.
(1)求k的值;
(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.
【答案】(1)解:点P(,)在双曲线上,
将x= ,y= 代入解析式可得:
k=2;
(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,
∵四边形ABCD是正方形,
∴AB=AD=BC,∠CBA=90°,
∴∠FBC+∠OBA=90°,
∵∠CFB=∠BOA=90°,
∴∠FCB+∠FBC=90°,
∴∠FBC=∠OAB,